
bib2gls: a command line Java
application to convert .bib files to
glossaries-extra.sty resource files

Nicola Talbot
dickimaw-books.com

Version 4.2 2025-01-24

The bib2gls command line application can be used to extract glossary infor-
mation stored in a .bib file and convert it into glossary entry definitions that
can be read using glossaries-extra’s \GlsXtrLoadResources command. When
used in combination with the record package option, bib2gls can select only
those entries that have been used in the document, as well as any dependent
entries, which reduces the TEX resources required by not defining unnecessary
commands.

Since bib2gls can also sort and collate the recorded locations present in the
.aux file, it can simultaneously by-pass the need to use makeindex or xindy,
although bib2gls can be used together with an external indexing application if
required. (For example, if a custom xindy rule is needed.)

An additional build may be required to ensure the locations are up-to-date
as the page-breaking may be slightly different on the first LATEX run due to the
unknown references being replaced with ⁇ which can be significantly shorter
than the actual text produced when the reference is known.

Note that bib2gls is a Java application, and requires at least Java 8. Addition-
ally, glossaries-extra must be at least version 1.12. These are minimum require-
ments, but the latest versions are recommended. This application was developed
in response to the question “Is there a program for managing glossary tags?” on
TEX on StackExchange [18]. The .bib file can be managed in an application such
as JabRef.

If you already have a .tex file containing entry definitions using commands
like \newglossaryentry then you can use the supplementary tool convert-
gls2bib to convert the entries to the .bib format required by bib2gls. See
section 7.2 for further details.

https://www.dickimaw-books.com/
http://tex.stackexchange.com/q/342544

Thesupplementary file “glossaries-extra and bib2gls: An IntroductoryGuide”
(bib2gls-begin.pdf) is an introductory guide to the glossaries-extra package,
which you may prefer to start with if you are unfamiliar with the glossaries and
glossaries-extra packages.

Additional resources:

• bib2gls gallery.

• bib2gls FAQ

TUGboat articles:

• Glossaries with bib2gls, issue 40:1, 2019.

• bib2gls: selection, cross-references and locations, issue 41:3, 2020.

• bib2gls: sorting, issue 42:2, 2021.

https://www.dickimaw-books.com/gallery/#bib2gls
https://www.dickimaw-books.com/faq.php?category=bib2gls
http://tug.org/TUGboat/tb40-1/tb124talbot-bib2gls.pdf
http://tug.org/TUGboat/tb41-3/tb129talbot-bib2gls-more.pdf
http://tug.org/TUGboat/Contents/contents42-2.html

Contents
Glossary xxii

1 Introduction 1
1.1 Default Encoding . 2
1.2 Example Use . 3
1.3 Logical Divisions: type vs group vs parent 6
1.4 Defining a New Glossary . 11
1.5 Resource Sets . 13
1.6 bib2gls Quarks . 17
1.7 Indexing . 18
1.8 Security . 19
1.9 Localisation . 20
1.10 Conditional Document Build . 20
1.11 Manual Installation . 21

2 TEX Parser Library 24

3 Command Line Options 33
3.1 Common Options . 34

--help (or -h) . 34
--version (or -v) . 34
--verbose . 34
--no-verbose (or --noverbose) . 34
--quiet (or -q) . 34
--silent . 34
--locale 〈lang〉 (or -l 〈lang〉) . 34
--debug [〈n〉] . 35
--debug-mode 〈setting〉 . 35
--no-debug (or --nodebug) . 36

3.2 File Options . 36
--dir 〈dirname〉 (or -d 〈dirname〉) . 36
--log-file 〈filename〉 (or -t 〈filename〉) 37
--tex-encoding 〈name〉 . 37
--log-encoding 〈name〉 . 38
--default-encoding 〈name〉 . 38
--date-in-header (or -D) . 38
--no-date-in-header . 38

i

Contents

3.3 Interpreter Options . 38
--break-space . 38
--no-break-space . 38
--custom-packages 〈list〉 . 39
--datatool-sort-markers . 39
--no-datatool-sort-markers . 40
--ignore-packages 〈list〉 (or -k 〈list〉) . 40
--interpret . 40
--no-interpret . 40
--list-known-packages . 40
--packages 〈list〉 (or -p 〈list〉) . 41
--support-unicode-script . 41
--no-support-unicode-script . 42
--obey-aux-catcode . 42
--no-obey-aux-catcode . 42

3.4 Record Options . 42
--cite-as-record . 42
--no-cite-as-record . 43
--collapse-same-location-range . 43
--no-collapse-same-location-range . 43
--map-format 〈map:value list〉 (or -m 〈map:value list〉) 43
--merge-nameref-on 〈rule〉 . 45
--merge-wrglossary-records . 46
--no-merge-wrglossary-records . 46
--record-count (or -c) . 46
--no-record-count . 47
--record-count-unit (or -n) . 47
--no-record-count-unit . 47
--record-count-rule {rule}(or -r {rule}) 48
--retain-formats 〈list〉 . 48
--no-retain-formats . 48

3.5 Bib File Options . 49
--warn-non-bib-fields . 49
--no-warn-non-bib-fields . 49
--warn-unknown-entry-types . 49
--no-warn-unknown-entry-types . 49

3.6 Field Options . 49
--group (or -g) . 49
--no-group . 53
--no-expand-fields . 53
--expand-fields . 53
--mfirstuc-protection 〈list〉|all (or -u 〈list〉|all) 53
--no-mfirstuc-protection . 54
--mfirstuc-math-protection . 54

ii

Contents

--no-mfirstuc-math-protection . 55
--nested-link-check 〈list〉|none . 55
--no-nested-link-check . 55
--shortcuts 〈value〉 . 55
--trim-fields . 55
--trim-only-fields 〈list〉 . 56
--trim-except-fields 〈list〉 . 56
--no-trim-fields . 56

3.7 Other Options . 57
--force-cross-resource-refs (or -x) . 57
--no-force-cross-resource-refs . 57
--provide-glossaries . 57
--no-provide-glossaries . 57
--replace-quotes . 57
--no-replace-quotes . 57

4 .bib Format 58
4.1 Encoding . 58
4.2 Comments . 59
4.3 Fields . 59
4.4 String Concatenation . 68
4.5 Standard Entry Types . 68

@string . 68
@preamble . 69

4.6 Single Entry Types . 73
@entry . 74
@symbol . 75
@number . 75
@index . 76
@indexplural . 77
@abbreviation . 78
@acronym . 79
@contributor . 79

4.7 Dual Entry Types . 80
@dualentry . 87
@dualindexentry . 89
@dualindexabbreviation . 91
@dualindexsymbol . 92
@dualindexnumber . 96
@dualabbreviationentry . 96
@dualentryabbreviation . 97
@dualsymbol . 98
@dualnumber . 98
@dualabbreviation . 99

iii

Contents

@dualacronym . 104
4.8 Tertiary Entry Types . 104

@tertiaryindexabbreviationentry . 105
4.9 Multi-Entry Types . 106

@bibtexentry . 106
@progenitor . 110
@spawnindex . 113
@spawnindexplural . 113
@spawnentry . 113
@spawnabbreviation . 113
@spawnacronym . 113
@spawnsymbol . 114
@spawnnumber . 114
@spawndualindexentry . 114

4.10 Compound Entry Sets . 114
@compoundset . 118

5 Resource File Options 119
5.1 String Concatenation . 123
5.2 Complex Conditionals . 131
5.3 General Options . 136

charset=〈encoding-name〉 . 136
locale=〈lang tag〉 . 136
wordify-math-greek=〈boolean〉 . 136
wordify-math-symbol=〈boolean〉 . 136
interpret-preamble=〈boolean〉 . 137
write-preamble=〈boolean〉 . 137
set-widest=〈boolean〉 . 137
entry-type-aliases=〈key=value list〉 . 138
unknown-entry-alias=〈value〉 . 140
action=〈value〉 . 140
copy-to-glossary=〈list〉 . 142
copy-to-glossary-missing-field-action=〈value〉 144

5.4 Selection Options . 145
src=〈list〉 . 145
selection=〈value〉 . 146
match=〈key=value list〉 . 149
match-op=〈value〉 . 150
not-match=〈key=value list〉 . 150
match-action=〈value〉 . 150
limit=〈number〉 . 150

5.5 Hierarchical Options . 151
save-child-count=〈boolean〉 . 151
save-sibling-count=〈boolean〉 . 153

iv

Contents

save-root-ancestor=〈boolean〉 . 153
flatten=〈boolean〉 . 153
flatten-lonely=〈value〉 . 153
flatten-lonely-rule=〈value〉 . 160
flatten-lonely-condition=〈value〉 . 161
flatten-lonely-missing-field-action=〈value〉 161
strip-missing-parents=〈boolean〉 . 161
missing-parents=〈value〉 . 162
missing-parent-category=〈value〉 . 163
group-level=〈value〉 . 163
merge-small-groups=〈n〉 . 164

5.6 Master Documents . 165
master=〈name〉 . 167
master-resources=〈list〉 . 169

5.7 Field and Label Options . 169
Entry Labels . 169

interpret-label-fields=〈boolean〉 169
labelify=〈list〉 . 170
labelify-list=〈list〉 . 171
labelify-replace=〈list〉 . 172
label-prefix=〈tag〉 . 173
duplicate-label-suffix=〈value〉 174
record-label-prefix=〈tag〉 . 175
cs-label-prefix=〈tag〉 . 175
ext-prefixes=〈list〉 . 176
prefix-only-existing=〈boolean〉 178
dependency-fields=〈list〉 . 178

Special Fields . 181
save-original-id=〈value〉 . 181
save-original-id-action=〈value〉 181
save-definition-index=〈boolean〉 181
save-use-index=〈boolean〉 . 182
save-from-see=〈value〉 . 182
save-from-seealso=〈value〉 . 182
save-from-alias=〈value〉 . 183
save-crossref-tail=〈value〉 . 183
save-original-entrytype=〈value〉 183
save-original-entrytype-action=〈value〉 184
gather-parsed-dependencies=〈value〉 184

Assignments . 184
group=〈label〉 . 184
category=〈value〉 . 185
type=〈value〉 . 186
ignored-type=〈type〉 . 188

v

Contents

trigger-type=〈type〉 . 188
progenitor-type=〈type〉 . 189
progeny-type=〈type〉 . 189
adopted-parent-field=〈type〉 . 189
ignore-fields=〈list〉 . 189
omit-fields=〈list〉 . 190

omit-fields-missing-field-action={〈value〉} 192
field-aliases=〈key=value list〉 . 192
replicate-fields=〈key=value list〉 193
replicate-override={〈boolean〉} 194
replicate-missing-field-action={〈value〉} 194
assign-fields=〈key=value list〉 . 195
assign-override={〈boolean〉} . 200
assign-missing-field-action={〈value〉} 200
counter=〈value〉 . 200
copy-action-group-field=〈value〉 201
copy-alias-to-see=〈boolean〉 . 201

Field Adjustments . 201
post-description-dot=〈value〉 . 201
strip-trailing-nopost=〈boolean〉 202
check-end-punctuation=〈list〉 . 203
sort-label-list=〈list〉 . 204
prune-xr=〈boolean〉 . 210
prune-see-match=〈key=value list〉 210
prune-see-op=〈value〉 . 212
prune-seealso-match=〈key=value list〉 212
prune-seealso-op=〈value〉 . 213
prune-iterations=〈number〉 . 213
bibtex-contributor-fields=〈list〉 213
contributor-order=〈value〉 . 214
encapsulate-fields={〈key=value list〉} 215
encapsulate-fields*={〈key=value list〉} 215
format-integer-fields={〈key=value list〉} 216
format-decimal-fields={〈key=value list〉} 216
interpret-fields={〈list〉} . 216
interpret-fields-action={〈value〉} 218
hex-unicode-fields={〈list〉} . 218
date-time-fields=〈list〉 . 219
date-fields=〈list〉 . 219
time-fields=〈list〉 . 219
date-time-field-format=〈value〉 219
date-field-format=〈value〉 . 220
time-field-format=〈value〉 . 220
date-time-field-locale=〈value〉 220

vi

Contents

date-field-locale=〈value〉 . 220
time-field-locale=〈value〉 . 220

Prefix Fields . 220
prefix-fields=〈list〉 . 221
append-prefix-field=〈value〉 . 221
append-prefix-field-cs=〈cs〉 . 221
append-prefix-field-exceptions=〈sequence〉 221
append-prefix-field-cs-exceptions=〈sequence〉 221
append-prefix-field-nbsp-match=〈pattern〉 222

Case-Changing . 222
no-case-change-cs=〈list〉 . 231
word-boundaries=〈list〉 . 231
short-case-change=〈value〉 . 231
long-case-change=〈value〉 . 232
name-case-change=〈value〉 . 232
description-case-change=〈value〉 232
field-case-change={〈key=value list〉} 232

5.8 Field Fallbacks . 233
abbreviation-name-fallback=〈field〉 . 235
abbreviation-text-fallback=〈field〉 . 235
abbreviation-sort-fallback=〈field〉 . 235
entry-sort-fallback=〈field〉 . 236
symbol-sort-fallback=〈field〉 . 238
bibtexentry-sort-fallback=〈field〉 . 238
custom-sort-fallbacks={〈key=value list〉} 238
field-concat-sep=〈value〉 . 240

5.9 Plurals . 241
short-plural-suffix=〈value〉 . 243
dual-short-plural-suffix=〈value〉 . 243

5.10 Location List Options . 243
save-locations=〈value〉 . 247
save-loclist=〈boolean〉 . 248
save-primary-locations=〈value〉 . 248
save-principal-locations=〈value〉 . 248
primary-location-formats=〈list〉 . 250
principal-location-formats=〈list〉 . 250
primary-loc-counters=〈value〉 . 254
principal-loc-counters=〈value〉 . 254
merge-ranges=〈boolean〉 . 257
min-loc-range=〈value〉 . 257
max-loc-diff=〈value〉 . 260
suffixF=〈value〉 . 260
suffixFF=〈value〉 . 260
compact-ranges=〈value〉 . 261

vii

Contents

see=〈value〉 . 261
seealso=〈value〉 . 262
alias=〈value〉 . 262
alias-loc=〈value〉 . 262
loc-prefix=〈value〉 . 262
loc-prefix-def=〈value〉 . 264
loc-suffix=〈value〉 . 264
loc-suffix-def=〈value〉 . 264
loc-counters=〈list〉 . 265
save-index-counter=〈value〉 . 266

5.11 Supplemental Locations . 269
supplemental-locations=〈basename〉 . 271
supplemental-selection=〈value〉 . 273
supplemental-category=〈value〉 . 274

5.12 Sorting . 275
sort=〈value〉 . 277

No Sort Field . 277
Alphabet . 282
Letter (Non Locale) . 283
Letter-Number . 284
Numerical . 288
Date-Time . 289

shuffle=〈seed〉 . 290
sort-field=〈field〉 . 290
missing-sort-fallback=〈field〉 . 291
trim-sort=〈boolean〉 . 292
sort-replace=〈list〉 . 292
sort-rule=〈value〉 . 293
break-at=〈option〉 . 296
break-marker=〈marker〉 . 297
break-at-match=〈key=value list〉 . 297
break-at-match-op=〈value〉 . 297
break-at-not-match=〈key=value list〉 . 298
sort-number-pad=〈number〉 . 298
sort-pad-plus=〈marker〉 . 298
sort-pad-minus=〈marker〉 . 298
identical-sort-action=〈value〉 . 298
sort-suffix=〈value〉 . 299
sort-suffix-marker=〈value〉 . 304
encapsulate-sort={csname} . 304
strength=〈value〉 . 304
decomposition=〈value〉 . 305
letter-number-rule=〈value〉 . 305
letter-number-punc-rule=〈value〉 . 306

viii

Contents

numeric-sort-pattern=〈value〉 . 308
numeric-locale=〈value〉 . 308
date-sort-locale=〈value〉 . 308
date-sort-format=〈value〉 . 309
group-formation=〈value〉 . 311

5.13 Secondary Glossary . 311
secondary=〈value〉 . 311
secondary-match=〈key=value list〉 . 314
secondary-not-match=〈key=value list〉 . 314
secondary-match-op=〈value〉 . 314
secondary-match-action=〈value〉 . 314
secondary-missing-sort-fallback=〈field〉 314
secondary-trim-sort=〈boolean〉 . 315
secondary-sort-replace=〈list〉 . 315
secondary-sort-rule=〈value〉 . 315
secondary-break-at=〈value〉 . 315
secondary-break-marker=〈marker〉 . 315

secondary-break-at-match=〈key=value list〉 315
secondary-break-at-match-op=〈value〉 315
secondary-break-at-not-match=〈key=value list〉 315

secondary-sort-number-pad=〈number〉 315
secondary-sort-pad-plus=〈marker〉 . 315
secondary-sort-pad-minus=〈marker〉 . 315
secondary-identical-sort-action=〈value〉 316
secondary-sort-suffix=〈value〉 . 316
secondary-sort-suffix-marker=〈value〉 316
secondary-strength=〈value〉 . 316
secondary-decomposition=〈value〉 . 316
secondary-letter-number-rule=〈value〉 316
secondary-letter-number-punc-rule=〈value〉 316
secondary-numeric-sort-pattern=〈value〉 316
secondary-numeric-locale=〈value〉 . 316
secondary-date-sort-locale=〈value〉 . 316
secondary-date-sort-format=〈value〉 . 316
secondary-group-formation=〈value〉 . 317

5.14 Dual Entries . 317
General Dual Settings . 317

dual-prefix=〈value〉 . 317
primary-dual-dependency=〈boolean〉 317
combine-dual-locations=〈value〉 317

Dual Fields . 319
dual-type=〈value〉 . 319
dual-category=〈value〉 . 320
dual-counter=〈value〉 . 321

ix

Contents

dual-short-case-change=〈value〉 321
dual-long-case-change=〈value〉 321
dual-field=〈value〉 . 321
dual-date-time-field-format=〈value〉 322
dual-date-field-format=〈value〉 322
dual-time-field-format=〈value〉 322
dual-date-time-field-locale=〈value〉 322
dual-date-field-locale=〈value〉 322
date-time-field-locale=〈value〉 322

Dual Sorting . 322
dual-sort=〈value〉 . 322
dual-sort-field=〈field〉 . 323
dual-missing-sort-fallback=〈field〉 323
dual-trim-sort=〈boolean〉 . 323
dual-sort-replace=〈list〉 . 323
dual-sort-rule=〈value〉 . 323
dual-break-at=〈value〉 . 323
dual-break-marker=〈marker〉 . 324
dual-break-at-match=〈key=value list〉 324
dual-break-at-match-op=〈value〉 324
dual-break-at-not-match=〈key=value list〉 324
dual-sort-number-pad=〈number〉 324
dual-sort-pad-plus=〈marker〉 . 324
dual-sort-pad-minus=〈marker〉 324
dual-identical-sort-action=〈value〉 324
dual-sort-suffix=〈value〉 . 324
dual-sort-suffix-marker=〈value〉 324
dual-strength=〈value〉 . 324
dual-decomposition=〈value〉 . 324
dual-letter-number-rule=〈value〉 325
dual-letter-number-punc-rule=〈value〉 325
dual-numeric-sort-pattern=〈value〉 325
dual-numeric-locale=〈value〉 . 325
dual-date-sort-locale=〈value〉 325
dual-date-sort-format=〈value〉 325
dual-group-formation=〈value〉 . 325

Dual Mappings . 325
dual-entry-map={{〈list1〉},{〈list2〉}} 325
dual-abbrv-map={{〈list1〉},{〈list2〉}} 326
dual-abbrventry-map={{〈list1〉},{〈list2〉}} 327
dual-symbol-map={{〈list1〉},{〈list2〉}} 327
dual-indexentry-map={{〈list1〉},{〈list2〉}} 327
dual-indexsymbol-map={{〈list1〉},{〈list2〉}} 327
dual-indexabbrv-map={{〈list1〉},{〈list2〉}} 328

x

Contents

Dual Back-Links . 328
dual-entry-backlink={〈boolean〉} 328
dual-abbrv-backlink={〈boolean〉} 329
dual-symbol-backlink={〈boolean〉} 329
dual-abbrventry-backlink={〈boolean〉} 329
dual-entryabbrv-backlink={〈boolean〉} 330
dual-indexentry-backlink={〈boolean〉} 330
dual-indexsymbol-backlink={〈boolean〉} 330
dual-indexabbrv-backlink={〈boolean〉} 330
dual-backlink={〈boolean〉} . 330

5.15 Tertiary Entries . 330
tertiary-prefix={〈value〉} . 330
tertiary-type={〈value〉} . 330
tertiary-category={〈value〉} . 331

5.16 Compound (Combined or Multi) Entries . 331
compound-options-global={〈boolean〉} 331
compound-dependent={〈boolean〉} . 331
compound-add-hierarchy={〈boolean〉} . 331
compound-has-records={〈boolean〉} . 332
compound-adjust-name={〈value〉} . 332
compound-main-type={〈value〉} . 333
compound-other-type={〈value〉} . 333
compound-type-override={〈boolean〉} . 334
compound-write-def={〈value〉} . 334

6 Provided Commands 335
6.1 Entry Definitions . 335

\bibglsnewentry . 335
\bibglsnewsymbol . 336
\bibglsnewnumber . 336
\bibglsnewindex . 337
\bibglsnewindexplural . 337
\bibglsnewabbreviation . 337
\bibglsnewacronym . 338
\bibglsnewdualentry . 338
\bibglsnewdualindexentry . 338
\bibglsnewdualindexentrysecondary . 338
\bibglsnewdualindexsymbol . 339
\bibglsnewdualindexsymbolsecondary 339
\bibglsnewdualindexnumber . 339
\bibglsnewdualindexnumbersecondary 339
\bibglsnewdualindexabbreviation . 340
\bibglsnewdualindexabbreviationsecondary 340
\bibglsnewdualabbreviationentry . 341

xi

Contents

\bibglsnewdualabbreviationentrysecondary 341
\bibglsnewdualentryabbreviation . 341
\bibglsnewdualentryabbreviationsecondary 342
\bibglsnewdualsymbol . 342
\bibglsnewdualnumber . 342
\bibglsnewdualabbreviation . 343
\bibglsnewdualacronym . 343
\bibglsnewtertiaryindexabbreviationentry 343
\bibglsnewtertiaryindexabbreviationentrysecondary 344
\bibglsnewbibtexentry . 344
\bibglsnewcontributor . 344
\bibglsnewprogenitor . 345
\bibglsnewspawnindex . 345
\bibglsnewspawnedindex . 345
\bibglsnewspawnindexplural . 345
\bibglsnewspawnedindexplural . 346
\bibglsnewspawnentry . 346
\bibglsnewspawnedentry . 346
\bibglsnewspawnabbreviation . 346
\bibglsnewspawnedabbreviation . 347
\bibglsnewspawnacronym . 347
\bibglsnewspawnedacronym . 347
\bibglsnewspawnsymbol . 347
\bibglsnewspawnedsymbol . 348
\bibglsnewspawnnumber . 348
\bibglsnewspawnednumber . 348
\bibglsnewspawndualindexentry . 348
\bibglsnewspawndualindexentrysecondary 349

6.2 Compound Entry Sets . 349
\bibglsdefcompoundset . 349

6.3 Location Lists and Cross-References . 349
\bibglsseesep . 349
\bibglsseealsosep . 350
\bibglsaliassep . 350
\bibglsusesee . 350
\bibglsuseseealso . 350
\bibglsusealias . 350
\bibglsdelimN . 350
\bibglslastDelimN . 351
\bibglscompact . 351
\bibglspassim . 351
\bibglspassimname . 351
\bibglsrange . 352
\bibglsinterloper . 352

xii

Contents

\bibglspostlocprefix . 352
\bibglslocprefix . 353
\bibglspagename . 354
\bibglspagesname . 354
\bibglslocsuffix . 354
\bibglslocationgroup . 354
\bibglslocationgroupsep . 355
\bibglsprimary . 356
\bibglsprimarylocationgroup . 356
\bibglsprimarylocationgroupsep . 356
\bibglssupplemental . 357
\bibglssupplementalsublist . 357
\bibglssupplementalsep . 357
\bibglssupplementalsubsep . 358
\bibglshrefchar . 358
\bibglshrefunicode . 358
\bibglshexunicodechar . 358

6.4 Letter Groups . 358
\bibglssetlastgrouptitle . 360
\bibglshypergroup . 361
Top-Level Groups Only . 361

\bibglssetlettergrouptitle . 362
\bibglslettergroup . 362
\bibglslettergrouptitle . 363
\bibglssetothergrouptitle . 364
\bibglsothergroup . 365
\bibglsothergrouptitle . 365
\bibglssetemptygrouptitle . 365
\bibglsemptygroup . 365
\bibglsemptygrouptitle . 365
\bibglssetnumbergrouptitle . 365
\bibglsnumbergroup . 366
\bibglsnumbergrouptitle . 366
\bibglssetdatetimegrouptitle 366
\bibglsdatetimegroup . 366
\bibglsdatetimegrouptitle . 367
\bibglssetdategrouptitle . 367
\bibglsdategroup . 367
\bibglsdategrouptitle . 367
\bibglssettimegrouptitle . 368
\bibglstimegroup . 368
\bibglstimegrouptitle . 368
\bibglssetunicodegrouptitle 368
\bibglsunicodegroup . 368

xiii

Contents

\bibglsunicodegrouptitle . 369
\bibglssetmergedgrouptitle . 370
\bibglsmergedgroup . 370
\bibglsmergedgrouptitle . 370
\bibglsmergedgroupfmt . 370

Hierarchical Groups . 371
\bibglsgrouplevel . 371
\bibglshiersubgrouptitle . 371
\bibglssetlettergrouptitlehier 371
\bibglslettergrouphier . 372
\bibglslettergrouptitlehier 372
\bibglssetothergrouptitlehier 372
\bibglsothergrouphier . 372
\bibglsothergrouptitlehier . 372
\bibglssetemptygrouptitlehier 373
\bibglsemptygrouphier . 373
\bibglsemptygrouptitlehier . 373
\bibglssetnumbergrouptitlehier 373
\bibglsnumbergrouphier . 373
\bibglsnumbergrouptitlehier 373
\bibglssetdatetimegrouptitlehier 374
\bibglsdatetimegrouphier . 374
\bibglsdatetimegrouphierfinalargs 374
\bibglsdatetimegrouptitlehier 374
\bibglsdatetimegrouptitlehierfinalargs 375
\bibglssetdategrouptitlehier 375
\bibglsdategrouphier . 375
\bibglsdategrouptitlehier . 375
\bibglssettimegrouptitlehier 375
\bibglstimegrouphier . 376
\bibglstimegrouptitlehier . 376
\bibglssetunicodegrouptitlehier 376
\bibglsunicodegrouphier . 376
\bibglsunicodegrouptitlehier 376
\bibglssetmergedgrouptitlehier 377
\bibglsmergedgrouphier . 377
\bibglsmergedgrouptitlehier 377
\bibglsmergedgrouphierfmt . 377

6.5 Flattened Entries . 378
\bibglsflattenedhomograph . 378
\bibglsflattenedchildpresort . 379
\bibglsflattenedchildpostsort . 380

6.6 Other . 380
\bibglscopytoglossary . 380

xiv

Contents

\bibglssettotalrecordcount . 380
\bibglssetrecordcount . 381
\bibglssetlocationrecordcount . 381
\bibglshyperlink . 381
\bibglssetwidest . 381
\bibglssetwidestfortype . 382
\bibglssetwidestfallback . 382
\bibglssetwidestfortypefallback . 382
\bibglssetwidesttoplevelfallback . 383
\bibglssetwidesttoplevelfortypefallback 383
\bibglscontributorlist . 383
\bibglscontributor . 384
\bibglsdatetime . 384
\bibglsdate . 384
\bibglstime . 384
\bibglsprimaryprefixlabel . 385
\bibglsdualprefixlabel . 385
\bibglstertiaryprefixlabel . 385
\bibglsexternalprefixlabel . 385
\bibglshashchar . 385
\bibglsunderscorechar . 385
\bibglsdollarchar . 386
\bibglsampersandchar . 386
\bibglscircumchar . 386
\bibglsaposchar . 386
\bibglsdoublequotechar . 386
\bibglsuppercase . 386
\bibglslowercase . 386
\bibglstitlecase . 387
\bibglsfirstuc . 387
\BibGlsNoCaseChange . 387
\bibglsdefinitionindex . 387
\bibglsuseindex . 387

7 Converting Existing .tex to .bib 388
7.1 Shared Conversion Tool Switches . 389

--texenc 〈encoding〉 . 389
--bibenc 〈encoding〉 . 389
--space-sub 〈replacement〉 (or -s 〈replacement〉) 389
--preamble-only (or -p) . 389
--no-preamble-only . 389
--overwrite . 389
--no-overwrite . 389
--ignore-fields 〈list〉 (or -f 〈list〉) . 390

xv

Contents

--no-ignore-fields . 390
--field-map 〈src=dest list〉 (or -m 〈src=dest list〉) 390
--no-field-map . 390
--field-case 〈setting〉 . 390
--index-conversion (or -i) . 390
--no-index-conversion . 390
--log-file 〈filename〉 (or -t 〈filename〉) 391

7.2 convertgls2bib: Conversion from glossaries or glossaries-extra 391
7.2.1 Command Line Arguments . 391

--ignore-sort . 391
--no-ignore-sort . 391
--ignore-type . 392
--no-ignore-type . 392
--ignore-category . 392
--no-ignore-category . 392
--split-on-type (or -t) . 392
--no-split-on-type . 392
--split-on-category (or -c) . 393
--no-split-on-category . 393
--absorb-see . 393
--no-absorb-see . 393
--internal-field-map 〈src=dest list〉 393

7.2.2 Recognised Commands . 394
\glsexpandfields . 394
\glsnoexpandfields . 395
\glssetexpandfield . 395
\glssetnoexpandfield . 395
\loadglsentries . 395
\newglossaryentry . 395
\provideglossaryentry . 396
\longnewglossaryentry . 396
\longprovideglossaryentry . 396
\newterm . 397
\newabbreviation . 398
\newacronym . 398
\glsxtrnewsymbol . 398
\glsxtrnewnumber . 399
\newdualentry . 399

7.3 datatool2bib: Conversion from datatool 401
7.3.1 Command Line Arguments . 402

--label 〈column-key〉 (or -L 〈column-key〉) 403
--auto-label (or -a) . 403
--no-auto-label . 403
--auto-label-prefix 〈prefix〉 . 403

xvi

Contents

--read 〈options〉 (or -r 〈options〉) 403
--setup 〈options〉 . 403
--save-datum . 404
--no-save-datum . 405
--save-value 〈suffix〉 . 405
--no-save-value . 405
--save-currency 〈suffix〉 . 405
--no-save-currency . 405
--split . 405
--no-split . 405
--detect-symbols . 405
--no-detect-symbols . 406
--numeric-locale 〈lang-tag〉 . 406
--adjust-gls . 406
--no-adjust-gls . 406
--dependency-field 〈field〉 . 406
--no-dependency-field . 406
--strip . 407
--no-strip . 407
--strip-glsadd . 407
--no-strip-glsadd . 407
--strip-acronym-font . 407
--no-strip-acronym-font . 407
--strip-case-change . 407
--no-strip-case-change . 407

7.3.2 Recognised Commands . 408
\DTLsetup . 408
\DTLread . 408
\dtlexpandnewvalue . 408
\dtlnoexpandnewvalue . 408
\DTLnewdb . 409
\DTLnewrow . 409
\DTLnewdbentry . 409
\DTLaction . 410
\newgidx (datagidx) . 411
\newterm (datagidx) . 411
\newacro (datagidx) . 411

8 Examples 412
no-interpret-preamble.bib . 412
interpret-preamble.bib . 413
interpret-preamble2.bib . 413
constants.bib . 414
chemicalformula.bib . 417

xvii

Contents

bacteria.bib . 421
baseunits.bib . 423
derivedunits.bib . 425
people.bib . 426
books.bib . 432
films.bib . 435
citations.bib . 441
mathgreek.bib . 442
bigmathsymbols.bib . 447
mathsrelations.bib . 451
binaryoperators.bib . 453
unaryoperators.bib . 454
mathsobjects.bib . 455
miscsymbols.bib . 459
markuplanguages.bib . 463
usergroups.bib . 465
animals.bib . 470
minerals.bib . 472
vegetables.bib . 474
terms.bib . 476
topics.bib . 477
sample-hierarchical.tex . 477
sample-nested.tex . 478
sample-constants.tex . 483
sample-chemical.tex . 488
sample-bacteria.tex . 491
sample-units1.tex . 495
sample-units2.tex . 498
sample-units3.tex . 501
sample-media.tex . 506
sample-people.tex . 510
sample-authors.tex . 518
sample-citations.tex . 522
sample-msymbols.tex . 527
sample-maths.tex . 529
sample-textsymbols.tex . 534
sample-textsymbols2.tex . 537
sample-markuplanguages.tex . 540
sample-usergroups.tex . 544
sample-multi1.tex . 552
sample-multi2.tex . 563

Package Option Summary 589

xviii

Contents

General Command Summary 595

Bibliography 672

Index 674

xix

List of Tables
2.1 Glossary-Related Commands Implemented by the bib2gls Interpreter . . . 26

4.1 Fields Provided by glossaries-extra . 62
4.2 Fields Provided by bib2gls . 63
4.3 Fields Provided by glossaries-prefix . 63
4.4 Fields Provided by glossaries-accsupp . 63
4.5 Fields Set by bib2gls . 64
4.6 Internal Fields Set by glossaries or glossaries-extra or bib2gls 66
4.7 Compound Set Fields . 66

5.1 Summary of Available Sort Options: No Sort Field 278
5.2 Summary of Available Sort Options: Alphabet 278
5.3 Summary of Available Sort Options: Letter (Non-Locale) 278
5.4 Summary of Available Sort Options: Letter-Number 278
5.5 Summary of Available Sort Options: Numerical 279
5.6 Summary of Available Sort Options: Date-Time 279

xx

List of Figures
5.1 Regular letter comparison vs letter-number comparison 285

8.1 sample-hierarchical.pdf . 479
8.2 sample-nested.pdf . 484
8.3 sample-constants.pdf . 489
8.4 sample-chemical.pdf . 492
8.5 sample-bacteria.pdf . 496
8.6 sample-units1.pdf . 499
8.7 sample-units2.pdf . 502
8.8 sample-units3.pdf . 506
8.9 sample-media.pdf . 511
8.10 sample-people.pdf . 519
8.11 sample-authors.pdf . 523
8.12 sample-citations.pdf . 527
8.13 sample-msymbols.pdf . 530
8.14 sample-maths.pdf . 535
8.15 sample-textsymbols.pdf . 538
8.16 sample-textsymbols2.pdf . 541
8.17 sample-markuplanguages.pdf . 545
8.18 sample-usergroups.pdf . 553
8.19 sample-multi1.pdf (pages 1 to 4) . 564
8.20 sample-multi1.pdf (pages 5 to 8) . 565
8.21 sample-multi2.pdf (pages 1 to 4) . 586
8.22 sample-multi2.pdf (pages 5 to 8) . 587
8.23 sample-multi2.pdf (pages 9 and 12) . 588

xxi

Glossary
Ancestor

An entry’s parent or an ancestor of the parent. See section 5.5.

Anchored (Regular Expression)
An anchored regular expression must match the entire string, not a sub-string. For
example, l?op matches “lop” and “op” but doesn’t match “clop” or “cop”.

Child Entry
An entry in a hierarchical glossary that is linked to, but one level down from, its asso-
ciated parent entry. See section 5.5.

Compound (Combined or Multi) Entry
A compound entry corresponds to the \multiglossaryentry command. This defines
a label that represents a set of entries that have already been defined. This label can
then be used in commands like \mgls as a shortcut for using \gls for each element
in the set. The main label is the main element in the set. The “other labels” are all the
other (not-main) elements. See section 4.10.

Concatenation
This is where multiple fragments or substrings are joined together to form a single
value. The concatenation operator is # for .bib files (see section 4.4) and + for resource
option string concatenation (section 5.1).

Cross-reference Field
Afield used for cross-referencing another entry: see, seealso and alias. Other fields
can be identified as a list of dependent entry labels with dependency-fields.

Cross-resource Reference
A reference from a recorded entry provided in one resource set to an unrecorded entry
in another resource set. See section 1.5.

Definition Index
An index (starting from 0) that’s incremented every time a new entry object is created
within bib2gls. This relates to the order of definitions within the .bib files. Each
dual entry and spawned entry will increment the underlying counter but only when
they are created, which may not happen until after all .bib files for the resource set
have been parsed.

xxii

Glossary

Discarded Record
A record that is discarded because either it is identical to another record or it conflicts
with another record.

Document Locale
the locale associated with the document language (or by --locale, if no document
language has been detected). In the case of a multi-lingual document, this is the locale
of the last language resource file to be loaded through tracklang’s interface. It’s best
to explicitly set the locale for multi-lingual documents to avoid confusion (either with
the locale or as a language tag in options such as sort).

Dual Entry
The duplicate entry created from a dual-entry type (such as @dualentry). This dupli-
cate is based on the primary entry with modifications made according to various set-
tings. With tertiary entry types, the dual entry represents two entries: the secondary
and tertiary. See section 4.7.

Dual List
The bib2gls list of dual entries, which is sorted according to the dual-sort resource
option. The entries may or may not be assigned to the same glossary, and the list may
only be a subset of entries. If dual-sort={combine} is used then all entries will be
in the main list and there won’t be a dual list.

Encoding
A text format that maps a byte or sequence of bytes to a character. See section 4.1 and
charset for the .bib file encoding, --tex-encoding for the .aux and .glstex file
encoding, and section 1.1 for the default encoding. See also the blog article Binary Files,
Text Files and File Encodings for further information about file encodings in general.

Entry Type
an entry’s identifying type, as specified by @entry-type. (Not to be confused with the
glossary label, which is identified by the type field.) When referenced in a resource
option, the leading @ is typically omitted. The original entry type refers to the entry
type as specified in the .bib file. The actual entry type may be different and will be the
result of a conversion via resource options such as entry-type-aliases. Although
the .bib format is case-insensitive, references to the entry type in resource options
should typically be in lower case.

Flat Glossary
A glossary that has no hierarchy. That is, there are no child entries. See section 5.5.

xxiii

https://dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/
https://dickimaw-books.com/blog/binary-files-text-files-and-file-encodings/

Glossary

Hierarchical Glossary
A glossary where the entries are ranked according to some classification. Level 0 indi-
cates top-level entries, level 1 indicates child entries that have a level 0 parent, level 2
indicates child entries that have a level 1 parent, and so on. See section 5.5.

Homograph
Each word in a set of words that all have the same spelling but different meanings. For
example, lead (to guide someone) and lead (metallic element) are homographs.

Identical Collator Strength
A collator strength value that indicates that all differences are considered significant
during comparison.

Ignored Glossary
A glossary defined with commands like \newignoredglossary. An ignored glossary
doesn’t have an associated title (so if one is required it needs to be explicitly set),
and isn’t picked up by iterative commands such as \printunsrtglossaries. See
section 1.4.

Ignored Record
A record with the format glsignore or glstriggerrecordformat. This record in-
dicates that the entry should be considered for selection with any of the “recorded”
selection options, but the record should not be added to the location list.

Java Locale
the default locale for the Java Runtime Environment (jre), which usually matches the
operating system’s locale.

Location
Thevalue of the indexing counterwhen an entry is recorded. By default, this is the page
counter. Each location has an associated format or encapsulating command (encap),
which is the name of a formatting command that should be used to encapsulate the
location’s value in the location list. The default is glsnumberformat.

Location List
Formatted list of locations obtained from an entry’s records. This won’t include ig-
nored or discarded records, and a run of locations may be compressed into a range.
See section 5.10 and section 6.3.

Lonely Child Entry
A child entry that has no selected siblings. See section 5.5.

xxiv

Glossary

Main Document
Theprincipal document that has its own glossary but the location lists may also contain
external locations obtained from a supplemental document.

Main Entry
The originating entry from which the spawned entries are created. A main entry may
be a dual-entry type, consisting of a primary entry and dual entry. (Not to be confused
with the main glossary or the main label of a compound entry.)

Main Glossary
Thedefault glossary in the document identified by \glsdefaulttype (which will have
the label main unless nomain is used). If nomain is used then \glsdefaulttype will
be set to the label of the first glossary to be defined.

Main Label or Element (Compound Entry)
The main element in the set that defines a compound entry.

Main (or Primary) List
The bib2gls list of primary entries, which is sorted according to the sort resource
option. The entries may or may not be assigned to the same glossary, and the list may
only be a subset of entries. If dual-sort={combine} is used, then the main list will
also contain all the dual entries.

Master Document
A main or principal document that contains a glossary with entries referenced by
smaller documents that don’t have their own glossary. See section 5.6.

Multi-entry Type
An entry type that can spawn multiple primary entries. Some multi-entry types can
also spawn a dual entry. See section 4.9. For the glossaries-extra “multi (compound or
combined) entries” that are defined with \multiglossaryentry see compound entry.

Order of Use Index
The record index is a value (starting from 0) that’s incremented every time a record
is created while parsing the .aux file. The first time a non-ignored record is added to
a given entry, the record index is assigned to that entry’s order of use index. So the
index provides a relative order of use. So if entry1 is the first entry to be indexed, it
will have order of use index 0. If entry1 is then indexed twice more and then entry2 is
indexed, then entry2’s order of use index will be 3.

Other Label or Element (Compound Entry)
The non-main elements in the set that defines a compound entry.

xxv

Glossary

Parent Entry
An entry in a hierarchical glossary that is linked to, but one level up from, its associated
child entry. See section 5.5.

Primary Collator Strength
A collator strength value that indicates only primary differences are considered signif-
icant during comparison. This is locale dependant, but typically different base letters
are considered a primary difference.

Primary Entry
The original entry created from a dual-entry type (such as @dualentry) or the entry
from single-entry types (such as @entry) or spawned entries.

Primary (or Principal) Glossary
A glossary that contains entries that have the type field set to that glossary’s label.
Note that a primary glossary may contain both primary and dual entries.

Principal (or Primary) Location
A special location (record) which indicates the principal or primary place in the doc-
ument where the entry is mentioned or discussed. The location is identified by the
principal or primary format (principal-location-formats).

Progenitor
The main entry for the @progenitor entry type.

Progeny
The spawned entries for the @progenitor entry type.

Record
Recording is bib2gls’s equivalent of indexing. When the record package option is
set, each time an entry is indexed in the document (using commands like \gls or
\glstext) a record is added to the .aux file that makes a note of the entry label, the
location, the counter that was used to obtain the location, and (optionally) hyperlink
information. A record may be ignored or discarded but, regardless of this, if an entry
has at least one record it will be considered for selection for any of the “recorded”
selection options.

Record Count
An entry’s record count is the total number of records (including discarded and ig-
nored) written to the .aux file that are associated with the entry. It’s also possible to
have sub-totals for each record counter.

Recorded Entry
An entry that has one or more records.

xxvi

Glossary

Regular Expression
A pattern that specifies how to match text. Unless indicated otherwise, resource op-
tions that use regular expressions are anchored. See Java’s Pattern class API [5] for
details of the regular expression syntax.

Resource Command
\glsxtrresourcefile or \GlsXtrLoadResources.

Resource Locale
the default locale for the given resource set. This can be set with the locale resource
option. If not explicitly set, then the default will be the document language, if it has
been detected by tracklang or identified with --locale, or the jre locale otherwise.

Resource Set
The set of options and entries associated with a resource command. See section 1.5.

Secondary Collator Strength
A collator strength value that indicates only primary and secondary differences are
considered significant during comparison. This is locale dependant. For example, in
some languages different accented forms of the same base letter may be considered a
secondary difference.

Secondary Entry
For the tertiary entry types, such as @tertiaryindexabbreviationentry, there are
only actually two objects defined within bib2gls: the primary and the dual, but the
code that is written in the .glstex file for the dual entry actually defines two entries,
which are the secondary and tertiary entries. This should not be confused with the
secondary glossary. See section 4.8.

Secondary Glossary
A secondary glossary is one that contains labels of entries that have been defined for
another glossary. The actual entry’s type field will be set to the primary glossary.

Sibling Entry
Two or more child entries are siblings if they all share the same parent entry. See
section 5.5.

Spawned Entry
A duplicate entry created from a multi-entry type (such as @spawnentry).

Sub-entry
A child entry. More specifically, when contrasted with sub-sub-entry etc, this may
refer to level 1 entries (which have a parent that is a top-level entry). See section 5.5.

xxvii

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Glossary

Supplemental (or Supplementary) Document
A related document from which supplemental records are obtained.

Supplemental Record
A record obtained from another document. See section 5.11.

Tertiary Collator Strength
A collator strength value that indicates only primary, secondary and tertiary differ-
ences are considered significant during comparison. This is locale dependant. For
example, different cases of the same base letter may be considered a tertiary differ-
ence.

Tertiary Entry
An entry that isn’t defined as a separated object within bib2gls, but is defined within
the .glstex file as a by-product of the dual definition code for tertiary entry types.

Top-level Entry
An entry that doesn’t have a parent entry. This entry is the hierarchical root for all its
descendents. See section 5.5.

Unrecorded Entry
An entry that doesn’t have any records.

xxviii

1 Introduction
If you have extensively used the glossaries [14] or glossaries-extra [13] package, youmay have
found yourself creating a large .tex file containing many definitions that you frequently use
in documents. This file can then simply be loaded using \input or \loadglsentries, but a
large file like this can be difficult to maintain and if the document only actually uses a small
proportion of those entries, the document build is unnecessarily slow due to the time and
resources taken on defining the unwanted entries.

The aim of bib2gls is to allow the entries to be stored in a .bib file, which can be main-
tained using a reference system such as JabRef. The document build process can now be
analogous to that used with bibtex (or biber), where only those entries that have been
recorded in the document (and possibly their dependent entries) will be extracted from the
.bib file. Since bib2gls can also perform hierarchical sorting and can collate location lists,
it doubles as an indexing application, which means that the makeglossaries step can be
skipped. Note that bib2gls doesn’t warn you if an entry that’s referenced in the document
doesn’t exist in any of the supplied .bib files, but instead relies on the glossaries-extra pack-
age to generate the warning. So at the end of the document build check the .log file for
warnings.

You can’t use \glsaddall with bib2gls as that command works by iterating over all de-
fined entries and calling \glsadd{〈label〉}. On the first LATEX run there are no entries defined,
so \glsaddall does nothing. If you want to select all entries, just use selection={all}
instead (which has the advantage over \glsaddall in that it doesn’t create a redundant
location for each entry).

Note that bib2gls requires the extension package glossaries-extra and can’t be used with
just the base glossaries package, since it requires some of the extension commands. See the
glossaries-extra user manual [13] for information on the differences between the basic pack-
age and the extended package, as some of the default settings are different.

Since information required by bib2gls is written to the .aux file, it’s not possible to run
bib2gls through TEX’s shell escape while the .aux file is open for write access. (The .aux
file is closed after the end document hook, so it can’t be deferred with \AtEndDocument.)
This means that if you really want to run bib2gls through \write18 it must be done in the
preamble with \immediate. For example:

\immediate\write18{bib2gls \jobname}

As from version 1.14 of glossaries-extra, this can be done automatically with the automake
option if the .aux file exists. (Remember that this will require the shell escape to be enabled.)

1

1.1 Default Encoding

1.1 Default Encoding
BothXƎLATEX and LuaLATEXdefault to UTF-8 encoding. Withmodern TEXdistributions, pdfLATEX
also defaults to UTF-8 but may be changed with the inputenc package.

The default encoding for Java applications, such as bib2gls, is the default encoding of the
Java Virtual Machine (jvm). This typically matches the operating system’s default, but can
be changed (see below). If you don’t want to alter the jvm’s default, you can set the bib2gls
default with --default-encoding.

In general, UTF-8 works best with bib2gls, but you need to be careful if your jvm isn’t set
up to use UTF-8 by default as you can end up with encoding mismatches. This can happen
with some versions of Windows, so it’s a good idea to double-check the bib2gls transcript
file to make sure all the encoding information is correct.

The default encoding is written at the start of the .glg file. For example:

Default encoding: UTF-8

When a file is opened, the associated encoding is written to the .glg file. For example, when
the .aux file is opened:

Reading myDoc.aux
Encoding: UTF-8

If the document encoding is detected in the .aux file, it will be written to the transcript. For
example:

TeX character encoding: UTF-8

When a .bib file is read, the charset setting, the detected encoding (from the encoding
comment line, see section 4.1), if found, and the encoding actually used are written. For
example, where charset hasn’t been set but an encoding comment line has been found:

Parsing bib files for resource myDoc.glstex.
Default encoding: not set
Detected encoding: UTF-8
Reading symbols.bib
Encoding: UTF-8

The file encodings used by bib2gls are as follows:

• Writing the .glg transcript file: default encoding.

• Reading the document .log file: --log-encoding setting, if supplied, otherwise the
default encoding.
Note that the .log file may not have the same encoding as the .tex file [17]. In the
case of the T1 font encoding, the encoding will be close enough to ISO-8859-1 for
that to be used with bib2gls. Any problematic character will trigger a warning and
bib2gls will quit reading the file. This will most likely be in an overfull warning, by
which point bib2gls should have gathered all the information it requires.

2

1.2 Example Use

• Reading the .aux file: the --tex-encoding setting, if supplied, or UTF-8 if fontspec
is detected in the .log file, otherwise the default encoding.

• Reading the .bib files: the charset resource option, if supplied, or the encoding spec-
ified by the encoding comment line in the .bib file (see section 4.1), otherwise the
default encoding.

• Writing the .glstex files: the --tex-encoding setting, if supplied, or UTF-8 if font-
spec detected in the .log file, or the document encoding picked up from the .aux file,
otherwise the default encoding.

For example:

bib2gls --log-encoding ISO-8859-1 --default-encoding UTF-8 myDoc

To change the default encoding for the jvm set the JAVA_TOOL_OPTIONS environment
variable to include -Dfile.encoding=〈encoding〉 where 〈encoding〉 is the desired default
encoding (such as UTF-8). Note that this will affect all your installed Java applications, not
just bib2gls, (for example, JabRef).

If you have a problem with non-ASCII characters not displaying correctly in your docu-
ment:

• Check that the file encoding of your document .tex and .bib files have been correctly
set by your text editor.

• Check that your document supports that encoding (for example, through the inputenc
package).

• Check bib2gls’s transcript file for the encoding information to ensure that the settings
are correct.

1.2 Example Use
The glossary entries are stored in a .bib file. For example, the file entries.bib might
contain:

@entry{bird,
name={bird},
description = {feathered animal}

}

@abbreviation{html,
short="html",
long={hypertext markup language}

}

3

1.2 Example Use

@symbol{v,
name={\vec{v}},
text={\vec{v}},
description={a vector}

}

@index{goose,plural="geese"}

Here’s an example document that uses this data:

\documentclass{article}

\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB}% sort according to 'en-GB' locale

]

\begin{document}
\Gls{bird} and \gls{goose}.
Symbol: \gls{v}.
Abbreviation: \gls{html}.

\printunsrtglossaries
\end{document}

If this document is called myDoc.tex, the build process is:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

(This manual assumes pdflatex for simplicity. Replace with latex, xelatex or lualatex
as appropriate.) If you want letter groups (either headed, with styles like indexgroup, or just a
blank line separator with nogroupskip={false}) then you need to use the --group switch:

pdflatex myDoc
bib2gls --group myDoc
pdflatex myDoc

You can have multiple instances of \GlsXtrLoadResources. For example:

\documentclass{article}

\usepackage[record,index,abbreviations,symbols]{glossaries-extra}

4

1.2 Example Use

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={entry}},% only select @entry
type={main}% put these entries in the 'main' glossary

]

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={abbreviation}},% only select @abbreviation
type={abbreviations}% put these in the 'abbreviations' glossary

]

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={letter-case},% case-sensitive letter sort
match={entrytype={symbol}},% only select @symbol
type={symbols}% put these entries in the 'symbols' glossary

]

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={en-GB},% sort according to 'en-GB' locale
match={entrytype={index}},% only select @index
type={index}% put these entries in the 'index' glossary

]

\begin{document}
\Gls{bird} and \gls{goose}.
Symbol: \gls{v}. Abbreviation: \gls{html}.
\printunsrtglossaries
\end{document}

There are more examples provided in chapter 8 and also in the bib2gls gallery.
Note that there’s no need to called xindy or makeindex since bib2gls automatically sorts

the entries and collates the locations after selecting the required entries from the .bib file
and before writing the temporary file that’s input with \glsxtrresourcefile (or the more
convenient shortcut \GlsXtrLoadResources).1 This means the entries are already defined
in the correct order, and only those entries that are required in the document are defined, so
\printunsrtglossary (or \printunsrtglossaries) may be used. (The “ unsrt ” part of
the command name indicates that all defined entries should be listed in the order of definition

1This document will mostly use the more convenient \GlsXtrLoadResources.

5

https://www.dickimaw-books.com/gallery/#bib2gls

1.3 Logical Divisions: type vs group vs parent

from glossaries-extra’s point of view, see the supplementary document “glossaries-extra and
bib2gls: An Introductory Guide” (bib2gls-begin.pdf) for further details.)

If you don’t provide a valuewith the record option, then record={only} is assumed. This
saves the same indexing information that’s used with the \makeglossaries and \make-
noidxglossaries methods (described in the main glossaries user manual [14]). As from
glossaries-extra version 1.37, you can instead use record={nameref}, which saves some
extra information for each location that’s not available for the other indexing methods. See
--merge-nameref-on for further details.

If you additionally want to use an indexing application, such as xindy, you need the pack-
age option record={alsoindex} and use \makeglossaries and \printglossary (or the
iterative \printglossaries) as usual. This requires a more complicated build process:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

(The entries aren’t defined until the second LATEX run, so the indexing files required by xindy
or makeindex can’t be created until then.) In this case, bib2gls is simply being used to fetch
the entry definitions from one or more .bib files, with the sorting and collating performed
by the other indexing application (so the resource option list would need sort={none} and
save-locations={false}). In general, it’s best to avoid this hybrid method unless you
have a particular set of xindy rules that can’t be replicated with bib2gls.

1.3 Logical Divisions: type vs group vs parent
If you have a document with many terms that need listing, it’s likely that you may want to
divide the terms into separate blocks or units for easier reading. There are three fields that
are used for this.

type The highest division is the glossary to which the entry belongs. The glossary must
first be defined (see section 1.4) with an associated label used to identify it. The title
is assigned to the glossary when it is defined or it can be overridden with the title
key. The glossary is displayed using \printunsrtglossary and the title is placed in
a sectioning command by default.

bib2gls does not provide any means of sorting glossary types. If you use
\printunsrtglossaries the order will be according to the order in which the
glossaries were defined. You may use \printunsrtglossary to list individual
glossaries in your own preferred order.

group The entries within a glossary can form groups as a by-product of the sorting method.
This must be enabled with the --group switch and isn’t available for the sort methods

6

1.3 Logical Divisions: type vs group vs parent

listed in table 5.1. The group label is stored in the group field. This is an internal field
that typically shouldn’t be set in the .bib file.
You can specify your own custom groups but if you do so you must ensure that the
terms are ordered in such a way that they are gathered according to group. This is
typically done by splitting the glossary into blocks using a separate \GlsXtrLoad-
Resources with the group option set. You control the order of the groups by your
ordering of \GlsXtrLoadResources. The group title can be assigned using \glsxtr-
setgrouptitle within the document.

bib2gls does not sort by group title. At most it can sort by the group label (by
changing the sort-field) but this is usually an indication that you actually
have a hierarchical glossary and you ought to be using the parent field instead.
(Compare sample-textsymbols.tex and sample-textsymbols2.tex.)

parent An entry may have one or more sub-entries. Most of the sort methods will produce
a hierarchical ordering that ensures that the sub-entries are listed immediately after
their parent entry. The parent entry is identified by the parent field which should
contain the parent’s label.

bib2gls sorts the parent and child entries using the same comparator. The sort
methods listed in table 5.1 disregard the hierarchical level, which can result in
child entries becoming detached from their parent entry. The other methods
sort hierarchically using the same comparator but take the hierarchical level
into account.

Suppose you have a mixture of terms, abbreviations and symbols, then you might want
to have three glossaries that are listed in the table of contents. In this case, you use the
type field or the type resource option. The ordering of the glossaries is determined by the
ordering of the \printunsrtglossary commands within the document. For example:

\printunsrtglossary
\printunsrtglossary[type={abbreviations}]
\printunsrtglossary[type={symbols}]

Suppose that your list of terms spans many pages and you feel it would be helpful to the
reader to split it up into letter groups then you would need to run bib2glswith the --group
switch and use a glossary style that supports letter groups for that glossary. For example:

\printunsrtglossary[style={indexgroup}]

Suppose that your list of symbols consists of pictographs, Latin characters and Greek char-
acters and you want them grouped together in that order. Then you would use a separate
\GlsXtrLoadResources for each block and assign your own custom group. This means
ensuring that each resource set only selects the terms for that group. The simplest way of
doing this is to have a separate .bib file for each set. For example:

7

1.3 Logical Divisions: type vs group vs parent

\glsxtrsetgrouptitle{pictographs}{Pictographs}
\glsxtrsetgrouptitle{latinsymbols}{Latin Characters}
\glsxtrsetgrouptitle{greeksymbols}{Greek Characters}
\GlsXtrLoadResources[

src={generalsymbols},% data in generalsymbols.bib
group={pictographs},
type={symbols}

]
\GlsXtrLoadResources[

src={latinsymbols},% data in latinsymbols.bib
group={latin},
type={symbols}

]
\GlsXtrLoadResources[

src={greeksymbols},% data in greeksymbols.bib
group={greek},
type={symbols}

]

Suppose instead that you have many of these logical blocks and you want them ordered
according to the block title. In this case you have a hierarchical glossary and you need to use
the parent field. You then need to select an appropriate glossary style.

If you only want to have a single .bib file that contains all your entries and you want to
share it across multiple documents then the most flexible approach is to use custom fields
and entry types that can be aliased according to the needs of the resource sets.

For example, the file entries.bib:

% Encoding: UTF-8

@indexplural{latin,text={Latin character}}
@indexplural{greek,text={Greek character}}
@indexplural{pictograph}

@symbol{fx,
name={\ensuremath{f(x)}},
description={function of x},
identifier={latin}

}

@symbol{f'x,
name=\ensuremath{f'(x)},
description={derivative of \gls{fx}},
identifier={latin}

}

8

1.3 Logical Divisions: type vs group vs parent

@symbol{pi,
name={\ensuremath{\pi}},
description={ratio of circumference to diameter},
identifier={greek}

}

@symbol{heart,
name={\ensuremath{\heartsuit}},
description={heart},
identifier={pictograph}

}

@symbol{diamond,
name={\ensuremath{\diamondsuit}},
description={diamond},
identifier={pictograph}

}

@abbreviation{html,
short={html},
long={hypertext markup language},
identifier={markuplanguage}

}

@abbreviation{xml,
short={xml},
long={extensible markup language},
identifier={markuplanguage}

}

@entry{duck,
name={duck},
description={a waterbird with webbed feet},
identifier={animal}

}

@entry{parrot,
name={parrot},
description={mainly tropical bird with bright plumage},
identifier={animal}

}

This has a custom field identifier. This will be ignored by bib2gls unless defined or
aliased in the document.

9

1.3 Logical Divisions: type vs group vs parent

Here’s an example document that creates three glossary types (the default main glossary
and the glossaries created with the abbreviations and symbols options). They are listed
in the order of \printunsrtglossary and their titles are added to the table of contents.

The custom identifier fields are ignored for the main and abbreviation glossaries, but
they are aliased for the symbols to the group field. Since I’ve split the symbols glossary into
blocks with each block only containing entries that have the same group value, this isn’t a
problem. It also won’t trigger a warning with --warn-non-bib-fields as it’s being aliased
rather than set in the .bib file. The blocks appear in the same order as the corresponding
\GlsXtrLoadResources commands. The title for each block is provided in the document
using \glsxtrsetgrouptitle.

\documentclass{article}

\usepackage[record,abbreviations,symbols]{glossaries-extra}

\renewcommand{\GlsXtrDefaultResourceOptions}{
selection={all},src={entries},save-locations={false}}

\GlsXtrLoadResources[type={main},match={entrytype=entry}]
\GlsXtrLoadResources[type={abbreviations},
match={entrytype=abbreviation}]

\glsxtrsetgrouptitle{pictograph}{Pictographs}
\GlsXtrLoadResources[type={symbols},
field-aliases={identifier=group},
match={group=pictograph}]

\glsxtrsetgrouptitle{latin}{Latin Characters}
\GlsXtrLoadResources[type={symbols},
field-aliases={identifier=group},
match={group=latin}]

\glsxtrsetgrouptitle{greek}{Greek Characters}
\GlsXtrLoadResources[type={symbols},
field-aliases={identifier=group},
match={group=greek}]

\begin{document}
\tableofcontents
\printunsrtglossary[type={abbreviations}]
\printunsrtglossary
\printunsrtglossary[type={symbols},style={treegroup}]
\end{document}

In the above example document, the symbols list is divided into three groups, listed in the

10

1.4 Defining a New Glossary

order: Pictographs, Latin characters and Greek characters. If you want these titles ordered
alphabetically then you need a hierarchical structure instead. This can be obtained by aliasing
the custom identifier field to parent:

\documentclass{article}

\usepackage[record,stylemods={topic},abbreviations,symbols]{glossaries-
extra}

\renewcommand{\GlsXtrDefaultResourceOptions}{%
selection={all},src={entries},save-locations={false}}

\GlsXtrLoadResources[type={main},match={entrytype=entry}]
\GlsXtrLoadResources[type={abbreviations},
match={entrytype=abbreviation}]

\GlsXtrLoadResources[type={symbols},
field-aliases={identifier=parent},
match={entrytype=symbol,entrytype=indexplural}]

\begin{document}
\tableofcontents
\printunsrtglossary[type={abbreviations}]
\printunsrtglossary
\printunsrtglossary[type={symbols},style={topic}]
\end{document}

The style used for the symbols list is now topic rather than treegroup. This results in a slightly
different appearance. You can select the most appropriate style according to your needs (see
the gallery of predefined styles [15]). The topic ordering is now: Greek characters, Latin
characters and Pictographs.

1.4 Defining a New Glossary
Some of the examples in this manual use \newglossary* to define a new glossary type and
some use \newignoredglossary or \newignoredglossary*. You may be wondering why
the starred forms and why define an ignored glossary?

The base glossaries package was originally designed to work with makeindex. Support
for xindy was later added, but both require three files per glossary type: the transcript file
(created by the indexing application), the file written by LATEX (and input by the indexing
application) and the file input by LATEX (and written by the indexing application). So when a
new glossary is defined with \newglossary, this not only defines internal control sequences
that store the list of entry labels associated with that glossary, the title and the entry format
but also has to define internal control sequences that store the three file extensions. The

11

1.4 Defining a New Glossary

starred form \newglossary* is just a shortcut that forms the extensions from the glossary
label. For the purposes of bib2gls, this is simpler than the unstarred version since the
extensions are now irrelevant as they are only applicable to makeindex and xindy. (Unless,
of course, you are using a hybrid method with record={alsoindex}.)

Since some users wanted the ability to define entries that were common enough to not
be worth including in any glossary lists, the concept of an ignored glossary was introduced,
defined with \newignoredglossary. This only requires an internal control sequence to
store the list of entry labels associated with that glossary2 and the associated internal com-
mand that governs the way that commands like \gls are displayed for that glossary type.
Since this type of glossary has no associated files, it can’t be used with \printglossary and
therefore isn’t included in the list of glossary labels that’s iterated over by commands like
\printglossaries. Since there’s no glossary list (and therefore no targets), \newignored-
glossary additionally disables hyperlinks for that glossary type, but it doesn’t disable in-
dexing. The indexing macro is still called, but because there’s no associated file to write to,
it has no effect. With bib2gls, the indexing is written to the .aux file and so does have an
effect.

Although ignored glossaries can’t be used with \printglossary, they can be used with
\printunsrtglossary, which is designed to work without any indexing, but you need to
explicitly set the title in the optional argument to override the default. Ignored glossaries
still can’t be used in \printunsrtglossaries, since they’re not included in the list that
this command iterates over.

So \newignoredglossary (or \provideignoredglossary) is useful with bib2gls if
you’re happy to use \printunsrtglossary with the type and title options as it reduces
the overall number of internal control sequences. Ignored glossaries are also useful for stand-
alone definitions (\glsxtrglossentry) or with \printunsrtinnerglossary as no title is
required in those cases (see sample-nested.tex for an example).

Since there is now the possibility of targets (created within \printunsrtglossary or
\printunsrtinnerglossary or \glsxtrglossentry), it’s convenient to have an ignored
glossary that doesn’t suppress the hyperlinks, which can be obtained with the starred form
\newignoredglossary* provided by glossaries-extra (or \provideignoredglossary*).

Some resource options, such as master, secondary, and trigger-type, need to ensure
that a required glossary is defined. In this case, bib2gls uses \provideignoredglossary*
in the .glstex file even if --no-provide-glossaries is set. Note that only ignored-type
uses the unstarred \provideignoredglossary.

If you haven’t already defined that glossary in the document with \newglossary*, you’ll
need to set the title in the optional argument of \printunsrtglossary if you don’t want the
default. The glossary won’t be defined on the first run (if the definition is only provided in
the .glstex file) but \printunsrtglossarywill just give a warning if the type is undefined
so it won’t interrupt the document build.

If you want bib2gls to automatically provide unknown glossaries for all entries that have
the type field set (unrelated to the master, secondary, trigger-type and ignored-type
options) then use the --provide-glossaries switch.

2All entries must be assigned to a glossary. If you don’t use the type field the default is used.

12

1.5 Resource Sets

The base glossaries package provides a command that can be used to test the existence of
a glossary:

\ifglossaryexists{〈label〉}{〈true〉}{〈false〉}

The unstarred version considers ignored glossaries as non-existent (and so will do 〈false〉 for
an ignored glossary). As from v4.46, this command now has a starred version \ifglossary-
exists* that considers ignored glossaries as existing (and so will do 〈true〉 for an ignored
glossary). In the event that you have an older version of glossaries, the glossaries-extra pack-
age (v1.44+) will provide the starred form if it hasn’t been defined. (In general, it’s best to
have up-to-date versions of both glossaries and glossaries-extra.)

1.5 Resource Sets
Each instance of \glsxtrresourcefile or \GlsXtrLoadResources in the document rep-
resents a resource set. Each resource set has one or more associated .bib files that provides
the data for that set. Command line switches (chapter 3) are applied to all resource sets. Re-
source options (chapter 5) are only applied to that specific resource set. Each resource set is
processed in stages:

Stage 1 (Initialisation) Occurs after the .aux file has been read, this stage parses the re-
source option list and ensures options are valid and don’t cause a conflict. The tran-
script will show the message

Initialising resource 〈resource-name〉

at this point.

Stage 2 (Parsing) All the .bib files associated with the resource set are parsed. Entry
aliases (identified by entry-type-aliases) are performed. The multi-entry types,
such as @bibtexentry and @progenitor, spawn their associated primary entries.
Preamble information (provided by @preamble) is saved but is not interpreted at this
stage. The transcript will show the message

Parsing bib files for resource 〈resource-name〉

at this point.

Stage 3 (Processing Entries) The transcript will show the message

Processing resource 〈resource-name〉

at this point. For each entry that was found in the corresponding set of .bib files:

• Records are transferred to aliases if required (alias-loc).

13

1.5 Resource Sets

• Field checks and modifications are performed:

– field aliases are performed (field-aliases);

– knownfields identifiedwith save-original-id and save-original-entrytype
are set (internal fields that don’t have a corresponding key for use with \new-
glossaryentry aren’t set until the .glstex file is written);

– ignored fields (identified by ignore-fields, not by omit-fields) are re-
moved;

– case-changes (for example, short-case-change) are performed, except for
the name field and fields identified with field-case-change;

– suffixes are appended if required (for example, with short-plural-suffix);

– field replications are made (replicate-fields), and any of the above case-
change or suffixes required on the replicated fields are performed;

– the group field is assigned if group={〈label〉} is set;

– any variables (identified by @string) are expanded (if not already done in
any of the previous steps);

– any fields that have been identified by bibtex-contributor-fields are
converted;

– any fields that have been identified with encapsulate-fields are con-
verted;

– any fields that have been identified with encapsulate-fields* are con-
verted;

– any fields that must be converted into a label form (labelify or labelify
-list) are processed;

– any fields identified by dependency-fields are parsed for dependent en-
tries;

– any fields whose value must be a label are interpreted if interpret-label
-fields is set;

– the parent field is adjusted according to the label prefix settings (label
-prefix etc);

– \makefirstuc protection is applied according to --mfirstuc-protection
and --mfirstuc-math-protection;

– fields are parsed for commands like \gls or \glshyperlink and also checked
for nested links if --nested-link-check is set;

– the description field is adjusted according to strip-trailing-nopost;

– end punctuation is checked according to check-end-punctuation;

– field assignments are made (assign-fields), and any of the above case-
change or suffixes required by the destination fields are performed;

14

1.5 Resource Sets

– name adjustment is performed if compound-adjust-name is set (and the cri-
teria is met);

– name case-change is performed if name-case-change is set;

– if copy-alias-to-see={true} the alias is copied to the see field;

– general field case changes identified by field-case-change are performed;

– any fields that have been identified with interpret-fields are replaced
with their interpreted values;

– any fields that have been identified with hex-unicode-fields will have
Unicode characters replaced;

– check for nonumberlist.

• The dual version (if appropriate) is created.

• Records are added to the entry’s location list (or transferred to the dual/primary
according to combine-dual-locations).

• The type, category and counter fields are set according to type, dual-type,
category, dual-category, counter and dual-counter.

• Filtering is applied (according to options like match but not selection or limit).

• Required fields are checked for existence.

• Dependencies are registered (if selection={recorded and deps} or selection
={recorded and deps and see}).

• Any fields that have been identified by date-time-fields, date-fields or
time-fields are converted.

If selection={recorded and deps and see} then any recorded entries that have
been cross-referenced by an unrecorded entry, will register a dependency with the
unrecorded entry.

The compound entry options compound-dependent and compound-add-hierarchy
are implemented, if enabled.

Finally, supplemental records are added to entries.

Stage 4 (Selection, Sorting, Writing) Entries are selected from the list according to the
selection setting, sorting is performed (if required), truncation is applied (if limit
is set) and the .glstex file is written. The transcript will show the message

Selecting entries for resource 〈resource-name〉

or (if master)

Processing master 〈resource-name〉

15

1.5 Resource Sets

at this point.
Options such as copy-to-glossary and omit-fields are implemented when each
entry has its definition written to the .glstex file. This means that the omitted fields
will still be available for actions such as sorting, establishing dependencies, or field
assignments.

Parent entries must always be in the same resource set as their child entries. (They may be
defined in different .bib files as long as all those .bib files are listed in the same src.) Other
forms of dependencies may be in a different resource set under certain circumstances. These
types of dependencies are instances of commands such as \gls being found (for example,
in the description field), or the cross-reference fields (see, seealso or alias or fields
identified with dependency-fields) in recorded entries that reference unrecorded entries.

The “cross-referenced by” dependencies enabled with selection={recorded and deps
and see} (where an unrecorded entry references a recorded entry through the cross-reference
fields) aren’t supported across resource sets (even with --force-cross-resource-refs).

A cross-resource reference is a reference from a recorded entry provided in one resource
set to an unrecorded entry in another resource set. Since the contents of each resource set’s
preamble must be processed before fields can be interpreted and one resource set’s preamble
may contain definitions that override another, cross-resource references can’t be supported
if fields containing cross-referencing information need to be interpreted.

The cross-resource reference mode determines whether or not bib2gls can support cross-
resource references. If enabled, the message

Cross-resource references allowed.

will be written to the transcript otherwise the message is

Cross-resource references disabled.

The mode can only be enabled if the following condition is satisfied:

• the interpreter is off (--no-interpret), or

• every resource set either doesn’t have a preamble (@preamble) or has interpret
-preamble={false} set.

If you know the preamble contents won’t cause a problem, you can force the cross-resource
references mode on with --force-cross-resource-refs.

If you don’t use either selection={recorded and deps} or selection={recorded
and deps and see} then the dependencies aren’t picked up for that resource set (and so
can’t be cross-referenced from another resource set).

Trails don’t workwith cross-resource references. For example, if entryA has been recorded
and depends on entry B that hasn’t been recorded, then B can be picked up from a different
resource set, but if A and B are in the same resource set and B is dependent on C which is
in a different resource set then C won’t be picked up if it hasn’t been recorded because B
hasn’t been recorded and is in a different resource set.

If the cross-resource reference mode is enabled then stage 3 and stage 4 are processed in
separate loops, otherwise they are processed in the same loop.

16

1.6 bib2gls Quarks

1.6 bib2gls Quarks
A bib2gls quark is similar in principle to a LATEX3 quark, in that it is a token that looks like
a control sequence but isn’t intended to be interpreted as a LATEX command. Unlike LATEX3
quarks, their name isn’t prefixed with \q_ and can coincidentally look the same as a LATEX
command. This is particularly the case with regular expressions that have escaped characters
to indicate a literal character. For example, in a regular expression a pipe or vertical bar
character | indicates “or”. If you want to match a literal pipe, you need to identify this with
\|. This is distinct from, but visually identical to, the LATEX command used to create a double
vertical bar in maths mode.

The resource options provided in \GlsXtrLoadResources expand as they are written to
the .aux file. This allows commands to be used within the resource options that expand
to a complex option that may be required multiple times. For example, \GlsXtrBibTeX-
EntryAliases or \glsxtrhyphenrules. Unfortunately, this means that quarks must be
prevented from expansion as they form part of the option syntax and are not intended for
use in the document.

This means that, unless they happen to coincidentally be robust commands, they must be
preceded by either \protect or \string. Since \protect adds a space afterwards, \string
is usually better if the syntax requires that spaces after quarks are significant.

This can lead to cumbersome expressions, but it’s possible to redefine \glsxtrresource-
init to locally redefine these quarks to expand to detokenized forms of themselves. For
example:

\renewcommand*{\glsxtrresourceinit}{\let\u\glshex}

Since there are a number of these quarks, as from v1.51, glossaries-extra-bib2gls (which is
automatically loaded with record) provides \GlsXtrResourceInitEscSequences, so you
can change the above to the following:

\renewcommand*{\glsxtrresourceinit}{%
\GlsXtrResourceInitEscSequences

}

Note that if new quarks, such as \INTERPRETNOREPL and \REPLACESPCHARS, are added to
bib2gls, they may not be included in \GlsXtrResourceInitEscSequences if they were
introduced to bib2gls after the version date of the glossaries-extra package installed on your
system. In this case, you will need to add them. For example:

\renewcommand*{\glsxtrresourceinit}{%
\GlsXtrResourceInitEscSequences
\def\INTERPRETNOREPL{\string\INTERPRETNOREPL}%
\def\REPLACESPCHARS{\string\REPLACESPCHARS}%

}

This will locally define the quarks listed below. Since \glsxtrresourceinit is used in
a scoped context, the definitions only have an effect within the protected write, and so this
shouldn’t interfere with the corresponding commands that are required in the document.
Note that these quarks should only be used in their designated contexts.

17

1.7 Indexing

General \u〈hex〉 is recognised in certain resource options (such as field-concat-sep) as
indicating the Unicode character with the given hexadecimal code.

Regular expressions The following indicate a literal character: \. \\ \/ \| \& \+ \< \>
* \$ \^ \~ \(\) \[\] \" \- \? \: \#. Note that regular expressions in resource
options are typically anchored, so there shouldn’t be any need to use ^ or $ to denote
the start and end.

Field assignments The following commands may be used in the 〈element-list〉 syntax of
assign-fields: \CS, \MGP, \LEN, \TRIM, \INTERPRET, \INTERPRETNOREPL, \RE-
PLACESPCHARS, \LC, \UC, \FIRSTLC, \FIRSTUC, and \TITLE.

Conditionals The 〈condition〉 part of the assign-fields syntax recognises \LEN, \CAT,
\IN, \NIN, \PREFIXOF, \NOTPREFIXOF, \SUFFIXOF, \NOTSUFFIXOF and \NULL.

Finally, this isn’t actually a quark, but \cs{〈csname〉} is defined to expand to the literal
string \〈csname〉 so you can use it for any other escape sequences that aren’t covered above.
For example, \cs{n} for a newline \n.

1.7 Indexing
The dual index entries such as @dualindexentry (described in section 4.7) are designed to
provide a way of including an entry in a glossary (with a description) and also include the
term (without the description) in an index. Additional terms that should only appear in the
index can be defined with @index. (See, for example, the sample-multi1.tex and sample
-multi2.tex sample files.)

Although bib2gls is designed to create indexes as well as glossary lists using the same
interface (\gls etc), it is possible to have a mixture of bib2gls and \index. For example:

\documentclass{report}

\usepackage{makeidx}
\usepackage[record]{glossaries-extra}

\makeindex
\GlsXtrLoadResources[src={entries}]

\glssetcategoryattribute{general}{dualindex}{true}
\glssetcategoryattribute{symbol}{dualindex}{true}
\glssetcategoryattribute{abbreviation}{dualindex}{true}

\glssetcategoryattribute{general}{indexname}{hyperbf}
\glssetcategoryattribute{symbol}{indexname}{hyperbf}
\glssetcategoryattribute{abbreviation}{indexname}{hyperbf}

18

1.8 Security

\begin{document}
\chapter{Example}
\gls{bird}, \gls{html}, \gls{v} and \glspl{goose}.

\printunsrtglossaries
\printindex
\end{document}

If the document is called myDoc.tex then the document build is:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
makeindex myDoc.idx
pdflatex myDoc

This requires an additional LATEX call between bib2gls and makeindex since the entries must
be defined before they can be indexed (and they can’t be defined until bib2gls creates the
associated .glstex files).

Note that thismethodwill use the sort value obtained by bib2gls as the 〈sort〉 partwithin
\index{〈sort〉@〈actual〉}. Be careful if you use makeindex as this can result in Unicode char-
acters appearing in the sort value, which makeindex doesn’t support. The 〈actual〉 part is
given by \glsentryname{〈label〉}. (You can change the 〈sort〉 and 〈actual〉 parts by redefin-
ing \glsxtrautoindexassignsort and \glsxtrautoindexentry. See the glossaries-extra
manual for further details.)

1.8 Security
TEX Live come with security settings openin_any and openout_any that, respectively, gov-
ern read andwrite file access (in addition to the operating system’s file permissions). bib2gls
uses kpsewhich to determine these values and honours them. MikTeX doesn’t use these set-
tings, so if these values are unset, bib2gls will default to a (any) for openin_any and p
(paranoid) for openout_any.

The only external processes that are run by bib2gls are calls to kpsewhich to check the se-
curity settings and locate files on TEX’s path. These are started with Java’s ProcessBuilder
class so there should be no issues with spaces or shell special characters in the argument. The
--debug switch will write the process call in the transcript file and will delimit the argument
in the log with single quote characters for convenience, but the process isn’t actually called
in that way.
bib2gls creates files with the extension .glstex, which are input by \glsxtrresource-

file (and therefore by the shortcut \GlsXtrLoadResources). This extension is fixed and
is imposed by both bib2gls and \glsxtrresourcefile. bib2gls also creates a transcript
file with the default extension .glg. This may be overridden by the --log-file switch, but
bib2gls always forbids write access to any file with the following extensions: .tex, .ltx,
.sty, .cls, .bib, .dtx, .ins, .def and .ldf.

19

1.9 Localisation

1.9 Localisation
The messages produced by bib2gls are fetched from a resource file called bib2gls-〈lang〉
.xml, where 〈lang〉 is a valid Internet Engineering Task Force (ietf) language tag.

The appropriate file is searched for in the following order, where 〈locale〉 is the Java locale
or the value supplied by the --locale switch:

1. 〈lang〉 exactly matches 〈locale〉. For example, my locale is en-GB, so bib2glswill first
search for bib2gls-en-GB.xml. This file doesn’t exist, so it will try again.

2. If 〈locale〉 has an associated script, the next try is with 〈lang〉 set to 〈lang code〉-〈script〉
where 〈lang code〉 is the two letter ISO language code and 〈script〉 is the script code.
For example, if 〈locale〉 is sr-RS-Latn then bib2gls will search for bib2gls-sr-
Latn.xml if bib2gls-sr-RS-Latn.xml doesn’t exist.

3. The final attempt is with 〈lang〉 set to just the two letter ISO language code. For ex-
ample, bib2gls-sr.xml.

If there is no match, bib2gls will fallback on the English resource file bib2gls-en.xml.
(Currently only bib2gls-en.xml exists as my language skills aren’t up to translating it. Any
volunteers who want to provide other language resource files would be much appreciated.)

In addition to the main language file, it’s possible to have supplementary files that provide
text that matches the resource locale. These are in files called bib2gls-extra-〈lang〉.xml,
which has the same format as bib2gls-〈lang〉.xml. These supplementary fileswill be loaded
automatically if they exist and if you have glossaries-extra v1.51+ (which will save a list of all
tracked languages for the document).

Note that if you use the loc-prefix={true} option, the textual labels (“Page” and “Pages”
in English)will be first be attempted from the supplementary filewith the tags tag.〈lang〉.page
and tag.〈lang〉.pages (where 〈lang〉 is the language code) and then, if not found, from the
main resource file using the tags tag.page and tag.pages. In the event that the loaded re-
source file doesn’t match the document language and there’s no supplementary file, you will
have to manually set the correct translation (in English, this would be loc-prefix={Page,
Pages}). The default definition of \bibglspassim is also obtained from the resource file in
a similar manner.

There are also keys in the resource file to assist case-conversion. Currently, there’s only
support for the Dutch “IJ” case.

1.10 Conditional Document Build
If you are using a document build method that tries to determine whether or not bib2gls
should be run, you can find the information by searching the .aux file for instances of

\glsxtr@resource{〈options〉}{〈filename〉}

20

1.11 Manual Installation

Each instance corresponds to an instance of \glsxtrresourcefilewhere 〈filename〉 is the
base name of the .glstex file that bib2gls needs to create for this resource set. If the
〈options〉 part is missing the src option, then 〈filename〉 also indicates the base name for the
.bib file.

So the simplest check to determine if bib2gls needs to be run is to test if the .aux file
contains \glsxtr@resource. For example, with arara version 4.0:

% arara: bib2gls if found("aux", "glsxtr@resource")

A sophisticated method could check if 〈filename〉.glstex is missing or is older than the
document .tex file for each instance of \glsxtr@resource found in the .aux file.

It might also be possible, although far more complex, to parse the 〈options〉 part in each
instance of \glsxtr@resource for src and determine if the corresponding .bib file or files
are newer than the .tex file.

It’s not possible to determine if the location lists require updating, just as it’s not possible
to do this for the table of contents (toc), list of figures, list of tables etc. (Or, if it could be
implemented, the required code would make the document build far more complicated.)

In general, the basic algorithm is:

1. Run LATEX (or PDFLATEX etc).

2. If \glsxtr@resource is found in the .aux file then:

a) run bib2gls;
b) run LATEX (or PDFLATEX etc).

3. If \@istfilename is found in the .aux file then:

a) run makeglossaries (or makeglossaries-lite);
b) run LATEX (or PDFLATEX etc).

This allows for the record={alsoindex} package option. See also “Incorporating make-
glossaries or makeglossaries-lite or bib2gls into the document build” [12].

1.11 Manual Installation
In general it’s best to install bib2gls via your TEX package manager. However, if you are
unable to do this or if you are testing a development version, you can install manually using
the instructions below. Replace 〈TEXMF〉 with the path to your local or home TEXMF tree
(for example, ~/texmf).

Copy the files provided to the following locations:

• 〈TEXMF〉/scripts/bib2gls/bib2gls.jar (Java application.)

• 〈TEXMF〉/scripts/bib2gls/convertgls2bib.jar (Java application.)

• 〈TEXMF〉/scripts/bib2gls/datatool2bib.jar (Java application.)

21

https://www.dickimaw-books.com/latex/buildglossaries
https://www.dickimaw-books.com/latex/buildglossaries

1.11 Manual Installation

• 〈TEXMF〉/scripts/bib2gls/bibglscommon.jar (Java library.)

• 〈TEXMF〉/scripts/bib2gls/texparserlib.jar (Java library.)

• 〈TEXMF〉/scripts/bib2gls/resources/bib2gls-en.xml (English resource file.)

• 〈TEXMF〉/scripts/bib2gls/resources/bib2gls-extra-en.xml (Extra English re-
source file.)

• 〈TEXMF〉/scripts/bib2gls/resources/bib2gls-extra-nl.xml (Extra Dutch re-
source file.)

• 〈TEXMF〉/doc/support/bib2gls/bib2gls.pdf (This document.)

• 〈TEXMF〉/doc/support/bib2gls/bib2gls-begin.pdf (Introductory guide.)

If you use the Unix man command, copy the bib2gls.1 and convertgls2bib.1 files to the
appropriate location.

If you are using a Unix-like system, there are also bash scripts provided called bib2gls.sh,
convertgls2bib.sh and datatool2bib.sh. Either copy them directly to somewhere on
your path without the .sh extension, for example:

cp bib2gls.sh ~/bin/bib2gls
cp convertgls2bib.sh ~/bin/convertgls2bib
cp datatool2bib.sh ~/bin/datatool2bib

or copy the files to 〈TEXMF〉/scripts/bib2gls/ and create a symbolic link to them called
just bib2gls, convertgls2bib and datatool2bib from somewhere on your path, for ex-
ample:

cp bib2gls.sh ~/texmf/scripts/bib2gls/
cp convertgls2bib.sh ~/texmf/scripts/bib2gls/
cp datatool2bib.sh ~/texmf/scripts/bib2gls/
cd ~/bin
ln -s ~/texmf/scripts/bib2gls/bib2gls.sh bib2gls
ln -s ~/texmf/scripts/bib2gls/convertgls2bib.sh convertgls2bib
ln -s ~/texmf/scripts/bib2gls/datatool2bib.sh datatool2bib

The texparserlib.jar file isn’t an application but is a library used by both bib2gls.jar
and convertgls2bib.jar, and so needs to be in the same class path. (The library is in a
separate GitHub repository [10] as it’s also used by some of my other applications.)

Windows users can create a .bat file that works in a similar way to the bash scripts. To
do this, create a file called bib2gls.bat that contains the following:

@ECHO OFF
FOR /F "tokens=*" %%I IN ('kpsewhich --progname=bib2gls --format=texmfscripts
bib2gls.jar') DO SET JARPATH=%%I
java -jar "%JARPATH%" %*

22

https://github.com/nlct/texparser

1.11 Manual Installation

Save this file to somewhere on your system’s path. (Similarly for convertgls2bib and
datatool2bib.) Note that TEX distributions for Windows usually convert .jar files to exe-
cutables.

You may need to refresh TEX’s database to ensure that kpsewhich can find the .jar files.
To test that the application has been successfully installed, open a command prompt or ter-
minal and run the following command:

bib2gls --version
convertgls2bib --version
datatool2bib --version

This should display the version information for both applications.

23

2 TEX Parser Library
The bib2gls application requires the TEX Parser Library texparserlib.jar1 which is used
to parse the .aux and .bib files.

With the --interpret switch on (default), this library is also used to interpret the sort
value when it contains a backslash \ or a tilde ~ or a dollar symbol $ or braces { } (and when
the sort option is not unsrt or none or use).2

The other cases that the interpreter is used for are:

• when set-widest is used to determine the width of the name field;

• if labelify or labelify-list are set the identified field values are first interpreted
(if they contain \ { } ~ or $) before being converted to labels;

• if interpret-label-fields={true} is set and the parent, category, type, group,
seealso or alias fields contain \ or { or } the interpreter is used since these fields
must be just a label (other special characters aren’t checked as they won’t expand to
characters allowed in a label).

Information in the .aux file is parsed for specific commands but the arguments of those
commands are not interpreted so, for example, UTF-8 characters that occur in any resource
options will need to be detokenized when using inputenc to prevent expansion when they
are written to the .aux file. (In some options, such as sort-rule, you can use \glshex〈hex〉
syntax to specify a UTF-8 character.) Note that newer LATEX kernels have better support for
UTF-8 and this issue is less likely to occur.

The --no-interpret switch will turn off the interpreter, but the library will still be used
to parse the .aux and .bib files. Note that the see field doesn’t use the interpreter with
interpret-label-fields={true} as it may legitimately contain LATEX code in the optional
tag part (such as \seealsoname or \alsoname).

The parser has a different concept of expansion to TEX and will expand some things that
aren’t expanded by LATEX (such as \MakeUppercase and \char) andwon’t expand other com-
mands that would be expanded by LATEX (such as commands defined in terms of complicated
internals).

If you get a StackOverflowError while a field is being interpreted (with a long stack
trace that contains repeated file names and line numbers) then it’s likely you have an infinite
loop. For example, this can be triggered if a field contains \foo that has been defined as:

1https://github.com/nlct/texparser
2Theother special characters are omitted from the check: the comment symbol % is best avoided in field values,

the subscript and superscript characters _ and ^ should either be encapsulated by $ or by \ensuremath,
which will be picked up by the check for $ or \, and the other special characters would indicate something
too complex for the interpreter to handle.

24

https://github.com/nlct/texparser

2 TEX Parser Library

\def\foo{\foo}

This will obviously also cause an error in the LATEX document as well (unless the document
has a different definition that doesn’t have this unbounded recursion).

The texparserlib.jar library is not a TEX engine and there are plenty of situations
where it doesn’t work. In particular, with bib2gls, it’s being used in a fragmented context
without knowing most of the packages used by the document or any custom commands or
environments provided within the document.
bib2gls can detect from the log file a small number of packages that the parser recognises.

Note that in some cases there’s only very limited support. For example, siunitx’s \si and
\unit commands are recognised but other commands from that package aren’t. See --list
-known-packages (page 40) for further details.

Since the parser doesn’t have a full set of commands available within the LATEX document,
when it encounters \renewcommand it won’t check if the command is undefined. If the
command isn’t defined, it will simply behave like \newcommand. Whereas with \provide-
command the parser will only define the command if it’s unrecognised.

The interpreter has its own internal implementation of the glossary-related commands
listed in table 2.1. These may be overridden by custom packages provided with the --custom
-packages switch. Note that commands that reference an entry, such as \glsentryname,
aren’t guaranteed to work across resource sets and will only be able to look up field values
that are known to bib2gls. (For example, the name field for abbreviations is typically set by
the associated abbreviation style, which isn’t available to bib2gls.)

If a command isn’t recognised, you can provide it in the @preamble and use \char to map
a symbol to the most appropriate Unicode character. For example, suppose your document
loads a package that provides symbols for use on maps, such as \Harbour, \Battlefield
and \Stadium, then you can provide versions of these commands just for bib2gls’s use:3

@preamble{"\providecommand{\Harbour}{\char"2693}
\providecommand{\Battlefield}{\char"2694}
\providecommand{\Stadium}{\char"26BD}"}

Since these use \providecommand, they won’t overwrite the document’s version (provided
these commands have been defined before \GlsXtrLoadResources). Alternatively, you
can instruct bib2gls to not write the @preamble contents to the resource file using write
-preamble={false}. Now you can either sort these symbols by their Unicode values (sort
={letter-case}) or provide a custom rule that recognises these Unicode characters (for ex-
ample, sort={custom}, sort-rule={\glshex2694 < \glshex2693 < \glshex26BD}).

Another approach is to use \IfTeXParserLib, which is defined by the TEX Parser Library
to expand to its first argument. The glossaries-extra-bib2gls package provides a definition
that expands to its second argument, so that command may be used to provide alternative
code. For example:

@preamble{"\providecommand{\Ord}[1]{%
\IfTeXParserLib
3These commands won’t work with PDFLATEX, as the \char values are too large, but they’re fine for bib2gls.

25

2 TEX Parser Library

Table 2.1: Glossary-Related Commands Implemented by the bib2gls Interpreter

\bibglsampersandchar \bibglscircumchar \bibglscontributor
\bibglscontributorlist \bibglsdate \bibglsdatetime
\bibglsdollarchar \bibglsfirstuc \bibglshashchar
\bibglshyperlink \bibglslowercase \bibglstime
\bibglstitlecase \bibglsunderscorechar \bibglsuppercase
\glsbackslash \glsclosebrace \glsentryfirst
\Glsentryfirst \glsentryfirstplural \Glsentryfirstplural
\glsentrylong \Glsentrylong \glsentrylongpl
\Glsentrylongpl \glsentryname \Glsentryname
\glsentryplural \Glsentryplural \glsentryshort
\Glsentryshort \glsentryshortpl \Glsentryshortpl
\glsentrysymbol \Glsentrysymbol \glsentrysymbolplural
\Glsentrysymbolplural \glsentrytext \Glsentrytext
\glsentrytitlecase \glsentryuseri \Glsentryuseri
\glsentryuserii \Glsentryuserii \glsentryuseriii
\Glsentryuseriii \glsentryuseriv \Glsentryuseriv
\glsentryuserv \Glsentryuserv \glsentryuservi
\Glsentryuservi \glshyperlink \glsopenbrace
\glspercentchar \glstildechar \GlsXtrEnableInitialTagging
\glsxtrhiername \Glsxtrhiername \GlsXtrhiername
\GLSxtrhiername \GLSXTRhiername \glsxtrhiernamesep
\glsxtrprovidecommand \glsxtrusefield \Glsxtrusefield
\GLSxtrusefield

26

2 TEX Parser Library

{\bibglspaddigits{2}{#1}}% interpreter
{\MakeUppercase{\romannumeral #1}}% document

}"}
@index{John-IV,
name={John~\Ord{4}}

}
@index{John-VI,
name={John~\Ord{6}}

}
@index{John-IX,
name={John~\Ord{9}}

}
@index{John-XII,
name={John~\Ord{12}}

}

The sort values for these entries will be: “John 04”, “John 06”, “John 09” and “John 12”, but in
the document text they will be typeset as “John IV”, “John VI”, “John IX” and “John XII”. Note
that \bibglspaddigits is only recognised by the bib2gls interpreter. Alternatively, you
can use the sort-number-pad option to pad the numbers (or use \dtlpadleadingzeros
which is also recognised by the TEX Parser Library and datatool-base v3.0+).

There is a similar command with reversed syntax \IfNotBibGls, which is defined by
glossaries-extra-bib2gls to expand to its first argument. The bib2gls interpreter defines
this command to expand to its second argument.

TEX syntax can be quite complicated and, in some cases, far too complicated for simple
regular expressions. The TEX Parser Library performs better than a simple patternmatch, and
that’s the purpose of texparserlib.jar and why it’s used by bib2gls (and by convert-
gls2bib). When the --debugmode is on, anywarnings or errors triggered by the interpreter
will be written to the transcript prefixed with texparserlib: (the results of the conversions
will be included in the transcript as informational messages prefixed with texparserlib:
even with --no-debug).

For example, suppose the .bib file includes:

@preamble{
"\providecommand{\mtx}[1]{\boldsymbol{#1}}
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}
\providecommand{\imaginary}{i}"}

@entry{M,
name={{}\mtx{M}},
text={\mtx{M}},
description={a matrix}

}

27

2 TEX Parser Library

@entry{v,
name={{}\vec{v}},
text={\vec{v}},
description={a vector}

}

@entry{S,
name={{}\set{S}},
text={\set{S}},
description={a set}

}

@entry{card,
name={{}\card{S}},
text={\card{S}},
description={the cardinality of the set \set{S}}

}

@entry{i,
name={{}\imaginary},
text={\imaginary},
description={square root of minus one ($\sqrt{-1}$)}

}

(The empty group at the start of the name fields protects against the possibility that the gloss-
name category attributemight be set to firstuc, which automatically converts the first letter
of the name to upper case when displaying the glossary. See also --mfirstuc-protection
and --mfirstuc-math-protection.)

None of these entries have a sort field so the name is used (see section 5.8). If the entry
type had been @symbol instead, the fallback would be the entry’s label. This means that with
@symbol instead of @entry, and the default sort-field={sort}, and with sort={letter-
case}, these entries will be defined in the order: M, S, card, i, v (since this is the case-
sensitive letter order of the labels) whereas with sort-field={letter-nocase}, the order
will be: card, i, M, S, v (since this is the case-insensitive letter order of the labels).

However, with @entry, the fallback field will be taken from the name which in the above
example contains TEX code, so bib2gls will use texparserlib.jar to interpret this code.
The library has several different ways of writing the processed code. For simplicity, bib2gls
uses the library’s HTML output and then strips the HTML markup and trims any leading
or trailing spaces. The library method that writes non-ASCII characters using “ &x〈hex〉; ”
markup is overridden by bib2gls to just write the actual Unicode character, which means
that the letter-based sorting options will sort according to the integer value 〈hex〉 rather than
the string “ &x〈hex〉; ”.

The interpreter is first passed the code provided with @preamble:

\providecommand{\mtx}[1]{\boldsymbol{#1}}

28

2 TEX Parser Library

\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}
\providecommand{\imaginary}{i}

(unless interpret-preamble={false}). This means that the provided commands are now
recognised by the interpreter when it has to parse the fields later.

In the case of the M entry in the example above, the code that’s passed to the interpreter
is:

{}\mtx{M}

The transcript (.glg) file will show the results of the conversion:

texparserlib: {}\mtx{M} -> M

So the sort value for this entry is set to “ M ”. The font change (caused by math-mode and
\boldsymbol) has been ignored. The sort value therefore consists of a single Unicode char-
acter 0x4D (Latin upper case letter “ M ”, decimal value 77).

For the v entry, the code is:

{}\vec{v}

The transcript shows:

texparserlib: {}\vec{v} -> →
v

So the sort value for this entry is set to “→
v ”, which consists of two Unicode characters 0x76

(Latin lower case letter “ v ”, decimal value 118) and 0x20D7 (combining right arrow above,
decimal value 8407).

For the set entry, the code is:

{}\set{S}

The transcript shows:

texparserlib: {}\set{S} -> S

So the sort value for this entry is set to “ S ” (again ignoring the font change). This consists
of a single Unicode character 0x53 (Latin upper case letter “ S ”, decimal value 83).

For the card entry, the code is:

{}\card{S}

The transcript shows:

texparserlib: {}\card{S} -> |S|

29

2 TEX Parser Library

So the sort value for this entry is set to “ |S| ” (the | characters from the definition of \card
provided in @preamble have been included, but the font change has been discarded). In this
case the sort value consists of three Unicode characters 0x7C (vertical line, decimal value
124), 0x53 (Latin upper case letter “ S ”, decimal value 83) and 0x7C again. If interpret
-preamble={false} had been used, \card wouldn’t be recognised and would be discarded
leaving just “ S ” as the sort value.

(Note that if \vert is used instead of | then it would be converted into the mathematical
operator 0x2223 and result in a different order.)

For the i entry, the code is:

{}\imaginary

The transcript shows:

texparserlib: {}\imaginary -> i

So the sort value for this entry is set to “ i ”. If interpret-preamble={false} had been
used, \imaginary wouldn’t be recognised and would be discarded, leaving an empty sort
value.

This means that in the case of the default sort-field={sort} with sort={letter-
case}, these entries will be defined in the order: M (M), S (S), i (i), v (~v) and card (|S|). In
this case, the entries have been sorted according to the character codes. If you run bib2gls
with --verbose the decimal character codes will be included in the transcript. For this ex-
ample:

i -> 'i' [105]
card -> '|S|' [124 83 124]
M -> 'M' [77]
S -> 'S' [83]
v -> '→

v' [118 8407]

The --group option (in addition to --verbose) will place the letter group in parentheses
before the character code list:

i -> 'i' (i) [105]
card -> '|S|' [124 83 124]
M -> 'M' (M) [77]
S -> 'S' (S) [83]
v -> '→

v' (v) [118 8407]

(Note that the card entry doesn’t have a letter group since the vertical bar character isn’t
considered a letter.)

If sort={letter-nocase} is used instead then, after conversion by the interpreter, the
sort values will all be changed to lower case. The order is now: i (i), M (M), S (S), v (~v) and
card (|S|). The transcript (with --verbose) now shows

30

2 TEX Parser Library

i -> 'i' [105]
card -> '|s|' [124 115 124]
M -> 'm' [109]
S -> 's' [115]
v -> '→

v' [118 8407]

With --group (in addition to --verbose) the letter groups are again included:

i -> 'i' (I) [105]
card -> '|s|' [124 115 124]
M -> 'm' (M) [109]
S -> 's' (S) [115]
v -> '→

v' (V) [118 8407]

Note that the letter groups are upper case not lower case. Again the card entry doesn’t have
an associated letter group.

If a locale-based sort is used, the ordering will follow the locale’s alphabet rules. For
example, with sort={en} (English, no region or variant), the order becomes: card (|S|), i
(i), M (M), S (S) and v (~v). The transcript (with --verbose) shows the collation keys instead:

i -> 'i' [0 92 0 0 0 0]
card -> '|S|' [0 66 0 102 0 66 0 0 0 0]
M -> 'M' [0 96 0 0 0 0]
S -> 'S' [0 102 0 0 0 0]
v -> '→

v' [0 105 0 0 0 0]

Again the addition of the --group switch will show the letter groups.4
Suppose I add a new symbol to my .bib file:

@symbol{angstrom,
name={\AA},
description={\AA ngstr\"om}

}

and I also use this entry in the document.5 Then with sort={en}, the order is: card (|S|),
angstrom (Å), i (i), M (M), S (S), and v (~v). The --group switch shows that the angstrom
entry (Å) has been placed in the “A” letter group.

However, if I change the locale to sort={sv}, the angstrom entry is moved to the end of
the list and the --group switch shows that it’s been placed in the “Å” letter group.

If you are using Java 8, you can set the java.locale.providers property [8] to use the
Unicode Common Locale Data Repository (cldr) locale provider, which has more extensive
support for locales than the native jre. For example:

java.locale.providers=CLDR,JRE

4For more information on collation keys see the CollationKey class in Java’s API [2].
5A better method is to use siunitx instead.

31

http://docs.oracle.com/javase/8/docs/api/java/text/CollationKey.html

2 TEX Parser Library

This should be enabled by default for Java 9. The property can either be set in a script that
runs bib2gls, for example,

java -Djava.locale.providers=CLDR,JRE,SPI -jar "$jarpath" "$@"

(where $jarpath is the path to the bib2gls.jar file and "$@" is the argument list) or you
can set the property as the default for all Java applications by adding the definition to the
JAVA_TOOL_OPTIONS environment variable [9]. For example, in a bash shell:

export JAVA_TOOL_OPTIONS='-Djava.locale.providers=CLDR,JRE,SPI'

or in Windows:

set JAVA_TOOL_OPTIONS=-Djava.locale.providers=CLDR,JRE,SPI

Note that newer versions of Java support cldr by default, and the jre synonym for the
COMPAT provider is now deprecated.6

6https://www.oracle.com/java/technologies/javase/jdk21-suported-locales.html

32

3 Command Line Options
The syntax of bib2gls is:

bib2gls [〈options〉] 〈filename〉

where 〈filename〉 is the name of the .aux file. (The extension may be omitted.) Only one
〈filename〉 is permitted. Available options are listed below.

If you are using an automated build system that makes it difficult to change the command
line options and you have at least version 1.54 of glossaries-extra and at least version 4.0 of
bib2gls, then most (but not all) switches can be specified within the argument of

\BibGlsOptions{〈options〉}

This command may be placed anywhere within the preamble, but the options will always
be processed before the resource commands. This command may be used multiple times.
Unlike the resource options, which are local to the resource set, the options described here
are global and are applied to all resource sets, where applicable. For example:

\BibGlsOptions{replace-quotes=true}
\GlsXtrLoadResources
\BibGlsOptions{collapse-same-location-range=true}

This is equivalent to:

\BibGlsOptions{replace-quotes=true,collapse-same-location-range=true}
\GlsXtrLoadResources

The 〈options〉 list should be a key=value list where the 〈key〉 is the same as the long switch
without the preceding -- and any --no-〈option〉 should be specified as 〈option〉=false
within \BibGlsOptions. For example, to set global options via the command line:

bib2gls --group --no-replace-quotes myDoc

Alternatively, the document may contain:

\BibGlsOptions{group=true,replace-quotes=false}

You can omit the value if it is true, so the above can also be written:

\BibGlsOptions{group,replace-quotes=false}

Options that must be set before the .log and .aux file are read can only be set via the
command line switch.

33

3.1 Common Options

3.1 Common Options
These command line switches are common to bib2gls and the supplementary command
line conversion tools

--help (or -h)
Display the help message and quit. This option cannot be set in \BibGlsOptions.

--version (or -v)
Display the version information and quit. As from v2.5, this now includes the version number
of the texparserlib.jar library. This option cannot be set in \BibGlsOptions.

--verbose

Switches on the verbose mode. This writes extra information to the terminal and transcript
file. This option cannot be set in \BibGlsOptions.

--no-verbose (or --noverbose)
Switches off the verbose mode. This is the default behaviour. Some messages are written to
the terminal. To completely suppress all messages (except errors), switch on the silent mode.
For additional information messages, switch on the verbose mode. This option cannot be set
in \BibGlsOptions.

--quiet (or -q)
Suppresses all messages except for errors that would normally be written to the terminal.
Warnings and informational messages are written to the transcript file, which can be in-
spected afterwards. This option cannot be set in \BibGlsOptions.

--silent

Synonym of --quiet. This option cannot be set in \BibGlsOptions.

--locale 〈lang〉 (or -l 〈lang〉)
Specify the preferred language resource file, where 〈lang〉 is a valid ietf language tag. This
option requires an appropriate bib2gls-〈lang〉.xml resource file otherwise bib2gls will
fallback on English. This also sets the default document locale when the doc keyword (in
options such as sort={doc}) is used and the document doesn’t have any language support.
Note that the locale keyword (in options such as sort={locale}) uses the Java locale and
is not governed by this switch. This option cannot be set in \BibGlsOptions.

34

3.1 Common Options

If a document doesn’t have any locale support or has support for more than one language
then it’s best to explicitly set the required locale in the appropriate resource set using the
locale resource option, to specify the default resource locale, or set the locale for individual
options, such as sort.

--debug [〈n〉]
Sometimes when things go wrong it can be hard to diagnose the problem from the normal
messages. If you report an issue, you may be asked to switch on debugging mode to help
identify a non-reproducible error and provide the transcript file.

The --debug optional value can be used to adjust the level of debugging information. If
〈n〉 is present, it must be a non-negative integer indicating the debugging mode. If omitted,
1 is assumed. This option also switches on the verbose mode. A value of 0 is equivalent to
--no-debug. This option cannot be set in \BibGlsOptions.

The value of 〈n〉 determines howmuch extra information is provided. If 〈n〉 is greater than
0 then all bib2gls debugging information is written. The amount of debugging information
provided by the TEX Parser Library is determined by a bitwise operation on 〈n〉. For example,
if 〈n〉 is 1 then I/O information is included. If 〈n〉 is 2 then information is included when an
object is popped off a stack. If 〈n〉 is 3 then both I/O and popped information is provided.

Note that messages such as “Can’t find language resource” or about a failed kpsewhich
call are informational and don’t necessarily mean an error has occurred. Error messages will
always be written to the transcript regardless of the debug or verbose setting. An error mes-
sage will start with “Error: ” and a warning message will start with “Warning: ”. Unknown
commands will throw an exception with a stack trace in debug mode.

--debug-mode 〈setting〉
This option is an alternative to --debug where the value of 〈n〉 needs to be calculated. This
option cannot be set in \BibGlsOptions. Debugging mode requires a transcript file, which
is automatically created with bib2gls, but is optional for the converter tools (see chapter 7).
The 〈setting〉 is required and should be a comma-separated list of any of the following key-
words.

• all: enable all debugging information (likely to result in a very large transcript file).

• catcode: TEX Parser Library category code changes.

• cs: TEX Parser Library command definitions.

• decl: information about declarations.

• expansion: TEX Parser Library expansions (may result in a large transcript file).

• expansion-list: TEXParser Library stack expansions (may result in a large transcript
file).

35

3.2 File Options

• expansion-once: TEX Parser Library one-level expansions (may result in a large tran-
script file).

• expansion-once-list: TEX Parser Library one-level list expansions (may result in a
large transcript file).

• io: I/O information, such as opening or closing files and fetching tokens.

• popped: information about objects popped from stacks.

• process: TEX Parser Library macro process (may result in a large transcript file).

• process-generic-cs: TEX Parser Library generic command process.

• process-stack: TEX Parser Library stack process (may result in a large transcript
file).

• process-stack-list: TEX Parser Library stack process with list detail (may result in
a large transcript file).

• read: TEX Parser Library file codepoint read (likely to result in a very large transcript
file).

• settings: TEX Parser Library settings information.

• sty-data: data associated with packages used to store information that may not ex-
actly correspond to the way the information is stored in LATEX. In the case of bib2gls,
this will typically just be data read from recognised .aux commands.

For example:

bib2gls --debug-mode catcode,sty-data 〈filename〉

--no-debug (or --nodebug)
Switches off the debugging mode. This option cannot be set in \BibGlsOptions.

3.2 File Options
--dir 〈dirname〉 (or -d 〈dirname〉)
This option cannot be set in \BibGlsOptions.

By default bib2gls assumes that the output files should be written in the current working
directory. The input .bib files are assumed to be either in the current working directory or
on TEX’s path (in which case kpsewhich will be used to find them).

If your .aux file isn’t in the current working directory (for example, you have run TEX
with -output-directory) then you need to take care how you invoke bib2gls.

Suppose I have a file called test-entries.bib that contains my entry definitions and a
document called mydoc.tex that selects the .bib file using:

36

3.2 File Options

\GlsXtrLoadResources[src={test-entries}]

(test-entries.bib is in the same directory as mydoc.tex). If I compile this document
using

pdflatex -output-directory tmp mydoc

then the auxiliary file mydoc.aux will be written to the tmp sub-directory. The resource
information is listed in the .aux file as

\glsxtr@resource{src={test-entries}}{mydoc}

If I run bib2gls from the tmp directory, then it won’t be able to find the test-entries.bib
file (since it’s in the parent directory).

If I run bib2gls from the same directory as mydoc.tex using

bib2gls tmp/mydoc

then the .aux file is found and the transcript file is tmp/mydoc.glg (since the default path
name is the same as the .aux file but with the extension changed to .glg) but the output file
mydoc.glstex will be written to the current directory.

This works fine from TEX’s point of view as it can find the .glstex file, but it may be that
you’d rather the .glstex file was tidied away into the tmp directory along with all the other
files. In this case you need to invoke bib2gls with the --dir or -d option:

bib2gls -d tmp mydoc

--log-file 〈filename〉 (or -t 〈filename〉)
Sets the name of the bib2gls transcript file. By default, the name is the same as the .aux
file but with a .glg extension. Note that if you use bib2gls in combination with xindy or
makeindex, you will need to change the transcript file name to prevent conflict. This option
cannot be set in \BibGlsOptions.

The transcript file encoding is governed by --log-encoding.

--tex-encoding 〈name〉
This option cannot be set in \BibGlsOptions.

In general, it’s best to have all your files (.aux, .bib and .glstex) in the same encoding
that matches your default encoding (see section 1.1). However, if your .aux and .glstex
files have a different encoding to your default, you can use --tex-encoding to specify the
TEX encoding. If omitted the default encoding is used. See section 1.1.

Note that bib2gls will try to detect the document encoding from the .aux file to ensure
that the .glstex files match it. However, at that point, it’s too late to establish the encoding
of the .aux file, which has already been opened. So if the .aux file encoding doesn’t match
the default encoding, you can specify the correct encoding to use with --tex-encoding.

If you are using fontspec, bib2gls can detect this from the .log file instead and will
assume UTF-8.

37

3.3 Interpreter Options

--log-encoding 〈name〉
The encoding of the .log file. If omitted, the default encoding will be used. See section 1.1.
(Note that the .log file may not have the same encoding as the .tex file [17].) This option
cannot be set in \BibGlsOptions.

--default-encoding 〈name〉
The default encoding used by bib2gls to read and write files is governed by the jvm. This
typically matches your operating system’s default encoding. If this is incorrect, you can ei-
ther globally change the encoding for the jvm, which will affect all Java applications installed
on your device, or you can use --default-encoding just to set the default for bib2gls. See
section 1.1. This option cannot be set in \BibGlsOptions.

--date-in-header (or -D)
The comment header block at the start of the .glstex files will include the file modification
date in the first line (after the version information). This setting can interfere with the doc-
ument build process or version control if you are testing for file differences rather than file
modification dates when only the timestamp changes.

--no-date-in-header

The comment header block at the start of the .glstex files won’t include the filemodification
date (default). If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{date-in-header=false}

3.3 Interpreter Options
--break-space

The interpreter treats a tilde character ~ as a normal space. Similarly \nobreakspace just
produces a space.

--no-break-space

The interpreter treats a tilde character ~ as a non-breakable space (default). Similarly the
interpreter will define \nobreakspace to produce a non-breakable space character (0x00A0).
If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{break-space=false}

38

3.3 Interpreter Options

--custom-packages 〈list〉
Instruct the interpreter to parse the package files identified in 〈list〉. The package files need
to be quite simple. When this switch is used, the interpreter can recognise \ProvidesPack-
age, \DeclareOptions (and \DeclareOptions*), \ProcessOptions, \PackageError and
\RequirePackage, but it can’t deal with complicated code. In the case of \RequirePack-
age, support will also be governed by --custom-packages. This option has a cumulative
action.

Multiple instances of this switch can occur on the command line. If used in \BibGls-
Options, the nature of the key=value list parser means that multiple instances within the
same option list will override each other. Instead, you will need a comma-separated list as
the argument. For example, from the command line:

bib2gls --custom-packages 'pkg1,pkg2,pkg3' myDoc

This is equivalent to:

bib2gls --custom-packages pkg1 --custom-packages pkg2 --custom-packages pkg3 myDoc

Alternatively, within the document:

\BibGlsOptions{custom-packages={pkg1,pkg2,pkg3}}

--datatool-sort-markers

The datatool-base package provides some marker commands designed for use with \DTL-
sortwordlist: \datatoolasciistart, \datatoolpersoncomma, \datatoolplacecomma,
\datatoolsubjectcomma, \datatoolparenstart, \datatoolctrlboundary, \datatool-
asciiend, and \datatoolparen. These commands by default will be defined by the inter-
preter to match their normal datatool-base behaviour (see the datatool documentation for
further details). Additionally, \dtltexorsort will be redefined to expand to its first argu-
ment.

Note that you don’t need to request the datatool-base package, unless you require support
for other commands provided by that package.

The --datatool-sort-markers switch will instead define these commands to match
their localised definitions within \DTLsortwordlist. This means that \dtltexorsort will
be defined to expand to its second argument and the marker commands will expand to con-
tent that includes special control codes. Note that language-sensitive sort methods typically
ignore control codes, so these would either need to be used with a character-code comparator
or a custom sort method would need to be used. For example:

sort-rule={\glsxtrcontrolIrules
;\glshex 0
;\glsxtrspacerules
;\glsxtrnonprintablerules
;\glsxtrcombiningdiacriticrules

39

3.3 Interpreter Options

,\glsxtrhyphenrules
<\glsxtrcontrolIIrules
<\glsxtrgeneralpuncrules
<\glsxtrdigitrules
<\glsxtrfractionrules
<\glsxtrGeneralLatinIrules
<\glshex 7F

}

Instead of \dtltexorsort (which varies according to this setting), you may prefer to use
\IfTeXParserLib or \IfNotBibGls.

--no-datatool-sort-markers

Define the datatool-base marker commands (including \dtltexorsort) to match their nor-
mal definition.

--ignore-packages 〈list〉 (or -k 〈list〉)
This option is cumulative. When the document .log file is parsed for known packages,
bib2gls will skip the check for any listed in 〈list〉. Note that this option simply instructs
bib2gls to ignore the package information in the log file. Any packages that are identified
with --packageswill be passed to the interpreter if support is available, even if the package
is also listed in --ignore-packages. Note that unknown packages can’t be included in the
ignored 〈list〉. This option cannot be set in \BibGlsOptions.

--interpret

Switch on the interpreter mode (default). See chapter 2 for more details.

--no-interpret

Switch off the interpreter mode. See chapter 2 for more details about the interpreter. If used
in \BibGlsOptions, this option should be specified as

\BibGlsOptions{interpret=false}

--list-known-packages

This option will list all the packages supported by the TEX Parser Library and will then exit
bib2gls. This option cannot be set in \BibGlsOptions.

The results are divided into two sections: those packages that are searched for in the .log
file and those packages that aren’t searched for in the .log file but have some support avail-
able. Some of the support is very limited. Package options aren’t detected. The transcript file

40

3.3 Interpreter Options

is always searched for glossaries-extra to ensure that the version is new enough to support
bib2gls.

Packages that fall into the first category are: amsmath, amssymb, bpchem, fontenc, font-
spec, fourier, hyperref, lipsum, MnSymbol, mhchem, natbib, pifont, siunitx (limited), stix, text-
case, textcomp, tipa, upgreek and wasysym. (You can omit checking for specific packages with
--ignore-packages.) These are packages that provide commands that might be needed
within entry fields. The check for fontspec is to simply determine whether or not UTF-8
characters are allowed in labels (for labelify and labelify-list). (Now that there is
better support for UTF-8 with pdfLATEX, UTF-8 characters will be allowed in labels if the
detected versions of glossaries and glossaries-extra are new enough, but note that you will
also need a relatively new LATEX kernel as well.)

Packages that fall into the second category are: booktabs, color, datatool-base (very lim-
ited), datatool (very limited), etoolbox (very limited), graphics, graphicx, ifthen, jmlrutils,
mfirstuc-english, probsoln, shortvrb, and xspace. These are less likely to be needed within
fields and so aren’t checked for by default. If they are needed then you can instruct bib2gls
to support them with --packages.

Note that mfirstuc is always automatically loaded, but mfirstuc-english is not implemented
unless explicitly requested with --packages mfirstuc-english.

If you’re wondering about the selection, the texparserlib.jar library was originally
written for another application that required support for some of them.

--packages 〈list〉 (or -p 〈list〉)
Instruct the interpreter to assume the packages listed in 〈list〉 have been used by the docu-
ment. This option has a cumulative action so --packages "wasysym,pifont" is the same
as --packages wasysym --packages pifont.

This option may also be used in \BibGlsOptions but, as with --custom-packages, mul-
tiple instances of the packages key in the same option list will override each other.

Note that there’s only a limited number of packages supported by the TEX Parser Library.
This option is provided for cases where you’re using a command from a package that the
interpreter doesn’t support but it happens to have the same name andmeaning as a command
from a package that the interpreter does support. You can also use it to provide support for
known packages that aren’t checked for when the .log file is parsed. If you want bib2gls
to parse an unsupported package use --custom-packages.

--support-unicode-script

Text superscript (\textsuperscript) and subscript (\textsubscript) will use Unicode
super/subscript characters if available (default). For example,

(2)

will be converted to (2), which consists of: 0x207D (superscript left parenthesis) 0x00B2 (su-
perscript two) 0x207E (superscript right parenthesis). If the entire contents of the argument

41

3.4 Record Options

can’t be represented by Unicode characters, the interpreter uses <sup> and <sub> markup,
which is then stripped by bib2gls. For example,

(2,3)

will be converted to

^(2,3)

(since there’s no superscript comma). The markup is stripped leaving just (2,3).
Superscripts and subscripts in maths mode always use markup regardless of this setting.

Some supported packages that use ^ or _ as shortcuts within an encapsulating command
may internally use the same code as \textsuperscript and \textsubscript, in which
case they will be sensitive to this setting.

--no-support-unicode-script

Text superscript (\textsuperscript) and subscript (\textsubscript) won’t use Unicode
super/subscript characters. Note that if other commands are provided that expand to Unicode
superscript or subscript characters, then they won’t be affected by this setting. For example,
if \superiortwo is defined as

\providecommand{\superiortwo}{\char"B2}

then it will be interpreted as 0x00B2 (superscript two) even if this setting is on.
If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{support-unicode-script=false}

--obey-aux-catcode

By default, the .aux parser ignores category code changing commands. This option will
instruct the parser to implement the category code, but note that it can only do this for
known commands that the parser is able to implement. This option cannot be set in \Bib-
GlsOptions.

--no-obey-aux-catcode

Instructs the .aux parser to ignore category code changing commands. (Default.) This option
cannot be set in \BibGlsOptions.

3.4 Record Options
--cite-as-record

Treat instances of \citation{〈label〉} found in the .aux file as though it was actually an
ignored record:

42

3.4 Record Options

\glsxtr@record{〈label〉}{}{page}{glsignore}{}

Note that \citation{*}will always be skipped. Use selection={all} to select all entries.
This switch is most useful in conjunction with @bibtexentry (page 106).

--no-cite-as-record

Don’t check for instances of \citation in the .aux file (default). If used in \BibGls-
Options, this option should be specified as

\BibGlsOptions{cite-as-record=false}

--collapse-same-location-range

Collapse any explicit range into a normal record if the start and end locations are the same
(default). This record will be treated as a normal location that can be merged with neigh-
bouring locations, regardless of merge-ranges.

--no-collapse-same-location-range

Don’t collapse any explicit range into a normal record if the start and end locations are the
same. The explicit range will only be able to merge with neighbouring locations if merge
-ranges={true}. If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{collapse-same-location-range=false}

--map-format 〈map:value list〉 (or -m 〈map:value list〉)
This sets up the rule of precedence for partial location matches (see section 5.10). The ar-
gument may be a comma-separated list of 〈map〉:〈value〉 pairs. Alternatively, you can have
multiple instances of --map-format 〈map〉:〈value〉 which have a cumulative effect on the
command line. You can also use map-format as an option within \BibGlsOptions, but
multiple instances of this key in the same option list will override each other.

For example,

bib2gls --map-format "emph:hyperbf" mydoc

This essentially means that if there’s a record conflict involving emph, try replacing emph
with hyperbf and see if that resolves the conflict.

Note that if the conflict includes a range formation, the range takes precedence. The map-
ping tests are applied as the records are read. For example, suppose the records are listed in
the .aux file as:

\glsxtr@record{gls.sample}{}{page}{emph}{3}
\glsxtr@record{gls.sample}{}{page}{hypersf}{3}
\glsxtr@record{gls.sample}{}{page}{hyperbf}{3}

43

3.4 Record Options

and bib2gls is invoked with

bib2gls --map-format "emph:hyperbf,hypersf:hyperit" mydoc

or

bib2gls --map-format emph:hyperbf --map-format hypersf:hyperit mydoc

then bib2gls will process these records as follows:

1. Accept the first record (emph) since there’s currently no conflict. (This is the first record
for page 3 for the entry given by gls.sample.)

2. The second record (hypersf) conflicts with the existing record (emph). Neither has the
format glsnumberformat or glsignore so bib2gls consults the mappings provided
by --map-format.

• The hypersf format (from the new record) is mapped to hyperit, so bib2gls
checks if the existing record has this format. In this case it doesn’t (the format is
emph). So bib2gls moves on to the next test:

• The emph format (from the existing record) is mapped to hyperbf, so bib2gls
checks if the new record has this format. In this case it doesn’t (the format is
hypersf).

Since the provided mappings haven’t resolved this conflict, the new record is
discarded with a warning. Note that there’s no look ahead to the next record.
(There may be other records for other entries also used on page 3 interspersed
between these records.)

3. The third record (hyperbf) conflicts with the existing record (emph). Neither has the
format glsnumberformat or glsignore so bib2gls again consults themappings pro-
vided by --map-format.

• The new record’s hyperbf format has no mapping provided, so bib2gls moves
on to the next test:

• The existing record’s emph format has amapping provided (hyperbf). Thismatches
the new record’s format, so the new record takes precedence.

This means that the location list ends up with the hyperbf location for page 3.

If, on the other hand, the mappings are given as

--map-format "emph:hyperit,hypersf:hyperit,hyperbf:hyperit"

then all the three conflicting records (emph, hypersf and hyperbf) will end up being replaced
by a single record with hyperit as the format.

Multiple conflicts will typically be rare as there’s usually little reason for more than two
or three different location formats within the same list. (For example, glsnumberformat as
the default and hyperbf or hyperit for a principal location.)

44

3.4 Record Options

--merge-nameref-on 〈rule〉
The record={nameref} package option (introduced to glossaries-extra version 1.37) pro-
vides extra information in the record when indexing, obtained from \@currentlabelname,
\@currentHref and \theHentrycounter. Instead of writing the record as:

\glsxtr@record{〈label〉}{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}
the record is written as:

\glsxtr@record@nameref{〈label〉}{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}{〈title〉}
{〈href 〉}{〈hcounter〉}
If hyperref hasn’t been loaded 〈title〉 and 〈href 〉 will always be empty. The most reliable
target is given by 〈counter〉.〈hcounter〉, where 〈counter〉 is the associated counter name and
〈hcounter〉 is obtained from \theHentrycounter, which is set to the hyper target command
\theH〈counter〉 during indexing. Since this information can’t be included in the location
when indexing with makeindex or xindy, the base glossaries package tries to obtain a prefix
from which the target name can be formed. This doesn’t work if \theH〈counter〉 can’t be
formed from 〈prefix〉\the〈counter〉, which results in broken links. Since bib2gls doesn’t
have the same restrictions, the actual target can be included in the record. You can then
customize the document to choose whether to use 〈href 〉 (to link to the nearest anchor) or
〈hcounter〉 to link to the place where the indexing counter was incremented.

The nameref record will be written to the location list using:

\glsxtrdisplaylocnameref{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}{〈title〉}
{〈href 〉}{〈hcounter〉}{〈file〉}
The 〈file〉 part will be empty for normal internal locations, and will be set to the correspond-
ing file name for supplemental locations.

With hyperref, 〈title〉 is initially empty. The 〈href 〉 will be Doc-Start at the start of the
document and is updated globally on every instance of \refstepcounter. The 〈title〉 is
updated locally by certain commands, such as \section or \caption. This means that the
〈href 〉 may not always correspond to the 〈title〉, so using the record={nameref} package
option can have unpredictable results if the 〈title〉 is used as link text with 〈href 〉 as the
target.

For compactness, bib2gls tries to merge duplicate or near duplicate records. There are
four possible rules that it will use for nameref records, identified by 〈rule〉 in the --merge
-nameref-on switch:

• location: merge records that match on the 〈prefix〉, 〈counter〉 and 〈location〉 parts (as
regular records);

• title: merge records that match on the 〈counter〉 and 〈title〉 parts;

• href: merge records that match on the 〈counter〉 and 〈href 〉 parts;

• hcounter: merge records that match on the 〈counter〉 and 〈hcounter〉 parts.
The default 〈rule〉 is hcounter. Note that for all rules the 〈counter〉 must match. See the
“Nameref Record” section of the glossaries-extra user manual for further details.

45

3.4 Record Options

--merge-wrglossary-records

For use with the indexcounter package option (glossaries-extra v1.29+), this switch merges
an entry’s wrglossary records for the same page location. This is the default setting. (See also
save-index-counter.)

--no-merge-wrglossary-records

Don’t merge an entry’s wrglossary records. This means that you may end up with duplicate
page numbers in the entry’s location list, but they will link to different parts of the page. If
used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{merge-wrglossary-records=false}

--record-count (or -c)
Switch on record counting. This will ensure that when each entry is written to the .glstex
file, bib2gls will additionally set the following fields

• recordcount: set to the total number of records found for the entry;

• recordcount.〈counter〉: set to the total number of records found for the entry for the
given counter.

These fields can then be used with the \rgls-like commands.
This option is governed by the --record-count-rule, which can be used to exclude

certain types of records from the count. The default rule is all, which includes all ignored
records.

The default behaviour of

\rgls[〈options〉]{〈label〉}[〈insert〉]

is to check the recordcount field against the recordcount attribute value. This attribute can
be set with

\GlsXtrSetRecordCountAttribute{〈category list〉}{〈value〉}

where 〈category list〉 is a comma-separated list of category labels and 〈value〉 is a positive
integer. If the value of the recordcount field is greater than 〈value〉 then \rgls behaves
like \gls, otherwise it does

\rglsformat{〈label〉}[〈insert〉]

instead. If the use of \rglsformat is triggered in this way, then \rglswrites a record to the
.aux file with the format set to glstriggerrecordformat. This ensures that the record
count is correct on the next run, but the record isn’t added to the location list as bib2gls
recognises it as a special ignored record. Note that the entry will still appear in the usual
glossary unless you assign it to a different one with trigger-type.

46

3.4 Record Options

If the recordcount attribute hasn’t been set \rgls behaves like \gls. (That is, \rgls uses
the same internal command used by \gls.) You can use \glsxtrenablerecordcount to
redefine \gls to \rgls, so that you can continue to use \gls without having to switch
command name.

For example:

\GlsXtrLoadResources[
src={abbrevs},% entries defined in abbrevs.bib
trigger-type={ignored},
category={abbreviation}

]
\glsxtrenablerecordcount
\GlsXtrSetRecordCountAttribute{abbreviation}{1}

See the glossaries-extra user manual [13] for further details.

Take care not to confuse the recordcount field with the indexed field. The indexed
field keeps a running total of the number of times an entry has been recorded so far,
and is updated every time the entry is indexed during the current LATEX run. The
recordcount field stores the total number of records obtained by bib2gls from the
.aux file.

--no-record-count

Switch off record counting. (Default.) If used in \BibGlsOptions, this option should be
specified as

\BibGlsOptions{record-count=false}

--record-count-unit (or -n)
Automatically implements --record-count and additionally sets the recordcount.〈counter〉.
〈location〉 fields. These fields can then be used with the \rgls-like commands. This option
is governed by --record-count-rule, to determine which records should be counted.

--no-record-count-unit

Switches off unit record counting. (Default.) Note that you need --no-record-count to
completely switch off record counting. If used in \BibGlsOptions, this option should be
specified as

\BibGlsOptions{record-count-unit=false}

47

3.4 Record Options

--record-count-rule {rule} (or -r {rule})
Automatically implements --record-count and sets the rule that determines which records
should contribute to the count. The 〈rule〉 may be one of:

• all or a: these keywords indicate that all records should be included in the count
(default).

• non-ignored or n: these keywords indicate that ignored records should be excluded
in the count.

• c/〈regex〉/: only records where the associated counter name matches the regular ex-
pression 〈regex〉 should be included in the count.

• f/〈regex〉/: only records where the associated format matches the regular expression
〈regex〉 should be included in the count.

• f/〈format-regex〉/c/〈counter-regex〉/〈op〉: this combines the format and counter name
match. The trailing 〈op〉 is optional. If present, it should be one of the keywords: and
(boolean AND) or or (boolean OR). If omitted, and is assumed.

For example:

bib2gls --record-count-rule 'f/.*(bf|it)/c/(sub)?section/or' myDoc

This will only count records where the format matches the regular expression .*(bf|it)
(for example, hyperbf or hyperit) or the counter name matches section or subsection
(but not subsubsection, since the expressions are anchored).

This syntax doesn’t permit the use of the sequence /c/ appearing in the regular expres-
sions, but both the format and counter name are either control sequence names or are a
substring of a control sequence name, so they should typically just be alphabetical strings.

--retain-formats 〈list〉
It’s possible that you may not want to lose certain location formats, even if it means hav-
ing duplicate locations. For example, if you want to move a principal location using save
-principal-locations={remove}. In which case, use this switchwith a comma-separated
list of formats that should be retained. Note that exact duplicates will still be merged. This
switch has a cumulative effect.

Take care if you use this switch and you have an explicit range with coincident start and
end locations. If the principal record is between the start and end format markers then the
range can’t collapse to an ordinary record. (You may need to use merge-ranges={true}.)

--no-retain-formats

Normal location merging rules apply (default). If used in \BibGlsOptions, this option
should be specified as

\BibGlsOptions{retain-formats=false}

48

3.5 Bib File Options

3.5 Bib File Options
--warn-non-bib-fields

If any internal fields are found in the .bib file, this setting will issue a warning as their use
can cause unexpected results. The fields checked for are those listed in Tables 4.5 and 4.6
with a few exceptions, notably type and sort. Ideally you shouldn’t need to use sort as
there should be an appropriate fallback set up to use if sort isn’t set, such as the label for
symbols or the name for terms or the short form for abbreviations (see section 5.8).

This is the default setting and was added as some users were confused over which fields
could be used in the .bib file. The use of these fields can break bib2gls’s normal behaviour
and cause unexpected results.

The check is performed before field aliasing, so it’s possible to alias a field to an internal
field, such as group, without triggering this warning. If you do this you need to make sure
you have taken appropriate precautions to avoid unexpected results.

--no-warn-non-bib-fields

Switches off the check for non-bib fields. If you use this option you need to make sure you
have taken appropriate precautions to avoid unexpected results. If used in \BibGlsOptions,
this option should be specified as

\BibGlsOptions{warn-non-bib-fields=false}

--warn-unknown-entry-types

If any unknown entry types are found in the .bib file, bib2gls will issue a warning with
this option set (default).

--no-warn-unknown-entry-types

This option will suppress the warning if an unknown entry types are found in the .bib file.
If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{warn-unknown-entry-types=false}

3.6 Field Options
--group (or -g)
The glossaries-extra record package option automatically creates a new internal field called
group. If the --group switch is used with the default group={auto} option then, when
sorting, bib2gls will try to determine the group for each entry and assign it to the group
field. (Some sort options ignore this setting.) This value will be picked up by \print-
unsrtglossary if group headings are required (for example with the indexgroup style) or

49

3.6 Field Options

if group separators are required (for example, the index style with the default nogroupskip
={false}). If you don’t require grouping within the glossary, there’s no need to use this
switch. Note that this switch doesn’t automatically select an appropriate glossary style.

If you want sub-groups, you will need to use the group-level resource option and en-
sure you have glossaries-extra v1.49+. Small groups can be merged with the merge-small
-groups resource option.

The group field should typically not be set in the .bib file and will trigger a warning if
found. The explicit use of the group key will override bib2gls’s normal group forma-
tion behaviour, which can cause unexpected results. The custom use of the group field
requires some care. As a general rule, if you find yourself wanting to use the group
field in the .bib file, then the chances are that what you actually have is a hierarchi-
cal glossary (list of topics) and what you really need is the parent field. Compare the
example files sample-textsymbols.tex and sample-textsymbols2.tex. See also
section 1.3.

There are eight types of groups:

letter group The first non-ignored character of the sort value is alphabetic. This type of
group occurs when using the alphabetic sort methods listed in table 5.2 or with the
letter sort methods listed in table 5.3 or with the letter-number sort methods listed in
table 5.4. The group label is obtained from \bibglslettergroup.

non-letter group (or symbol group) Thefirst non-ignored character of all the sort values
within this group are non-alphabetical. This type of group occurs when using the
alphabetic sort methods listed in table 5.2 or with the letter sort methods listed in
table 5.3 or with the letter-number sort methods listed in table 5.4. The alphabetic sort
methods ignore many punctuation characters, so an entry that has a non-alphabetic
initial character in the sort value may actually be placed in a letter group. The group
label is obtained from \bibglsothergroup.

empty group The sort value is empty when sorting with an alphabetical, letter or letter-
number method, typically a result of the original value consisting solely of commands
that bib2gls can’t interpret. The group label is obtained from \bibglsemptygroup.

number group The entries were sorted by one of the numeric comparisons listed in ta-
ble 5.5. The group label is obtained from \bibglsnumbergroup.

date-time group The entries were sorted by one of the date-time comparisons listed in
table 5.6 (where both date and time are present). The group label is obtained from
\bibglsdatetimegroup.

date group The entries were sorted by one of the date comparisons (where the time is omit-
ted). The group label is obtained from \bibglsdategroup.

time group The entries were sorted by one of the time comparisons (where the date is omit-
ted). The group label is obtained from \bibglstimegroup.

50

3.6 Field Options

custom group Thegroup label is explicitly set either by aliasing a field (with field-aliases)
or by using the group={〈label〉} resource option. You will need to use \glsxtrset-
grouptitle in the document to provide an associated title if the 〈label〉 isn’t the same
as the title. Remember that with older LATEX kernels, the label can’t contain any active
characters, so you can’t use non-ASCII characters in 〈label〉 with inputenc (but you
can use non-ASCII alphanumerics with fontspec). To ensure better support for UTF-8
with pdfLATEX, make sure you have a recent TEX distribution and up-to-date versions
of glossaries and glossaries-extra.

The letter group titles will typically have the first character converted to upper case for
the alphabet sort methods (table 5.2). A “letter” may not necessarily be a single character
(depending on the sort rule), but may be composed of multiple characters, such as a digraph
(two characters) or trigraph (three characters).

For example, if the sort rule recognises the digraph “dz” as a letter, then it will be converted
to “Dz” for the group title. There are some exceptions to this. For example, the Dutch digraph
“ij” should be “IJ” rather than “Ij”. This is indicated by the following line in the language
resource file:

<entry key="grouptitle.case.ij">IJ</entry>

If there isn’t a grouptitle.case.〈lc〉 key (where 〈lc〉 is the lower case version), then only
the first character will be converted to upper case otherwise the value supplied by the re-
source file is used. This resource key is only checked for the alphabetical comparisons listed
in table 5.2. If the initial part of the sort value isn’t recognised as a letter according to the
sort rule, then the entry will be in a non-letter group (even if the character is alphabetical).

The letter (table 5.3) and letter-number (table 5.4) methods only select the first character
of the sort value for the group. If the character is alphabetical1 then it will be a letter group
otherwise it’s a non-letter group. The case-insensitive ordering (such as sort={letter-
nocase}) will convert the letter group character to upper case. The case-sensitive ordering
(such as sort={letter-case}) won’t change the case.

Glossary styles with navigational links to groups (such as indexhypergroup) require an
extra run for the ordinary \makeglossaries and \makenoidxglossaries methods. For
example, for the document myDoc.tex:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc
pdflatex myDoc

On the first pdflatex call, there’s no glossary. On the second pdflatex, there’s a glossary
but the glossary must be processed to find the group information, which is written to the
.aux file as

\@gls@hypergroup{〈type〉}{〈group id〉}

1according to Java’s Character.isAlphabetic(int) method

51

3.6 Field Options

The third pdflatex reads this information and is then able to create the navigation links.
With bib2gls, if the type is provided (through the type field or via options such as type

and dual-type) then this information can be determined when bib2gls is ready to write
the .glstex file, which means that the extra LATEX run isn’t necessary. If bib2gls doesn’t
know the glossary type then it will fallback on the original method which requires an extra
LATEX run.

For example:

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record,abbreviations,style={indexhypergroup}]{glossaries-
extra}

\GlsXtrLoadResources[src={entries},% data in entries.bib
type={main}% put these entries in the 'main' glossary

]

\GlsXtrLoadResources[src={abbrvs},% data in abbrvs.bib
type={abbreviations}% put entries in the 'abbreviations' glossary

]

Here the type is set and bib2gls can detect that hyperref has been loaded, so if the --group
switch is used, then the group hyperlinks can be set (using \bibglshypergroup). This
means that the build process is just:

pdflatex myDoc
bibtex --group myDoc
pdflatex myDoc

Note that this requires glossaries v4.53+ and glossaries-extra v1.53. If your version of glossaries
or glossaries-extra is too old, an extra LATEX run is required.

If hyperref isn’t loaded or the --group switch isn’t used or the type isn’t set or your
version of glossaries is too old, then the information can’t be saved in the .glstex file.

For example:

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record,abbreviations,style={indexhypergroup}]{glossaries-
extra}

\GlsXtrLoadResources[src={entries}]% data in entries.bib
\GlsXtrLoadResources[src={abbrvs}]% data in abbrvs.bib

This requires the build process:

52

3.6 Field Options

pdflatex myDoc
bibtex --group myDoc
pdflatex myDoc
pdflatex myDoc

because the group hyperlink information can’t be determined by bib2gls, so it’s best to
always set the type if you want hyper-group styles, and make sure you have an up-to-date
version of glossaries (and glossaries-extra).

--no-group

Don’t automatically set the group field with group={auto} (default). The glossary won’t
have groups even if a group style, such as indexgroup, is used (unless the group field is set
to a custom value). If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{group=false}

--no-expand-fields

By default, \newglossaryentry and similar commands expand field values (except for name,
symbol and description). This is useful if constructing field values programmatically (for
example in a loop) but can cause a problem if certain fragile commands are included in the
field.

The switch --no-expand-fields makes bib2gls write \glsnoexpandfields to the
.glstex file, which switches off the expansion. Since bib2gls is simply fetching the data
from .bib files, it’s unlikely that this automatic expansion is required and since it can also
be problematic this option is on by default. You can switch it off with --expand-fields.

If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{expand-fields=false}

--expand-fields

Don’t write \glsnoexpandfields to the .glstex file, allowing fields to expand when the
entries are defined. Remember that this doesn’t include the name, symbol or description
fields, which need to have their expansion switched on with \glssetexpandfield before
the entries are defined (that is, before using \GlsXtrLoadResources).

--mfirstuc-protection 〈list〉|all (or -u 〈list〉|all)
If you have mfirstuc v2.08+, glossaries v4.50+ and glossaries-extra v1.49+ then this setting
shouldn’t be required any more as there’s now better sentence case handling. If these ver-
sions are detected in the .logfile then the default will switch to --no-mfirstuc-protection
otherwise the default is --mfirstuc-protection. If this causes any problems, use --mfirstuc
-protection to re-enable this setting. The information below relates to older versions.

53

3.6 Field Options

Commands like \Gls use \makefirstuc provided by the mfirstuc package. This command
has limitations and one of the things that can break it is the use of a referencing command
at the start of its argument. The glossaries-extra package has more detail about the problem
in the “Nested Links” section of the user manual [13]. If a glossary field starts with one of
these problematic commands, the recommended method (if the command can’t be replaced)
is to insert an empty group in front of it.

For example, the following definition

\newabbreviation{shtml}{shtml}{\glsps{ssi} enabled \glsps{short}{html}}

will cause a problem for \Gls{shtml} on first use. The above example would be written in
a .bib file as:

@abbreviation{shtml,
short={shtml},
long={\glsps{ssi} enabled \glsps{html}}

}

The default mfirstuc protection will automatically insert an empty group before \glsps
{ssi} when writing the definition in the .glstex file.

The argument for this switch should either be a comma-separated list of fields or the key-
word all (which indicates all fields). bib2gls will automatically insert an empty group at
the start of the listed fields that start with a problematic command, and a warning will be
written to the transcript. Unknown fields are skipped even if they’re included in the list. An
empty argument is equivalent to --no-mfirstuc-protection. The default value is all.

--no-mfirstuc-protection

Switches off themfirstuc protectionmechanism described above. If used in \BibGlsOptions,
this option should be specified as

\BibGlsOptions{mfirstuc-protection=false}

--mfirstuc-math-protection

If you have mfirstuc v2.08+, glossaries v4.50+ and glossaries-extra v1.49+ then this setting
shouldn’t be required any more as there’s now better sentence case handling. If these ver-
sions are detected in the .log file then the default will switch to --no-mfirstuc-math
-protection. If this causes any problems, use --mfirstuc-math-protection to re-enable
this setting. The information below relates to older versions.

This setting works in the same way as --mfirstuc-protection but guards against fields
starting with inline maths ($…$). For example, if the name field starts with x and the
glossary style automatically tries to convert the first letter of the name to upper case, then
this will cause a problem.

With --mfirstuc-math-protection set, bib2gls will automatically insert an empty
group at the start of the field and write a warning in the transcript. This setting is on by
default.

54

3.6 Field Options

--no-mfirstuc-math-protection

Switches off the above. If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{mfirstuc-math-protection=false}

--nested-link-check 〈list〉|none
By default, bib2gls will parse certain fields for potential nested links. (See the section
“Nested Links” in the glossaries-extra user manual [13].)

The default set of fields to check are: name, text, plural, first, firstplural, long,
longplural, short, shortplural and symbol.

You can change this set of fields using --nested-link-check 〈value〉where 〈value〉may
be none (don’t parse any of the fields) or a comma-separated list of fields to be checked.

--no-nested-link-check

Equivalent to --nested-link-check none. If used in \BibGlsOptions, this option should
be specified as

\BibGlsOptions{nested-link-check=none}

or

\BibGlsOptions{nested-link-check=false}

--shortcuts 〈value〉
Some entries may reference another entry within a field, using commands like \gls, so
bib2gls parses the fields for these commands to determine dependent entries to allow them
to be selected even if they haven’t been used within the document. The shortcuts package
option provided by glossaries-extra defines various synonyms, such as \ac which is equiv-
alent to \gls. By default the value of the shortcuts option will be picked up by bib2gls
when parsing the .aux file. This then allows bib2gls to additionally search for those short-
cut commands while parsing the fields.

You can override the shortcuts setting using --shortcuts 〈value〉 (where 〈value〉 may
take any of the allowed values for the shortcuts package option), but in general there is
little need to use this switch.

--trim-fields

Trim leading and trailing spaces from all field values. For example, if the .bib file contains:

@entry{sample,
name = {sample},
description = {

55

3.6 Field Options

an example
}

}

This will cause spurious spaces in the description field. Using --trim-fields will auto-
matically trim the values before writing the .glstex file.

Note that even without this trimming option on, fields that are set as keys within \long-
newglossaryentry or the optional argument of \newabbreviationwill automatically have
the leading and trailing spaces internally trimmed by the xkeyval package, so this trimming
action only affects fields that aren’t set in this way, such as the description, long and
short fields. If you specifically require a space at the start or end of a field then use a spac-
ing command, such as \␣ or \space or ~.

--trim-only-fields 〈list〉
Only trim leading and trailing spaces from the fields identified in the comma-separated 〈list〉.
This option has a cumulative effect but is cancelled by --no-trim-fields (which switches
off all trimming) and by --trim-fields (which switches on trimming for all fields). This
option may not be used with --trim-except-fields.

For example, to only trim the description field:

bib2gls --trim-only-fields description myDoc

--trim-except-fields 〈list〉
Trim all leading and trailing spaces fromfields except those identified in the comma-separated
〈list〉. This option has a cumulative effect but is cancelled by --no-trim-fields (which
switches off all trimming) and by --trim-fields (which switches on trimming for all fields).
This option may not be used with --trim-only-fields. See the above note about xkeyval.

For example, to trim all fields except short and long:

bib2gls --trim-except-fields short,long myDoc

Or

bib2gls --trim-except-fields short --trim-except-fields long myDoc

--no-trim-fields

Don’t trim any leading or trailing spaces from field values (but see the above note about xkey-
val). This is the default setting. If used in \BibGlsOptions, this option should be specified
as

\BibGlsOptions{trim-fields=false}

56

3.7 Other Options

3.7 Other Options
--force-cross-resource-refs (or -x)
Force cross-resource reference mode on (see section 1.5).

--no-force-cross-resource-refs

Don’t force cross-resource reference mode on (default). The mode will be enabled if applica-
ble (see section 1.5). If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{force-cross-resource-refs=false}

--provide-glossaries

This setting will make bib2gls add the line

\provideignoredglossary*{〈type〉}

to the .glstex file before an entry is defined where that entry has the type field set to an
unknown glossary type (bib2gls can detect from the .aux file all glossaries that have been
defined with \newglossary but not those defined with \newignoredglossary).

This ensures that the glossary exists, but the use of \provideignoredglossary (rather
than \newignoredglossary) will prevent an error if the glossary has already been defined.

--no-provide-glossaries

This setting prevents bib2gls from providing unknown glossaries, except in a few doc-
umented situations (the master, trigger-type, ignored-type and secondary options).
This is the default since it’s a useful way of detecting misspelt glossary labels. It’s harder to
detect the problem if a misspelt label has caused an entry to be added to a hidden glossary.
If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{provide-glossaries=false}

--replace-quotes

Single and double-quote characters (' and ") will be written as \bibglsaposchar and \bib-
glsdoublequotechar in field values and group information written to the .glstex file.

--no-replace-quotes

Single and double-quote characters (' and ") will be written as those actual characters (de-
fault). If used in \BibGlsOptions, this option should be specified as

\BibGlsOptions{replace-quotes=false}

57

4 .bib Format
bib2gls recognises certain entry types. Any unrecognised types will be ignored and awarn-
ing will be written to the transcript file. Entries are defined in the usual .bib format:

@〈entry-type〉{〈id〉,
〈field-name-1〉 = {〈text〉},
…
〈field-name-n〉 = {〈text〉}

}

where 〈entry-type〉 is the entry type (listed below), 〈field-name-1〉, …, 〈field-name-n〉 are the
field names and 〈id〉 is a unique label. The label can’t contain any spaces or commas, and
most special characters are forbidden. The hyphen character and some other punctuation
characters are allowed by bib2gls, but you need to make sure that your document hasn’t
made them active. In general it’s best to stick with alpha-numeric labels. The field values
may be delimited by braces {〈text〉} or double-quotes "〈text〉".

The label-prefix option can be used to instruct bib2gls to insert prefixes to the labels
(〈id〉) when the data is read. Remember to use these prefixes when you reference the entries
in the document, but don’t include them when you reference them in the .bib file. There
are some special prefixes that have a particular meaning to bib2gls: “dual.” and “ext〈n〉.”
where 〈n〉 is a positive integer. In the first case, dual. references the dual element of a dual
entry (see @dualentry). This prefixwill be replaced by the value of the dual-prefix option.
The ext〈n〉. prefix is used to reference an entry from a different set of resources (loaded by
another \GlsXtrLoadResources command). This prefix is replaced by the corresponding
element of the list supplied by ext-prefixes, but this is only supported if the cross-resource
reference mode is enabled (see section 1.5).

In the event that the sort value falls back on the label, the original label supplied in the
.bib file is used, not the prefixed label.

4.1 Encoding
If you are using XƎLATEX or LuaLATEX (which are natively UTF-8) or if you are using a modern
TEX distribution pdfLATEX with UTF-8 support, then you can have UTF-8 characters in the
〈id〉 of your entries. (Avoid TEX special characters, active characters or characters that are
part of the .bib syntax.)

You can set the character encoding in the .bib file using:

% Encoding: 〈encoding-name〉

58

4.2 Comments

where 〈encoding-name〉 is the name of the character encoding. For example:

% Encoding: UTF-8

You can also set the encoding using the charset option, but it’s simpler to include the above
comment on the first line of the .bib file. (This comment is also searched for by JabRef to
determine the encoding, so it works for both applications.) If you don’t use either method
bib2gls will have to search the entire .bib file, which is inefficient and you may end up
with a mismatched encoding.

The encoding comment line must come before any non-ASCII content otherwise a
malformed input error may occur while parsing the file for the comment line.

If there is no encoding line in the .bib file and the charset option hasn’t been used, then
the default encoding will be assumed (see section 1.1).

4.2 Comments
The original .bib file format as defined by BIBTEX doesn’t have a designated comment char-
acter, but instead treats anything outside of @〈entry〉{〈data〉} as unwanted material that’s
ignored. This can catch out users who try to do something like:

%@misc{sample, title={Sample} }

In this case, the percent character is simply discarded and the line is treated as:

@misc{sample, title={Sample} }

Some applications that parse .bib files are less tolerant of unwanted material. In the case
of bib2gls, the percent character is treated as a comment character and other unwanted
material should be omitted. Avoid using comments within field values. Comments are best
placed outside of entry definitions.

The most common type of comment is the encoding comment, described above. BIBTEX’s
@comment is also supported by bib2gls for general comments, but not for the encoding.

4.3 Fields
Each entry type may have required fields, optional fields and ignored fields. These are set
using a key=value list within @〈entry-type〉{〈id〉,〈fields〉} in the .bib file. Most keys recog-
nised by \newglossaryentry may be used as a field unless bib2gls considers them an
internal field (see below). In general, you shouldn’t need to use the sort field.

If an optional field is missing and bib2gls needs to access it for some reason, bib2gls
will try to fallback on another value. The actual fallback value depends on the entry type.
The most common fallback is that used if the sort field is missing, which is typically the

59

4.3 Fields

case. This approach allows different entry types to have different fields used for sorting (see
section 5.8).

Predefined fields for use in .bib files are listed in Tables 4.1, 4.2, 4.3 and 4.4. If you add
any custom keys in your document using \glsaddkey or \glsaddstoragekey, those com-
mandsmust be placed before the first use of \GlsXtrLoadResources to ensure that bib2gls
recognises them as a valid field name.

If you define your own custom keys, ensure that they don’t contain spaces, commas
(,), equal signs (=) or any other character that isn’t supported by the .bib format.
Additionally, if you want to use assign-fields, ensure that you don’t use any of the
assignment special characters, such as plus (+), within any field names.

Internal fields that may be assigned within the document (the LATEX assignment code hav-
ing been written by bib2gls in the .glstex file) are listed in Table 4.5. These typically
shouldn’t be used in the .bib file. Some of these fields can be set for a particular docu-
ment using a resource option, such as type or group. With --warn-non-bib-fields set,
bib2gls will check for internal fields that can cause interference with its normal operations
and will warn if any are found in the .bib file.

There are also some fields that are set and used by glossaries or glossaries-extra listed in Ta-
ble 4.6 that aren’t recognised by bib2gls. In most cases these fields don’t have a designated
key and are only intended for internal use by bib2gls or by the glossaries or glossaries-extra
package. Note that the value of the sort field written to the .bib file doesn’t always exactly
match the sort value used by bib2gls (which is stored in bib2gls@sort). Any special char-
acters found in the sort value are always substituted before writing the .bib file to avoid
syntax errors.

Any unrecognised fields will be ignored by bib2gls. This is more convenient than using
\input or \loadglsentries, which requires all the keys used in the file to be defined,
regardless of whether or not you actually need them in the document.

Other entries can be cross-referenced using the see, seealso or alias fields or by using
commands like \gls or \glsxtrp in any of the recognised fields. These will automatically
be selected if the selection setting includes dependencies, but you may need to rebuild the
document to ensure the location lists are correct. Use of the \glssee command will create
an ignored record and the see field will be set to the relevant information. If an entry has
the see field already set, any instance of \glssee in the document for that entry will be
appended to the see field (provided you have at least v1.14 of glossaries-extra). In general,
it’s best just to use the see field and not use \glssee.

The seealso key was only added to glossaries-extra v1.16, but this field may be used with
bib2gls even if you only have version 1.14 or 1.15. If the key isn’t available, seealso={〈xr-
list〉}will be treated as see={[\seealsoname]〈xr-list〉} (the resource option seealsowon’t
have an effect). You can’t use both see and seealso for the same entry with bib2gls. Note
that the seealso field doesn’t allow for the optional [〈tag〉] part. If you need a different tag,
either use see or change the definition of \seealsoname or \glsxtruseseealsoformat.
Note that, unless you are using xindy, \glsxtrindexseealso just does \glssee[\see-

60

4.3 Fields

alsoname], and so will be treated as see rather than seealso by bib2gls. Again, it’s better
to just use the seealso field directly.

You can identify an arbitrary field as containing a list of dependent entry labels with
dependency-fields. This instructs bib2gls to parse the listed fields for dependencies in a
similar manner to the see field, but it doesn’t add any information to the cross-referencing
part of the location list. The option may be used in combination with the see or seealso
fields.

61

4.3 Fields

Table 4.1: Fields Provided by glossaries-extra

Field Description
alias The entry with this field set is a synonym of the entry whose

label is given by this field.
category The entry’s category label.
description The description displayed in the glossary.
descriptionplural The plural form of the description.
first The text to display on first use with \gls{〈label〉}.
firstplural The text to display on first use with \glspl{〈label〉}.
long The long form of an abbreviation. (Set internally by commands

like \newabbreviation.)
longplural The plural long form of an abbreviation.
name The name displayed in the glossary.
nonumberlist Used to suppress the location list for a specific entry. Its value

may only be true or false. Technically this isn’t actually a field
as its value isn’t saved so it can’t be referenced or modified after
the entry has been defined.

parent The parent entry’s label. See section 1.3.
plural The text to display on subsequent use of \glspl{〈label〉}.
see General purpose cross-reference (syntax:

see={[〈tag〉]〈xr-list〉}).
seealso Cross-reference related entries (syntax: seealso={〈xr-list〉}).
short The short form of an abbreviation. (Set internally by commands

like \newabbreviation.)
shortplural The plural short form of an abbreviation.
symbol The associated symbol.
symbolplural The plural form of the associated symbol.
text The text to display on subsequent use of \gls{〈label〉}.
user1 A general purpose user field.
user2 A general purpose user field.
user3 A general purpose user field.
user4 A general purpose user field.
user5 A general purpose user field.
user6 A general purpose user field.

62

4.3 Fields

Table 4.2: Fields Provided by bib2gls

Field Description
adoptparents The list of adopted parents for entries spawned by

@progenitor. (Field only available for use in .bib file
within @progenitor-like entries.)

dualdescription May be used to identify a dual description
duallong The long form of a dual abbreviation mapped by

@dualabbreviation.
duallongplural The plural long form of a dual abbreviation mapped by

@dualabbreviation.
dualprefix The dual of the prefix field. This field isn’t provided with a

key or associated command, but can be accessed as an
internal field

dualprefixfirst The dual of the prefixfirst field. This field isn’t provided
with a key or associated command, but can be accessed as
an internal field

dualprefixfirstplural The dual of the prefixfirstplural field. This field isn’t
provided with a key or associated command, but can be
accessed as an internal field

dualprefixplural The dual of the prefixplural field. This field isn’t
provided with a key or associated command, but can be
accessed as an internal field

dualshort The short form of a dual abbreviation mapped by
@dualabbreviation.

dualshortplural The plural short form of a dual abbreviation mapped by
@dualabbreviation.

Table 4.3: Fields Provided by glossaries-prefix

Field Description
prefix The prefix associated with the text field.
prefixfirst The prefix associated with the first field.
prefixfirstplural The prefix associated with the firstplural field.
prefixplural The prefix associated with the plural field.

Table 4.4: Fields Provided by glossaries-accsupp

Don’t load glossaries-accsupp directly (with \usepackage) when using glossaries-extra. Load
using the accsupp package option instead.

Field Description
access The replacement text for the name field.

63

4.3 Fields

Fields Provided by glossaries-accsupp (Continued)

Field Description
descriptionaccess The replacement text for the description field.
descriptionpluralaccess The replacement text for the descriptionplural field.
firstaccess The replacement text for the first field.
firstpluralaccess The replacement text for the firstplural field.
longaccess The replacement text for the long field.
longpluralaccess The replacement text for the longplural field.
pluralaccess The replacement text for the plural field.
shortaccess The replacement text for the short field.
shortpluralaccess The replacement text for the shortplural field.
symbolaccess The replacement text for the symbol field.
symbolpluralaccess The replacement text for the symbolplural field.
textaccess The replacement text for the text field.

Table 4.5: Fields Sometimes Set by bib2gls in the .glstex File

You may define and assign bibtextype as a key (although it’s more likely to be aliased).
Don’t define any of the others listed in this table, and don’t use any of them in the .bib file.
A possible exception is the type field, but it’s more flexible to set that through a resource
option. The explicit use of group within a .bib file can cause unpredictable results and is
best set through a resource option or by bib2gls. In general, you shouldn’t need to set the
sort field as appropriate fallbacks should produce useful sort values (see section 5.8).

Field Description
bibtexcontributor An internal list field provided when a

@contributor entry is automatically created by
@bibtexentry.

bibtexentry An internal list field created by @bibtexentry.
bibtexentry@〈entry-type〉 An internal list field created by @bibtexentry.
bibtextype Used by bib2gls as a substitution for BIBTEX’s

type field when parsing @bibtexentry. Needs to
be defined or aliased to make it available in the
document.

childcount Stores the number of children this entry has had
selected.

childlist A list of labels (in etoolbox’s internal list format) of
the children this entry has had selected.

counter The default counter used for indexing (assigned by
the counter option).

definitionindex Stores the definition index.
dual Created by dual-field if set with no value, this

field is used to store the dual label.

64

4.3 Fields

Fields Sometimes Set by bib2gls in the .glstex File (Continued)

Field Description
〈field〉endpunc Used with the check-end-punctuation option.
group The letter group determined by the comparator (or

assigned by the group option). See section 1.3.
indexcounter Stores the location corresponding to the matching

wrglossary reference.
location The typeset location list.
loclist The internal list of locations.
originalentrytype The original entry type before any aliasing was

applied or the actual entry type if no aliasing.
originalid The original label as given in the .bib file.
primarylocations Stores the locations that use one of the designated

primary formats, if enabled.
progenitor The label identifying the @progenitor that

spawned this entry.
progeny A comma-separated list of labels identifying the

entries spawned by @progenitor.
recordcount Used with record counting to store the total record

count.
recordcount.〈counter〉 Used with record counting to store the total

number of records for a given counter.
recordcount.〈counter〉.〈location〉 Used with record counting to store the total

number of records for a given location.
rootancestor Stores the label of this entry’s root ancestor.
secondarygroup The letter group determined by the comparator

used with the secondary sort.
secondarysort The sort value determined by the comparator used

with the secondary sort.
siblingcount Stores the number of siblings this entry has had

selected.
siblinglist A list of labels (in etoolbox’s internal list format) of

the siblings this entry has had selected.
sort The sort value obtained by the comparator.
type The glossary this entry belongs to (assigned by the

type option). See section 1.3.
useindex Stores the order of use index.

65

4.3 Fields

Table 4.6: Internal Fields Set by glossaries or glossaries-extra or bib2gls

Don’t define any of these as keys and don’t use any of them in the .bib file.

Field Description
bib2gls@sort Used by bib2gls to store the actual sort value.
bib2gls@sortfallback Used by bib2gls to store the sort fallback value.
currcount Used with entry counting to store the current total.
currcount@〈value〉 Used with unit entry counting (glossaries-extra).
desc Corresponds to description key.
descplural Corresponds to descriptionplural key.
firstpl Corresponds to firstplural key.
flag Boolean that determines if an entry has been used.
index The main part of the indexing code (makeindex or xindy).
indexed The value is incremented everytime the entry is indexed.
level Hierarchical level.
longpl Corresponds to longplural key.
prenumberlist set by the nonumberlist entry key with

\makenoidxglossaries
prevcount Used with entry counting to store the total from the previous

run.
prevcount@〈value〉 Used with unit entry counting (glossaries-extra).
prevunitmax Used with unit entry counting (glossaries-extra).
prevunittotal Used with unit entry counting (glossaries-extra).
shortpl Corresponds to shortplural key.
sortvalue Original sort value (before sanitizing and escaping special

characters).
unitlist Used with unit entry counting (glossaries-extra).
useri Corresponds to user1 key.
userii Corresponds to user2 key.
useriii Corresponds to user3 key.
useriv Corresponds to user4 key.
userv Corresponds to user5 key.
uservi Corresponds to user6 key.

Table 4.7: Compound Set Fields

Only available for @compoundset. These correspond to the arguments of \multiglossary-
entry.

Field Description
elements Only available for @compoundset this required field should contain a

comma-separated list of labels.

66

4.3 Fields

Compound Set Fields (Continued)

Field Description
main Only available for @compoundset this optional field should contain the main

label. If omitted, the final element from the elements field is assumed.
option Only available for @compoundset this optional field should contain the

default options that govern the set (which override conflicting options set
with \multiglossaryentrysetup and can be overridden by options to
commands like \mgls).

67

4.4 String Concatenation

4.4 String Concatenation
The .bib format allows you to perform string concatenation. That is, join fragments together
to form a single value. The concatenation operator in .bib files is #. For example, if the
following string is defined:

@string{markuplang={markup language}}

Then values can be obtained by concatenating this string with other strings. For example:

@abbreviation{xml,
short={XML},
long={extensible } # markuplang

}
@abbreviation{html,

short={HTML},
long={hypertext } # markuplang

}

This is equivalent to:

@abbreviation{xml,
short={XML},
long={extensible markup language}

}
@abbreviation{html,

short={HTML},
long={hypertext markup language}

}

Note that some resource options allow string concatenation in their syntax. That uses a
different operator. See section 5.1 for further details.

4.5 Standard Entry Types
@string

The standard @string is available and can be used to define variables that may be used in
field values. Don’t include braces or double-quote delimiters when referencing a variable.
You can use # to concatenate strings. For example:

@string{ssi={server-side includes}}
@string{html={hypertext markup language}}

@abbreviation{shtml,
short="shtml",

68

4.5 Standard Entry Types

long=ssi # " enabled " # html,
see={ssi,html}

}

@abbreviation{html,
short="html",
long=html

}

@abbreviation{ssi,
short="ssi",
long=ssi

}

Note the difference between ="ssi" (a field value delimited by double-quotes), the undelim-
ited =ssi (a reference to the variable), the grouped ={ssi,html} (a field value delimited by
braces) and ssi the entry label.

@preamble

The standard @preamble is available and can be used to provide command definitions used
within field values. For example:

@preamble{"\providecommand{\mtx}[1]{\boldsymbol{#1}}"}

@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values, denoted \mtx{M}}

}

Alternatively you can use \glsxtrprovidecommand which behaves the same as \provide-
command within the document but behaves like \renewcommand within bib2gls, which al-
lows you to change bib2gls’s internal definition of a command without affecting the defi-
nition within the document (if it’s already been defined before the resource file is input). In
general, it’s best to just use \providecommand.

The TEX Parser Library used by bib2gls will parse the contents of @preamble before
trying to interpret the field value used as a fallback when sort is omitted (unless interpret
-preamble={false} is set in the resource options). For example:

@preamble{"\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}"}

@entry{S,
name={{}\set{S}},

69

4.5 Standard Entry Types

text={\set{S}},
description={a set}

}
@entry{card,

name={{}\card{S}},
text={\card{S}},
description={the cardinality of \gls{S}}

}

Neither entry has the sort field, so bib2gls has to fall back on the name field and, since
this contains the special characters \ (backslash), $ (maths shift), { (begin group) and } (end
group), the TEX Parser Library is used to interpret it. The definitions provided by @preamble
allow bib2gls to deduce that the sort value of the S entry is just S and the sort value of
the card entry is |S| (see chapter 2).

What happens if you also need to use these commands in the document? The definitions
provided in @preamble won’t be available until the .glstex file has been created, which
means the commands won’t be defined on the first LATEX run.

There are several approaches:

1. Just define the commands in the document. This means the commands are available,
but bib2gls won’t be able to correctly interpret the name fields.

2. Define the commands in both the document and in @preamble. For example:

\newcommand{\set}[1]{\mathcal{#1}}
\newcommand{\card}[1]{|\set{#1}|}
\GlsXtrLoadResources[src={my-data}]

Alternatively:

\GlsXtrLoadResources[src={my-data}]
\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}

If the provided definitions match those given in the .bib file, there’s no difference. If
they don’t match then in the first example the document definitions will take prece-
dence (but the interpreter will use the @preamble definitions) and in the second exam-
ple the @preamble definitions will take precedence. For example, the document may
define \card as:

\newcommand{\card}[1]{\vert\set{#1}\vert}

3. Make use of \glsxtrfmt provided by glossaries-extra which allows you to store the
name of the formatting command in a field. The default is the user1 field, but this can
be changed to another field by redefining \GlsXtrFmtField.
The .bib file can now look like this:

70

4.5 Standard Entry Types

@preamble{"\providecommand{\set}[1]{\mathcal{#1}}
\providecommand{\card}[1]{|\set{#1}|}"}

@symbol{S,
name={{}\set{S}},
text={\set{S}},
user1={set},
description={a set}

}
@symbol{cardS,

name={{}\card{S}},
text={\card{S}},
user1={card},
description={the cardinality of \gls{S}}

}

Within the document, you can format 〈text〉 using the formatting command provided
in the user1 field with:

\glsxtrfmt[〈options〉]{〈label〉}{〈text〉}

(which internally uses \glslink) or

\glsxtrentryfmt{〈label〉}{〈text〉}

which just applies the appropriate formatting command to 〈text〉. Version 1.23+ of
glossaries-extra also provides a starred form of the linking command:

\glsxtrfmt*[〈options〉]{〈label〉}{〈text〉}[〈insert〉]

which inserts additional material inside the link text but outside the formatting com-
mand.
If the entry given by 〈label〉 hasn’t been defined, then \glsxtrfmt just does 〈text〉
(followed by 〈insert〉 for the starred version) and a warning is issued. (There’s no
warning if the entry is defined but the field hasn’t been set.) The 〈options〉 are as for
\glslink but \glslink will actually be using:

\glslink[〈def-options〉,〈options〉]{〈label〉}{\〈csname〉{〈text〉}〈insert〉}

where the default options 〈def-options〉 are given by \GlsXtrFmtDefaultOptions.
The default definition of this is just noindexwhich suppresses the automatic indexing
or recording action. (See the glossaries-extra manual [13] for further details.) The
〈insert〉 part is omitted for the unstarred form.
This means that the document doesn’t need to actually provide \set or \card but can
instead use, for example,

71

4.5 Standard Entry Types

\glsxtrfmt{S}{A}
\glsxtrentryfmt{cardS}{B}

instead of:

\set{A}
\card{B}

The first LATEX run will simply ignore the formatting and produce a warning.

Since this is a bit cumbersome to write, you can provide shortcut commands. For
example:

\GlsXtrLoadResources[src={my-data}]
\newcommand{\gset}[2][]{\glsxtrfmt[#1]{S}{#2}}
\newcommand{\gcard}[2][]{\glsxtrfmt[#1]{cardS}{#2}}

Whilst this doesn’t seem a great deal different from simply providing the definitions of
\set and \card in the document, this means you don’t have to worry about remem-
bering the names of the actual commands provided in the .bib file (just the entry
labels) and the use of \glsxtrfmt will automatically produce a hyperlink to the glos-
sary entry if the hyperref package has been loaded.

Here’s an alternative .bib that defines entries with a term, a description and a symbol:

@preamble{"\providecommand{\setfmt}[1]{\mathcal{#1}}
\providecommand{\cardfmt}[1]{|\setfmt{#1}|}"}

@entry{set,
name={set},
symbol={\setfmt{S}},
user1={setfmt},
description={collection of values}

}
@entry{cardinality,

name={cardinality},
symbol={\cardfmt{S}},
user1={cardfmt},
description={the number of elements in the \gls{set} $\glssymbol

{set}$}
}

I’ve changed the entry labels and the names of the formatting commands. The definitions
in the document need to reflect the change in label but not the change in the formatting
commands:

72

4.6 Single Entry Types

\newcommand{\gset}[2][]{\glsxtrfmt[#1]{set}{#2}}
\newcommand{\gcard}[2][]{\glsxtrfmt[#1]{cardinality}{#2}}

Here’s another approach that allows for a more complicated argument for the cardinality.
(For example, if the argument is an expression involving set unions or intersections.) The
.bib file is now:

@preamble{"\providecommand{\setfmt}[1]{\mathcal{#1}}
\providecommand{\cardfmt}[1]{|#1|}"}

@entry{set,
name={set},
symbol={\setfmt{S}},
user1={setfmt},
description={collection of values}

}
@entry{cardinality,

name={cardinality},
symbol={\cardfmt{\setfmt{S}}},
user1={cardfmt},
description={the number of elements in the \gls{set} $\glssymbol

{set}$}
}

This has removed the \setfmt command from the definition of \cardfmt. Now the defini-
tions in the document are:

\newcommand{\gset}[1]{\glsxtrentryfmt{set}{#1}}
\newcommand{\gcard}[2][]{\glsxtrfmt[#1]{cardinality}{#2}}

This allows for code such as:

\[\gcard{\gset{A} \cap \gset{B}} \]

which will link back to the cardinality entry in the glossary and avoids any hyperlinking
with \gset. Alternatively to avoid links with \gcard as well:

\newcommand{\gset}[1]{\glsxtrentryfmt{set}{#1}}
\newcommand{\gcard}[1]{\glsxtrentryfmt{cardinality}{#1}}

Now \gset and \gcard are simply formatting commands, but their actual definitions are
determined in the .bib file.

4.6 Single Entry Types
The entry types described in this section create a single glossary definition per entry (from
glossaries-extra’s point of view). For example:

73

4.6 Single Entry Types

@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values}

}

is analogous to:

\newglossaryentry{matrix}% label
{% fields

name={matrix},
plural={matrices},
description={rectangular array of values}

}

The secondary option allows the creation of a fake glossary with the entry labels in its
internal list in a different order. This means that the same data can be displayed in two
separate lists without duplicating the resources required by each glossary entry.

Section 4.7 describes bib2gls entry types that create two separate (but related) glossaries-
extra definitions per .bib entry.

@entry

Regular terms are defined by the @entry field. This requires the description field and
either name or parent. For example:

@preamble{"\providecommand{\mtx}[1]{\boldsymbol{#1}}"}

@entry{matrix,
name={matrix},
plural={matrices},
description={rectangular array of values, denoted \gls{M}},
seealso={vector}

}

@entry{M,
name={\ensuremath{M}},
description={a \gls{matrix}}

}

@entry{vector,
name = "vector",
description = {column or row of values, denoted \gls{v}},
seealso={matrix}

}

74

4.6 Single Entry Types

@entry{v,
name={\ensuremath{\vec{v}}},
description={a \gls{vector}}

}

If the sort field is missing the default is obtained from the name field (unless overridden
by options like entry-sort-fallback). For hierarchical entries, if the name field is omitted
it will be obtained from the parent’s name. See section 5.8.

Terms defined using @entry will be written to the output (.glstex) file using the com-
mand \bibglsnewentry.

@symbol

The @symbol entry type is much like @entry, but it’s designed specifically for symbols, so
in the previous example, the M and v terms would be better defined using the @symbol entry
type instead. For example:

@symbol{M,
name={\ensuremath{M}},
description={a \gls{matrix}}

}

The required fields are name or parent. The description field is required if the name
field is missing. If the sort field is omitted, the default fallback is given by the entry label
(unless overridden by options like symbol-sort-fallback). Note that this is different from
@entry where the sort defaults to name if omitted. See section 5.8.

Terms that are defined using @symbolwill be written to the output file using the command
\bibglsnewsymbol.

@number

The @number entry type is like @symbol, but it’s for numbers. The numbers don’t have to be
explicit digits and may have a symbolic representation. There’s no real difference between
the behaviour of @number and @symbol except that terms defined using @number will be
written to the output file using the command \bibglsnewnumber.

For example, the file constants.bib might define mathematical constants like this:

@number{pi,
name={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter},

user1={3.14159}
}

75

4.6 Single Entry Types

@number{e,
name={\ensuremath{e}},
description={base of natural logarithms},
user1={2.71828}

}

This stores the approximate value in the user1 field. This can be used to sort the entries in
numerical order according to the values rather than the symbols:

\GlsXtrLoadResources[
src={constants},% constants.bib
category={number},% set the category for all selected entries
sort={double},% numerical double-precision sort
sort-field={user1}% sort according to 'user1' field

]

The category={number} option makes it easy to adjust the glossary format to include the
user1 field:

\glsdefpostdesc{number}{%
\ifglshasfield{useri}{\glscurrententrylabel}%
{ (approximate value: \glscurrentfieldvalue)}%
{}%

}

@index

The @index entry type is designed for entries that don’t have a description. Only the label
is required. If name is omitted, it’s assumed to be the same as the label, even if parent is
present. (Note this is different to the fallback behaviour of @entry, which fetches the name
from the parent entry.) If the name contains any characters that can’t be used in the label,
you must use the name field. If the sort field is missing the default fallback is obtained from
the name. Note that the @index entry type is not governed by entry-sort-fallback (but it
is governed by custom-sort-fallbacks). This allows @index and @entry to have different
fallbacks if the sort field is missing. See section 5.8.

Example:

@index{duck}
@index{goose,plural={geese}}
@index{sealion,name={sea lion}}
@index{facade,name={fa\c{c}ade}}

Terms that are defined using @index will be written to the output file using the command
\bibglsnewindex.

76

4.6 Single Entry Types

@indexplural

The @indexplural entry type is similar to the @index entry type except that the name field,
if missing, is obtained from the plural field. If the plural field is missing it’s obtained
from the text field with the plural suffix appended. If the text field is missing, it’s obtained
from the original entry label. If the sort field is missing the default is obtained from the
name field. (As with @index, @indexplural is not governed by entry-sort-fallback,
but it is governed by custom-sort-fallbacks.) See section 5.8. All fields are optional. For
example:

@indexplural{goose,
plural = {geese}

}

@indexplural{duck}

@indexplural{chateau,
text = {ch\^ateau},
plural = {ch\^ateaux}

}

This is equivalent to:

@indexplural{goose,
name = {geese},
text = {goose},
plural = {geese}

}

@indexplural{duck,
name = {ducks},
text = {duck},
plural = {ducks}

}

@indexplural{chateau,
name = {ch\^ateaux},
text = ch\^ateau,
plural = ch\^ateaux

}

Terms that are defined using @indexplural will be written to the output file using the
command \bibglsnewindexplural.

77

4.6 Single Entry Types

@abbreviation

The @abbreviation entry type is designed for abbreviations. The required fields are short
and long. If the sort key is missing, bib2gls will use the field given by abbreviation
-sort-fallback, which defaults to the short field. (If you want an equivalent of \new-
dualentry, use @dualabbreviationentry instead.)

If you use sort-field={name} (rather than the default sort-field={sort}), then the
fallback for the name field is always the short field, regardless of the abbreviation-sort
-fallback setting, unless you use abbreviation-name-fallback to change the fallback
for the name field. See section 5.8.

Note that you must set the abbreviation style before loading the resource file to ensure
that the abbreviations are defined correctly, however bib2gls has no knowledge of the ab-
breviation style so it doesn’t know if the description field must be included or if the default
sort value isn’t simply the value of the short field.

You can instruct bib2gls to sort by the long field instead using abbreviation-sort
-fallback={long}. You can also tell bib2gls to ignore certain fields using ignore-fields,
so you can include a description field in the .bib file if you sometimes need it, and then
instruct bib2gls to ignore it when you don’t want it.

For example:

@abbreviation{html,
short = {html},
long = {hypertext markup language},
description = {a markup language for creating web pages}

}

If you want the long-noshort-desc style, then you can put the following in your document
(where the .bib file is called entries-abbrv.bib):

\setabbreviationstyle{long-noshort-desc}
\GlsXtrLoadResources[src={entries-abbrv},
abbreviation-sort-fallback={long}]

Whereas, if you want the long-short-sc style, then you can instead do:

\setabbreviationstyle{long-short-sc}
\GlsXtrLoadResources[src={entries-abbrv},ignore-fields={description}]

or to convert the short value to upper case and use the long-short-sm style instead:

\setabbreviationstyle{long-short-sm}
\GlsXtrLoadResources[src={entries-abbrv},
short-case-change={uc},% convert short value to upper case
ignore-fields={description}]

Case-changing can be applied with short-case-change to convert the case of the short
field, as illustrated above. If you use a style that obtains the description from the long

78

4.6 Single Entry Types

form, but you want to apply a case-change to the description field with description
-case-change, then you can copy the long field to the description with replicate
-fields={long=description}.

For example, if entries-abbrv.bib contains:

@abbreviation{html,
short = {html},
long = {hypertext markup language}

}

then the document may include:

\setabbreviationstyle{long-short-sc}
\GlsXtrLoadResources[src={entries-abbrv},
description-case-change={firstuc},
replicate-fields={long=description}]

Note that this can cause a problem for styles that set the description field to the long
form encapsulated by a style command (such as with the long-em-short-em style) as this
will override the style setting.

Similarly, if you want to change the case of the name field:

\setabbreviationstyle{long-short-sc}
\GlsXtrLoadResources[src={entries-abbrv},
description-case-change={firstuc},
name-case-change={uc},
replicate-fields={long=description,short=name}]

Again, this will lose any custom formatting command that would usually be applied by the
abbreviation style to the name field (and description, if applicable).

Terms defined using @abbreviationwill be written to the output file using the command
\bibglsnewabbreviation.

@acronym

The @acronym entry type is like @abbreviation except that the term is written to the output
file using the command \bibglsnewacronym.

@contributor

The @contributor entry type is primarily provided for use by the @bibtexentry type. You
may use it explicitly if youwant, but you need to take care that it doesn’t clashwith @bibtex-
entry. It behaves much like @index except that the term is written to the .glstex file using
the command \bibglsnewcontributor. There are no required fields. As with @index, if
the name field is missing, the fallback value is the entry’s label (see section 5.8). When this
entry type is automatically created by @bibtexentry, the name is set to

79

4.7 Dual Entry Types

\bibglscontributor{〈forenames〉}{〈von〉}{〈surname〉}{〈suffix〉}

If you do explicitly use @contributor you need to make sure it’s defined before the first
instance of @bibtexentry that tries to access it, but within the same resource set. If you
ensure that the label of @contributormatches the contributor label generated by @bibtex-
entry then they can have their dependency lists updated, and the bibtexentry and bib-
texentry@〈entry-type〉 internal fields can be set for the @contributor entry. For example:

@contributor{KnuthDonaldE,
name={\bibglscontributor{Donald E.}{}{Knuth}{}},
description={Famous mathematician and computer scientist who
created \TeX}

}

@book{texbook,
title = {The \TeX book},
author = {Donald E. Knuth},
publisher = {Addison-Wesley},
year = 1986

}

The resource options then need to include:

entry-type-aliases={\GlsXtrBibTeXEntryAliases},
labelify-replace={
{[\string\-\string\.]}{}

}

If the @contributor entry is deferred until after the corresponding @bibtexentry then
you will end up with a label clash.

4.7 Dual Entry Types
The entry types described in this section create two separate (but related) glossaries-extra
entry definitions per .bib entry. The first of these entries is considered the primary entry,
and the second is the dual entry. The naming scheme is @dual〈entry-type〉 where both the
primary and dual are considered to have the same type of entry (such as @dualsymbolwhere
both the primary and dual are functionally like @symbol) or @dual〈primary〉〈dual〉 where
the primary is functionally like @〈primary〉 and the dual is functionally like @〈dual〉.

If you need a field to store the dual description in (and you’re not simply swapping known
fields around), then you can use the special dualdescription field and add it to your map.

If the fields provided by the glossaries-prefix are defined, there will be additional map-
pings for the special internal fields dualprefix, dualprefixfirst, dualprefixplural,
and dualprefixfirstplural.

For example:

80

4.7 Dual Entry Types

@dualabbreviationentry{svm,
short = {SVM},
long = {support vector machine},
description = {statistical pattern recognition technique}

}

is like:

@abbreviation{svm,
short = {SVM},
long = {support vector machine},

}
@entry{dual.svm,

text = {SVM},
name = {support vector machine},
description = {statistical pattern recognition technique}

}

and is analogous to:

\newabbreviation{svm}{SVM}{support vector machine}
\newglossaryentry{dual.svm}{name={support vector machine},text={SVM},
description={statistical pattern recognition technique}}

but both entries are considered dependent on each other. This means that if you only ref-
erence the primary entry (using \gls etc) then the dual entry will still be selected if the
selection setting includes dependencies.

The creation of the dual entry involves mapping or copying fields from the primary entry.
Each dual entry type has a set of mappings. If a field in the set of mappings is missing,
its fallback value is used (see section 5.8). Any fields that aren’t listed in the mappings are
simply copied, except for the alias field, which will never be copied to the dual entry, nor
can it be mapped. The alias will only apply to the primary entry. The dual entry is given
the label 〈prefix〉〈id〉 where 〈prefix〉 is set by the dual-prefix option and 〈id〉 is the label
supplied in the .bib file.

If dual-sort={combine} then the dual entries will be sorted along with the primary
entries, otherwise the dual-sort indicates how to sort the dual entries and the dual entries
will be appended to the end of the .glstex file. The dual-sort-field determines what
field to use for the sort value if the dual entries should be sorted separately.

Take care if you have a mixture of entry types (such as @dualindexentry, @dualindex-
symbol and @index) and you’re not using the default dual-sort={combine}. Remember
that the primary entries are all sorted together alongwith the single entries types described in
section 4.7 (but they may be assigned to different glossary types), and then the dual entries
are sorted together (but may be assigned to different glossary types). This may result in
an odd ordering if some of the primaries and some of the duals are assigned to the same
glossary. For example, don’t mix @dualindexabbreviation (duals are abbreviations) with

81

4.7 Dual Entry Types

@dualabbreviationentry (primaries are abbreviations) when you aren’t using dual-sort
={combine} (unless you have two different glossaries for the primary vs dual abbreviations).

Remember that bib2gls is designed to take advantage of \printunsrtglossary, which
simply iterates over all defined entries in the order in which they were defined (or, more
precisely, the order of the internal list of entry labels associated with that glossary). The aim
of bib2gls is to write the entry definitions to the .glstex file so that the internal list of
labels is in the appropriate order.

For example, suppose the file entries.bib contains:

@index{aardvark}
@index{mouse}
@index{zebra}
@dualindexabbreviation{xml,
short={XML},
long={extensible markup language}

}
@dualabbreviationentry{ssi,

short={SSI},
long={server-side includes},
description={directives placed in \gls{html} pages
evaluated by the server}

}
@dualindexabbreviation{html,
short={HTML},
long={hypertext markup language}

}
@dualabbreviationentry{css,
short={CSS},
long={cascading stylesheets},
description={a language that describes the style of an
\gls{html} document}

}

This contains amixture of entry types, including @dualindexabbreviation (where the dual
is the abbreviation) and @dualabbreviationentry (where the primary is the abbreviation).

Now consider the following document:

\documentclass{article}

\usepackage[record,abbreviations]{glossaries-extra}

\GlsXtrLoadResources[selection={all},src={entries}]

\begin{document}
\printunsrtglossaries

82

4.7 Dual Entry Types

\end{document}

This uses the default sort={combine}, so all the entries are sorted together, resulting in the
order: aardvark, dual.css, css, html, dual.html, mouse, dual.ssi, ssi, xml, dual.xml,
zebra.

The LATEX code written to the .glstex file is essentially (but not exactly):
% from @index{aardvark}:
\newglossaryentry{aardvark}{name={aardvark},description={}}

% dual of @dualabbreviationentry{css,…}:
\newglossaryentry{dual.css}{name={cascading stylesheets},{text}={CSS},
description={a language that describes the style of an
\glsxtrshort{html} document}}

% primary of @dualabbreviationentry{css,…}:
\newabbreviation{css}{CSS}{cascading stylesheets}

% primary of @dualindexabbreviation{html,…}:
\newglossaryentry{html}{name={HTML},description={}}

% dual of @dualindexabbreviation{html,…}:
\newabbreviation{dual.html}{HTML}{hypertext markup language}

% from @index{mouse}:
\newglossaryentry{mouse}{{name}={mouse},description={}}

% dual of @dualabbreviationentry{ssi,…}:
\newglossaryentry{dual.ssi}{name={server-side includes},text={SSI},
description={directives placed in \glsxtrshort{html} pages
evaluated by the server}}

% primary of @dualabbreviationentry{ssi,…}:
\newabbreviation{ssi}{SSI}{server-side includes}

% primary of @dualindexabbreviation{xml,…}:
\newglossaryentry{xml}{name={XML},description={}}

% dual of @dualindexabbreviation{xml,…}:
\newabbreviation{dual.xml}{XML}{extensible markup language}

% from @index{zebra}:
\newglossaryentry{zebra}{name={zebra},description={}}

Since the document uses the abbreviations package option, \newabbreviation automat-
ically assigns the abbreviation to the abbreviations glossary (created through that package

83

4.7 Dual Entry Types

option). This means that the main (default) glossary contains the entries (in order):

• aardvark (name: aardvark),

• dual.css (name: cascading stylesheets),

• html (name: HTML),

• mouse (name: mouse),

• dual.ssi (name: server-side includes),

• xml (name: XML),

• zebra (name: zebra).

The abbreviations glossary contains:

• css (short: CSS),

• dual.html (short: HTML),

• ssi (short: SSI),

• dual.xml (short: XML).

Since all the entries were combined and sorted together, the resulting glossaries are both
ordered alphabetically (using short for the abbreviations and name for the rest), but note
that you need to take care when referencing the abbreviations if you want to make use of
the abbreviation style. You need \gls{css} and \gls{ssi} for the primary abbreviations
created with @dualabbreviationentry and \gls{dual.html} and \gls{dual.xml} for
the dual abbreviations created with @dualindexabbreviation. Also the name of the pri-
mary/dual alternative of the abbreviations is also inconsistent (short form for html and xml
and long form for dual.css and dual.ssi), as different field mappings are used.

If the document is changed so that the dual entries are now sorted and written after all the
primary entries have been dealt with:

\GlsXtrLoadResources[
src={entries},
dual-sort={letter-nocase},
selection={all}

]

then bib2gls first orders the primaries:

• aardvark (name: aardvark),

• css (short: CSS),

• html (name: HTML),

84

4.7 Dual Entry Types

• mouse (name: mouse),

• ssi (short: SSI),

• xml (name: XML),

• zebra (name: zebra)

and writes them to the .glstex file (functionally like):

% from @index{aardvark}:
\newglossaryentry{aardvark}{name={aardvark},description={}}

% primary of @dualabbreviationentry{css,…}:
\newabbreviation{css}{CSS}{cascading stylesheets}

% primary of @dualindexabbreviation{html,…}:
\newglossaryentry{html}{name={HTML},description={}}

% from @index{mouse}:
\newglossaryentry{mouse}{name={mouse},description={}}

% primary of @dualabbreviationentry{ssi,…}:
\newabbreviation{ssi}{SSI}{server-side includes}

% primary of @dualindexabbreviation{xml,…}:
\newglossaryentry{xml}{name={XML},description={}}

% from @index{zebra}:
\newglossaryentry{zebra}{name={zebra},description={}}

Then bib2gls orders the duals:

• dual.css (name: cascading stylesheets),

• dual.html (short: HTML),

• dual.ssi (name: server-side includes),

• dual.xml (short: XML)

and writes them to the .glstex file (functionally like):

% dual of @dualabbreviationentry{css,…}:
\newglossaryentry{dual.css}{name={cascading stylesheets},text={CSS},
description={a language that describes the style of an
\glsxtrshort{html} document}}

85

4.7 Dual Entry Types

% dual of @dualindexabbreviation{html,…}:
\newabbreviation{dual.html}{HTML}{hypertext markup language}

% dual of @dualabbreviationentry{ssi,…}:
\newglossaryentry{dual.ssi}{name={server-side includes},text={SSI},
description={directives placed in \glsxtrshort{html} pages
evaluated by the server}}

% dual of @dualindexabbreviation{xml,…}:
\newabbreviation{dual.xml}{XML}{extensible markup language}

When the .glstex file is input (during the next LATEX run) the entries are defined in the
order:

1. aardvark (type: main),

2. css (type: abbreviations),

3. html (type: main),

4. mouse (type: main),

5. ssi (type: abbreviations),

6. xml (type: main),

7. zebra (type: main),

8. dual.css (type: main),

9. dual.html (type: abbreviations),

10. dual.ssi (type: main),

11. dual.xml (type: abbreviations).

This means that the main glossary’s internal list is in the order:

• aardvark (aardvark),

• html (HTML),

• mouse (mouse),

• xml (XML),

• zebra (zebra),

• dual.css (cascading stylesheets),

86

4.7 Dual Entry Types

• dual.ssi (server-side includes)

and the abbreviations glossary’s internal list is in the order:

• css (CSS),

• ssi (SSI),

• dual.html (HTML),

• dual.xml (XML).

The lists are no longer in alphabetical order as they have a mixture of primary and dual
entries that were separated before sorting.

The above is a fairly contrived example as it wouldn’t make sense in a real document to
have glossary terms (that include a description) mixed with index terms (that don’t include
a description). A better solution would be to use @tertiaryindexabbreviationentry in-
stead of @dualabbreviationentry.

@dualentry

The @dualentry entry type is similar to @entry but actually defines two entries. The dual
entry contains the same information as the primary entry but some of the fields are swapped
around. The default mappings are:

• name 7→ description

• plural 7→ descriptionplural

• description 7→ name

• descriptionplural 7→ plural

If the prefix fields are defined, then the default mappings additionally include:

• prefix 7→ dualprefix

• prefixplural 7→ dualprefixplural

• prefixfirst 7→ dualprefixfirst

• prefixfirstplural 7→ dualprefixfirstplural

• dualprefix 7→ prefix

• dualprefixplural 7→ prefixplural

• dualprefixfirst 7→ prefixfirst

• dualprefixfirstplural 7→ prefixfirstplural

87

4.7 Dual Entry Types

The required fields are as for @entry.
For example:

@dualentry{child,
name={child},
plural={children},
description={enfant}

}

is like:

@entry{child,
name={child},
plural={children},
description={enfant}
descriptionplural={enfants}

}

@entry{dual.child,
description={child},
descriptionplural={children},
name={enfant}
plural={enfants}

}

where dual. is replaced by the value of the dual-prefix option. However, instead of defin-
ing the entries with \bibglsnewentry both the primary and dual entries are defined using
\bibglsnewdualentry. The category and type fields can be set for the dual entry using
the dual-category and dual-type options.

For example:

\newglossary*{english}{English}
\newglossary*{french}{French}

\GlsXtrLoadResources[
src={entries-dual},% data in entries-dual.bib
type={english},% put primary entries in glossary 'english'
dual-type={french},% put dual entries in glossary 'french'
category={dictionary},% set the primary category to 'dictionary'
dual-category={dictionary},% set the dual category to 'dictionary'
sort={en},% sort primary entries according to language 'en'
dual-sort={fr}% sort dual entries according to language 'fr'

]

If you need to keep the same name but have different descriptions then you can use dual-
description and set up a mapping to use it. For example:

88

4.7 Dual Entry Types

@dualentry{sample,
name={sample},
description={primary sample description},
dualdescription={dual sample description}

}

The mapping can then be:

dual-entry-map={{description},
{dualdescription}}

@dualindexentry

There are no required fields. The primary entry behaves like @index and the dual entry
behaves like @entry. The default field mapping is:

• name 7→ name

If the prefix fields are defined, then the default mappings additionally include:

• prefix 7→ dualprefix

• prefixplural 7→ dualprefixplural

• prefixfirst 7→ dualprefixfirst

• prefixfirstplural 7→ dualprefixfirstplural

• dualprefix 7→ prefix

• dualprefixplural 7→ prefixplural

• dualprefixfirst 7→ prefixfirst

• dualprefixfirstplural 7→ prefixfirstplural

This doesn’t actually perform any swapping of fields, but it provides the field used for back-
links (if dual-indexentry-backlink is set). The reason that the primary (rather than the
dual) is like @index is to allow the primaries to merge with any @index entries found in the
resource set, since glossary entries with descriptions are likely to be a subset of all indexed
entries.

If no name is given, the dual entry is assigned the (unprefixed) entry label. For example:

@dualindexentry{array,
description={ordered list of values}

}

This is effectively like:

89

4.7 Dual Entry Types

@index{array}

@entry{dual.array,
name={array},
description={ordered list of values}

}

The primary entries are defined using \bibglsnewdualindexentry, which by default sets
the category to index (although this may be overridden, for example, by the category
option). The dual entries are defined with \bibglsnewdualindexentrysecondary.

This is the most convenient way of having an entry that’s also automatically indexed. For
example, suppose the file terms.bib contains:

@index{duck}
@index{zebra}
@index{aardvark}

and suppose the file entries.bib contains:

@dualindexentry{array,
description={ordered list of values}

}

@dualindexentry{vector,
name={vector},
description={column or row of values}

}

@dualindexentry{set,
description={collection of values}

}

@dualindexentry{matrix,
plural={matrices},
description={rectangular array of values}

}

These entries can be used in an example document that has an index and a glossary:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,index,stylemods={mcols}]{glossaries-extra}

\GlsXtrLoadResources[
src={terms,entries},

90

4.7 Dual Entry Types

type={index},
label-prefix={idx.},
dual-prefix={gls.},
combine-dual-locations={primary},
dual-type={main}

]

\begin{document}
\gls{gls.array}, \gls{gls.vector}, \gls{gls.set}, \gls{gls.matrix}.

\gls{idx.duck}, \gls{idx.aardvark}, \gls{idx.zebra}.

\renewcommand{\glstreenamefmt}[1]{\textsc{#1}}
\printunsrtglossary[type={main},style={index},nogroupskip]

\renewcommand{\glstreenamefmt}[1]{#1}
\renewcommand{\glstreegroupheaderfmt}[1]{\textbf{#1}}
\printunsrtglossary[type={index},style={mcolindexgroup}]
\end{document}

This uses combine-dual-locations to combine the locations for the primary and dual en-
tries so that they only appear in the index.

To avoid the inconvenience of rememberingwhich prefix to use, you can set up the prefixes
with \glsxtraddlabelprefix and reference entries with \dgls, \dGls etc instead of \gls,
\Gls etc.

@dualindexabbreviation

The @dualindexabbreviation entry type is similar to @dualindexentry and again, by
default, the field mapping is:

• name 7→ name

If the prefix fields are defined, then the default mappings additionally include:

• prefix 7→ dualprefix

• prefixplural 7→ dualprefixplural

• prefixfirst 7→ dualprefixfirst

• prefixfirstplural 7→ dualprefixfirstplural

• dualprefix 7→ prefix

• dualprefixplural 7→ prefixplural

91

4.7 Dual Entry Types

• dualprefixfirst 7→ prefixfirst

• dualprefixfirstplural 7→ prefixfirstplural

However in this case the required fields are short and long. The name for the primary entry
defaults to short if omitted. (Thismay be changedwith the abbreviation-name-fallback
option.) The fallback for the sort field is given by abbreviation-sort-fallback, which
defaults to the short field (see section 5.8).

For example:

@dualindexabbreviation{html,
short = {HTML},
long = {hypertext markup language}

}

is like:

@index{html,name={HTML}}

@abbreviation{dual.html,
short = {HTML},
long = {hypertext markup language}

}

The primary term is defined using \bibglsnewdualindexabbreviation, which encapsu-
lates the name to match the font used by the dual abbreviation. The encapsulation command
depends on the abbreviation-name-fallback value. If it’s the short field then \bibgls-
useabbrvfont is used, otherwise \bibglsuselongfont is used.

The primary definition also by default sets the category to index (although this again
may be overridden). The dual term is defined using \bibglsnewdualindexabbreviation-
secondary.

@dualindexsymbol

The @dualindexsymbol entry type is similar to @dualindexentry, but by default the field
mappings are:

• symbol 7→ name

• name 7→ symbol

• symbolplural 7→ plural

• plural 7→ symbolplural

If the prefix fields are defined, then the default mappings additionally include:

• prefix 7→ dualprefix

92

4.7 Dual Entry Types

• prefixplural 7→ dualprefixplural

• prefixfirst 7→ dualprefixfirst

• prefixfirstplural 7→ dualprefixfirstplural

• dualprefix 7→ prefix

• dualprefixplural 7→ prefixplural

• dualprefixfirst 7→ prefixfirst

• dualprefixfirstplural 7→ prefixfirstplural

The required field is: symbol. If the name field is omitted, the dual entry is assigned a sym-
bol from the original (unprefixed) label. The primary entries are defined using \bibglsnew-
dualindexsymbol, which by default sets the category to index, and the dual entries are de-
fined using \bibglsnewdualindexsymbolsecondary, which by default sets the category
to symbol. For example:

@dualindexsymbol{pi,
symbol={\ensuremath{\pi}},
description={ratio of a circle's circumference to its diameter}

}

is like:

@index{pi,symbol={\ensuremath{\pi}}}

@symbol{dual.pi,
name={\ensuremath{\pi}},
symbol={pi},
description={ratio of a circle's circumference to its diameter}

}

For example, suppose I have a file called symbols.bib that contains:

@dualindexsymbol{pi,
symbol={\ensuremath{\pi}},
description={ratio of a circle's circumference to its diameter}

}

@dualindexsymbol{e,
name={Euler's number},
symbol={\ensuremath{e}},
description={base of the natural logarithm}

}

93

4.7 Dual Entry Types

Then the previous example document can be modified to have an index, a glossary and a list
of symbols:

\documentclass{report}

\usepackage[colorlinks]{hyperref}
\usepackage[record,symbols,index,stylemods={mcols}]{glossaries-extra}

\newcommand{\bibglsnewdualindexsymbolsecondary}[5]{%
\longnewglossaryentry*{#1}{name={#3},category=symbol,%

symbol={#4},#2,type={symbols}}{#5}%
}

\newcommand{\indexprimary}[1]{\glsadd[format={hyperbf}]{idx.#1}}

\glsdefpostdesc{symbol}{\indexprimary{\glscurrententrylabel}}
\glsdefpostdesc{general}{\indexprimary{\glscurrententrylabel}}

\GlsXtrLoadResources[
src={entries,terms,symbols},
type={index},
set-widest,
label-prefix={idx.},
dual-prefix={},
combine-dual-locations={primary},
dual-sort={letter-case},
dual-type={main}

]

\glsxtrnewglslike[hyper={false}]{idx.}{\idx}{\idxpl}{\Idx}{\Idxpl}

\begin{document}
\gls{array}, \gls{vector}, \gls{set}, \glspl{matrix}.
\idx{duck}, \idx{aardvark}, \idx{zebra}.
\gls{e} and \gls{pi}.

\newpage
\gls{array}, \idx{vector}, \idx{set}, \gls{matrix}.

\newpage
\gls{array}, \gls{vector}, \gls{set}, \gls{matrix}.

\renewcommand{\glstreenamefmt}[1]{\textsc{#1}}
\printunsrtglossary[type={main},nogroupskip,style={alttree}]

94

4.7 Dual Entry Types

\renewcommand{\glstreenamefmt}[1]{#1}
\printunsrtglossary[type={symbols},nogroupskip,style={index}]

\renewcommand{\glstreenamefmt}[1]{#1}
\renewcommand{\glstreegroupheaderfmt}[1]{\textbf{#1}}
\printunsrtglossary[type={index},style={mcolindexgroup}]

\end{document}

Here I’ve provided some convenient commands for referencing the primary (index) terms
(\idx, \idxpl, \Idx and \Idxpl). This means I don’t need to worry about the label prefix
and it also switches off the hyperlinks (with hyper={false}). These custom commands are
defined using:

\glsxtrnewglslike[〈options〉]{〈prefix〉}{〈gls-like cs〉}{〈glspl-like cs〉}{〈Gls-like
cs〉}{〈Glspl-like cs〉}

which, in this case, essentially does:

\newcommand{\idx}[2][]{\gls[hyper={false},#1]{idx.#2}}
\newcommand{\Idx}[2][]{\Gls[hyper={false},#1]{idx.#2}}
\newcommand{\idxpl}[2][]{\glspl[hyper={false},#1]{idx.#2}}
\newcommand{\Idxpl}[2][]{\Glspl[hyper={false},#1]{idx.#2}}

but the new commands will also recognise the \gls modifiers, so \idx+ will behave like
\gls+ which wouldn’t be possible if \idx was defined using \newcommand in the above
manner. There’s a similar command:

\glsxtrnewgls[〈options〉]{〈prefix〉}{〈cs〉}

if no case-changing versions are required.
I’ve also redefined \bibglsnewdualindexsymbolsecondary to put the dual entries cre-

ated with @dualindexsymbol into the symbols glossary (which is created with the symbols
package option), so it overrides the dual-type={main} setting.

This command also sets the category to symbol, so I can redefine the post-description
hook for symbols (\glsxtrpostdescsymbol) to automatically index the symbol definition.
Similarly for the general post-description hook \glsxtrpostdescgeneral.

Since the post-description hook isn’t done until the glossary has been created, this requires
a slightly longer build process. If the document file is called myDoc.tex, then the complete
document build is:

pdflatex myDoc
bib2gls -g myDoc
pdflatex myDoc
bib2gls -g myDoc
pdflatex myDoc

95

4.7 Dual Entry Types

As from glossaries-extra-bib2gls version 1.37, an alternative method is to identify possi-
ble label prefixes with \glsxtraddlabelprefix or \glsxtrprependlabelprefix and use
\dgls, \dglspl, \dGls or \dGlspl. See the glossaries-extra user manual [13] for further
details.

@dualindexnumber

The @dualindexnumber entry type is almost identical to @dualindexsymbol, but the pri-
mary entries are defined using \bibglsnewdualindexnumber, which by default sets the
category to index, and the dual entries are defined using \bibglsnewdualindexnumber-
secondary, which by default sets the category to number.

@dualabbreviationentry

The @dualabbreviationentry entry type is similar to @dualentry, but by default the field
mappings are:

• long 7→ name

• longplural 7→ plural

• short 7→ text

If the prefix fields are defined, then the default mappings additionally include:

• prefix 7→ dualprefix

• prefixplural 7→ dualprefixplural

• prefixfirst 7→ dualprefixfirst

• prefixfirstplural 7→ dualprefixfirstplural

• dualprefix 7→ prefix

• dualprefixplural 7→ prefixplural

• dualprefixfirst 7→ prefixfirst

• dualprefixfirstplural 7→ prefixfirstplural

You may need to add a mapping from shortplural to plural if the default is inappropriate.
(In bib2gls version 1.0 this entry type was originally called @dualentryabbreviation. In
version 1.1, it was renamed @dualabbreviationentry which makes for a more consistent
naming scheme @dual〈primary〉〈dual〉.)

The required fields are: short, long and description. This entry type is designed to
emulate the example \newdualentry command given in the glossaries user manual [14].
The primary entry is an abbreviation with the given short and long fields (but not the

96

4.7 Dual Entry Types

description) and the secondary entry is a regular entry with the name copied from the
long field. The fallback for the sort is given by abbreviation-sort-fallback, which
defaults to the short field (see section 5.8).

For example:

@dualabbreviationentry{svm,
long = {support vector machine},
short = {SVM},
description = {statistical pattern recognition technique}

}

is rather like doing:

@abbreviation{svm,
long = {support vector machine},
short = {SVM}

}

@entry{dual.svm,
name = {support vector machine},
description = {statistical pattern recognition technique}

}

but dual.svm will automatically be selected if svm is indexed in the document. If dual.svm
isn’t explicitly indexed, it won’t have a location list.

If the sort field ismissing bib2gls by default falls back on the name field. If this ismissing,
this sort value will fallback on the short field. This means that if name isn’t explicitly given
in @dualabbreviationentry, then the primary entry will be sorted according to short but
the dual will be sorted according its name (which has been copied from the primary long).

Entries provided using @dualabbreviationentry will be defined with:

\bibglsnewdualabbreviationentry

(which uses \newabbreviation) for the primary entries and with :

\bibglsnewdualabbreviationentrysecondary

(which uses \longnewglossaryentry) for the secondary entries. This means that if the
abbreviations package option is used, the primary entry will be put in the abbreviations
glossary and the secondary entry in the main glossaryU̇se the type and dual-type options
to override this.

@dualentryabbreviation

This entry type is deprecated as from bib2gls version 1.1. It’s functionally equivalent to
@dualabbreviationentry but its name doesn’t fit the general dual entry naming scheme.

97

4.7 Dual Entry Types

@dualsymbol

This is like @dualentry but the default mappings are:

• name 7→ symbol

• plural 7→ symbolplural

• symbol 7→ name

• symbolplural 7→ plural

If the prefix fields are defined, then the default mappings additionally include:

• prefix 7→ dualprefix

• prefixplural 7→ dualprefixplural

• prefixfirst 7→ dualprefixfirst

• prefixfirstplural 7→ dualprefixfirstplural

• dualprefix 7→ prefix

• dualprefixplural 7→ prefixplural

• dualprefixfirst 7→ prefixfirst

• dualprefixfirstplural 7→ prefixfirstplural

The name and symbol fields are required. For example:

@dualsymbol{pi,
name={pi},
symbol={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter}

}

Entries are defined using \bibglsnewdualsymbol, which by default sets the category
to symbol.

@dualnumber

This is almost identical to @dualsymbol but entries are defined using \bibglsnewdual-
number, which by default sets the category to number.

The above example could be defined as a number since π is a constant:

98

4.7 Dual Entry Types

@dualnumber{pi,
name={pi},
symbol={\ensuremath{\pi}},
description={the ratio of the length of the circumference
of a circle to its diameter},

user1={3.14159}
}

This has stored the approximate value in the user1 field. The post-description hook could
then be adapted to show this.

\glsdefpostdesc{number}{%
\ifglshasfield{useri}{\glscurrententrylabel}
{ (approximate value: \glscurrentfieldvalue)}%
{}%

}

This use of the user1 field means that the dual entries could be sorted numerically accord-
ing to the approximate value:

\usepackage[record,postdot,numbers,style={index}]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},% entries.bib
dual-type={numbers},
dual-sort={double},% decimal sort
dual-sort-field={user1}

]

@dualabbreviation

The @dualabbreviation entry type is similar to @dualentry, but by default the field map-
pings are:

• short 7→ dualshort

• shortplural 7→ dualshortplural

• long 7→ duallong

• longplural 7→ duallongplural

• dualshort 7→ short

• dualshortplural 7→ shortplural

• duallong 7→ long

99

4.7 Dual Entry Types

• duallongplural 7→ longplural

If the prefix fields are defined, then the default mappings additionally include:

• prefix 7→ dualprefix

• prefixplural 7→ dualprefixplural

• prefixfirst 7→ dualprefixfirst

• prefixfirstplural 7→ dualprefixfirstplural

• dualprefix 7→ prefix

• dualprefixplural 7→ prefixplural

• dualprefixfirst 7→ prefixfirst

• dualprefixfirstplural 7→ prefixfirstplural

The required fields are: short, long, dualshort and duallong. This includes some new
fields: dualshort, dualshortplural, duallong and duallongplural. If these aren’t al-
ready defined, they will be provided in the .glstex file with

\glsxtrprovidestoragekey{〈key〉}{}{}

Note that this use with an empty third argument prevents the creation of a field access com-
mand (analogous to \glsentrytext). The value can be accessed with \glsxtrusefield
instead. Remember that the field won’t be available until the .glstex file has been created.

Note that bib2gls doesn’t know what abbreviation styles are in used, so if the sort field
is missing it will fallback on the short field. If the abbreviations need to be sorted according
to the long field instead, use abbreviation-sort-fallback={long} (see section 5.8).

Terms that are defined using @dualabbreviation will be written to the output file using
\bibglsnewdualabbreviation.

If the dual-abbrv-backlink option is on, the default field used for the backlinks is the
dualshort field, so you’ll need to make sure you adapt the glossary style to show that field.
The simplest way to do this is through the category post-description hook.

For example, if the entries all have the category set to abbreviation, then this requires
redefining \glsxtrpostdescabbreviation (either with \renewcommand or via \glsdef-
postdesc).

Here’s an example dual abbreviation for a document where English is the primary lan-
guage and German is the secondary language:

@dualabbreviation{rna,
short={RNA},
dualshort={RNS},
long={ribonucleic acid},
duallong={Ribonukleinsäure}

}

100

4.7 Dual Entry Types

If the abbreviation is in the file called entries-dual-abbrv.bib, then here’s an example
document:

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage[ngerman,main=english]{babel}
\usepackage[colorlinks]{hyperref}
\usepackage[record,nomain]{glossaries-extra}

\newglossary*{english}{English}
\newglossary*{german}{German}

\setabbreviationstyle{long-short}

\glsdefpostdesc{abbreviation}{%
\ifglshasfield{dualshort}{\glscurrententrylabel}
{%

\space(\glscurrentfieldvalue)%
}%
{}%

}

\GlsXtrLoadResources[
src={entries-dual-abbrv},% entries-dual-abbrv.bib
type={english},% put primary entries in glossary 'english'
dual-type={german},% put dual entries in glossary 'german'
label-prefix={en.},% primary label prefix
dual-prefix={de.},% dual label prefix
sort={en},% sort primary entries according to language 'en'
dual-sort={de-1996},% sort dual entries according to 'de-1996'

% (German new orthography)
dual-abbrv-backlink% add links in the glossary to the opposite entry

]

\begin{document}

English: \gls{en.rna}; \gls{en.rna}.

German: \gls{de.rna}; \gls{de.rna}.

\printunsrtglossaries

101

4.7 Dual Entry Types

\end{document}

If the label-prefix is omitted, then only the dual entries will have a prefix:

English: \gls{rna}; \gls{rna}.

German: \gls{de.rna}; \gls{de.rna}.

Another variation is to use the long-short-user abbreviation style and modify the associated
\glsxtruserfield so that the duallong field is selected for the parenthetical material:

\renewcommand*{\glsxtruserfield}{duallong}

This means that the first use of the primary entry is displayed as

ribonucleic acid (RNA, Ribonukleinsäure)

and the first use of the dual entry is displayed as:

Ribonukleinsäure (RNS, ribonucleic acid)

Here’s an example to be used with the long-short-desc style:

@dualabbreviation{rna,
short={RNA},
dualshort={RNS},
long={ribonucleic acid},
duallong={Ribonukleinsäure}
description={a polymeric molecule},
user1={Ein polymeres Molekül}

}

This stores the dual description in the user1 field, so this needs a mapping. The new example
document is much the same as the previous one, except that the dual-abbrv-map option is
needed to include the mapping between the description and user1 fields:

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage[ngerman,main=english]{babel}
\usepackage[colorlinks]{hyperref}
\usepackage[record,nomain]{glossaries-extra}

\newglossary*{english}{English}
\newglossary*{german}{German}

102

4.7 Dual Entry Types

\setabbreviationstyle{long-short-desc}

\glsdefpostdesc{abbreviation}{%
\ifglshasfield{dualshort}{\glscurrententrylabel}
{%

\space(\glscurrentfieldvalue)%
}%
{}%

}

\GlsXtrLoadResources[
src={entries-dual-abbrv-desc},% entries-dual-abbrv-desc.bib
type={english},% put primary entries in glossary 'english'
dual-type={german},% put dual entries in glossary 'german'
label-prefix={en.},% primary label prefix
dual-prefix={de.},% dual label prefix
sort={en},% sort primary entries according to language 'en'
abbreviation-sort-fallback={long},% fallback on 'long' field
dual-sort={de-1996},% sort dual entries according to 'de-1996'

% (German new orthography)
dual-abbrv-backlink,% add links in the glossary to the opposite entry

% dual key mappings:
dual-abbrv-map={%
{short,shortplural,long,longplural,dualshort,dualshortplural,

duallong,duallongplural,description,user1},
{dualshort,dualshortplural,duallong,duallongplural,short,shortplural,

long,longplural,user1,description}
}

]

\begin{document}

English: \gls{en.rna}; \gls{en.rna}.

German: \gls{de.rna}; \gls{de.rna}.

\printunsrtglossaries
\end{document}

Note that since this document uses the long-short-desc abbreviation style, the abbreviation
-sort-fallback needs to be changed to long.

If I change the order of the mapping to:

dual-abbrv-map={%
{long,longplural,short,shortplural,dualshort,dualshortplural,

103

4.8 Tertiary Entry Types

duallong,duallongplural,description,user1},
{duallong,duallongplural,dualshort,dualshortplural,short,shortplural,

long,longplural,user1,description}
}

Then the back-link field will switch to duallong. The post-description hook can be modified
to allow for this:

\glsdefpostdesc{abbreviation}{%
\ifglshasfield{duallong}{\glscurrententrylabel}
{%

\space(\glscurrentfieldvalue)%
}%
{}%

}

An alternative is to use the long-short-user-desc style without the post-description hook:

\setabbreviationstyle{long-short-user-desc}
\renewcommand*{\glsxtruserfield}{duallong}

However be careful with this approach as it can cause nested hyperlinks. In this case it’s
better to use the long-postshort-user-desc style which defers the parenthetical material until
after the link-text:

\setabbreviationstyle{long-postshort-user-desc}
\renewcommand*{\glsxtruserfield}{duallong}

If the back-link field has been switched to duallong then the post-description hook is no
longer required.

@dualacronym

As @dualabbreviation but defines the entries with \bibglsnewdualacronym.

4.8 Tertiary Entry Types
A tertiary entry type is essentially a dual entry that creates three separate (but related)
glossaries-extra entry definitions per .bib entry. As with dual entries, the first of these is
the primary entry. The second and third are referred to as the secondary entry and tertiary
entry.

The tertiary entry is effectively an appendage of the secondary entrysecondary, and is de-
fined by the same associated \bibglsnew…secondary command that defines the secondary
entry. Therefore the secondary and tertiary are both considered the dual and are treated as
a single entry for the purposes of sorting and collating.

104

4.8 Tertiary Entry Types

The tertiary entry will never have any locations. Any records found will be assigned to
the secondary (and may then be moved to the primary with combine-dual-locations=
{primary}). The tertiary will always have the same order as the secondary and will have
the same group value. You can set the type for the tertiary with tertiary-type and the
category with tertiary-category. The label prefix defaults to tertiary. and can be
changed with tertiary-prefix.

@tertiaryindexabbreviationentry

This entry type is very similar to @dualindexabbreviation but creates a tertiary entry as
well. The required fields are: short and long (as for @dualindexabbreviation) and also
description. The mappings are shared by both entry types. For example:

@tertiaryindexabbreviationentry{html,
short = {HTML},
long = {hypertext markup language},
description = {a markup language for creating web pages}

}

is analogous to:

\newglossaryentry{html,name={HTML},description={}}

\newabbreviation{dual.html}{HTML}{hypertext markup language}

\newglossaryentry{tertiary.html,
name={hypertext markup language},
description={a markup language for creating web pages}

}

The last two are actually defined using one command:

\bibglsnewtertiaryindexabbreviationentrysecondary
{dual.html}% secondary label
{tertiary.html}% tertiary label
{…}% secondary fields
{…}% tertiary fields
{HTML}% primary name
{HTML}% short
{hypertext markup language}% long
{a markup language for creating web pages}% description

The \bibglsnewtertiaryindexabbreviationentrysecondary command is provided in
the .glstex file as:

105

4.9 Multi-Entry Types

\providecommand{\bibglsnewtertiaryindexabbreviationentrysecondary}[8]{%
\newabbreviation[#3]{#1}{#6}{#7}%
\longnewglossaryentry*{#2}%
{name={\protect\bibglsuselongfont{#7}{\glscategory{#1}}},#4}%
{#8}%

}

which defines the secondary as an abbreviation using \newabbreviation and the tertiary
as a regular entry using \longnewglossaryentry. This means that the tertiary entry is
always defined immediately after the corresponding secondary entry. The primary may be
defined earlier or later in the file depending on the way the entries are sorted and on the
dual-sort setting.

4.9 Multi-Entry Types
A multi-entry type is an entry that may spawn multiple primary entries. This means that
both the main entry and the spawned entries are sorted together along with all the other
primary entries. In the case of @spawndualindexentry, the main and spawned entries are
primary. The main entry’s dual is created as per @dualindexentry.

@bibtexentry

The @bibtexentry typewill typically need to be aliased as it’s designed for converting BIBTEX
entries into bib2gls entries. For example, to make bib2gls treat @article and @book as
though they were both @bibtexentry:

entry-type-aliases={
article=bibtexentry,
book=bibtexentry

}

For convenience, glossaries-extra-bib2gls v1.29+ provides \GlsXtrBibTeXEntryAliases
which covers all the standard BIBTEX entry types. Alternatively, you can use unknown-entry
-alias={bibtexentry} to alias all entries that aren’t recognised by bib2gls. If you use
category={same as original entry}, the category field will be set to the original en-
try type (for example, article or book). Similarly you can use type={same as original
entry} to set the type field (but remember that the glossary types will need to be defined
in the document).

There are no required fields. The fallback for the sort field is given by bibtexentry-sort
-fallback (see section 5.8). If you want to access any of the BIBTEX fields, you will need to
alias or define them. For example:

field-aliases={
title=name

}

106

4.9 Multi-Entry Types

Since BIBTEX’s type field conflicts with bib2gls’s type field, when bib2gls parses @bib-
texentry if will convert type to bibtextype, so you must use bibtextype as the identifier
when aliasing.

Alternatively, you can use \GlsXtrProvideBibTeXFieldswhich uses \glsaddstorage-
key to provide all the standard BIBTEX fields. (Remember that new fields must be defined
before the first resource set.)

The @bibtexentry essentially creates an @index form of entry, but it additionally defines
a @contributor entry for each listed author or editor and updates the dependency lists: each
@contributor is added to the main @bibtexentry’s list of dependencies (so if the @bib-
texentry has a record then all its satellite @contributors are selected with the default
selection={recorded and deps}), and each @contributor is treated as having a cross-
reference to the main @bibtexentry (so if a @contributor has a record then all the linked
@bibtexentry termswill be selected if selection={recorded and deps and see}). You
can instruct bib2gls to treat \citation as an ignored record using --cite-as-record.

Each contributor is effectively defined as:

@contributor{〈label〉,
name={\bibglscontributor{〈forenames〉}{〈von〉}{〈surname〉}{〈suffix〉}}

}

The label is obtained by converting the name to a label, using the same function as labelify
(which means it’s governed by labelify-replace).

The author and editor fields are always checked, even if those fields aren’t recognised
by bib2gls, (which they aren’t by default). These checks are performed before field aliases
are applied. If neither field is present, no additional entries are spawned. If the dependent
@contributor entry has already been defined, it won’t be redefined, but will have the new
@bibtexentry added to its internal bibtexentry field.

The main @bibtexentry is defined using \bibglsnewbibtexentry and is followed by:

\glsxtrfieldlistadd{〈id〉}{bibtexcontributor}{〈contributor-id〉}

where 〈id〉 is the label identifying the main @bibtexentry and 〈contributor-id〉 is the label
identifying the contributor, for each contributor that has been selected.

Each contributor is defined using \bibglsnewcontributor. The definition is followed
by:

\glsxtrfieldlistadd{〈contributor-id〉}{bibtexentry}{〈id〉}
\glsxtrfieldlistadd{〈contributor-id〉}{bibtexentry@〈entry-type〉}{〈id〉}

for each selected @bibtexentry associated with that contributor. The second line provides
the internal list field bibtexentry@〈entry-type〉, where 〈entry-type〉 is the original entry
type (before it was aliased to @bibtexentry and converted to lower case). For example
article or book.

You can iterate over these internal list fields using \glsxtrfielddolistloop or \gls-
xtrfieldforlistloop. For example:

107

4.9 Multi-Entry Types

\newcommand{\contributorhandler}[1]{\par\glsentryname{#1}}
\newcommand{\glsxtrpostdesccontributor}{%

\glsxtrifhasfield{bibtexentry}{\glscurrententrylabel}%
{%

\glsxtrfieldforlistloop
{\glscurrententrylabel}{bibtexentry}%
{\contributorhandler}%

}%
{\par No titles.}%

}

(where the resource option field-aliases={title=name} has been used).
Here’s an example that uses the test xampl.bib file that’s provided with TEX distributions:

\documentclass{article}

\usepackage[record,nomain]{glossaries-extra}

\newglossary*{contributors}{Authors/Editors}
\newglossary*{titles}{Titles}

\newcommand{\bibglsnewbibtexentry}[4]{%
\longnewglossaryentry*{#1}{name=#3,#2,type={titles}}{#4}%

}

\GlsXtrLoadResources[
src={xampl},
write-preamble={false},
entry-type-aliases={
\GlsXtrBibTeXEntryAliases

},
field-aliases={

title=name
},
replicate-fields={

note=name
},
labelify-replace={

{[\string\-\string\.]}{}
},
type={contributors},
category={same as original entry},
sort-field={category},
sort-suffix={name}

]

108

4.9 Multi-Entry Types

\glsxtrsetgrouptitle{article}{Articles}
\glsxtrsetgrouptitle{booklet}{Booklets}
\glsxtrsetgrouptitle{book}{Books}
\glsxtrsetgrouptitle{inbook}{Book Chapters}
\glsxtrsetgrouptitle{misc}{Miscellaneous}

\newcommand{\contributorhandler}[1]{\par\glsentryname{#1} (#1)}

\newcommand{\glsxtrpostdesccontributor}%
\glsxtrifhasfield{bibtexentry}{\glscurrententrylabel}%
{%

\glsxtrfieldforlistloop
{\glscurrententrylabel}{bibtexentry}%
{\contributorhandler}%

}%
{\par No titles.}%

\begin{document}
Sample~\cite{book-minimal,article-full,inbook-full,misc-minimal}.
Another sample~\cite{booklet-minimal,misc-full,article-minimal}.

\bibliographystyle{plain}
\bibliography{xampl}

\printunsrtglossary[type={contributors},style={altlist}]
\printunsrtglossary*[type={titles},style={indexgroup}]
{%
\renewcommand{\glsxtrgroupfield}{category}%
\renewcommand{\glstreenamefmt}[1]{\emph{#1}}%
\renewcommand{\glstreegroupheaderfmt}[1]{\textbf{#1}}%

}

\end{document}

If the file is called myDoc.tex then the document build is:

pdflatex myDoc
bib2gls --cite-as-record myDoc
bibtex myDoc
pdflatex myDoc
pdflatex myDoc

109

4.9 Multi-Entry Types

@progenitor

The @progenitor type of entries are the only place where the adoptparents field is per-
mitted. The value should be a comma-separated list of labels. The adoptparents field must
be set and must contain a least one label. If the value contains any of the characters \
(backslash), { (open brace) or } (close brace) then the field will be interpreted (if the default
--interpret settings is on).

Since entries are spawned before fields are processed, the adoptparents field is parsed
before any field aliases (field-aliases) or replication (replicate-fields) takes place.
However, if the adoptparents field isn’t found, bib2gls will check for a simple mapping
in both the field-aliases and replicate-fields settings.

This entry type creates a main progenitor term (with all the given fields except adopt-
parents) and n spawned progeny terms, where n is the number of elements in the adopt-
parents field, that are dependent on the main term.

Each of the spawned progeny entries have the field identified by adopted-parent-field
(parent by default) set to the corresponding element in the adoptparents field.

All fields from the original definition are copied except for the adoptparents, alias and
parent fields. The parent field is never copied, regardless of the value of adopted-parent
-field. If the adopted parent field is changed to one that’s contained in the original entry,
it’s value will be from adoptparents not the value from the original entry.

The copied fields follow the same conditions as normal entries. (For example, unknown
fields are ignored, case-changes are applied, if appropriate, and the type field must refer-
ence a valid glossary, if set.) If progenitor-type is set, then this assignment is made after
the progeny are created and only applies to the main progenitor entry. The type for the
progeny can be set with progeny-type. For example, progeny-type={same as parent}
will ensure that the progeny are in the same glossary type as their parent entry.

For example, an entry defined as:

@progenitor{〈id〉,
adoptparents = {〈parent-1 id〉,…,〈parent-N id〉},
〈field-name-1〉 = {〈text〉},
…
〈field-name-n〉 = {〈text〉}

}

is essentially like:

@index{〈id〉,
progeny = {〈parent-1 id〉.〈id〉,…,〈parent-N id〉.〈id〉},
〈field-name-1〉 = {〈text〉},
…
〈field-name-n〉 = {〈text〉}

}

@index{〈parent-1 id〉.〈id〉,

110

4.9 Multi-Entry Types

progenitor = {〈id〉},
parent = {〈parent-1 id〉},
〈field-name-1〉 = {〈text〉},
…
〈field-name-n〉 = {〈text〉}

}

…

@index{〈parent-N id〉.〈id〉,
progenitor = {〈id〉},
parent = {〈parent-N id〉},
〈field-name-1〉 = {〈text〉},
…
〈field-name-n〉 = {〈text〉}

}

This creates the main (progenitor) 〈id〉 entry, which contains all the fields (except for adopt-
parents) that were in the original @progenitor definition and has the new field progeny
set to the comma-separated list of spawned entry labels. The main entries are defined in the
.glstex file with \bibglsnewprogenitor.

In addition to the main 〈id〉 entry, the above also creates the spawned progeny entries
〈parent-1 id〉.〈id〉, …, 〈parent-N id〉.〈id〉 that are dependent on the main 〈id〉 entry.

The spawned entries have the parent field set to the corresponding label obtained from
the adoptparents list. This parent entry must also be defined, as usual for the parent
field. (This restriction obviously doesn’t apply if adopted-parent-field is changed from
the default parent.) The spawned entries are defined in the .glstex file with \bibglsnew-
spawnedindex

If the main progenitor entry is referenced in the document then (assuming the default
selection criteria) the spawned entries will also be automatically selected. You can check for
the existence of the progenitor field using \glsxtrifhasfield and fetch the location
field from the main entry, if required.

Although the spawned entries are considered dependents of the main entry, the reverse
doesn’t apply. If a spawned entry is referenced in the document (with 〈parent-id〉.〈id〉) then
the main entry and its other spawned entries aren’t automatically selected.

For example, suppose the file entries.bib contains:

@indexplural{stylesheet, text={stylesheet language}}

@index{webdesign, name={web design}}

@indexplural{markup, text={markup language}}

@progenitor{xml,
name={XML},

111

4.9 Multi-Entry Types

adoptparents={markup}
}

@progenitor{css,
name={CSS},
adoptparents={stylesheet,webdesign}

}

@progenitor{html,
name={HTML},
adoptparents={markup,webdesign}

}

@progenitor{xsl,
name={XSL},
adoptparents={stylesheet}

}

and if the document contains:

\documentclass{article}

\usepackage[record,stylemods={tree},style={index}]{glossaries-extra}

\GlsXtrLoadResources[src={entries},selection={all}]

\newcommand*{\glstreenamefmt}[1]{#1}
\begin{document}
\printunsrtglossaries
\end{document}

Then the resulting list will be:
CSS
HTML
markup language

HTML
XML

stylesheet language
CSS
XSL

web design
CSS
HTML

XML
XSL

112

4.9 Multi-Entry Types

This allows the HTML and CSS entries to be listed under multiple parents.
The following @spawn〈single-type〉 commands are all forms of @progenitor that create

the given @〈single-type〉 of entry. The spawned entries are actually created with the private
entry type @spawned〈type〉. In the case of @progenitor, the spawned entries are defined
as a @spawnedindex entry. These special @spawned〈type〉 entry types aren’t intended for
use in the .bib file, but if you reference the entry type (for example, with category={same
as entry}) you will get @spawned〈type〉 as the entry type. The original entry type for the
spawned entries is the same as the original entry for the main @progenitor entry.

There is currently only one form of dual @progenitor entry and that’s @spawndualindex-
entry. Only the main progenitor entry is a dual entry. The spawned progeny are all @index
primary entries.

@spawnindex

As @progenitor, but the main entries are defined in the .glstex file with \bibglsnew-
spawnindex and the spawned entries are defined with \bibglsnewspawnedindex.

@spawnindexplural

As @progenitor, except that it creates @indexplural terms instead of @index. As with
@indexplural, if the name field isn’t set, it’s assigned to the same value as the plural field
(or the fallback for the plural, if not defined).

The main entries are defined in the .glstex file with \bibglsnewspawnindexplural
and the spawned entries are defined with \bibglsnewspawnedindexplural.

@spawnentry

As @progenitor, except that it creates @entry terms instead of @index. As with @entry,
the description field is required and either name or parent.

The main entries are defined in the .glstex file with \bibglsnewspawnentry and the
spawned entries are defined with \bibglsnewspawnedentry.

@spawnabbreviation

As @progenitor, except that it creates @abbreviation terms instead of @index. As with
@abbreviation, the short and long fields are required.

The main entries are defined in the .glstex file with \bibglsnewspawnabbreviation
and the spawned entries are defined with \bibglsnewspawnedabbreviation.

@spawnacronym

As @progenitor, except that it creates @acronym terms instead of @index. Aswith @acronym,
the short and long fields are required.

113

4.10 Compound Entry Sets

The main entries are defined in the .glstex file with \bibglsnewspawnacronym and the
spawned entries are defined with \bibglsnewspawnedacronym.

@spawnsymbol

As @progenitor, except that it creates @symbol terms instead of @index. As with @symbol,
the required fields are name or parent, and the description field is required if the name
field is missing.

The main entries are defined in the .glstex file with \bibglsnewspawnsymbol and the
spawned entries are defined with \bibglsnewspawnedsymbol.

@spawnnumber

As @progenitor, except that it creates @number terms instead of @index. As with @number,
the required fields are name or parent, and the description field is required if the name
field is missing.

The main entries are defined in the .glstex file with \bibglsnewspawnnumber and the
spawned entries are defined with \bibglsnewspawnednumber.

@spawndualindexentry

As @progenitor, except that the main (progenitor) entry behaves like @dualindexentry.
The spawned progeny behave like @index are so are all considered primary entries. The
adoptparents field should therefore reference primary entries with the default adopted
-parent-field={parent}.

The main primary and secondary (dual) entries are defined in the .glstex file with \bib-
glsnewspawndualindexentry and \bibglsnewspawndualindexentrysecondary. The spawned
progeny are defined with \bibglsnewspawnedindex.

4.10 Compound Entry Sets
A compound entry isn’t an entry in the same sense as the above but corresponds to a multi-
entry (compound or combined) set provided by glossaries-extra v1.48+, which is defined by
the command \multiglossaryentry (or \providemultiglossaryentry). These are re-
ferred to as multi-entries in glossaries-extra but are referred to as compound entries here to
avoid confusion with the multi-entry types.

Essentially, a label is defined that refers to a set of labels corresponding to entries that have
already been defined. One element in the set is considered the main label. Entry labels may
appear in multiple sets.

A compound entry provides a convenient way to apply commands like \gls to multiple
entries in one command (such as \mgls). Compound entry labels may only be used in the
\mgls-like commands or in a cross-reference field.

For example, consider the following document:

114

4.10 Compound Entry Sets

\documentclass{article}
\usepackage{hyperref}
\usepackage[record,style={tree}]{glossaries-extra}
\setabbreviationstyle{long-only-short-only}
\renewcommand*{\glsxtronlyname}{%

\protect\glslongonlyfont{\the\glslongtok}%
}
\newabbreviation{clostridium}{C.}{Clostridium}
\newglossaryentry{botulinum}{name=botulinum,

description={},parent=clostridium}
\newglossaryentry{perfringens}{name=perfringens,

description={},parent=clostridium}
\begin{document}
\gls{clostridum} \gls{botulinum},
\gls{clostridum} \gls{perfringens},
\gls{clostridum} \gls{botulinum}.
\printunsrtglossary
\end{document}

This produces:

Clostridium botulinum, C. perfringens, C. botulinum.

followed by the glossary. This is very cumbersome. Defining a compound entry label simply
provides a shortcut:

\multiglossaryentry{cbot}{clostridium,botulinum}
\multiglossaryentry{cperf}{clostridium,perfringens}

(This has to be done after the entries have been defined.) Now the entries can be more
compactly referenced:

\mgls{cbot},
\mgls{cperf},
\mgls{cbot}.

Each compound entry set must contain at least two elements. The main label is the label of
the element that is considered the main entry of the set. If the main label isn’t identified in
\multiglossaryentry then it’s assumed to be the last element in the set.

In the above example, botulinum is the main label of the cbot set, and perfringens is
the main label of the cperf set. In both sets, clostridium is the “other label”. If there are
more than two elements in the set then “others” refers to all the elements except for the main
label. An entry can be a main label of one set and an other label of another set.

The options, which can be applied to all sets with \multiglossaryentrysetup or to a
specific set using the first optional argument of \multiglossaryentry, determine if each
element of the list has a separate hyperlink to their own target, or if only the main element

115

4.10 Compound Entry Sets

should have a hyperlink, or if the entire content of \mgls should be a single hyperlink to the
main entry’s target.

With bib2gls, the entries that form the set should be in .bib files as usual. The com-
pound entry set may either be defined in the document .tex file using \multiglossary-
entry (or \providemultiglossaryentry) or they can be defined in the .bib file using
@compoundset. Remember that the set can only be defined after the entries that make
up the elements of the set have been defined. If any .bib files in a resource set contain
@compoundset, the definitions will be added at the end of the .glstex file (using \bibgls-
defcompoundset).

If you have multiple resource sets that reuse the same .bib file containing @compoundset
then either redefine \bibglsdefcompoundset to use \providemultiglossaryentry or
prevent duplicate definitions with compound-write-def={false}.

The elements of the set will still need to be indexed as usual to ensure that they have
records to enable selection.

The above example can be converted to bib2gls as follows (compound entries defined in
the document .tex file):

\documentclass{article}
\usepackage{hyperref}
\usepackage[record,style={tree}]{glossaries-extra}
\setabbreviationstyle{long-only-short-only}
\renewcommand*{\glsxtronlyname}{%

\protect\glslongonlyfont{\the\glslongtok}%
}
\GlsXtrLoadResources[src={bacteria}]
\multiglossaryentry{cbot}{clostridium,botulinum}
\multiglossaryentry{cperf}{clostridium,perfringens}
\begin{document}
\mgls{cbot}, \mgls{cperf}, \mgls{cbot}.
\printunsrtglossary
\end{document}

Note that \multiglossaryentry must come after \GlsXtrLoadResources.
The bacteria.bib contains the definitions in the usual way:

@abbreviation{clostridium,
short={C.},
long={Clostridium}

}
@index{botulinum,
parent={clostridium}

}
@index{perfringens,
parent={clostridium}

}

116

4.10 Compound Entry Sets

Alternatively, the compound entries can be defined in the .bib file instead:

@compoundset{cbot,
elements={clostridium,botulinum}

}
@compoundset{cperf,

elements={clostridium,perfringens}
}

The \multiglossaryentry commands should now be removed from the .tex file.
There’s a difference between these two methods on the first LATEX build. In the first exam-

ple, cbot is known, so \mgls{cbot} can perform \gls{clostridum} \gls{botulinum}.
These commands aren’t yet defined so they are both replaced by “⁇” (resulting in “⁇ ⁇”).
As usual, the location list is unreliable until entries are defined and the unknown markers
“⁇” can be replaced with the correct content. If the document is in a file called myDoc.tex
then the document build:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

will have locations in the resulting PDF file, but they may be incorrect if the associated
temporary files were initially missing.

In the second example, cbot is unknown, so \mgls{cbot} is simply displayed as “⁇”. In
this case, the .aux file contains information that cbot has been referenced, but there are
no associated records. The entries that belong to the cbot set will be selected as they are
considered dependent on the compound entry. In this case, if you are starting from scratch
(no associated temporary files), you will need:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

At this point, the location lists will appear. After that, you can reduce the document build to:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

(Until you later add new entries.)
If you don’t want locations for the other elements then set the encap to glsignore:

\multiglossaryentrysetup{encapothers=glsignore}

117

4.10 Compound Entry Sets

@compoundset

The following fields are available:

elements The comma-separated list of element labels. This corresponds
to the final argument of \multiglossaryentry. (Required.)

main The main label. This field is optional. If omitted, the main label
is assumed to be the last element.

option A comma-separated list of options. This corresponds to the first
optional argument of \multiglossaryentry. This field may be omitted.

These fields can only be used in this entry type.
Most resource options don’t apply to this entry type. Options specific to compound entries

are listed in section 5.16.

118

5 Resource File Options
Make sure that you use glossaries-extra with the record package option. This ensures that
bib2gls can pick up the required information from the .aux file, and both record={only}
and record={nameref} additionally load the supplementary glossaries-extra-bib2gls pack-
age. These two record option values also switch on the sort={none} package option (if
you have a new enough version of the base glossaries package), which means that there’s no
attempt to assign or process the sort key if it’s omitted from \newglossaryentry (or sim-
ilar commands). The sort key will be provided by bib2gls for informational purposes, but
there’s no need for LATEX to write it to any external files (unless you use record={hybrid},
in which case you need to prevent bib2gls from sorting using the sort={none} resource
option).

The .glstex resource files created by bib2gls are loaded in the document using

\glsxtrresourcefile[〈options〉]{〈filename〉}

where 〈filename〉 is the name of the resource file without the .glstex extension. You
can have multiple \glsxtrresourcefile commands within your document, but each 〈file-
name〉must be unique, otherwise LATEX would attempt to input the same .glstex file multi-
ple times (bib2gls checks for non-unique file names). The associated data for each resource
file is called the resource set (see section 1.5).

There’s a shortcut command that uses \jobname in the 〈filename〉:

\GlsXtrLoadResources[〈options〉]

The first instance of this command is equivalent to:

\glsxtrresourcefile[〈options〉]{\jobname}

Any additional use of \GlsXtrLoadResources is equivalent to:

\glsxtrresourcefile[〈options〉]{\jobname-〈n〉}

where 〈n〉 is number. For example:

\GlsXtrLoadResources[src={entries-en},sort={en}]
\GlsXtrLoadResources[src={entries-fr},sort={fr}]
\GlsXtrLoadResources[src={entries-de},sort={de-1996}]

This is equivalent to:

\glsxtrresourcefile[src={entries-en},sort={en}]{\jobname}
\glsxtrresourcefile[src={entries-fr},sort={fr}]{\jobname-1}
\glsxtrresourcefile[src={entries-de},sort={de-1996}]{\jobname-2}

119

5 Resource File Options

In general, it’s simplest just to use \GlsXtrLoadResources.
The optional argument 〈options〉 is a comma-separated key=value list. Allowed options

are listed below. The option list applies only to that specific 〈filename〉.glstex and are not
carried over to the next instance of \glsxtrresourcefile. Only the definitions provided
in @preamble (if the interpreter is on and interpret-preamble={true}) are carried over
to the next resource set and, possibly, cross-resource references if permitted (see section 1.5).
The glossaries-extra package doesn’t parse the options, but just writes the information to the
.aux file. This means that any invalid options will be reported by bib2gls not by glossaries-
extra.

As from glossaries-extra v1.40 you can provide a default set of options by redefining:

\GlsXtrDefaultResourceOptions

This command will be inserted at the start of the options list for all resource commands (and
will expand as it’s written to the .aux file). For example:

\renewcommand{\GlsXtrDefaultResourceOptions}{%
selection={all},src={entries}}

\GlsXtrLoadResources[
type={symbols},
match={entrytype=symbol}]

\GlsXtrLoadResources[
type={abbreviations},
match={entrytype=abbreviation}]

This acts like:

\GlsXtrLoadResources[
selection={all},src={entries},
type={symbols},
match={entrytype=symbol}]

\GlsXtrLoadResources[
selection={all},src={entries},
type={abbreviations},
match={entrytype=abbreviation}]

If you have multiple .bib files you can either select them all using src={〈bib list〉} in a
single \glsxtrresourcefile call, if they all require the same settings, or you can load them
separately with different settings applied.

For example, if the files entries-terms.bib and entries-symbols.bib have the same
settings:

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]

Alternatively, if they have different settings:

\GlsXtrLoadResources[src={entries-terms},type={main}]
\GlsXtrLoadResources[src={entries-symbols},sort={use},type={symbols}]

120

5 Resource File Options

Note that the sorting is applied to each resource set independently of other resource sets.
This means that if you have multiple instances of \glsxtrresourcefile but only one glos-
sary type, the glossary will effectively contain blocks of sorted entries. For example, if
file1.bib contains:

@index{duck}
@index{zebra}
@index{aardvark}

and file2.bib contains:

@index{caterpillar}
@index{bee}
@index{wombat}

then

\GlsXtrLoadResources[src={file1,file2}]

will result in the list: aardvark, bee, caterpillar, duck, wombat, zebra. These six entries are
all defined when \jobname.glstex is read. Whereas

\GlsXtrLoadResources[src={file1}]
\GlsXtrLoadResources[src={file2}]

will result in the list: aardvark, duck, zebra, bee, caterpillar, wombat. The first three (aard-
vark, duck, zebra) are defined when \jobname.glstex is read. The second three (bee, cater-
pillar, wombat) are defined when \jobname-1.glstex is read. Since \printunsrtglos-
sary simply iterates over all defined entries, this is the ordering used.

Abbreviation styles must be set (using \setabbreviationstyle) before the resource
command that selects the abbreviations from the appropriate .bib file, since the entries are
defined (through \newabbreviation or \newacronym) when \glsxtrresourcefile in-
puts the .glstex file. (Similarly for any associated abbreviation style commands that must
be set before abbreviations are defined, such as \glsxtrlongshortdescname.)

Note bib2gls allows .bib files that don’t provide any entries. This can be used to provide
commands in @preamble. For example, suppose I have defs.bib that just contains:

@preamble{"\providecommand{\strong}[1]{\textbf{\color{red}#1}}
\providecommand{\parenswap}[2]{#2 (#1)}"}

This provides two commands:

\strong{〈text〉}

(which sets the font weight and colour) and

\parenswap{〈text1〉}{〈text2〉}

121

5 Resource File Options

(which just displays its second argument followed by the first in parentheses).
Suppose I also have entries.bib that contains:

@index{example,
name={\strong{\parenswap{stuff}{example}}}

}
@index{sample}
@index{test}
@index{foo}
@index{bar}

This contains an entry that requires the commands provided in defs.bib, so to ensure those
commands are defined, I can do:

\GlsXtrLoadResources[src={defs,entries}]

Unfortunately this results in the sort value for example being set to redexample (stuff)
because the interpreter has detected the provided commands and expanded:

\strong{\parenswap{stuff}{example}}

to:

\textbf{\color{red}example (stuff)}

It discards font changes, so \textbf is ignored, but it doesn’t recognise \color and so
doesn’t know that the first argument is just the colour specifier and therefore doesn’t dis-
card it. This means that “example (stuff)” is placed between “foo” and “sample” instead of
between “bar” and “foo”.

I can prevent the interpreter from parsing @preamble:

\GlsXtrLoadResources[src={defs,entries},interpret-preamble={false}]

Now when the sort value for example is obtained from:

\strong{\parenswap{stuff}{example}}

no expansion occurs (since \strong and \parenswap are now unrecognised) so the sort
value ends up as: stuffexample which places “example (stuff)” between “sample” and
“test”, which is again incorrect.

The best thing to do in this situation is to split the provided commands into two .bib files:
one that shouldn’t be interpreted and one that should.

For example, defs-nointerpret.bib:

@preamble{"\providecommand{\strong}[1]{\textbf{\color{red}#1}}"}

and defs-interpret.bib:

@preamble{"\providecommand{\parenswap}[2]{#2 (#1)}"}

122

5.1 String Concatenation

Now the first one can be loaded with interpret-preamble={false}:

\GlsXtrLoadResources[src={defs-nointerpret},interpret-preamble={false}]

This creates a .glstex file that provides \strong but doesn’t define any entries. The other
file defs-interpret.bib can then be loadedwith the default interpret-preamble={true}:

\GlsXtrLoadResources[src={defs-interpret,entries}]

The provided commands are remembered by the interpreter, so you can also do:

\GlsXtrLoadResources[src={defs-interpret}]
\GlsXtrLoadResources[src={entries}]

The contents of @preamble are only written to the associated .glstex file, but the definitions
contained within the @preamble are retained by the interpreter for subsequent resource sets.

5.1 String Concatenation
Some resource options allow string concatenation in their syntax. This is where fragments
or substrings can be joined together to form a value. This is similar to the way concatenation
occurs in .bib files, but a different operator is used. In .bib files, the concatenation operator
is # (hash) but, since this is a problematic character to use in the optional argument of \Gls-
XtrLoadResources, the operator for string concatenation in resource options is + (plus).

A string concatenation 〈element-list〉 in a resource option has the following syntax:

〈element-list〉 ::= 〈element-value〉 | 〈element-value〉 + 〈element-list〉
〈element-value〉 ::= 〈string〉 | 〈field-ref 〉 | 〈element-quark〉{〈element-list〉} | 〈match-
ref 〉
〈match-ref 〉 ::= \MGP{〈group-ref 〉}
〈group-ref 〉 ::= 〈index〉 | 〈name〉
〈string〉 ::= "〈tokens〉" | {〈tokens〉}

The 〈field-ref 〉 syntax is described below, and is used to reference a field value. The element
quarks (〈element-quark〉, described below) take an 〈element-list〉 argument. If the 〈element-
list〉 argument evaluates to null, they will return null.

Remember that the argument of \GlsXtrLoadResources is expanded as it’s written
to the .aux file. This means that care must be taken to prevent premature expansion
of quarks or any commands that need to be present in a string.

As from glossaries-extra v1.51, the glossaries-extra-bib2gls package (which is automat-
ically loaded with the record option) provides the command \GlsXtrResourceInitEsc-
Sequenceswhichwill locally redefine these quark commands to expand to their detokenized
form. So you can do:

123

5.1 String Concatenation

\renewcommand*{\glsxtrresourceinit}{%
\GlsXtrResourceInitEscSequences

}

Thismeans that you can simply write the quark in the resource optionwithout needing to use
\protect or \string. The remainder of this section assumes that \glsxtrresourceinit
has been redefined to use \GlsXtrResourceInitEscSequences, as in the above example.

As with the .bib format, strings (〈string〉) can be delimited by braces {〈text〉} or double-
quotes "〈text〉". If you need a literal double-quote (") then either use brace delimiters or use
\". If you need the actual LATEX accent command \" then use brace delimiters. If you need
braces that start and end in different strings then use double-quote delimiters. For example:

assign-fields={
first = "\cs{emph}{" + name + "}"

}

The 〈element-list〉may just contain a single element, such as a field reference or a constant
string, but it must still conform to the element syntax. For example, if you want to use copy
-to-glossary to copy all entries to a specific glossary, such as index, then you will need
to markup index as a string. For example:

copy-to-glossary={"index"}

or

copy-to-glossary={{index}}

Note that the outer braces are stripped by the resource option parser before the content is
parsed as an 〈element-list〉. If only a single set of braces was used, those braces would be
stripped leaving a bare index, which would be parsed as a field reference.

The element quarks are uppercase tokens that start with a leading backslash. They have no
meaning to bib2gls’s interpreter nor are they defined in the LATEX document outside of the
scope of the resource command (unless they happen to coincidentally be defined by another
package or are a custom command). Quarks occur outside of strings. Any escape sequences
occurring within a string are considered to be LATEX commands.

\CS{〈element-list〉}

Returns a control sequence with the control sequence name obtained from concatenating
〈element-list〉. Note that this is different from \cs which expands to the detokenized control
sequence name as the resource options are written to the .aux file.

For example, if the LATEX file has:

\GlsXtrLoadResources[
assign-fields={
name = "\cs{foo}{" + user1 + "}"

}
]

124

5.1 String Concatenation

then this will expand the options to the .aux file as

assign-fields={
name = "\foo{" + user1 + "}"
}

Compare this with:

\GlsXtrLoadResources[
assign-fields={
name = \CS { user1 }

}
]

which will set the name value to \〈csname〉 (no arguments) where 〈csname〉 is the value
obtained from the user1 field for that entry. Note that \〈csname〉 will need to be defined in
the document to ensure that the document compiles without error but will also need to be
recognised by bib2gls if the field value needs to be interpreted (such as when obtaining the
sort value).

\MGP{〈group-ref 〉}

The 〈match-ref 〉 element should only be used with a regular expression from an associ-
ated conditional (see section 5.2). For example, the 〈condition〉 part of an assignment rule
in assign-fields.

If a match was found, \MGP can be used to reference a group within the match. The 〈group-
ref 〉 argument may be either an integer (the group index) or the group name. For example,
suppose a custom field called ordinal may contain content such as 1st or 10th and I want
to encapsulate the suffix part without altering the .bib file. This can be done as follows:

assign-fields={
ordinal =[o] \MGP{1} + " \cs{ord}{" + \MGP{2} + "}"
[ordinal=/(\cs{d}+)(st|nd|rd|th)/]

}

Alternatively, using named groups:

assign-fields={
ordinal =[o] \MGP{num} + " \cs{ord}{" + \MGP{suffix} + "}"
[ordinal=/(?<num>\cs{d}+)(?<suffix>st|nd|rd|th)/]

}

Note that the group name shouldn’t be delimited with double-quotes.

The \MGP quark (which expands to the \MGP identifier for assign-fields) isn’t the
same as \glscapturedgroup (which expands to \string$, allowing a dollar charac-
ter to be written to the .aux file within the replacement part of labelify-replace).

125

5.1 String Concatenation

\TRIM{〈element-list〉}

Returns its argument with any leading and trailing spaces removed.

\INTERPRET{〈element-list〉}

Interprets the contents of 〈element-list〉 using bib2gls’s interpreter and returns the result,
which may be an empty string if the content only contains unknown commands. Note that
the result is a string with any special characters replaced by detokenized commands, such as
\glsbackslash. This ensures that the value is suitable to be written in the entry definition
in the .glstex file.

It’s important to remember that the result of \INTERPRET is a detokenized string. In gen-
eral, it’s therefore best to have \INTERPRET as the outermost quark.

Suppose I have a .bib file that contains:

@preamble{"\providecommand{\csfmt}[1]{\glsbackslash #1}"}
@index{relax,name={\csfmt{relax}}}
@index{comment,name={\% comment}}

If the resource options include:

assign-fields={
user1 = \INTERPRET { name } ,

}

Then the definitions in the .glstex file will be:

\bibglsnewindex{comment}%
{user1={\glspercentchar \space comment},
name={\% comment},
sort={comment|}}

\bibglsnewindex{relax}%
{user1={\glsbackslash relax},
name={\csfmt{relax}},
sort={relax|}}

This ensures that the LATEX syntax in the .glstex definitions is valid and the user1 field can
expand to a literal string. (Remember that the document definition of the custom \csfmt
command may be different from the one provided in the @preamble content.)

The \INTERPRET quark converts \% comment to “ % comment ” since the interpreter recog-
nises \%. However, if this value is written to the .glstex file:

user1={% comment},

126

5.1 String Concatenation

then this is invalid. When the .glstex file is input by \GlsXtrLoadResources, LATEX will
interpret the percent symbol % as a comment and the rest of the line, including the closing
brace, will be ignored. This leads to a missing closing brace error.

In the case of the “relax” entry, since a definition of the custom \csfmt is provided in
@preamble, the interpreter will convert \csfmt{relax} to the string “ \relax ”. If this
value is written to the .glstex file:

user1={\relax},

then this would be parsed as the command \relax when the file is input by \GlsXtrLoad-
Resources.

Therefore, \INTERPRET automatically replaces all the TEX special characters in the result-
ing string to ensure that they expand to their literal meanings in the LATEX document.

Now suppose instead that the resource options include:

assign-fields={
user1 = \FIRSTUC { \INTERPRET { name } },

}

This first interprets the value of the name field and substitutes the special characters (so
\relax becomes the string “ \glsbackslash relax ”). The resulting string is then con-
verted to sentence case, which results in “ \Glsbackslash relax ” because the initial back-
slash is now a literal character, and since it’s a non-letter character it’s skipped by the case-
conversion. So now the code written to the .glstex file is:

\bibglsnewindex{comment}%
{user1={\Glspercentchar \space comment},
name={\% comment},
sort={comment|}}

\bibglsnewindex{relax}%
{user1={\Glsbackslash relax},
name={\csfmt{relax}},
sort={relax|}}

This is invalid because \Glspercentchar and \Glsbackslash are not defined.
Suppose the order of the quarks is swapped:

assign-fields={
user1 = \INTERPRET { \FIRSTUC { name } },

}

This results in valid LATEX code:

\bibglsnewindex{comment}%
{user1={\glspercentchar \space comment},
name={\% comment},

127

5.1 String Concatenation

sort={comment|}}

\bibglsnewindex{relax}%
{user1={\glsbackslash Relax},
name={\csfmt{relax}},
sort={relax|}}

If you don’t want the argument of a command to be affected by case-changing commands,
you can use \MFUblocker or \MFUexcl. The glossaries-extra package writes this information
in the .aux file for the benefit of bib2gls. See the mfirstuc manual for further details of those
commands.

\INTERPRETNOREPL{〈element-list〉}

As \INTERPRET but doesn’t replace special characters. Consider an adjustment to the previ-
ous example:

assign-fields={
user1 = \FIRSTUC { \INTERPRETNOREPL { name } },

}

Now \csfmt{relax} is converted into the literal string “ \relax ” and then the case-conversion
is performed, which results in the literal string “ \Relax ” but this will become an undefined
command in the .glstex file:

user1={\Relax},

In the case of the “comment” entry, \% comment will be converted to the literal string “ %
comment ”, which will then have the case-conversion applied, but the .glstex file will be
invalid:

user1={% Comment},

\REPLACESPCHARS{〈element-list〉}

Detokenises and replaces special characters with commands like \glsbackslash. For ex-
ample:

assign-fields={
user1 = \REPLACESPCHARS {
\FIRSTUC { \INTERPRETNOREPL { name } } },

}

This rather long-winded assignment produces the same result as:

assign-fields={
user1 = \INTERPRET { \FIRSTUC { name } },

}

128

5.1 String Concatenation

A difference can be observed if the custom command is made a blocker or exclusion using
\MFUblocker or \MFUexcl.

\LABELIFY{〈element-list〉}

Converts the contents of 〈element-list〉 into a label string, according to the labelify criteria.

\LABELIFYLIST{〈element-list〉}

Converts the contents of 〈element-list〉 into a label-list string, according to the labelify
-list criteria.

\LEN{〈element-list〉}

When used within an element list, \LEN returns the length of its 〈element-list〉 argument as
a string or null if 〈element-list〉 evaluates to null. Note that this is different from using \LEN
in a numerical condition where the result is always an integer (see section 5.2). This means
that \LEN{〈list1〉} + \LEN{〈list2〉} performs string concatenation not numerical addition.
Instead, use \LEN{〈list1〉 + 〈list2〉} for the combined length.

The length is the detokenised length, for example, if the name field has the value \emph{x}
then \LEN{name} will evaluate to the string "8". You can use

\LEN{\INTERPRET{〈element-list〉}}

to find the length without LATEX commands.
The quarks below identify case-changing functions. The 〈element-list〉 argument will be

converted using the appropriate function and the result will be returned. If 〈element-list〉
evaluates to null then null will be returned.

The case-changing functions will use the resource locale, but whether or not bib2gls
recognises the correct rules for the locale depends on whether or not the locale is correctly
supported by the Java locale provider. The language resource file may provide assistance
with case-conversion (see section 1.9). Note that the case-change is performed by bib2gls
not by inserting LATEX case-changing commands into the code.

• \LC{〈element-list〉} converts 〈element-list〉 to lower case;

• \UC{〈element-list〉} converts 〈element-list〉 to upper case;

• \FIRSTLC{〈element-list〉} converts the first letter of 〈element-list〉 to lower case;

• \FIRSTUC{〈element-list〉} converts the first letter of 〈element-list〉 to upper case (sen-
tence case);

• \TITLE{〈element-list〉} converts 〈element-list〉 to title case.

129

5.1 String Concatenation

There is an additional token \NOCHANGE{〈element-list〉}which simply evaluates 〈element-
list〉 and returns it unchanged.1 This isn’t like \NoCaseChange but is more like \@firstof-
one. There is little need for it so it’s not defined by \GlsXtrResourceInitEscSequences.
The only plausible use for it is if you have a class or package that contains something like:

\newcommand{\mycase}{NOCHANGE}
% later as the result of some condition:
\renewcommand{\mycase}{FIRSTUC}
% later on:
\GlsXtrLoadResources[
assign-fields={
name=[o] \cs{\mycase}{name},

% other assignments …
}

]

In most cases, it should be possible to achieve the same result with a conditional associated
with the resource option or by adjusting the content passed to the resource command. For
example:

\newcommand{\nameassign}{}
% later as the result of some condition:
\renewcommand{\nameassign}{name=[o]\FIRSTUC{name},}
% later on:
\GlsXtrLoadResources[
assign-fields={
\nameassign

% other assignments …
}

]

The field reference (〈field-ref 〉) syntax is more complicated:

〈field-ref 〉 ::= 〈value-ref 〉 | 〈entry-ref 〉 -> 〈field-ref 〉
〈entry-ref 〉 ::= self | parent | root
〈value-ref 〉 ::= 〈field-name〉 | 〈label-ref 〉
〈label-ref 〉 ::= 〈label-type〉 -> 〈label-delineator〉
〈label-type〉 ::= entrytype | entrylabel | entrybib
〈label-delineator〉 ::= original | actual

where 〈field-name〉 is the required field name. Note that field names (which need to be used in
a string concatenation) can’t include any of the concatenation or conditional markup special
characters: + [] = , < > or ".

1The \NOCHANGE support wasn’t intentional, but was simply a by-product of the original implementation of
the case-changing commands.

130

5.2 Complex Conditionals

The 〈entry-ref 〉 part indicates which entry the referenced field belongs to. The keywords
are: self (the entry itself), parent (the entry’s parent), and root (the entry’s hierarchical
root, not including the entry itself). Note that with options such as assign-fields the
entry’s ancestors must be defined before the entry in the .bib file because their fields can
only be referenced after they have been processed. A grandparent entry can be referenced
with parent -> parent ->. Since “parent” is also a field name, if the keyword parent is
followed by -> then the keyword refers to the parent entry otherwise it refers to the parent
field. For example, self -> parent refers to the value of the entry’s parent field, which is
the parent entry’s label, whereas parent -> name refers to the value of the entry’s parent’s
name field.

The special keywords identify values that aren’t normally stored in a field. The keyword
must be followed by the 〈delineator〉, which may be original or actual. Available key-
words:

entrytype the entry type, without the leading @, where original refers to the original
entry type used in the .bib file and actual refers to the actual entry type, which may
have changed as a result of entry-type-aliases;

entrylabel the entry label, where original refers to the original label used in the .bib
file and actual refers to the actual label, which may have been altered by options such
as label-prefix;

entrybib the .bib file the entry was defined in, where original refers to the basename
(without the .bib extension, regardless of whether or not it was included in src) and
actual refers to the file name (including the extension and path).

If a syntax error occurs, the error message will show how bib2gls has scanned the in-
formation so far. For example, in the case of assign-fields={parent name} the message
will be:

Error: Invalid syntax for option 'assign-fields': Expected one of
-> + [after ' self -> parent', found 'n'

This indicates that it has read “parent” as meaning the parent field of the current entry since
it isn’t followed by “->”.

5.2 Complex Conditionals
Some options may have a conditional in their value. In certain cases, such as match, the con-
dition is provided as a regular expression, but other conditionals (such as in assign-fields)
are complex. This section describes that complex conditional syntax.

The tokens & and | indicate logical “AND” and “OR”, respectively, and ! indicates negation.
Parentheses (and) may be used to control the order of precedence. For example,

〈boolean1〉 | (〈boolean2〉 & ! 〈boolean3〉)

131

5.2 Complex Conditionals

Available boolean functions are in the form:

〈value1〉 〈cmp〉 〈value2〉
where 〈value1〉 is the left-hand value and 〈value2〉 is the right-hand value. The middle 〈cmp〉
operator identifies the comparison function.

The left-hand 〈value1〉may be a field reference 〈field-ref 〉 or the integer quark \LEN{〈element-
list〉} or the concatenate quark \CAT{〈element-list〉}, where 〈field-ref 〉 references a field
value and 〈element-list〉 is an element list, using the same syntax described in section 5.1.

The right-hand 〈value2〉 may be a field reference 〈field-ref 〉 or \CAT{〈element-list〉} or
\NULL or a constant string ("〈string〉" or {〈string〉}) or a number or a regular expression. You
can’t use \LEN on the right-hand as a numeric value (but it may occur inside the argument
\CAT). You can’t use \NULL or a regular expression on the left-hand side.

Where 〈value1〉 is \LEN{〈element-list〉}, the length evaluates to an integer and may only
be used in the numerical comparisons. If 〈element-list〉 is null, then the length will be 0. The
\LEN quark can’t be used in the right hand 〈value2〉 part of a numerical comparison. Note
that if \LEN occurs inside the argument of \CAT then it becomes a string not a number.

\CAT{〈element-list〉}

Where 〈value1〉 or 〈value2〉 is \CAT{〈element-list〉}, the 〈element-list〉 will be evaluated and
treated as a string, which will be null if 〈element-list〉 evaluates to null.

\NULL

The null quark may only be used as 〈value2〉 for the equality and inequality comparisons. It
can’t be used in any other context. Note that the numeric \LEN doesn’t return null.

Where a field value is referenced (〈field-ref 〉), if the field value is undefined (either the field
isn’t set or the referenced ancestor entry hasn’t been defined) then, if the designated action is
“fallback” (for example, assign-missing-field-action={fallback}), the fallback value
is obtained (see section 5.8). If the value is still undefined it will be considered a null value for
the purposes of the comparison. Note that if the designated action is “empty” (for example,
assign-missing-field-action={empty}) there will be no null values.

〈value1〉=\NULL

Evaluates to true if 〈value1〉 is null.

〈value1〉<>\NULL

Evaluates to true if 〈value1〉 is not null.
For the remaining comparisons, null values will be treated as an empty string. Once the

〈field-ref 〉 or \CAT references have been evaluated, their returned value will be turned into
a detokenized string for the purposes of the comparison.

The detokenized values from a field reference may contain any TAB or newline characters
or additional spacing that are present in the .bib file (unless they have already been stripped
by other resource options or field assignments). However, redundant spacing in any literal
strings ("〈string〉" or {〈string〉}) are likely to be lost when the resource options are written
to the .aux file.

132

5.2 Complex Conditionals

〈value1〉=/〈regex〉/
〈value1〉=/〈regex〉/i

Evaluates to true if the value matches the given anchored regular expression 〈regex〉. If
“ i ” follows the terminating / then the match is case-insensitive. No other modifiers are
recognised, but you can use embedded flag expressions, such as ?s for “single-line” mode.

In the following string comparisons, the right-hand 〈string〉 is a constant string that must
be delimited with double-quotes or braces. The comparisons are according to the Unicode
code points (not locale-sensitive), but if the string is followed by “ i ”, a case-insensitive com-
parison is used.

〈value1〉=〈string〉
〈value1〉=〈string〉i

Evaluates to true if the value is equal to the string. For example:

category="abbreviation"

〈value1〉<>〈string〉
〈value1〉<>〈string〉i

Evaluates to true if the value is not equal to the string.

〈value1〉<〈string〉
〈value1〉<〈string〉i

Evaluates to true if the value is lexicographically less than the string.

〈value1〉<=〈string〉
〈value1〉<=〈string〉i

Evaluates to true if the value is lexicographically less than or equal to the string.

〈value1〉>〈string〉
〈value1〉>〈string〉i

Evaluates to true if the value is lexicographically greater than the string.

〈value1〉>=〈string〉
〈value1〉>=〈string〉i

Evaluates to true if the value is lexicographically greater than or equal to the string.
In the following numerical comparisons, the given 〈number〉 should use “ . ” for the deci-

mal point and no number group separators. If the 〈number〉 doesn’t contain a decimal point
or if 〈value1〉 is the \LEN{〈element-list〉} quark then an integer comparison is assumed. If
〈value1〉 is empty or isn’t numeric it will be treated as 0. The number shouldn’t be delimited
by quotes or braces.

133

5.2 Complex Conditionals

〈value1〉=〈number〉

Evaluates to true if the value is equal to 〈number〉. For example:

\LEN{user1}=0.9

This will return true if the user1 field length is 0 and false otherwise. This is because \LEN
enforces an integer comparison which means that 0.9 is converted to 0. Similarly:

\CAT{"0.9"}=0

This will return true because the 〈number〉 0 is an integer which enforces an integer com-
parison so the string "0.9" will be converted to the number 0. Compare this with:

\CAT{"0.9"}=0.0

This will return false because the 〈number〉 0.0 is a decimal, so a decimal comparison will be
used.

〈value1〉<>〈number〉

Evaluates to true if the value is not equal to 〈number〉.

〈value1〉<〈number〉

Evaluates to true if the value is less than 〈number〉.

〈value1〉<=〈number〉

Evaluates to true if the value is less than or equal to 〈number〉.

〈value1〉>〈number〉

Evaluates to true if the value is greater than 〈number〉.

〈value1〉>=〈number〉

Evaluates to true if the value is greater than or equal to 〈number〉.
Finally, the following are string comparisons made after evaluating and detokenizing both

〈value1〉 and 〈value2〉. The comparisons are case-sensitive and according to the Unicode code
points (not locale-sensitive).

〈value1〉=〈value2〉

Evaluates to true if 〈value1〉 is equal to 〈value2〉. For example:

name = parent -> name

〈value1〉<>〈value2〉

134

5.2 Complex Conditionals

Evaluates to true if 〈value1〉 is not equal to 〈value2〉.

〈value1〉<〈value2〉

Evaluates to true if 〈value1〉 is lexicographically less than 〈value2〉.

〈value1〉<=〈value2〉

Evaluates to true if 〈value1〉 is lexicographically less than or equal to 〈value2〉.

〈value1〉>〈value2〉

Evaluates to true if 〈value1〉 is lexicographically greater than 〈value2〉.

〈value1〉>=〈value2〉

Evaluates to true if 〈value〉 is lexicographically greater than or equal to 〈value2〉.

〈value1〉 \IN 〈value2〉

Evaluates to true if 〈value1〉 is a substring of 〈value2〉. If 〈value1〉 is empty or null it’s con-
sidered not a substring regardless of the value of 〈value2〉.

〈value1〉 \NIN 〈value2〉

The negation of the \IN test. Evaluates to true if 〈value1〉 is not a substring of 〈value2〉. This
is equivalent to:

! 〈value1〉 \IN 〈value2〉

〈value1〉 \PREFIXOF 〈value2〉

Evaluates to true if 〈value1〉 is a prefix of 〈value2〉 (that is, 〈value2〉 starts with 〈value1〉). If
〈value1〉 is empty or null it’s considered not a prefix regardless of 〈value2〉.

〈value1〉 \NOTPREFIXOF 〈value2〉

Evaluates to true if 〈value1〉 is not a prefix of 〈value2〉. This is equivalent to:

! 〈value1〉 \PREFIXOF 〈value2〉

〈value1〉 \SUFFIXOF 〈value2〉

Evaluates to true if 〈value1〉 is a suffix of 〈value2〉 (that is, 〈value2〉 ends with 〈value1〉). If
〈value1〉 is empty or null it’s considered not a suffix regardless of 〈value2〉.

〈value1〉 \NOTSUFFIXOF 〈value2〉

Evaluates to true if 〈value1〉 is not a suffix of 〈value2〉. This is equivalent to:

! 〈value1〉 \SUFFIXOF 〈value2〉

135

5.3 General Options

5.3 General Options
charset=〈encoding-name〉
If the character encoding hasn’t been supplied in the .bib file with the encoding comment

% Encoding: 〈encoding-name〉

then you can supply the correct encoding using charset={encoding-name}. In general, it’s
better to include the encoding in the .bib file where it can also be read by a .bibmanaging
systems, such as JabRef.

See --tex-encoding for the encoding used to write the .glstex file, and see section 1.1
for information about the default encoding.

locale=〈lang tag〉
Sets the default locale for the current resource set. In general, it’s best to set this at the start
of the resource option list, if required. If not set, the default will be the document locale, if
supplied, otherwise the Java locale will be used.

wordify-math-greek=〈boolean〉
Instructs the interpreter to replace known math Greek commands with words instead of the
applicable symbol. For example, if an entry has been defined as:

@index{a-Fe,
name={\ensuremath{\alpha}-iron}

}

Then with wordify-math-greek={true} the interpreter will obtain the sort value “alpha-
iron”. This only works for commands recognised by the TEX Parser Library as Math Greek
commands.

With the default wordify-math-greek={false}, the interpreter will convert \alpha
into the nearest appropriate Unicode character.

The textual replacement depends on whether or not a corresponding entry is available in
the language file bib2gls-extra-〈lang〉.xml for the current resource locale. If no entry is
found, the control sequence name (or substring) will typically be used.

wordify-math-symbol=〈boolean〉
Similar to wordify-math-greek, this option will apply to other known math symbol com-
mands. Again, this only works for a limited set of commands recognised by the TEX Parser
Library. An alternative is to provide alternative definitions for bib2gls that aren’t picked
up by LATEX, or use \IfNotBibGls, or use a more appropriate field for sorting.

136

5.3 General Options

interpret-preamble=〈boolean〉
This is a boolean option that determines whether or not the interpreter should parse the
contents of @preamble. The default is true. If false, the preamble contents will still be
written to the .glstex file, but any commands provided in the preamble won’t be recognised
by the interpreter (see chapter 2).

Related options are: set-widest (which uses the interpreter to determine thewidest name
for the alttree style or the glossary-longextra styles), interpret-label-fields (which gov-
erns whether or not fields that must only contain a label should be interpreted), labelify
(which converts a field into a string suitable for use as a label), and labelify-list (which
converts a field into a string suitable for use as a comma-separated list of labels).

write-preamble=〈boolean〉
This is a boolean option that determines whether or not the preamble should be written to the
.glstex file. The default is true. Note that the preamble will still be parsed if interpret
-preamble={true} even if write-preamble={false}. This means it’s possible to provide
bib2gls command definitions in @preamble that don’t get seen by LATEX.

set-widest=〈boolean〉
The alttree glossary style needs to know the widest name (for each level, if hierarchical). This
can be set using \glssetwidest provided by the glossary-tree package (or similar commands
like \glsupdatewidest provided by glossaries-extra-stylemods), but this requires knowing
which name is the widest. Alternatively, one of the iterative commands such as \glsFind-
WidestTopLevelName can be used, which slows the document build as it has to iterate over
all defined entries.

The glossary-longextra package, provided with glossaries-extra v1.37+, also needs to know
the widest name, but in this case only the top-level entrytop-level is needed. If this has
already been found through the commands provided with the alttree style then that value
will be used as the default, but you can set another value that’s only used for the glossary
-longextra styles with \glslongextraSetWidest.

The glossaries-extra-bib2gls package provides \glsxtrSetWidest, which sets the widest
name for those styles that need it. As from version 1.8, bib2gls now checks for the existence
of this command and will use it with set-widest to allow for the new styles provided by
the glossary-longextra package.

The boolean option set-widest={true} will try to calculate the widest names for each
hierarchical level to help remove the need to determine the correct value within the docu-
ment. Since bib2gls doesn’t know the fonts that will be used in the document or if there
are any non-standard commands that aren’t provided in the .bib files preamble, this option
may not work. For example, if one entry has the name defined as:

name={some {\Huge huge} text}

and another entry has the name defined as:

137

5.3 General Options

name={some {\small small} text}

then bib2gls will determine that the second name is the widest although the first will ac-
tually be wider when it’s rendered in the document.

When using this option, the transcript file will include the message:

Calculated width of '〈text〉': 〈number〉

where 〈text〉 is bib2gls’s interpretation of the contents of the name field and 〈number〉
is a rough guide to the width of 〈text〉 assuming the operating system’s default serif font.
The entry that has the largest 〈number〉 is the one that will be selected. This will then be
implemented as follows:

• If the type is unknown then:
– if the interpreter resolves all name fields to the empty string (that is the name

fields all consist of unknown commands) then
∗ if there are child entries \bibglssetwidestfallback is used,
∗ otherwise \bibglssetwidesttoplevelfallback is used;

– otherwise \bibglssetwidest is used.

• If the type is known then:
– if the interpreter resolves all name fields for that type to the empty string (that is

the name fields all consist of unknown commands) then
∗ if there are child entries \bibglssetwidestfortypefallback is used,
∗ otherwise \bibglssetwidesttoplevelfortypefallback is used;

– otherwise \bibglssetwidestfortype is used.

This leaves TEX to compute the width according to the document fonts. If bib2gls can’t
correctly determine thewidest entry then youwill need to use one of the commands provided
by glossary-tree, glossary-longextra or glossaries-extra-stylemods to set it.

In general, if you have more than one glossary it’s best to set the type using options like
type and dual-type if you use set-widest.

entry-type-aliases=〈key=value list〉
In the .bib file, the data is identified by @〈entry-type〉, such as @abbreviation. It may be
that you want to replace all instances of @〈entry-type〉 with a different type of entry. For
example, suppose my .bib file contains abbreviations defined in the form:

@abbreviation{html,
short = {html},
long = {hypertext markup language},
description = {a markup language for creating web pages}

}

138

5.3 General Options

but suppose in one of my documents I actually want all these abbreviations defined with
@dualabbreviationentry instead of @abbreviation. Instead of editing the .bib file I
can just supply a mapping:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
entry-type-aliases={abbreviation=dualabbreviationentry}

]

This makes all instances of @abbreviation behave as @dualabbreviationentry. You can
have more than one mapping. For example:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
entry-type-aliases={

% @abbreviation -> @dualabbreviationentry:
abbreviation=dualabbreviationentry,
% @entry -> @index:
entry=index

}
]

This option isn’t cumulative. Multiple instances of entry-type-aliases override previous
instances. If 〈key=value list〉 is empty there will be no mappings. You can save the original
entry type in the originalentrytype field with save-original-entrytype.

Here’s another example entry in a .bib file:

@foo{html,
name = {HTML},
short = {HTML},
long = {hypertext markup language},
description = {hypertext markup language}

}

Ordinarily this entry would be ignored since @foo isn’t recognised, but it can be mapped like
this:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
ignore-fields={short,long},
entry-type-aliases={foo=entry}

]

This treats the entry as though it had been defined as:

@entry{html,
name = {HTML},
description = {hypertext markup language}

}

139

5.3 General Options

whereas:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
ignore-fields={name,description},
entry-type-aliases={foo=abbreviation}

]

treats the entry as though it had been defined as:

@abbreviation{html,
short = {HTML},
long = {hypertext markup language}

}

unknown-entry-alias=〈value〉
If this option is set, the 〈value〉 is used as the alias for any unknown entry types (after any
aliases provided with entry-type-aliases have been applied). If the value is missing or
empty, unknown entry types will be ignored with a warning.

action=〈value〉
This governs how the entries are written in the .glstex file. The 〈value〉 may be one of:

• define: define the entries;

• provide: provide the entries;

• copy: copy the entries;

• define or copy: copy existing entries and define non-existing entries.

The default setting is action={define}, which writes the entry definition to the .glstex
file using one of the commands described in section 6.1. Since the record package option au-
tomatically switches on the undefaction={warn} option, any attempt at defining an entry
that’s already been defined will generate a warning rather than an error. The duplicate defi-
nition will be ignored. (The warnings can be found in the .log file since they are warnings
produce by glossaries-extra not by bib2gls.)

If you have multiple resource sets to help group different types of entry for the same glos-
sary, the action={provide} setting can be used to suppress any warnings if the selection
criteria is too complex to filter out entries that were selected by a previous resource set. If,
however, you want duplicate entries so that you can have the same entry listed in multiple
glossary, you need a different approach.

For example, if you try:

140

5.3 General Options

\newglossary*{copies}{Copies}
\GlsXtrLoadResources[src={entries}]
\GlsXtrLoadResources[sort={use},type={copies},src={entries}]

you’ll find that the copies glossary is empty and there will be warnings in the .log file
when the second resource file is loaded.

There are various ways of having the same entries in multiple glossaries. The simplest
method is to use secondary, but another method is to use action={copy} which simply
writes

\glsxtrcopytoglossary{〈label〉}{〈type〉}

instead of using one of the commands listed in section 6.1. This copies the entries rather
than defining them, which means the entries must already have been defined. You can select
entries that were selected in earlier resource sets with selection={selected before}.

The 〈type〉 is determined as follows:

• if the entry has the type field set, that’s used;

• if the entry is a tertiary and tertiary-type is set, that’s used;

• if the entry is a dual and dual-type is set, that’s used;

• otherwise the value of the type option is used.

If you’re not sure whether the entries may already be defined, you can use action={define
or copy} which will use \ifglsentryexists in the resource file to determine whether to
define or copy the entry.

Options that set or modify fields, such as category, group, save-locations, flatten or
name-case-change, will be ignored if entries are copied. However the copy-action-group
-field may be used to copy the group field (which may have been locally set by the sort
method) to another field. This ensures that the original group value from the entry definition
in an earlier resource set won’t be overwritten (unless you set copy-action-group-field
={group}).

Remember that \glsxtrcopytoglossary simply copies the entry’s label to the glossary’s
internal list. The only checks that bib2gls performs if action is not define is to ensure
that the master or secondary options have not been used, since they’re incompatible, and
that the type option is set, since it’s required as a fallback for any entries that don’t have
the type field set. (There are too many options that alter field values to check them all and
some may be used to alter the sorting.) The purpose of the copy action is simply to provide
a duplicate list in a different order.

Remember that if you are using hyperref, you need to use target={false} in the optional
argument of \printunsrtglossary for the glossary containing the copies to prevent du-
plicate hypertargets. Commands like \gls will link to the original entries. For example, in
the preamble:

141

5.3 General Options

\newignoredglossary{copies}

\GlsXtrLoadResources[src={entries}]

\GlsXtrLoadResources[
sort={use},
action={copy},
type={copies},
src={entries}

]

and later in the document:

\printunsrtglossary[title={Glossary (Alphabetical)},style={indexgroup}]
\printunsrtglossary[type={copies},title={Glossary (Order of Use)},
style={index},nogroupskip,% no grouping
target={false}]

Note also the need to use nogroupskip and a non-group style for the duplicates since the
group field will have been assigned in the first resource set if bib2gls was invoked with
--group. The grouping is appropriate for alphabetical ordering but not for order of use.

If you want different grouping for the duplicates, you can specify the field name to use in
which to store the group information using copy-action-group-field. Unlike secondary,
you will need to redefine \glsxtrgroupfield to the relevant field before you display the
glossary. The simplest way to do this is with the starred form of \printunsrtglossary. For
example, if copy-action-group-field={dupgroup} is added to the options for the second
resource set:

\printunsrtglossary*[type={copies},title={Duplicates},style={indexgroup}]
{\renewcommand{\glsxtrgroupfield}{dupgroup}}

This just does:

\begingroup
\renewcommand{\glsxtrgroupfield}{dupgroup}%
\printunsrtglossary[type={copies},title={Duplicates},
style={indexgroup}]

\endgroup

copy-to-glossary=〈list〉
This option can selectively copy an entry to a glossary after it has been defined. If the supplied
value 〈list〉 is empty, no copying is performed (except as a result of other options, such as
action or secondary). If set, the 〈list〉 argument is a list of string concatenations with
optional conditionals. Take care that constant strings are correctly delimited, as described
below, to ensure that they are not mistaken for field labels.

142

5.3 General Options

The evaluation of the target glossary label for each entry is performed while the .glstex
file is being written (after sorting) so all field values should be available in any field reference.
The action option is implemented first, so the selected entry will first either be defined or
copied according to action. If the copy-to-glossary instruction is successful, the entry
will then be copied to the target glossary using \bibglscopytoglossary.

The copy-to-glossary value should be a comma-separated list, where the syntax for
each item in the list is in the form:

〈element-list〉 [〈condition〉]

where 〈element-list〉 is a string concatenation (see section 5.1) and 〈condition〉 is a complex
conditional (see section 5.2). For each 〈element-list〉 [〈condition〉] specification, if the con-
dition evaluates to false or if the 〈element-list〉 evaluates to null then the copy instruction
won’t be added.

For example, the following first sets the type to “ignored” for any entries that only have
ignored records and then copies all entries that don’t have the type field set to “ignored” to
the glossary labelled “index”:

\GlsXtrLoadResources[
ignored-type={ignored},
copy-to-glossary={"index" [type <> "ignored"] }

]

The fallback action for amissing field value is governed by the copy-to-glossary-missing
-field-action setting. The result of the string concatenation (if not null) is the label of the
target glossary.

You can have multiple copy instructions to copy an entry to multiple glossaries. The defi-
nition of \bibglscopytoglossary will ensure that an entry will only be copied to the des-
ignated glossary if it isn’t already in the glossary’s internal list and will silently do nothing
if the glossary doesn’t exist.

Remember that constant strings need to bemarked with braces or double-quote delimiters.
For example, if you want to copy all entries to the index glossary then either do:

copy-to-glossary={"index"}

or

copy-to-glossary={{index}}

Note that the outer braces are stripped by the resource option parser, which first splits the
〈option〉={〈value〉} list supplied via \GlsXtrLoadResources into 〈option〉 and 〈value〉 pairs,
and then parses each 〈option〉. So by the time that the copy-to-glossary option has its
value parsed, the value has become "index" or {index}, respectively, in the above two
examples.

Remember that the 〈value〉 itself may be a comma-separated list. The outer grouping hides
the inner list comma from the initial 〈option〉={〈value〉} split. For example, to copy all entries
to the index and symbols glossaries:

143

5.3 General Options

copy-to-glossary={"index", "symbols"}

or

copy-to-glossary={{index}, {symbols}}

The following example will only copy entries to the index glossary if their actual entry
type is index:

copy-to-glossary={"index" [entrytype -> actual = "index"]}

Alternatively, to copy aliased custom entry types @person entries to a custom glossary
person and @place to a custom glossary place:

copy-to-glossary={
entrytype -> original
[entrytype -> original =/person|place/]

}

If the glossary types don’t conveniently match the entry type, the instructions can be split
into a list. For example:

copy-to-glossary={
"abbreviations" [entrytype -> actual = "abbreviation"],
"symbols" [entrytype -> actual = "symbol"],
"numbers" [entrytype -> actual = "number"],

}

Each instruction in the list will be tried and the copy instruction will only be written if the
condition evaluates to true and a non-null value is successfully returned.

copy-to-glossary-missing-field-action=〈value〉
This option indicates what to do if a source field identified in copy-to-glossary is missing.
The value may be one of:

• skip: return null;

• fallback: use the fallback for the missing field (see section 5.8), if one is available,
otherwise return null (default);

• empty: treat the missing value as empty.

Returning null will result in the copy instruction being omitted.

144

5.4 Selection Options

5.4 Selection Options
src=〈list〉
This identifies the .bib files containing the entry definitions. The value should be a comma-
separated list of the required .bib files. These may either be in the current working directory
or in the directory given by the --dir switch or on TEX’s path (in which case kpsewhichwill
be used to find them). The .bib extension may be omitted. Remember that if 〈list〉 contains
multiple files it must be grouped to protect the comma from the 〈options〉 list.

For example:

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]

indicates that bib2glsmust read the files entries-terms.bib and entries-symbols.bib
and create the file given by \jobname.glstex on the first instance or \jobname-〈n〉.glstex
on subsequent use.

With \glsxtrresourcefile[〈options〉]{〈filename〉}, if the src option is omitted, the
.bib file is assumed to be 〈filename〉.bib. For example:

\glsxtrresourcefile{entries-symbols}

indicates that bib2gls needs to read the file entries-symbols.bib, which contains the
entry data, and create the file entries-symbols.glstex. If the .bib file is different or if
you have multiple .bib files, you need to use the src option.
\GlsXtrLoadResources uses \jobname as the argument of \glsxtrresourcefile on

the first instance, so:

\GlsXtrLoadResources[]

will assume src={\jobname}. Remember that subsequent uses of \GlsXtrLoadResources
append a suffix, so in general it’s best to always supply src, except for small test cases with
a single resource command.

With old LATEX kernels, if you have non-ASCII characters in the .bib filename but aren’t
using XƎLATEX or LuaLATEX, then you will need to use \detokenize to prevent expansion
when the information is written to the .aux file. Newer LATEX kernels have better support
for UTF-8. Similarly for any special characters that need protecting (although it’s better not
to use special characters in filenames). For example:

\documentclass{article}

\usepackage[T2A]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[russian]{babel}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
src={\detokenize{кириллица}},% data in кириллица.bib

145

5.4 Selection Options

selection={all}
]

\begin{document}
\printunsrtglossary
\end{document}

selection=〈value〉
By default all entries that have records in the .aux file will be selected as well as all their
dependent entries. The dependent entries that don’t have corresponding records on the first
LATEX run, may need an additional build to ensure their location lists are updated.

Remember that on the first LATEX run the .glstex files don’t exist. This means that the
entries aren’t defined at that point. The record package option additionally switches on
the undefaction={warn} option, which means that you’ll only get warnings rather than
errors when you reference entries in the document. You can’t use \glsaddallwith bib2gls
because the glossary lists are empty on the first run, so there’s nothing for \glsaddall to
iterate over. Instead, if you want to add all defined entries, you need to instruct bib2gls to
do this with the selection option. The following values are allowed:

• recorded and deps: add all recorded entries and their dependencies (default).

• recorded and deps and see: as above but will also add unrecorded entries whose
see, seealso or alias field refers to a recorded entry.

• recorded and deps and see not also: as above but will add unrecorded entries
whose see or alias (but not seealso) field refers to a recorded entry.

• recorded no deps: add all recorded entries but not their dependencies. The de-
pendencies include those referenced in the see or seealso field or fields identified
by dependency-fields, parent entries and those found referenced with commands
like \gls in the field values that are parsed by bib2gls. With this setting, parents
will be omitted unless they’ve been referenced in the document through commands
like \gls. This setting won’t add any see or seealso lists to the location list. The
given field will be set, so you can access the information, but there’s no guarantee that
the cross-referenced entry will have been selected. The alias cross-reference will be
added to the location list but you will need to ensure that the target is also selected (or
use alias={omit} to suppress it).

• recorded and ancestors: this is like the previous setting but parents are added
even if they haven’t been referenced in the document. The other dependent entries are
omitted if they haven’t been referenced in the document. The above notes regarding
the cross-reference lists also applies.

146

5.4 Selection Options

• deps but not recorded: this first selects entries as though recorded and deps
had been used, but after all ancestors and dependencies have been added it then re-
moves all entries that have records. This means that you end up with only the un-
recorded dependencies. (Recorded entries will need to be selected in a different re-
source set.)

• ancestors but not recorded: this first selects entries as though recorded and
ancestors had been used, but after all ancestors have been added it then removes
all entries that have records. This means that you end up with only the unrecorded
ancestors. (Recorded entries will need to be selected in a different resource set.) See
the sample-nested.tex example document.

• selected before: select any entries that have been selected in a previous resource
set. This is intended for use with action={copy} to copy entries to another glossary
as an alternative to (or in addition to) the secondary option. Note that if you make
anymodifications to the fields (such as case-changing) the modification won’t be saved
to the .glstex file. This option can’t be used in the first resource set.

• all: add all entries found in the .bib files supplied in the src option.

The 〈value〉 must be supplied.
For example, suppose the file entries.bib contains:

@index{run}
@index{sprint,see={run}}
@index{dash,see={sprint}}

If the document only references the “run” entry (for example, using \gls{run}) then:

• If selection={recorded and deps}, only the “run” entry is selected. The “run”
entry has a record, so it’s selected, but it has no dependencies. Neither “sprint” nor
“dash” have records, so they’re not selected.

• If selection={recorded and deps and see}, the “run” and “sprint” entries are se-
lected, but not the “dash” entry. The “run” entry is selected because it has a record. The
“sprint” entry doesn’t have a record but its see field includes “run”, which does have a
record, so “sprint” is also selected. The “dash” entry doesn’t have a record. Its see field
references “sprint”. Although “sprint” has been selected, it doesn’t have any records,
so “dash” isn’t selected.

The above is just an example. The circuitous redirection of “dash” to “sprint” to “run” is
unhelpful to the reader and is best avoided (especially for an index where there are no ac-
companying descriptions and no location list for the intermediate “sprint”). A better method
would be:

@index{run}
@index{sprint,see={run}}
@index{dash,see={run}}

147

5.4 Selection Options

The selection={recorded and deps and see} in this case will select all three entries,
and the document won’t send the reader on a long-winded detour.

Now suppose that the file entries.bib contains:

@entry{run,
name = {run},
description={move fast using legs}

}

@entry{sprint,
name = {sprint},
description={run at full speed over short distance},
seealso={run}

}

@entry{dash,
name = {dash},
description={run in a great hurry},
seealso={sprint}

}

and suppose the document only references “dash” (for example, with \gls{dash}), then
with the default selection={recorded and deps} “dash” will be selected because it has
a record, and “sprint” will be selected because “dash” requires it (for the cross-reference),
and “run” will be selected because “sprint” requires it (for the cross-reference). In this case,
neither “sprint” nor “run” have a location list but they do both provide additional information
for the reader in their descriptions.

A better method here would be for each entry to have a cross-reference list that includes
all related terms:

@entry{run,
name = {run},
description={move fast using legs},
seealso={sprint,dash}

}

@entry{sprint,
name = {sprint},
description={run at full speed over short distance},
seealso={run,dash}

}

@entry{dash,
name = {dash},
description={run in a great hurry},

148

5.4 Selection Options

seealso={sprint,run}
}

Now, whichever one is indexed in the document, the other twowill automatically be selected.

match=〈key=value list〉
It’s possible to filter the selection by matching field values. The value is required for this key
but may be empty, which indicates that the setting is switched off, otherwise 〈key=value list〉
should be a 〈key〉=〈regexp〉 list, where 〈key〉 is the name of a field or id for the entry’s label
or entrytype for the bib2gls entry type (as in the part after @ identifying the entry not the
type field identifying the glossary label). If you’ve used entry-type-aliases, this refers
to the target entry type not the original entry type specified in the .bib file.

The 〈regexp〉 part should be a regular expression conforming to Java’s Pattern class [5].
The pattern is anchored (oo.* matches oops but not loops) and 〈regexp〉 can’t be empty.
Remember that TEX will expand the option list as it writes the information to the .aux file
so take care with special characters. For example, to match a literal period use \string\.
not \. (backslash dot).

If the field is missing its value it is assumed to be empty for the purposes of the pattern
match even if it will be assigned a non-empty default value when the entry is defined. If the
field is unrecognised by bib2gls any reference to it in 〈key=value list〉 will be ignored.

If a field is listed multiple times, the pattern for that field is concatenated using:

(?:〈pattern-1〉)|(?:〈pattern-2〉)

where 〈pattern-1〉 is the current pattern for that field and 〈pattern-2〉 is the new pattern. This
means it performs a logical OR. For the non-duplicate fields the logical operator is given by
match-op. For example:

match-op={and},
match={

category=animals,
topic=biology,
category=vegetables

}

This will keep all the selected entries that satisfy:

• category matches (?:animals)|(?:vegetables)

(the category is either animals or vegetables)

AND

• topic (custom key provided by user) is biology.

149

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

5.4 Selection Options

and will discard any entries that don’t satisfy this condition. A message will be written to
the log file for each entry that’s discarded.

Patterns for unknown fields will be ignored. If the entire list consists of patterns for un-
known fields it will be treated as match={}. That is, no filtering will be applied. In the above
example, the custom topic key must be provided before the first \GlsXtrLoadResources
with \glsaddkey or \glsaddstoragekey.

match-op=〈value〉
If the value of match contains more than one 〈key〉=〈pattern〉 element, the match-op deter-
mines whether to apply a logical AND or a logical OR. The 〈value〉 may be either and or or.
The default is match-op={and}.

not-match=〈key=value list〉
If match={〈key=value list〉} would cause an entry to be selected then not-match={〈key=
value list〉} would cause that entry to be ignored. The value is required for this key but
may be empty, which indicates that the setting is switched off. If you have both match and
not-match in the same resource set, the last one listed takes precedence.

match-action=〈value〉
The default behaviour with match or not-match is to filter the selection. This may be
changed to append to the selection instead. The 〈value〉 may be one of:

• filter: (default) filter selection;

• add: append any matches (with match) or non-matches (with not-match) to the se-
lection. This setting can’t be used with sort={use}.

For example, if I want to select all record entries and their dependencies, but I also want to
make sure that any entries with the category set to important are always selected regardless
of whether or not they have any records:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
match-action={add},
match={category=important}

]

limit=〈number〉
If 〈number〉 is greater than 0 then this will truncate the list of selected entries after sorting
to 〈number〉 (if the list size is greater than that value). The transcript will show the message:

Truncating according to limit=〈number〉

150

5.5 Hierarchical Options

When used with shuffle, this provides a means of randomly selecting at most 〈number〉
entries. The default setting is limit={0} (no truncation). A negative value of 〈number〉 is
not permitted.

If you have any dual entries, then the truncation will be applied to the combined list of
primary and duals if dual-sort={combine} otherwise each list will be truncated separately
by 〈number〉, which results in a maximum of 2× 〈number〉. Remember that tertiary entries
are created when dual entries are defined in the .glstex file, so this will increase the total
number of entries.

5.5 Hierarchical Options
Hierarchy is established by setting the parent field to the label of the parent entry. The
parent and child entries are sorted together, but hierarchical comparators will place child
entries after their corresponding parent.

The glossaries package provides \ifglshasparent to determine whether or not an entry
has the parent field set. If also provides \ifglshaschildren, but this command is inef-
ficient as it has to iterate over all entries to find an entry with the parent field set to the
relevant label. It’s also non-trivial to determine which child entries have been included in
the glossary with makeindex or xindy. bib2gls can provide this information with some of
the options described in this section.

It’s also possible to flatten entries (that is, remove the hierarchical information) or just
flatten lonely child entries.

save-child-count=〈boolean〉
This is a boolean option. The default setting is save-child-count={false}. If save-child
-count={true}, each entry will be assigned a field called childcount with the value equal
to the number of child entries that have been selected. As from version 1.5, this option also
creates the childlist field for entries that have children selected. This field is in etoolbox’s
internal list format and can be iterated over using \glsxtrfieldforlistloop.

The assignment is done using \GlsXtrSetField so there’s no associated key. You can
test if the field is set and non-zero using:

\GlsXtrIfHasNonZeroChildCount{〈entry label〉}{〈true〉}{〈false〉}

which is provided with glossaries-extra-bib2gls v1.31+. Within 〈true〉, you can access the ac-
tual value with \glscurrentfieldvalue. If save-child-count={false}, this command
will do 〈false〉 as the childcount field won’t be set.

For example, suppose entries.bib contains:

@index{birds}
@index{duck,parent={birds}}
@index{goose,plural={geese},parent={birds}}
@index{swan,parent={birds}}

151

5.5 Hierarchical Options

@index{minerals}
@index{quartz,parent={minerals}}
@index{corundum,parent={minerals}}
@index{amethyst,parent={minerals}}
@index{gypsum,parent={minerals}}
@index{gold,parent={minerals}}

and the document contains:

\documentclass{article}

\usepackage[record,style={indexgroup}]{glossaries-extra}

\GlsXtrLoadResources[src={entries},save-child-count]

\begin{document}
\gls{duck} and \gls{goose}.
\gls{quartz}, \gls{corundum}, \gls{amethyst}.

\printunsrtglossaries
\end{document}

Then the .glstex file will contain:

\GlsXtrSetField{birds}{childcount}{2}
\GlsXtrSetField{duck}{childcount}{0}
\glsxtrfieldlistadd{birds}{childlist}{duck}
\GlsXtrSetField{goose}{childcount}{0}
\glsxtrfieldlistadd{birds}{childlist}{goose}
\GlsXtrSetField{minerals}{childcount}{3}
\GlsXtrSetField{amethyst}{childcount}{0}
\glsxtrfieldlistadd{minerals}{childlist}{amethyst}
\GlsXtrSetField{corundum}{childcount}{0}
\glsxtrfieldlistadd{minerals}{childlist}{corundum}
\GlsXtrSetField{quartz}{childcount}{0}
\glsxtrfieldlistadd{minerals}{childlist}{quartz}

Note that although birds has three children defined in the .bib file, only two have been
selected, so the child count is set to 2. Similarly the minerals entry has five children defined
in the .bib file, but only three have been selected, so the child count is 3.

The following uses the post-description hook to show the child count in parentheses:

\GlsXtrLoadResources[src={entries},category={general},save-child-count]

\glsdefpostdesc{general}{%

152

5.5 Hierarchical Options

\glsxtrifhasfield{childcount}{\glscurrententrylabel}%
{ (child count: \glscurrentfieldvalue.)}%
{}%

}

\glsxtrifhasfield requires at least glossaries-extra v1.19. It’s slightly more efficient than
\ifglshasfield provided by the base glossaries package, and it doesn’t complain if the
entry or field don’t exist, but note that \glsxtrifhasfield implicitly scopes its content.
Use the starred version to omit the grouping. With glossaries-extra v1.31+ you can perform
a numerical test with \GlsXtrIfFieldNonZero or \GlsXtrIfFieldEqNum.

save-sibling-count=〈boolean〉
This is a boolean option. The default setting is save-sibling-count={false}. This is
like save-child-count but saves the sibling count in siblingcount and the sibling list in
siblinglist. As with the childlist, the sibling list is in etoolbox’s internal list format. The
sibling information is only saved for entries that have a parent.

The advantage with siblinglist over accessing the parent’s childlist is that the entry
itself is excluded from the list.

save-root-ancestor=〈boolean〉
This is a boolean option. The default setting is save-root-ancestor={false}. If true, the
entry’s top-most ancestor will be saved in the entry’s rootancestor internal field. If the
entry doesn’t have a parent (that it, the entry itself is the root) then the rootancestor field
won’t be set.

flatten=〈boolean〉
This is a boolean option. The default value is flatten={false}. If flatten={true}, the
sorting will ignore hierarchy and the parent field will be omitted when writing the defini-
tions to the .glstex file, but the parent entries will still be considered a dependent ancestor
from the selection point of view.

Note the difference between this option and using ignore-fields={parent} which will
remove the dependency (unless a dependency is established through another field).

flatten-lonely=〈value〉
This may take one of three values: false (default), presort and postsort. The value must
be supplied.

Unlike the flatten option, which completely removes the hierarchy, the flatten-lonely
option can be used to selectively alter the hierarchy. In this case only those entries that have
a parent but have no siblings are considered. This option is affected by the flatten-lonely
-rule setting. The conditions for moving a child up one hierarchical level are as follows:

153

5.5 Hierarchical Options

• The child must have a parent, and

• the child can’t have any selected siblings, and

• if flatten-lonely-rule={only unrecorded parents} then the parent can’t have
a location list, where the location list includes records and see or seealso cross-
references (for the other rules the parent may have a location list as long as it only
has the one child selected).

If the child is selected for hierarchical adjustment, the parent will be removed if:

• The parent has no location list, and

• flatten-lonely-rule isn’t set to no discard.

The value of flatten-lonely determines whether the adjustment should be made before
sorting (presort) or after sorting (postsort). To disable this function use flatten-lonely
={false}.

For example, suppose the file entries.bib contains:

@index{birds}
@index{duck,parent={birds}}
@index{goose,plural={geese},parent={birds}}
@index{swan,parent={birds}}
@index{chicken,parent={birds}}

@index{vegetable}
@index{cabbage,parent={vegetable}}

@index{minerals}
@index{quartz,parent={minerals}}
@index{corundum,parent={minerals}}
@index{amethyst,parent={minerals}}
@index{gypsum,parent={minerals}}

@index{aardvark}
@index{bard}
@index{buzz}

@index{item}
@index{subitem,parent={item}}
@index{subsubitem,parent={subitem}}

and suppose the document contains:

\documentclass{article}

154

5.5 Hierarchical Options

\usepackage[record,style={indexgroup}]{glossaries-extra}

\GlsXtrLoadResources[src={entries.bib}]

\begin{document}
\gls{duck}.
\gls{quartz}, \gls{corundum}, \gls{amethyst}.
\gls{aardvark}, \gls{bard}, \gls{buzz}.
\gls{vegetable}, \gls{cabbage}.
\gls{subsubitem}.

\printunsrtglossaries
\end{document}

Although the duck entry has siblings in the entries.bib file, none of them have been
recorded in the document, nor has the parent birds entry.

This document hasn’t used flatten-lonely, so the default flatten-lonely={false}
is assumed. This results in the hierarchical structure:

A
aardvark 1

B
bard 1

birds
duck 1

buzz 1

I
item

subitem
subsubitem 1

M
minerals

amethyst 1

corundum 1

quartz 1

155

5.5 Hierarchical Options

V
vegetable 1

cabbage 1

(The “1” in the above indicates the page number.) There are some entries here that look a
little odd: duck, cabbage and subsubitem. In each case they are a lone child entry. It would
look better if they could be compressed, but I don’t want to use the flatten option, as I still
want to keep the mineral hierarchy.

If I now add flatten-lonely={postsort}:

\GlsXtrLoadResources[src={entries.bib},flatten-lonely={postsort}]

the hierarchy becomes:

A
aardvark 1

B
bard 1
birds, duck 1
buzz 1

I
item, subitem, subsubitem 1

M
minerals

amethyst 1
corundum 1
quartz 1

V
vegetable 1

cabbage 1

The name field of the duck entry has been set to:

name={\bibglsflattenedchildpostsort{birds}{duck}}

156

5.5 Hierarchical Options

the text field has been set to:

text={duck}

the group field is copied over from the parent entry (“B”), and the parent field has been
adjusted, moving duck up one hierarchical level. Finally, the former parent birds entry
has been removed (the default flatten-lonely-rule={only unrecorded parents} is
in effect).

The default definition of \bibglsflattenedchildpostsort formats its arguments so
that they are separated by a comma and space (“birds, duck”). If the text field had been set
in the original @index definition of duck, it wouldn’t have been altered. This adjustment
ensures that in the document \gls{duck} still produces “duck” rather than “birds, duck”.
(If the child and parent name fields are identical, the terms are considered homographs. See
below for further details.)

The subsubitem entry has also been adjusted. This was done in a multi-stage process,
starting with sub-items and then moving down the hierarchical levels:

• The subitem entry was adjusted, moving it from a sub-entry to a top-level entry. The
name field was then modified to:

name={\bibglsflattenedchildpostsort{item}{subitem}}

This nowmeans that the subsubitem entry is now a sub-entry (rather than a sub-sub-
entry). The subitem entry now has no parent, but at this stage the subsubitem entry
still has subitem as its parent.

• The subsubitem entry is then adjusted moving from a sub-entry to a top-level entry.
The name field was then modified to:

name=
{%
\bibglsflattenedchildpostsort
{%
% name from former parent
\bibglsflattenedchildpostsort{item}{subitem}%

}%
{subsubitem}% original name

}

The first argument of \bibglsflattenedchildpostsort is obtained from the name
field of the entry’s former parent (which is removed from the child’s set of ancestors).
This field value was changed in the previous step, and the change is reflected here.
This means that the name for subitem will be displayed as “item, subitem” and the
name for subsubitem will be displayed as “item, subitem, subsubitem”.

• The parent entries item and subitem are removed from the selection as they have no
location lists.

157

5.5 Hierarchical Options

Note that the cabbage sub-entry hasn’t been adjusted. It doesn’t have any siblings but its
parent entry (vegetable) has a location list so it can’t be discarded. If I change the rule:

\GlsXtrLoadResources[src={entries.bib},
flatten-lonely-rule={discard unrecorded},
flatten-lonely={postsort}

]

then this will move the cabbage entry up a level but the original parent entry vegetable
will remain:

A
aardvark 1

B
bard 1

birds, duck 1

buzz 1

I
item, subitem, subsubitem 1

M
minerals

amethyst 1

corundum 1

quartz 1

V
vegetable 1

vegetable, cabbage 1

Remember that flatten-lonely={postsort} performs the adjustment after sorting. This
means that the entries are still in the same relative location that they were in with the orig-
inal flatten-lonely={false} setting. For example, duck remains in the B letter group
before “buzz”.

With flatten-lonely={presort} the adjustments are made before the sorting is per-
formed. For example, using:

158

5.5 Hierarchical Options

\GlsXtrLoadResources[src={entries.bib},
flatten-lonely-rule={discard unrecorded},
flatten-lonely={presort}

]

the hierarchical order is now:

A
aardvark 1

B
bard 1

buzz 1

C
cabbage 1

D
duck 1

M
minerals

amethyst 1

corundum 1

quartz 1

S
subsubitem 1

V
vegetable 1

This method uses a different format for the modified name field. For example, the duck entry
now has:

name={\bibglsflattenedchildpresort{duck}{birds}}

159

5.5 Hierarchical Options

The default definition of \bibglsflattenedchildpresort simply does the first argument
and ignores the second. The sorting is then performed, but the interpreter recognises this
command and can deduce that the sort value for this entry should be duck, so “duck” now
ends up in the D letter group.

If you provide a definition of \bibglsflattenedchildpresort in the @preamble, it will
be picked up by the interpreter. For example:

@preamble{"\providecommand{\bibglsflattenedchildpresort}[2]{#1 (#2)}"}

Note that the text field is only changed if not already set. This option may have unpre-
dictable results for abbreviations as the name field (and sometimes the text field) is typically
set by the abbreviation style. Remember that if the parent entry doesn’t have a location list
and the rule isn’t set to no discard then the parent entry will be discarded after all relevant
entries and their dependencies have been selected, so any cross-references within the parent
entry (such as \gls occurring in the description) may end up being selected even if they
wouldn’t be selected if the parent entry didn’t exist.

With both presort and postsort, if the parent name is the same as the child’s name then
the child is considered a homograph and the child’s name is set to:

\bibglsflattenedhomograph{〈name〉}{〈parent label〉}

instead of the corresponding \bibglsflattenedchild…sort. This defaults to just 〈name〉.

flatten-lonely-rule=〈value〉
This option governs the rule used by flatten-lonely to determine which sub-entries (that
have no siblings) to adjust and which parents to remove. The value may be one of the fol-
lowing, where 〈condition〉 is the condition provided by flatten-lonely-condition:

only unrecorded parents Only the sub-entries that have a parent without a location list
(and have 〈condition〉 evaluate to true) will be altered. The parent entrywill be removed
from the selection if the child entry is adjusted. This value is the default setting.

discard unrecorded This settingwill adjust all sub-entries that have no siblings (and have
〈condition〉 evaluate to true) regardless of whether or not the parent has a location
list. Only the parent entries that don’t have a location list will be removed from the
selection if the child entry is adjusted.

no discard This setting will adjust all sub-entries that don’t have siblings (and have 〈con-
dition〉 evaluate to true) regardless of whether or not the parent has a location list.
No entries will be discarded, so parent entries that don’t have a location list will still
appear in the glossary.

In the above, the location list includes records and cross-references obtained from the see or
seealso fields. See flatten-lonely for further details.

160

5.5 Hierarchical Options

flatten-lonely-condition=〈value〉
The value may either be empty, to indicate true (the default), or a complex condition using
syntax described in section 5.2. After taking into account flatten-lonely and flatten
-lonely-rule, this option determines whether or not the child entry will be adjusted. If
the condition evaluates to false, the child entry won’t be adjusted.

For example, if both the parent entry and the child entry have long names, it may be better
to keep their hierarchy. The following will only flatten lonely entries where both the child
name and the parent name have less then 25 characters:

flatten-lonely={postsort},
flatten-lonely-condition={\LEN{parent -> name} < 25 & \LEN{name} < 25}

Alternatively, for a combined length of less than 50 characters:

flatten-lonely={postsort},
flatten-lonely-condition={\LEN{parent -> name + name} < 50}

This doesn’t include the number of characters taken up by the separator but the maximum
value can be adjusted to allow for that, given a constant string separator.

flatten-lonely-missing-field-action=〈value〉
This option indicates what to do if a source field identified in flatten-lonely-condition
is missing. The value may be one of:

• skip: return null;

• fallback: use the fallback for the missing field (see section 5.8), if one is available,
otherwise return null (default);

• empty: treat the missing value as empty.

Returning null will result in the flatten lonely instruction being omitted.

strip-missing-parents=〈boolean〉
The glossaries package requires that all child entries must be defined after the parent entry.
An error occurs otherwise, so bib2gls will omit the parent field if it can’t be found in the
given resource set. However, when the default strip-missing-parents={false} is on,
this omission only occurs while writing the definitions in the .glstex file (after selection
and sorting).

Sorting is performed hierarchically and the group field is set accordingly for the top-level
entries (but not for child entries), which means that an entry with a parent field will be
treated by the sort method as a child entry. This can lead to a strange result, which bib2gls
warns about:

Parent '〈parent id〉' not found for entry 〈child-id〉

161

5.5 Hierarchical Options

This is the default behaviour as it may simply be a result of a typing mistake in the parent
field. If you actually want missing parents to be stripped before sorting (but after the selec-
tion process) then use strip-missing-parents={true}. If you want all parents stripped
then use flatten or ignore-fields={parent} instead. As from version 1.4, if you want
bib2gls to create the missing parents, then you can use missing-parents={create}.

missing-parents=〈value〉
As an alternative to strip-missing-parents, as from version 1.4 you can now use missing
-parents={〈value〉} where 〈value〉 may be one of:

• strip: this is equivalent to strip-missing-parents={true};

• warn: this is equivalent to the default strip-missing-parents={false};

• create: this will create a new @index entry with the missing parent’s label (after
it’s been processed by options such as labelify) with the name obtained from the
original value of the parent field (before being processed by options like labelify).
If the child entry has the type field set, then the new parent entry will be given the
same value. The category for the new parent entry can be assigned with missing
-parent-category.

For example, consider the books.bib file which contains entries like:

@entry{ubik,
name={Ubik},
description={novel by Philip K. Dick},
identifier={book},
author={\sortmediacreator{Philip K.}{Dick}},
year={1969}

}

then the field alias:

field-aliases={author=parent}

will treat:

author={\sortmediacreator{Philip K.}{Dick}},

as though it had been defined as:

parent={\sortmediacreator{Philip K.}{Dick}},

This can be converted into a label with the options:

labelify={parent},
labelify-replace={
{[\string\.]}{}

}

162

5.5 Hierarchical Options

If the interpreter has been provided with the definition:

\providecommand*{\sortmediacreator}[2]{#2 #1}

then the parent field for the ubik entry will become DickPhilipK but the original value
is stored internally when missing-parents={create} is set so that it can be used as the
name if the parent needs to be created. Once all the entries have been processed, if ubik has
been selected but no entry can be found with the label DickPhilipK then a new entry will
be added as though it had been defined with:

@index{DickPhilipK,
name={\sortmediacreator{Philip K.}{Dick}}

}

This is an alternative approach to the sample-authors.tex document from the examples
chapter.

missing-parent-category=〈value〉
If a missing parent entry is created through the use of missing-parents={create} then
the category field can be assigned to the new parent entry with this option. The 〈value〉
may be one of:

• same as child: the parent entry’s category field is set to the same value as the
child’s (if set);

• same as base: the parent entry’s category is set to the base name of the .bib file
that provided the child entry’s definition;

• no value or false: don’t set the category field;

• 〈label〉: the parent entry’s category field is set to 〈label〉 (which shouldn’t contain
any special characters).

The default setting is missing-parent-category={no value}.

group-level=〈value〉
If letter group formation is enabled (see group, group-formation and --group) then the
default behaviour is to only assign the group label for top-level entries. This option allows
the group label to be assigned to sub-entries if sub-groups are required. The value may be
one of the following:

• 〈n〉: only assign the group for level 〈n〉 entries;

• >〈n〉: only assign the group for entries with a level greater than 〈n〉;

• >=〈n〉: only assign the group for entries with a level greater than or equal to 〈n〉;

163

5.5 Hierarchical Options

• <〈n〉: only assign the group for entries with a level less than 〈n〉;

• <=〈n〉: only assign the group for entries with a level less than or equal to 〈n〉;

• all: equivalent to group-level={>=0}.

The default setting is group-level={0}. If no value is provided, group-level={all} is
assumed. The hierarchical levels start at 0 (top-level entry). For any value other than group
-level={0}, the parent entry label will be included in the group label.

The hierarchical group titles are formatted according to \bibglshiersubgrouptitle.
If the group title would usually be set with the command \bibglsset…group for top-level
entries then the hierarchical group title would be set with the analogous \bibglsset…group
command. For example, letter groups are normally set with \bibglssetlettergrouptitle
but hierarchical letter groups are set with \bibglssetlettergrouptitlehier.

If the --no-group setting is on then this option has no effect.

Any value other than the default group-level={0} requires glossaries-extra v1.49+,
which provides \glssubgroupheading.

Sub-groups are implemented by the glossary style command:

\glssubgroupheading{〈previous level〉}{〈level〉}{〈parent-label〉}{〈group-label〉}

The glossaries-extra package automatically implements:

\renewcommand*{\glssubgroupheading}[4]{\glsgroupheading{#4}}

whenever a style is set, so that if the style doesn’t provide a definition for this command, it
will behave like \glsgroupheading.

merge-small-groups=〈n〉
Merges consecutive small groups that have less than 〈n〉 entries. The default is merge-small
-groups={0}, which switches off this action. If 〈n〉 is omitted, merge-small-groups={1}
is assumed.

This setting only has an effect if group formation is enabled. If hierarchical sub-groups are
enabled (group-level) then merging is only performed on consecutive small groups within
the same hierarchical level. Any child entries that aren’t in their own sub-group are included
in the higher level group count.

For example, suppose you have a large number of entries in most of the letter groups:

@index{aardvark}
@index{ant}
@index{alligator}
@index{ape}
% etc

164

5.6 Master Documents

but you only have one entry in each of the “X”, “Y” and “Z” groups:

@index{xylem}
@index{yak}
@index{zebra}

then you may prefer to merge these entries into a single group:

\GlsXtrLoadResources[merge-small-groups]

The title of this merged group is obtained from \bibglsmergedgrouptitle (or \bibgls-
mergedgrouptitle if hierarchical groups have been enabled with group-level). For the
above example, the merged letter group would have the title “X, Y, Z”. If there are more than
three groups then the middle group titles are replace with an ellipsis. For example, if there
is also only one entry in the “W” letter group, then the merged title would be “W,…, Z”.

The small groups must be consecutive (there is no group between them) and on the same
hierarchical level in order to be merged. In the above example, if the yak entry isn’t selected
so that there is no “Y” letter group, then the “X” and “Z” groups can be merged (with the
merged title “X, Z”). If, on the other hand, extra entries occur in the “Y” letter group, so
that it is larger than the value of merge-small-groups, then “X” and “Z” can no longer be
merged.

5.6 Master Documents
Suppose you have two documents mybook.tex and myarticle.tex that share a common
glossary that’s shown in mybook.pdf but not in myarticle.pdf. Furthermore, you’d like
to use hyperref and be able to click on a term in myarticle.pdf and be taken to the relevant
page in mybook.pdf where the term is listed in the glossary.

This can be achieved with the targeturl and targetname category attributes. For example,
without bib2gls the file mybook.tex might look like:

\documentclass{book}
\usepackage[colorlinks]{hyperref}
\usepackage{glossaries-extra}

\makeglossaries

\newglossaryentry{sample}{name={sample},description={an example}}

\begin{document}
\chapter{Example}
\gls{sample}.

\printglossaries
\end{document}

165

5.6 Master Documents

The other document myarticle.tex might look like:

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage{glossaries-extra}

\newignoredglossary*{external}
\glssetcategoryattribute{external}{targeturl}{mybook.pdf}
\glssetcategoryattribute{external}{targetname}{\glolinkprefix\glslabel}

\newglossaryentry{sample}{type=external,category=external,
name={sample},description={an example}}

\begin{document}
\gls{sample}.
\end{document}

In this case the main glossary isn’t used, but the category attributes allow a mixture of inter-
nal and external references, so the main glossary could be used for the internal references.
(In which case, \makeglossaries and \printglossaries would need to be added back to
myarticle.tex.)

Note that both documents had to define the common terms. The above documents can be
rewritten to work with bib2gls. First a .bib file needs to be created:

@entry{sample,
name={sample},
description={an example}

}

Assuming this file is called myentries.bib, then mybook.tex can be changed to:

\documentclass{book}
\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[src={myentries}]

\begin{document}
\chapter{Example}
\gls{sample}.

\printunsrtglossaries
\end{document}

and myarticle.tex can be changed to:

166

5.6 Master Documents

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\newignoredglossary*{external}
\glssetcategoryattribute{external}{targeturl}{mybook.pdf}
\glssetcategoryattribute{external}{targetname}{\glolinkprefix\glslabel}

\GlsXtrLoadResources[
src={myentries},
sort={none},
type={external},
category={external}

]

\begin{document}
\gls{sample}.
\end{document}

Most of the options related to sorting and the glossary format are unneeded here since the
glossary isn’t being displayed. This may be sufficient for your needs, but it may be that
the book has changed various settings that have been written to mybook.glstex but aren’t
present in the .bib file (such as short-case-change={uc}). In this case, you could just
remember to copy over the settings from mybook.tex to myarticle.tex, but another pos-
sibility is to simply make myarticle.tex input mybook.glstex instead of using \GlsXtr-
LoadResources. This can work but it’s not so convenient to set the label prefix, the type
and the category. The master option allows this, but it has limitations (see below), so in
complex cases (in particular different label prefixes combined with hierarchical entries or
cross-references) you’ll have to use the method shown in the example code above.

master=〈name〉
This option will disable most of the options that relate to parsing and processing data con-
tained in .bib files (since this option doesn’t actually read any .bib files). It also can’t be
used with action={copy} or action={define or copy}. A value of falsewill switch off
this setting (the default).

The use of master isn’t always suitable. In particular if any of the terms cross-reference
each other, such as through the see or seealso field or the parent field or using commands
like \gls in any of the other fields when the labels have been assigned prefixes. In this case
you will need to use the method described in the example above.

The 〈name〉 is the name of the .aux file for the master document without the extension
(in this case, mybook). It needs to be relative to the document referencing it or an absolute
path using forward slashes as the directory divider. Remember that if it’s a relative path, the
PDF files (mybook.pdf and myarticle.pdf) will also need to be located in the same relative

167

5.6 Master Documents

position.
When bib2gls detects the master option, it won’t search for entries in any .bib files (for

that particular resource set) but will create a .glstex file that inputs the master document’s
.glstex files, but it will additionally temporarily adjust the internal commands used to de-
fine entries so that the prefix given by label-prefix, the glossary type and the category
type are all automatically inserted. If the type or category options haven’t been used, the
corresponding value will default to master. The targeturl and targetname category attributes
will automatically be set, and the glossary type will be provided using \provideignored-
glossary*{〈type〉} (even if --no-provide-glossaries is set).

The above myarticle.tex can be changed to:

\documentclass{article}
\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[label-prefix={book.},master={mybook}]

\begin{document}
\gls{book.sample}.
\end{document}

There are some settings from the master document that you still need to repeat in the
other document. These include the label prefixes set when the master document loaded the
resource files, and any settings in the master document that relate to the master document’s
entries.

For example, if the master document loaded a resource file with label-prefix={term.}
then you also need this prefix when you reference the entries in the dependent document in
addition to the label-prefix for the dependent document. Suppose mybook.tex loads the
resources using:

\GlsXtrLoadResources[src={myentries},label-prefix={term.}]

and myarticle.tex loads the resources using:

\GlsXtrLoadResources[label-prefix={book.},master={mybook}]

Then the entries referenced in myarticle.tex need to use the prefix book.term. as in:

This is a \gls{book.term.sample} term.

Remember that the category labels will need adjusting to reflect the change in category
label in the dependent document.

For example, if mybook.tex included:

\setabbreviationstyle{long-short-sc}

then myarticle.tex will need:

168

5.7 Field and Label Options

\setabbreviationstyle[master]{long-short-sc}

(change master to 〈value〉 if you have used category={〈value〉}). You can, of course, choose
a different abbreviation style for the dependent document, but the category in the optional
argument needs to be correct.

master-resources=〈list〉
If the master document has multiple resource files then by default all the master document’s
.glstex files will be input. If you don’t want them all you can use master-resources
to specify only those files that should be included. The value 〈list〉 is a comma-separated
list of names, where each name corresponds to the final argument of \glsxtrresource-
file. Remember that \GlsXtrLoadResources is just a shortcut for \glsxtrresourcefile
that bases the name on \jobname. (Note that, as with the argument of \glsxtrresource-
file, the .glstex extension should not be included in 〈list〉.) The file \jobname.glstex is
considered the primary resource file and the files \jobname-〈n〉.glstex (starting with 〈n〉
equal to 1) are considered the supplementary resource files.

For example, to just select the first and third of the supplementary resource files (omitting
the primary mybook.glstex):

\GlsXtrLoadResources[
master={mybook},
master-resources={mybook-1,mybook-3}

]

5.7 Field and Label Options
Theoptions in this sectionmay be used to set or adjust field values or labels. Some field values
are expected to be labels (such as group). These labels must not contain special characters
or commands, but it’s possible to convert a field value into a valid label using options such
as labelify.

Entry Labels
interpret-label-fields=〈boolean〉

This is a boolean option that determineswhether or not the fields thatmay only contain labels
should have their values interpreted (parent, category, type, group, seealso and alias).
Although this option interprets commands within those fields, it doesn’t strip any characters
that can’t be used within a label. The see field isn’t included as it may optionally start with
[〈tag〉] where 〈tag〉 may legitimately contain LATEX code that shouldn’t be interpreted.

The default setting is interpret-label-fields={false}. Note that if this setting is on,
cross-resource references aren’t permitted. This setting has no effect if the interpreter has
been disabled.

169

5.7 Field and Label Options

Related settings are labelify and labelify-list which can be used to strip content
that can’t be used in labels and may be used more generally for other fields. The labelify
and labelify-list options are performed before interpret-label-fields.

labelify=〈list〉

This option should take a comma-separated list of recognised field names as the value. (If
a field is present in both labelify and labelify-list, then labelify-list takes prece-
dence.) Note that if this setting is on, cross-resource references aren’t permitted. The value
is required for this key but may be empty, which indicates an empty set of fields (that is, the
setting is switched off).

Each listed field will be converted into a string suitable for use as a label. (Not necessarily a
glossary entry label, but any label that may be used in the construction of a control sequence
name.)

The conversion is performed in the following order:

1. If the interpreter is on and the field value contains any of the characters \ (backslash),
{ (begin group), } (end group), ~ (non-breakable space) or $ (maths shift), then the
value is interpreted.

2. Any substitutions that have been specified with labelify-replace are performed.

3. All characters that aren’t alphanumeric or the space character or any of the follow-
ing punctuation characters . (full stop), - (hyphen), + (plus), : (colon), ; (semi-colon),
| (pipe), / (forward slash), ! (exclamation mark), ? (question mark), * (asterisk), < (less
than), > (greater than), ` (backtick), ' (apostrophe) or @ (at-sign) are stripped. If you
want to retain commas, use labelify-list instead. If you want to strip any of the al-
lowed punctuation, use labelify-replace to remove the unwanted characters. (Re-
member that babel can make some of these punctuation characters active, in which
case they need to be stripped.)

4. If bib2gls doesn’t allow non-ASCII characters in labels, the value is then decomposed
and all non-ASCII characters are removed. UTF-8 support is automatic if bib2gls
detects fontspec in the document’s transcript file, otherwise UTF-8 in labels will only
be supported if bib2gls detects that the versions of glossaries and glossaries-extra are
new enough to support it. To ensure better support for UTF-8 with pdfLATEX, make sure
you have a recent TEX distribution and up-to-date versions of glossaries and glossaries-
extra.

For example, suppose the .bib file contains:

@index{sample,
name={\AA ngstr\"om, \O stergaard, d'Arcy, and Fotheringay-Smythe}

}

Then:

170

5.7 Field and Label Options

\GlsXtrLoadResources[
src={entries},% data in entries.bib
labelify={name}

]

will convert the name field into:

Angstrom stergaard d'Arcy and Fotheringay-Smythe

if bib2gls doesn’t support non-ASCII characters in labels otherwise it will be:

Ångström Østergaard d'Arcy and Fotheringay-Smythe

Note that Ø is considered an unmodified letter and so can’t be decomposed into a basic Latin
letter with a combining diacritic. It’s therefore removed completely from the ASCII label
version. Whereas Å can be decomposed into “A” followed by the “combining ring above”
character and ö can be decomposed into “o” followed by the “combining diaresis” character.
You can use labelify-replace to replace non-ASCII characters into the closest match.
Alternatively, switch to using XƎLATEX or LuaLATEX.

You can use this option with replicate-fields if you need to retain the original:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
replicate-fields={name={user1}},
labelify={user1}

]

labelify-list=〈list〉

This option is like labelify but it retains commas, as it’s designed for fields that should
be converted into a comma-separated list of labels. Any empty elements are removed. For
example, with the .bib entry from above:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
replicate-fields={name={user1}},
labelify-list={user1}

]

will convert the user1 field into:

Angstrom, stergaard, d'Arcy, and Fotheringay-Smythe

or:

Ångström, Østergaard, d'Arcy, and Fotheringay-Smythe

depending on whether or not UTF-8 labels are supported.

171

5.7 Field and Label Options

labelify-replace=〈list〉

This option takes a comma-separated list as a value with each element in the list in the form
{〈regex〉}{〈replacement〉}where 〈regex〉 is a regular expression (that conforms to Java’s Pat-
tern class [5]) and 〈replacement〉 is the replacement text. The value is required for this key
but may be empty, which indicates that the setting is switched off.

Remember that the argument of \GlsXtrLoadResources is expanded when written to
the .aux file so take care to protect any special characters. For example, to match a literal
full stop use \string\. rather than just \. (backslash dot).

In the 〈replacement〉 part, you can use \glscapturedgroup〈n〉 to reference a captured
sub-sequence. For example:

labelify-replace={{([A-Z])\string\.}{\glscapturedgroup1}}

This removes any full stop that follows any of the characters A,…,Z. Alternatively, you can
just use \string\$ instead of \glscapturedgroup. If you want a literal dollar character,
you need to use \glshex24 (or \string\u24). This isn’t recommended for labels (since
special characters are automatically stripped), but sort-replace follows the same rules as
labelify-replace, and it may be needed for that.

You can’t use the \MGP quark (which expands to the \MGP identifier in a string concate-
nation) to identify the captured group in this context, as the replacement text needs
to use the correct regular expression syntax.

Both labelify and labelify-list use the labelify-replace setting to perform sub-
stitutions. For example, to replace the sub-string “ and ” (including spaces) with a comma:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
replicate-fields={name={user1}},
labelify-replace={{ and }{,}},
labelify-list={user1}

]

The earlier example will now end up as:

Angstrom, stergaard, d'Arcy,Fotheringay-Smythe

or:

Ångström, Østergaard, d'Arcy,Fotheringay-Smythe

depending on whether or not UTF-8 labels are supported.
Note that this produces the same result regardless of whether or not the Oxford comma

is present as , and would first be converted to ,, and then the empty element is removed
resulting in a single comma.

You can have more than one replacement:

172

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

5.7 Field and Label Options

\GlsXtrLoadResources[
src={entries},% data in entries.bib
replicate-fields={name={user1}},
labelify-replace={
{ and }{,},% first substitution
{['\string\-]}{},% second substitution
{\glshex00D8}{O}% third substitution

},
labelify-list={user1}

]

This additionally removes the space, apostrophe and hyphen characters (second substitution)
and replaces “Ø” (0x00D8) with “O” (third substitution) so the string now ends up as:

Angstrom,Ostergaard,dArcy,FotheringaySmythe

or:

Ångström,Ostergaard,dArcy,FotheringaySmythe

depending on whether or not UTF-8 labels are supported.

label-prefix=〈tag〉

The label-prefix option prepends 〈tag〉 to each entry’s label. This 〈tag〉 will also be
inserted in front of any cross-references, unless they start with dual. or tertiary. or
ext〈n〉. (where 〈n〉 is an integer). Use dual-prefix to change the dual label prefixes and
ext-prefixes to change the external label prefixes.

If you set label-prefix and you define commands with \glsxtrnewglslike, then any
of those commands found in entry fields won’t have the label-prefix inserted if the prefix
provided with the command starts with the prefix given in label-prefix. (This doesn’t
apply to other prefix options, such as dual-prefix, so take care if you have a mixture of
prefix options and prefixes identified with \glsxtrnewglslike.)

As from version 1.8, the primary label prefix is identified in the .glstex file with:

\bibglsprimaryprefixlabel{〈prefix〉}

For example, if the .bib file contains:

@entry{bird,
name={bird},
description = {feathered animal, such as a \gls{duck} or \gls{goose}}

}

@entry{waterfowl,
name={waterfowl},
description={Any \gls{bird} that lives in or about water},

173

5.7 Field and Label Options

see={[see also]{duck,goose}}
}

@index{duck}

@index{goose,plural="geese"}

Then if this .bib file is loaded with label-prefix={gls.} it’s as though the entries had
been defined as:

@entry{gls.bird,
name={bird},
description = {feathered animal, such as a \gls{gls.duck} or \gls

{gls.goose}}
}

@entry{gls.waterfowl,
name={waterfowl},
description={Any \gls{gls.bird} that lives in or about water},
see={[see also]{gls.duck,gls.goose}}

}

@index{gls.duck,name={duck}}

@index{gls.goose,name={goose},plural="geese"}

Remember to use this prefix when you reference the terms in the document with com-
mands like \gls.

duplicate-label-suffix=〈value〉

The glossaries package doesn’t permit entries with duplicate labels (even if they’re in dif-
ferent glossaries). If you have multiple resource sets and an entry that’s selected in one re-
source set is also selected in another, by default, bib2glswill issue a warning, but it will still
write the entry definition to the .glstex file, which means you’ll also get a warning from
glossaries-extra and the duplicate definition will be ignored, but associated internal fields set
with commands like \GlsXtrSetField may still be set.

If you actually want the duplicate, you need to specify a suffix with duplicate-label
-suffix. This suffix is only set just before writing the entry definition to the .glstex file,
so it doesn’t affect selection criteria nor can label substitutions be performed in any cross-
references. Options such as set-widest that reference entry labels are incompatible as they
will use the unsuffixed label.

The actual suffix is formed from 〈value〉〈n〉 where 〈n〉 is an integer that’s incremented
in the event of multiple duplicates. For example, duplicate-label-suffix={.copy} will
change the label to 〈id〉.copy1 for the first duplicate of the entry whose label is 〈id〉, and
〈id〉.copy2 for the second duplicate, etc.

174

5.7 Field and Label Options

record-label-prefix=〈tag〉

If set, this option will cause bib2gls to pretend that each record label starts with 〈tag〉, if it
doesn’t already. For example, suppose the records in the .aux file are:

\glsxtr@record{bird}{}{page}{glsnumberformat}{1}
\glsxtr@record{waterfowl}{}{page}{glsnumberformat}{1}
\glsxtr@record{idx.duck}{}{page}{glsnumberformat}{1}
\glsxtr@record{idx.goose}{}{page}{glsnumberformat}{1}

The use of record-label-prefix={idx.} makes bib2gls act as though the records were
given as:

\glsxtr@record{idx.bird}{}{page}{glsnumberformat}{1}
\glsxtr@record{idx.waterfowl}{}{page}{glsnumberformat}{1}
\glsxtr@record{idx.duck}{}{page}{glsnumberformat}{1}
\glsxtr@record{idx.goose}{}{page}{glsnumberformat}{1}

cs-label-prefix=〈tag〉

If you have commands such as \gls{〈label〉} or \glstext{〈label〉} in field values (in situa-
tions where nested link text won’t cause a problem) the 〈label〉 will be converted as follows:

• if 〈label〉 starts with dual. then dual. will be replaced by the dual-prefix value;

• if 〈label〉 starts with tertiary. then tertiary. will be replaced by the tertiary
-prefix value;

• if 〈label〉 starts with ext〈n〉. then ext〈n〉. will be replaced by the corresponding ext
-prefixes setting (if cross-resource reference mode is enabled, see section 1.5);

• if 〈label〉 doesn’t start with one of the above recognised prefixes then, if cs-label
-prefix has been used the supplied valuewill be inserted otherwise the label-prefix
setting will be inserted.

For example, given:

@entry{bird,
name={bird},
description = {feathered animal, such as a \gls{duck} or \gls{goose}}

}

then if label-prefix={idx.} is set but cs-label-prefix isn’t included in the resource
option list this will convert the description field to:

description = {feathered animal, such as a \gls{idx.duck} or
\gls{idx.goose}}

However with cs-label-prefix={gls.} the description field will be converted to:

175

5.7 Field and Label Options

description = {feathered animal, such as a \gls{gls.duck} or
\gls{gls.goose}}

regardless of the label-prefix setting. Whereas if the original entry definition is:

@entry{bird,
name={bird},
description = {feathered animal, such as a \gls{dual.duck} or

\gls{dual.goose}}
}

then dual. will be replaced by the value of the dual-prefix option regardless of the cs
-label-prefix setting.

The cs-label-prefix setting doesn’t affect labels in the fields that have an entry label
or label list as the value (parent, alias, see and seealso).

ext-prefixes=〈list〉

Any cross-references in the .bib file that start with ext〈n〉. (where 〈n〉 is a positive integer)
will be substituted with the 〈n〉th tag listed in the comma-separated 〈list〉. If there aren’t
that many items in the list, the ext〈n〉. will simply be removed. The default setting is an
empty list, which will strip all ext〈n〉. prefixes. Remember that cross-resource reference
mode needs to be enabled for this option to work (see section 1.5).

As from version 1.8, the external label prefixes are identified in the .glstex file with:

\bibglsexternalprefixlabel{〈n〉}{〈prefix〉}

For example, suppose the file entries-terms.bib contains:

@entry{set,
name={set},
description={collection of values, denoted \gls{ext1.set}}

}

and the file entries-symbols.bib contains:

@symbol{set,
name={\ensuremath{\mathcal{S}}},
description={a \gls{ext1.set}}

}

These files both contain an entry with the label set but the description field includes
\gls{ext1.set} which is referencing the entry from the other file. These two files can be
loaded without conflict using:

\usepackage[record,symbols]{glossaries-extra}

\GlsXtrLoadResources[src={entries-terms},

176

5.7 Field and Label Options

label-prefix={gls.},
ext-prefixes={sym.}

]

\GlsXtrLoadResources[src={entries-symbols},
type={symbols},
label-prefix={sym.},
ext-prefixes={gls.}

]

Now the set entry from entries-terms.bibwill be defined with the label gls.set and
the description will be:

collection of values, denoted \gls{sym.set}

The set entry from entries-symbols.bib will be defined with the label sym.set and the
description will be:

a \gls{gls.set}

Note that in this case the .bib files have to be loaded as two separate resources. They
can’t be combined into a single src list as the labels aren’t unique.

If you want to allow the flexibility to choose between loading them together or separately,
you’ll have to give them unique labels. For example, entries-terms.bib could contain:

@entry{set,
name={set},
description={collection of values, denoted \gls{ext1.S}}

}

and entries-symbols.bib could contain:

@symbol{S,
name={\ensuremath{\mathcal{S}}},
description={a \gls{ext1.set}}

}

Now they can be combined with:

\GlsXtrLoadResources[src={entries-terms,entries-symbols}]

which will simply strip the ext1. prefix from the cross-references. Alternatively:

\GlsXtrLoadResources[src={entries-terms,entries-symbols},
label-prefix={gls.},
ext-prefixes={gls.}

]

which will insert the supplied label-prefix at the start of the labels in the entry definitions
and will replace the ext1. prefix with gls. in the cross-references.

177

5.7 Field and Label Options

prefix-only-existing=〈boolean〉

This is a boolean option. It’s possible that a prefix can end up being inserted when there’s
no entry in the current resource set that matches the prefixed label. If this option is set then
the prefix won’t be added if there’s no matching entry. The default setting is prefix-only
-existing={false}.

dependency-fields=〈list〉

The 〈list〉 should be a comma-separated list of fields that have values in the form [〈tag〉]〈id-
list〉 where 〈id-list〉 is a comma-separated list of entry labels. The value is required for this
key but may be empty, which indicates an empty set of fields (that is, the setting is switched
off). Note that the listed fields must be recognised as known fields, for example, custom fields
defined with \glsaddstoragekey.

This setting makes those fields act like the see field by identifying the listed entries as
dependencies, but the information isn’t added to the cross-reference part of the location list.
This action is performed after labelify-list, if that’s also set.

For example, suppose the file entries-en.bib contains:

@index{cat,
translations-pt={gato,gatinho},
seealso={kitten}

}

@index{kitten,
translations-pt={gato,gatinho}

}

@index{staple}
@index{rivet}
@index{mat}
@index{carpet}
@index{rug}
@index{tapestry}
@index{doormat}
@index{matting}
@index{coconut-matting,

name={coconut matting}
}
@index{track}
@index{furrow}

and suppose the file entries-pt.bib contains:

@index{gato,
prefix={o},

178

5.7 Field and Label Options

translations-en={cat,staple,rivet},
seealso={gatinho}

}

@index{gatinho,
translations-en={kitten}

}

@index{tapete,
translations-en={carpet,rug,mat,tapestry}

}

@index{esteira,
prefix={a},
translations-en={mat,track,matting,furrow}

}

@index{capacho,
prefix={o},
translations-en={doormat,matting,mat,coconut-matting}

}

The aim here is to have a document containing an English-to-Portuguese and a Portuguese-
to-English dictionary. The custom translations-pt and translations-pt fields contain
comma-separated lists of possible translations. In this case I don’t want to use the see field
(and, in fact, can’t for the entries that have the seealso field set), but I can identify the
values of those fields as dependent entries to ensure that they are selected even if they’re not
referenced in the document.

For convenience I’ve aliased the custom fields to user1:

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[british,brazilian]{babel}
\usepackage[colorlinks]{hyperref}
\usepackage[record,
nomain,
nostyles,
stylemods={bookindex},
style={bookindex}

]{glossaries-extra}
\usepackage{glossaries-prefix}

\newglossary*{en}{English Terms}

179

5.7 Field and Label Options

\newglossary*{pt}{Portuguese Terms}

\GlsXtrLoadResources[
type={en},
src={entries-en},
sort={en-GB},
category={en},
field-aliases={translations-pt=user1},
dependency-fields={user1},
sort-label-list={user1:pt-BR:glsentryname}

]
\GlsXtrLoadResources[

type={pt},
src={entries-pt},
sort={pt-BR},
category={pt},
field-aliases={translations-en=user1},
dependency-fields={user1},
sort-label-list={user1:en-GB:glsentryname}

]

\apptoglossarypreamble[en]{\selectlanguage{british}}
\apptoglossarypreamble[pt]{\selectlanguage{brazilian}}

\begin{document}
\selectlanguage{british}
The \gls{cat} sat on the \gls{mat}.

\selectlanguage{brazilian}
O \gls{gato} sentou-se no \gls{tapete}.

\renewcommand*{\glsxtrbookindexname}[1]{%
\glsxtrifhasfield{prefix}{#1}{\xmakefirstuc\glscurrentfieldvalue\␣}{}%
\glossentryname{#1}%
\glsxtrifhasfield{useri}{#1}
{; translations: \glsxtrseelist\glscurrentfieldvalue}{}%

}
\printunsrtglossaries
\end{document}

180

5.7 Field and Label Options

Special Fields
save-original-id=〈value〉

The 〈value〉may be the keywords false or true or the name of a field in which to store the
entry’s original label (as given in the .bib file). The default setting is save-original-id=
{false}. If 〈value〉 is omitted or is the keyword true, then originalid is assumed.

If 〈value〉 has an associated key in \newglossaryentry (for example, one provided with
\glsaddstoragekey) it will be set after the field aliases, otherwise (for example, original-
id) it will simply be added to the .glstex file using \GlsXtrSetField after the entry def-
inition (which means the field can’t be referenced in other resource options). This setting is
governed by save-original-id-action.

save-original-id-action=〈value〉

This option determines whether or not save-original-id should save the original entry
label. No action is performed when save-original-id={false} otherwise the action is
determined by 〈value〉 which may be one of the following keywords:

• always: always save the original label (default);

• no override: don’t override a field that’s already been set;

• changed override or changed or diff: only save the original label if it’s different
from the final label;

• changed no override: only save the original label if it’s different from the final label
and the specified field hasn’t been set.

The “no override” options make no difference if the given field has no associated key in \new-
glossaryentry (such as originalid). For known fields, bear in mind that the field will be
set after field aliasing but before other options, such as ignore-fields.

save-definition-index=〈boolean〉

This is a boolean option. If the value is omitted true is assumed. The default setting is
save-definition-index={false}.

This setting will save the definition index that’s used by identical-sort-action={def}
to determine the order of definition in the special internal field definitionindex. This field
is assigned when the entry is first created and can be referenced with \bibglsdefinition-
index. You can reference this field with certain resource options, such as format-integer
-fields, but you must place the save-definition-index resource option first.

Note that (unless you need to maintain hierarchy) if you want to order all entries by defi-
nition, it’s better to use sort={none}, which doesn’t perform any sorting, so the order will
be by definition.

181

5.7 Field and Label Options

save-use-index=〈boolean〉

This is a boolean option. If the value is omitted true is assumed. The default setting is
save-use-index={false}.

This setting will save the order of use index that’s used by identical-sort-action=
{use} in the special internal field useindex. This field is assigned when the entry picks up
its first record and can be referenced with \bibglsuseindex. You can’t reference this field
in resource options such as format-integer-fields.

Entries that don’t have records won’t have this field set. The order of use corresponds to
the first time the entry is recorded in the document.

Note that (unless you need to maintain hierarchy) if you want to order all entries by use,
it’s better to use sort={use}, which doesn’t perform any sorting.

save-from-see=〈value〉

This option allows you to save a comma-separated list of entry labels in a designated internal
field of the target entry identified by their see field. If the 〈value〉 is omitted, save-from
-see={from-see} is assumed. The value may be the keyword false, which switches off
this setting, otherwise the value should be the desired name of the internal field. The default
setting is save-from-see={false}.

For example, if the .bib file contains:

@index{gourd}
@index{cucumber,see={gourd}}
@index{pumpkin,see={gourd}}

then the resource option save-from-see={from-see} will create an internal field called
from-see for the gourd entry that contains the comma-separated list cucumber,pumpkin.

Note that the given internal field isn’t actually assigned within bib2gls, so it can’t be
accessed via any resource options. Each item in this list is added using \glsxtrapptocsv-
field after the source entry (that is, the entry containing the see field) is defined in the
.glstex file. This means that the list will be in the same order as the entries. You can then
pass the field value to \glsseelist. For example:

\glsdefpostdesc{%
\glsxtrifhasfield{from-see}{\glscurrententrylabel}
{, related: \glsseelist{\glscurrentfieldvalue}}{}%

}

This option has no effect with the “no dependency” selection criteria (such as selection
={recorded no deps}).

save-from-seealso=〈value〉

As save-from-see but for the seealso field. If the value is omitted, save-from-seealso
={from-seealso} is assumed.

182

5.7 Field and Label Options

save-from-alias=〈value〉

As save-from-see but for the alias field. If the value is omitted, save-from-alias=
{from-alias} is assumed.

save-crossref-tail=〈value〉

If you have a cross-reference trail where one entry references another entry using see,
seealso or alias and the referenced entry also references another, and so on, then you
can save the tail end of the trail with this option. Note that the trail only follows single-label
lists (in see or seealso). The trail is terminated if an entry doesn’t have one of those three
fields set or if it cross-references multiple entries or if the trail loops back on itself.

If you have a loop, the tail for some entries may end prematurely since the algorithm to
obtain the tail saves the tail for each sub-trail to avoid recalculating it. It’s best to avoid this
setting if you have cross-reference loops. (Aside from two-way cross-references, it’s best to
avoid loops in general.)

The tail label is stored in the field identified by the 〈value〉 of this option. If the value
is omitted, save-crossref-tail={crossref-tail} is assumed. The field won’t be set if
there’s no tail. The tails are calculated when writing the entry definitions to the .glstex file
so the value can’t be referenced or otherwise accessed by bib2gls.

Example:

@index{sample1,see={sample2}}
@index{sample2,see={sample3}}
@index{sample3,see={sample4}}
@index{sample4}

The tail for sample1 is sample4. As a by-product of the recursion used in calculating the tail
for sample1, the tail for each element in the trail (sample2 and sample3) is also calculated.
The tail is the same for each entry in the trail. The final entry sample4 doesn’t have a tail.

If sample4 is modified to cross-reference sample1:

@index{sample4,see={sample1}}

then when the tail for sample4 is calculated the tail for its cross-reference (sample1) is
consulted. This has already been set to sample4. An entry can’t have itself as a tail so
the tail for sample4 is set to sample3. All the other entries still have sample4 as their tail
because their tail was determined while traversing the trail for sample1, which had to stop
when it wrapped round to its starting point.

save-original-entrytype=〈value〉

The 〈value〉 may be the keywords false or true or the name of a field in which to store
the original entry type (as given in the .bib file but without the leading @ and converted
to lower case). The setting is save-original-entrytype={false}. If 〈value〉 is omitted
or the keyword true, then save-original-entrytype={originalentrytype} If 〈value〉

183

5.7 Field and Label Options

has an associated key in \newglossaryentry (for example, one provided with \glsadd-
storagekey) it will be set after the field aliases, otherwise (for example, originalentry-
type) it will simply be added to the .glstex file using \GlsXtrSetField after the entry
definition (which means the field can’t be referenced in other resource options). This setting
is governed by save-original-entrytype-action.

save-original-entrytype-action=〈value〉

This option determines whether or not save-original-entrytype should save the original
entry type. No action is performed when save-original-entrytype={false} otherwise
the action is determined by 〈value〉 which may be one of the following keywords:

• always: always save the original entry type (default);

• no override: don’t override a field that’s already been set;

• changed override or changed or diff: only save the original entry type if it’s dif-
ferent from the final entry type;

• changed no override: only save the original entry type if it’s different from the final
entry type and the specified field hasn’t been set.

The “no override” optionsmake no difference if the given field is unknown (such as original-
entrytype). For known fields, bear in mind that the field will be set after field aliasing but
before other options, such as ignore-fields.

The “changed” options ignore case. For example, if the .bib file defined an entry with
@INDEX then both the original and final entry type will be index.

gather-parsed-dependencies=〈value〉

Dependencies that are found by parsing field valuesmay be gathered into a comma-separated
list saved in a field for later use. The 〈value〉 is the name of the desired field. If the 〈value〉 is
omitted gather-parsed-dependencies={seealso} is assumed. If the designated field is
already set, the list will be appended to the existing value.

Note that other dependencies, such as those obtained by examining the cross-reference
fields (see, seealso or alias) or ancestors or dual entries, are not automatically added. The
〈value〉 may be the keyword false to switch off this option (which is the default).

Assignments
group=〈label〉

The group option will set the group field to 〈label〉 unless 〈label〉 is auto. If group={auto}
then if the --group switch is used the value of the group field is set automatically during
the sorting (see also group-formation, group-level and section 1.3). If the --no-group
setting is on then group={auto} does nothing.

184

5.7 Field and Label Options

The corresponding group title can be set with \glsxtrsetgrouptitle in the document
if the title is different from the label. The default behaviour is group={auto}.

For example:

\GlsXtrLoadResources[sort={integer},group={Constants},
src={entries-constants}% data in entries-constants.bib

]
\GlsXtrLoadResources[sort={letter-case},group={Variables},
src={entries-variables}% data in entries-variables.bib

]

In this case, if the type field hasn’t been set in the .bib files, these entries will be added to the
same glossary, but will be grouped according to each instance of \GlsXtrLoadResources,
with the provided group label.

category=〈value〉

The selected entries may all have their category field changed before writing their defini-
tions to the .glstex file. The 〈value〉 may be:

• false: switch off this setting (default);

• same as entry: set the category to the .bib entry type used to define it (lower case
and without the initial @) after any aliasing, if applicable;

• same as original entry: (new to v1.4) set the category to the original entry type
(lower case and without the initial @) before it was aliased (behaves like same as
entry if the entry type wasn’t aliased);

• same as base: (new to v1.1) set the category to the base name of the .bib file (with-
out the extension) that provided the entry definition;

• same as type: set the category to the same value as the type field (if that field has
been provided either in the .bib file or through the type option);

• 〈label〉: the category is set to 〈label〉 (which mustn’t contain any special characters).

This will override any category fields supplied in the .bib file.
When used with entry-type-aliases, the option category={same as entry} refers

to the target entry type whereas category={same as original entry} refers to the orig-
inal entry type given in the .bib file. In both cases, the value is converted to lower case to en-
sure consistency. An alternative is to use save-original-entrytype={category}. When
combined with save-original-entrytype-action={changed} it’s then possible to only
set the category to the original entry type for aliased entries and leave it unmodified for
unaliased entries.

For example, if the .bib file contains:

185

5.7 Field and Label Options

@entry{bird,
name={bird},
description = {feathered animal}

}

@index{duck}

@index{goose,plural="geese"}

@dualentry{dog,
name={dog},
description={chien}

}

then if the document contains:

\GlsXtrLoadResources[category={same as entry},src={entries}]

this will set the category of the bird term to entry (since it was defined with @entry),
the category of the duck and goose terms to index (since they were defined with @index),
and the category of the dog term to dualentry (since it was defined with @dualentry).
Note that the dual entry dual.dog doesn’t have the category set, since that’s governed by
dual-category instead.

If, instead, the document contains:

\GlsXtrLoadResources[category={animals},src={entries}]

then the category of all the primary selected entries will be set to animals. Again the dual
entry dual.dog doesn’t have the category set.

Note that the categories may be overridden by the commands that are used to actually
define the entries (such as \bibglsnewindex).

For example, if the document contains:

\newcommand{\bibglsnewdualentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2,category={dual}}{#4}%

}

\GlsXtrLoadResources[category={animals},src={entries}]

then both the dog and dual.dog entries will have their category field set to dual since the
new definition of \bibglsnewdualentry has overridden the category={animals} option.

type=〈value〉

The 〈value〉 may be one of:

• false: switches off this setting (default);

186

5.7 Field and Label Options

• same as entry: set the type field to the entry type (lower case andwithout the initial
@);

• same as original entry: set the type to the original entry type (lower case and
without the initial @) before it was aliased (behaves like same as entry if the entry
type wasn’t aliased);
same as base: set the type field to the base name of the corresponding .bib file
(without the extension);

• same as category: set the type field to the same value as the category field (type
unchanged if category not set);

• same as parent: sets the type to the same as the entry’s parent (new to v1.9). If
the entry doesn’t have a parent or if the parent doesn’t have the type field set, then
no change is made. Entries should always have the same type as their parent, but it’s
possible for spawned entries to pick up the type field from their progenitor entry (if
it was explicitly set in the .bib file), which may be inappropriate.

• 〈label〉: sets the type field to the glossary identified by 〈label〉.

When used with entry-type-aliases, the option type={same as entry} refers to the
target entry type and type={same as original entry} refers to the original entry type
given in the .bib file. An alternative is to use save-original-entrytype={type}. When
combined with save-original-entrytype-action={changed} it’s then possible to only
set the type to the original entry type for aliased entries and leave it unmodified for unaliased
entries.

It’s not possible to have both category={same as type} and type={same as
category}.

Note that this setting only changes the type field for primary entries. Use dual-type for
dual entries.

For example:

\usepackage[record,symbols]{glossaries-extra}

\GlsXtrLoadResources[src={entries-symbols},type={symbols}]

Make sure that the glossary type has already been defined (see section 1.4). In the above,
the symbols option defines the symbols glossary. If you want to use a custom glossary, you
need to provide it. For example:

\usepackage[record,nomain]{glossaries-extra}

\newglossary*{dictionary}{Dictionary}

\GlsXtrLoadResources[src={entries-symbols},type={dictionary}]

187

5.7 Field and Label Options

(The nomain option was added to suppress the creation of the default main glossary.)

ignored-type=〈type〉

Any entry that only has ignored records will still be identified as having a record for selection
purposes, which is necessary for the entry to be defined in the document, but it may be
preferable to move such entries to a special ignored glossary. This can be done with ignored
-type={〈type〉}, where 〈type〉 is the label of the ignored glossary.

The glossary will be provided with \provideignoredglossary to ensure that it’s defined
even if --no-provide-glossaries is set (see section 1.4). Note that it uses the unstarred
\provideignoredglossary since it’s assumed that it won’t be needed in a list and therefore
won’t have a target. This is different to all the other settings that provide an ignored glossary,
which use the starred version instead.

This option is not implemented for entries that have no records (those entries may have
been selected because they are dependent on another entry, such as a parent of a recorded
child entry). The entry must have at least one ignored record and no other type of record
and not be dependent on other entries or be cross-referenced by other entries.

Note that the trigger-type option, if set, overrides the ignored-type option for en-
tries that have records with the special format \glstriggerrecordformat (which is also
considered an ignored record). However, ignored-typewill override the type, dual-type,
tertiary-type and the type specification in secondary.

Ignored entries may be copied to another glossary with copy-to-glossary. If this is
undesirable, a condition may be applied to prevent it. For example, to copy all selected
entries to the glossary labelled “index” except for ignored entries:

\GlsXtrLoadResources[
src={{terms,abbreviations}}
ignored-type={ignored},
copy-to-glossary={"index" [type <> "ignored"]}

]

trigger-type=〈type〉

The record counting commands, such as \rgls, use the special format \glstriggerrecord-
format, which bib2gls also treats as an ignored record. This means the entry will still be
identified as having a record for selection purposes, which is necessary for the entry to be
defined for use in the document, but in order to prevent it from appearing in the glossary
you need to transfer the entry with trigger-type={〈type〉}. This will override the type,
dual-type, tertiary-type and the type specification in secondary.

The provided value 〈type〉 must be a glossary label (not one of the keywords allowed by
type) or false to switch off this setting. You can define the glossary before loading the
resource, but it’s not required as bib2gls will write \provideignoredglossary*{〈type〉}
to the .glstex file even if --no-provide-glossaries is set (see section 1.4).

188

5.7 Field and Label Options

progenitor-type=〈type〉

This sets the default type field for the main term defined by @progenitor-like entries. The
〈value〉 is as for type. This doesn’t change the type for the spawned progeny.

progeny-type=〈type〉

This sets the default type field for the progeny term spawned by @progenitor-like entries.
The 〈value〉 is as for type. This doesn’t change the type for the main progenitor. Remem-
ber that with the default adopted-parent-field={parent} setting, the given type should
match the type of the parent entry.

adopted-parent-field=〈type〉

This identifies the target field to be set to the corresponding value of the adoptparents list
by the progeny entries spawned by the @progenitor type of entry. The default is parent.

ignore-fields=〈list〉

Take care not to confuse ignore-fields with omit-fields. The argument of
ignore-fields is a simple list of field names.

The ignore-fields key indicates that you want bib2gls to skip the fields listed in the
supplied comma-separated 〈list〉 of field labels. Remember that unrecognised fields will al-
ways be skipped. However, an unrecognised field can still be referenced with some options
(such as replicate-fields) whereas any field excluded with ignore-fields will be dis-
carded and can’t be referenced.

This setting is always implemented after field-aliases (see section 1.5). If a field has
been aliased then the original field name is no longer present and so ignoring it will have no
effect.

For example, suppose my .bib file contains:

@abbreviation{html,
short ="html",
long = {hypertext markup language},
description={a markup language for creating web pages},
seealso={xml}

}

but I want to use the short-long style and I don’t want the cross-referenced term, then I can
use ignore-fields={seealso,description}.

Note that ignore-fields={parent} removes the parent before determining the depen-
dency lists. Thismeans that selection={recorded and deps} and selection={recorded
and ancestors} won’t pick up the label in the parent field.

189

5.7 Field and Label Options

If you want to maintain the dependency and ancestor relationship but omit the parent
field when writing the entries to the .glstex file, you need to use flatten instead. Alter-
natively, you can use omit-fields, however the hierarchical structure will continue to be
maintained.

The ignore-fields instruction removes the unwanted fields early in the Stage 3 process
(see section 1.5). This means that those field values won’t be available if they are referenced
nor can they be used to establish dependencies. If fields should be omitted from the .glstex
file but the field values should still be available to bib2gls, then use omit-fields instead.

omit-fields=〈list〉

Take care not to confuse omit-fields with ignore-fields. The argument of omit
-fields is a complex list of string concatenations.

The omit-fields action takes place in the final stage, at the point where each entry is
written to the .glstexfile. Unlike ignore-fields, the fields aren’t removed from bib2gls’s
own internal data structure. This means that the fields can be referenced in other options
and will be parsed as usual for dependencies.

If set, the 〈list〉 argument is a list of string concatenations with optional conditionals.
Take care that constant strings are correctly delimited to ensure that they are not mistaken
for references to field values. Note that this is different from ignore-fields, which simply
requires a list of field names. For example, to omit the description field for all entries:

omit-fields={"description"}

Each identified field is simply omitted when writing the field list in the .glstex file. How-
ever, this may trigger a fallback if the field is required. This option only applies to fields that
have a corresponding key that may be used in commands such as \newglossaryentry. The
option does not apply to special internal fields. Any fields identified in the given list that are
not recognised will be ignored.

When each entry definition is being written to the .glstex file, the supplied 〈list〉 is
evaluated for the current entry. Each non-empty non-null result will be added to a temporary
set of exclusion field names. Then each 〈key〉=〈value〉 for the current entry will be written
to the .glstex for each known 〈key〉 that has the corresponding field set where the 〈key〉 is
not included in the exclusion set.

Suppose the file abbrv.bib contains:

@abbreviation{ssi,
short={SSI},
long={server-side includes},
description={a simple interpreted server-side

scripting language}
}
@abbreviation{html,
short={HTML},

190

5.7 Field and Label Options

long={hypertext markup language},
description={a markup language for creating web

pages}
}
@abbreviation{shtml,
short={SHTML},
long={server-side includes enabled hypertext markup language},
description={a combination of \gls{html} and

\gls{ssi}}
}

With ignore-fields={description}, the description field will be removed when the
entry is first processed. This means that the dependencies in the SHTML description field
won’t be detected. Whereas with omit-fields={"description"}, the description field
won’t be removed, so it will still be parsed and the dependent entries will be detected, how-
ever the description field won’t be written in the .glstex file. In this case, you may want
to also use gather-parsed-dependencies to save a list of the dependent entries.

Remember that literal strings must be quoted with string concatenations. For example,
suppose an entry has been defined as:

@index{nom-fr,
name={nom},
description={name}

}

In the case of omit-fields={"description"} then this will become:

\newglossaryentry{name-fr}{
name={nom}

}

Whereas omit-fields={description} returns the value of the description field. For
the above example entry, the value of the description field is “name”, so name is added to
the exclusion set and so won’t be written whilst bib2gls iterates over the “name-fr” list of
fields.

This means that the name field will be flagged as not written to the .glstex file. In the
case of @index, this means that the fallback for the name field will be used, which is the entry
label. The result will therefore end up as:

\newglossaryentry{name-fr}{
description={name},
name={name-fr}

}

In this case, the description field value just happens to be the name of another recognised
field. Mostly, this type of error would likely result in a string that doesn’t match any known
field, which will trigger a warning.

191

5.7 Field and Label Options

Conditions may also be applied. For example, to omit the description field for any
entries defined with @abbreviation:

omit-fields={
"description" [entrytype -> actual = "abbreviation"]

}

omit-fields-missing-field-action={〈value〉}
This option indicates what to do if a source field identified in omit-fields is missing. The
value may be one of:

• skip: return null;

• fallback: use the fallback for the missing field (see section 5.8), if one is available,
otherwise return null (default);

• empty: treat the missing value as empty.

Returning null or empty skips the string concatenation element from the omision list.

field-aliases=〈key=value list〉

You can instruct bib2gls to treat one field as though it was another using this option. The
value should be a comma-separated list of 〈field1〉=〈field2〉 pairs, where 〈field1〉 and 〈field2〉
are field names. Identical mappings and trails aren’t permitted. (That is, 〈field1〉 and 〈field2〉
can’t be the same nor can you have both 〈field1〉=〈field2〉 and 〈field2〉=〈field3〉.) If you want
to swap fields you need to use one of the dual entry types instead. Field aliases are performed
before ignore-fields, so if 〈field1〉 is listed in ignore-fields it won’t be ignored (unless
〈field2〉 is in ignore-fields).

For example, suppose people.bib contains:

@entry{alexander,
name={Alexander III of Macedon},
description={Ancient Greek king of Macedon},
born={20 July 356 BC},
died={10 June 323 BC},
othername={Alexander the Great}

}

This contains three non-standard fields: born, died and othername. I could define these
fields using \glsaddkey, but another possibility is to map these onto the user keys user1,
user2 and user3, which saves the overhead of providing new keys:

\GlsXtrLoadResources[
src={people},% data in people.bib
field-aliases={born=user1,died=user2,othername=user3}

]

192

5.7 Field and Label Options

replicate-fields=〈key=value list〉

Note the difference in syntax between replicate-fields and assign-fields. Both
have a key=value list as the option argument, but the 〈key〉=〈value〉 syntax is different.
In the case of replicate-fields, the left hand side (〈key〉) is the source field. The
right hand side (〈value〉) is a comma-separated list of destination fields. The value of
the source field will be copied into each of the destination fields. In the case of assign
-fields, the left hand side (〈key〉) is the destination field and the right hand side value
is an assignment expression with an optional conditional.

The value of one field can be copied to other fields using this option where each 〈key〉=
〈value〉 pair is in the form 〈field1〉={〈field2〉,〈field3〉,…}where all values are field names. The
value is required for this key but may be empty, which indicates that the setting is switched
off.

This option copies the contents of 〈field1〉 to 〈field2〉, 〈field3〉, … (but only if the target
field isn’t already set with replicate-override={false}). This action is performed after
ignore-fields (see section 1.5). If the source field is missing, the replicate-missing
-field-action setting determines the action.

If the target field doesn’t have an associated key recognised by \newglossaryentry then
the value will be saved using \GlsXtrSetField. Special internal fields aren’t permitted as
either source or target fields.

For example, suppose people.bib contains:

@entry{alexander,
name={Alexander III of Macedon (Alexander the Great)},
text={Alexander},
description={Ancient Greek king of Macedon}

}

Since the first field hasn’t been supplied, it will default to the value of the text field, but
perhaps for one of my documents I’d like the first field to be the same as the name field.
Rather than editing the .bib file, I can just do:

\GlsXtrLoadResources[
src={people},% data in people.bib
replicate-fields={name=first}

]

This copies the contents of the name field into the first field. If you have more than one
field in the list take care to brace the lists to avoid confusion. For example, if for some reason
I want to copy the value of the name field to both first and firstplural and copy the
value of the text field to the plural field, then this requires braces for the inner list:

\GlsXtrLoadResources[
src={people},% data in people.bib
replicate-fields={name={first,firstplural},text=plural}

]

193

5.7 Field and Label Options

If my people.bib file instead contained:

@entry{alexander,
name={Alexander III of Macedon (Alexander the Great)},
first={Alexander the Great},
text={Alexander},
description={Ancient Greek king of Macedon}

}

then:

\GlsXtrLoadResources[
src={people},% data in people.bib
replicate-fields={name=first}

]

won’t alter the first field since replicate-fields doesn’t override existing values by
default. You can use replicate-override to change this. Alternatively, since replicate
-fields is always performed after ignore-fields it’s possible to ignore the first field
which means that the name value can then be copied into it:

\GlsXtrLoadResources[
src={people},% data in people.bib
ignore-fields={first},
replicate-fields={name=first}

]

Note that the orderingwithin the resource options doesn’t make a difference. The same result
occurs with:

\GlsXtrLoadResources[
src={people},% data in people.bib
replicate-fields={name=first},
ignore-fields={first}

]

replicate-override={〈boolean〉}

This is a boolean option. The default setting is replicate-override={false}. If true,
replicate-fields will override the existing value if the target field is already set.

replicate-missing-field-action={〈value〉}

This option indicates what to do if a source field identified in replicate-fields is missing.
The value may be one of:

• skip: skip the replication of the missing field (default);

194

5.7 Field and Label Options

• fallback: use the fallback for the missing field (see section 5.8), if one is available
(otherwise skip);

• empty: make the target field empty.

assign-fields=〈key=value list〉

Note the difference in syntax between replicate-fields and assign-fields, as
highlighted in the replicate-fields section, above. The assign-fields option is
implemented after the replicate-fields option (see section 1.5).

The assign-fields option is a more complicated way of setting a field than replicate
-fields. Each 〈key〉=〈value〉 element of the key=value list argument has the syntax:
〈dest-field〉 =[〈override〉] 〈element-list〉 [〈condition〉]
If the destination field (〈dest-field〉) is already set, it will only be overwritten if assign
-override={true} or if [override] is “ o ”. The 〈dest-field〉 is simply the name of the field
for the entry under consideration and doesn’t use the more complex 〈field-ref 〉 syntax used
in 〈element-list〉, which is described in section 5.1. You can, however, use the \u quark on
either side of the 〈key〉=〈value〉 element to indicate a Unicode character.

The [〈override〉] following the equal sign is optional and may be used to counteract the
assign-override setting for the given assignment. The 〈override〉 value may be either “ o ”
(override) or “ n ” (no override). If not present, the assign-override setting will be used.

The 〈element-list〉 is a string concatenation, as described in section 5.1. If any individual
element in the list evaluates to null, the entire string is deemed to be null, in which case the
assignment won’t be made.

The [〈condition〉] part is optional. If present, the assignment is only made if the condition
evaluates to true. The condition should be placed in square brackets after the 〈element-list〉
part. This is a complex conditional, as described in section 5.2.

Note that, unlike most 〈key〉=〈value〉 options, the value part (〈element-list〉 [〈condition〉])
should not be grouped. The assign-fields option is parsed in a different way to the other
key=value list options. However, it’s best to group the entire 〈value〉 argument of assign
-fields. For example:
assign-fields={
name = text + ", " + symbol
}

Don’t do name = {text + ", " + symbol}.

Remember that field values may be altered before or after assign-fields by other
resource options (see section 1.5). The assignment will use the value current at the time
it is referenced during the processing of assign-fields. If you need to reference the
destination field in the assignment, make sure that the override setting is on if the field
needs to be updated.

195

5.7 Field and Label Options

For example, suppose I have defined the custom fields surname and forename, and I have
the following in my .bib file:

@index{Smith}
@index{Jane-Smith,
forename={Jane},
parent={Smith}

}

Suppose that what I actually want is:

@index{Smith}
@index{Jane-Smith,
forename={Jane},
surname={Smith},
parent={Smith},
name={Jane},
text={Jane Smith}

}

This is quite repetitive to type out for every person you need to index. The replicate
-fields option can reduce some of this. For example:

replicate-fields={
forename={name},
surname={parent}

}

This doesn’t deal with the text field and also has a problem if the parent field (which should
contain a label) doesn’t match the surname. For example, I might also have:

@index{de-la-Fontaine,
name={de la Fontaine}

}
@index{Margaret-de-la-Fontaine,
forename={Margaret},
parent={de-la-Fontaine}

}

In this case the custom surname field needs to match the parent’s name field, not the parent’s
label.

The desired result can instead be obtained with:

assign-fields={
surname = parent -> name,
name = self -> forename,
text = self -> forename

+ " " + self -> surname
}

196

5.7 Field and Label Options

The self -> part is optional so this can be written more compactly as:

assign-fields={
surname = parent -> name,
name = forename,
text = forename + " " + surname

}

The last assignment in the above can also be written as:

text = forename + { } + surname

Suppose, for some reason, I want the first use to show the surname in bold. This means I
need to add \textbf{ before the value of the surname field and the closing } needs to go
after. This can be achieved with:

first = forename + " \textbf{" + surname "}"

Note that because there are unbalanced braces in the string fragments, it’s necessary to use
quote delimiters. Since \textbf is robust, there’s no need to protect it from expansion.

Suppose, instead, I want the surname in upper case on first use. I could simply replace
\textbf with \MakeUppercase, but I can get bib2gls to do the case-conversion instead:

first = forename + " " + \UC{ surname }

This assumes that \GlsXtrResourceInitEscSequences has been added to the definition
of \glsxtrresourceinit, as described in section 1.6. Otherwise you would need to protect
\UC.

In the above example, the surname field is obtained from the value of the parent’s name
according to the assignment:

surname = parent -> name,

In the case of the Smith entry, the name field hasn’t been set.
If a referenced field hasn’t been set then the behaviour depends on the assign-missing

-field-action setting. The default behaviour is to use the fallback, if provided (see sec-
tion 5.8). In the case of @index, the fallback for the name field is the entry’s label. This means
that the Jane-Smith entry will have the surname field set to “Smith”.

If the fallback isn’t set or if there is no fallback then the assignment instruction will be
skipped. Similarly, if an ancestor is referenced but doesn’t exist then assignment will again
be skipped.

The ancestor entries must be defined first to ensure that they have been processed and
have had their fields set before they can be referenced in an assignment.

Since I haven’t imposed any conditions on the assignments, the instructions will be at-
tempted on all entries. This includes the parent entries.

197

5.7 Field and Label Options

The first instruction attempts to set the surname field to the parent’s name. Neither the
Smith nor the de-la-Fontaine entries have a parent entry, so this instruction is skipped for
both of them.

The second instruction attempts to set the name field to the entry’s forename field. The
de-la-Fontaine entry already has the name field set so the instruction is automatically skipped
(because of the default assign-override={false}). The Smith entry doesn’t have the name
field set so the assignment will be attempted but will fail because the forename field isn’t set
and doesn’t have a fallback.

The text (and first) instruction similarly references the forename field, which isn’t set,
so the instruction is skipped. The instruction also contains a reference to the surname field,
but that part of the assignment isn’t reached as the attempt stops at the first unset reference.

This means that neither the Smith not the de-la-Fontaine entries will be affected by the
above assign-fields setting.

Each instruction will be attempted, in turn, unless the assign-override setting prevents
it. This means it’s possible to have multiple assignments for a particular field. The first
one that succeeds will be the one that has effect (with assign-override={false}). For
example:

assign-fields={
surname = parent -> name,
surname = name,
name = forename,
text = forename + " " + surname

}

This has two instructions for the surname. The first one will be applied to entries that have
a parent and the second one will be applied to the other entries (that don’t already have the
surname set).

Suppose I also have some monarchs, who are more typically only referred to by their
forename (with no surname), possibly prefixed by their rank and suffixed by their ordinal.
Let’s further suppose that in my document I have also defined the custom fields rank and
ordinal, and in my .bib file I have:

@indexplural{king}
@indexplural{queen}
@indexplural{empress,plural={empresses}}

@index{King-Stephen,
parent={king},
forename={Stephen}

}
@index{Empress-Matilda,

parent={empress},
forename={Matilda},

}

198

5.7 Field and Label Options

@index{Elizabeth-I,
parent={queen},
forename=Elizabeth,
ordinal=I

}

The earlier assignment rules won’t be appropriate for these cases, as they would result in the
text fields: “Stephen kings”, “Matilda empresses” and “Elizabeth queens”.

In this case, the assignment rules need to depend on the type of entry. I could test if the
parent label is “king” or “empress” or “queen”, but a more reliable approach is to have custom
entry types which can be aliased:

@index{Smith}
@person{Jane-Smith,
forename={Jane},
parent={Smith}

}
@index{de-la-Fontaine,
name={de la Fontaine}

}
@person{Margaret-de-la-Fontaine,
forename={Margaret},
parent={de-la-Fontaine}

}

@indexplural{king}
@indexplural{queen}
@indexplural{empress,plural={empresses}}

@monarch{King-Stephen,
parent={king},
forename={Stephen}

}
@monarch{Empress-Matilda,

parent={empress},
forename={Matilda},

}
@monarch{Elizabeth-I,

parent={queen},
forename=Elizabeth,
ordinal=I

}

The resource options are now:

199

5.7 Field and Label Options

entry-type-aliases={person=index,monarch=index},
assign-fields={

name = forename + ``~'' ordinal,
name = forename,
surname = parent -> name

[entrytype -> original = "person"],
text = forename + " " + surname

[entrytype -> original = "person"],
first = \FIRSTUC { parent -> text } + " " + name

[entrytype -> original = "monarch"],
text = name

[entrytype -> original = "monarch"]
}

Additional fields can be added to accommodate nicknames or other forms of address,
which will add to the complexity of the assignment specification.

assign-override={〈boolean〉}

This is a boolean option. The default setting is assign-override={false}. If true, assign
-fields will override the existing value if the target field is already set.

assign-missing-field-action={〈value〉}

This option indicates what to do if a source field identified in assign-fields is missing.
The value may be one of:

• skip: skip the assignment;

• fallback: use the fallback for the missing field (see section 5.8), if one is available,
otherwise skip the assignment (default);

• empty: treat the missing value as empty.

Return null will result in the assignment instruction being omitted.

counter=〈value〉

The counter option assigns the default counter to use for the selected entries. (This can
be overridden with the counter key when using commands like \gls.) The value must be
the name of a counter. Since bib2gls doesn’t know which counters are defined within the
document, there’s no check to determine if the value is valid (except for ensuring that 〈value〉
is non-empty). A value of false will switch off this setting (the default).

Note that this will require an extra LATEX and bib2gls call since the counter can’t be used
for the indexing until the entry has been defined.

200

5.7 Field and Label Options

copy-action-group-field=〈value〉

This option may only be used when invoking bib2gls with the --group (or -g) switch. If
an action other than the default action={define} is set, this option can be used to identify
a field in which to save the letter group information where 〈value〉 is the name of the field.
This just uses \GlsXtrSetField. You will need to redefine \glsxtrgroupfield to 〈value〉
before displaying the glossary. For example, if copy-action-group-field={dupgroup},
action={copy} and type={copies} are set in the resource options and copies identifies
a custom glossary:

\printunsrtglossary*[type={copies},style={indexgroup}]
{\renewcommand{\glsxtrgroupfield}{dupgroup}}

This option is ignored when used with action={define}. This option is not used by
secondary which will always save the group information in the secondarygroup field.
When used with action={define or copy}, entries that are defined will have both group
and the field given by copy-action-group-field set.

Note that youmay do copy-action-group-field={group}whichwill override the group
field from the original definition. This may be useful if you don’t use grouping in the primary
glossary. That is, you use nogroupskip and a non-group style. For example:

\printunsrtglossary[nogroupskip,style={index}]
\printunsrtglossary[type={copies},style={indexgroup}]

copy-alias-to-see=〈boolean〉

If set, the value of the alias field is copied to the see field. The default setting is copy-alias
-to-see={false}.

Field Adjustments
post-description-dot=〈value〉

The postdot package option (or nopostdot={false}) can be used to append a full stop (.)
to the end of all the descriptions. This can be awkward if some of the descriptions end with
punctuation characters. This resource option can be used instead. The 〈value〉 may be one
of:

• none: don’t append a full stop (default);

• all: append a full stop to all description fields in this resource set;

• check: selectively append a full stop (see below).

Note that if you have dual entries and you use this option to append a full stop, then it will
be copied over to the mapped field. This is different to the postdot option which doesn’t add
the dot to the field but incorporates it in the post-description hook. This means that a dot

201

5.7 Field and Label Options

inserted with post-description-dot will come before the post-description hook whereas
with postdot the punctuation comes after any category-specific hook.

The post-description-dot={check} setting determines whether to append the dot as
follows:

• If the description field ends with \nopostdesc or \glsxtrnopostpunc, then a dot
isn’t appended.

• If the description field doesn’t end with a regular (ungrouped letter or other) char-
acter, then a dot is appended. (For example, if the description ends with a control
sequence or an end group token.)

• If the description field ends with a character that belongs to the Unicode category
“Punctuation, Close” or “Punctuation, Final quote” then the token preceding that char-
acter is checked.

• If the description field doesn’t end with a character that belongs to the Unicode
category “Punctuation, Other” then the dot is added.

Note that the interpreter isn’t used during the check. If the description ends with a com-
mand then a dot will be appended (unless it’s \glsxtrnopostpunc or \nopostdesc) even if
that command expands in such a way that it ends with a terminating punctuation character.
This option only applies to the description field.

strip-trailing-nopost=〈boolean〉

This option is always performed before post-description-dot. The default setting is
strip-trailing-nopost={false}. If true any trailing ungrouped \nopostdesc or \gls-
xtrnopostpunc found in the description field will be removed. Note that the command
(possibly followed by ignored space) must be at the very end of the description for it to be
removed. A description should not contain both commands. This option only applies to the
description field.

For example, \nopostdesc will be stripped from:

description={sample\nopostdesc}

since it’s at the end. It will also be stripped from:

description={sample\nopostdesc }

since the trailing space is ignored as it follows a control word. It won’t be stripped from:

description={sample\nopostdesc{} }

because the final space is now significant, but even without the space it still won’t be stripped
as the field ends with an empty group not with \nopostdesc. Similarly it won’t be stripped
from:

description={sample\nopostdesc\relax}

because again it’s not at the end.

202

5.7 Field and Label Options

check-end-punctuation=〈list〉

This options checks the end of all the fields given in 〈list〉 for end of sentence punctuation.
This is determined as follows, for each 〈field〉 in the comma-separated 〈list〉:

• if the last character is of type “Punctuation, Close” or “Punctuation, Final quote”, check
the character that comes before it;

• if the character is of type “Punctuation, Other”, then check if it’s listed in the entry
given by sentence.terminators in bib2gls’s language resource file.

If a sentence terminator is found, an internal field is created called 〈field〉endpunc that
contains the punctuation character. Fields whose values must be labels (such as parent,
category and type) aren’t checked, even if they’re included in 〈list〉.

The default sentence.terminators is defined in bib2gls-en.xml as:

<entry key="sentence.terminators">.?!</entry>

Any character that isn’t of type “Punctuation, Other” won’t match.
For example, the sample books.bib file contains:

@entry{whydidnttheyaskevans,
name={Why Didn't They Ask Evans?},
description={novel by Agatha Christie},
identifier={book},
author={\sortmediacreator{Agatha}{Christie}},
year={1934}

}

With check-end-punctuation={name}, this entry will be assigned an internal field called
nameendpunc set to ? as that’s included in sentence.terminators and is found at the end
of the name field:

\GlsXtrSetField{whydidnttheyaskevans}{nameendpunc}{?}

(Note that check-end-punctuation={first,text} won’t match as there’s no first or
text field supplied.)

If you have a field that ends with an abbreviation followed by a full stop, this will be
considered an end of sentence terminator, but the main purpose of this option is to provide
a way to deal with cases like:

Agatha Christie wrote \gls{whydidnttheyaskevans}.

where the end of sentence punctuation following \gls needs to be discarded. This is needed
regardless of whether or not the link text ends with an abbreviation or is a complete sentence.

It’s then possible to hook into the post-link hook “discard period” check. By default this
just checks the category attributes that govern whether or not to discard a following period,
but (with glossaries-extra v1.23+) it’s possible to provide an additional check by redefining:

203

5.7 Field and Label Options

\glsxtrifcustomdiscardperiod{〈true〉}{〈false〉}

This should expand to 〈true〉 if the check should be performed otherwise it should expand to
〈false〉. You can reference the label using \glslabel. For example:

\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%
\GlsXtrIfFieldUndef{nameendpunc}{\glslabel}{#2}{#1}%

}

This uses \GlsXtrIfFieldUndef rather than \glsxtrifhasfield* since there’s no need
to access the field’s value. (The unstarred form \glsxtrifhasfield can’t be used as it
introduces implicit scoping, which would interfere with the punctuation lookahead.) The
other difference between \GlsXtrIfFieldUndef and the other \…hasfield tests is the case
where the field is set to an empty value. In this case the field is defined (so \GlsXtrIfField-
Undef does the 〈false〉 argument) but it’s considered unset (so commands like \ifglshas-
field do the 〈false〉 argument).

sort-label-list=〈list〉

This option takes a list as the value with each element in the list in the form:

〈field-list〉:〈sort〉:〈csname〉

or:

〈field-list〉:〈sort〉

where:

• 〈field-list〉 is a comma-separated list of valid fields;

• 〈sort〉 is a valid sort method as per the sort option, but not including none or unsrt;

• 〈csname〉 is the name (without a leading backslash) of a command that takes a label as
its sole mandatory argument that’s recognised by bib2gls’ interpreter (such as those
listed in table 2.1).

The final :〈csname〉 part may be omitted if no command need be applied. (That is, sort by
label.) The 〈list〉 value is required for this option but may be empty, which indicates the
setting is switched off.

The sorting options are as those for the main list. For example, for entries in the primary
list the break point is obtained from the break-at setting and for entries in the dual list the
break point is obtained from dual-break-at. (Remember that if dual-sort={combine}
then there is only one list that contains both the primary and dual entries, which is governed
by the primary options only.)

If the 〈field-list〉 has more than one element take care to use braces {} to avoid confusion
for the list-parser. For example:

204

5.7 Field and Label Options

\GlsXtrLoadResources[
sort-label-list={{see,seealso}:en:glsentryname}

]

Note that strange results may occur if this setting is used on any fields that don’t simply
contain a list of entry labels or if any of the referenced entries are processed in different
resource sets (see section 1.5).

After the main sorting of each set of selected entries is performed (as per sort or dual
-sort), if this option is set, then for each {〈field-list〉}:〈sort〉:〈csname〉 the following steps
are performed:

1. For each entry 〈id〉:
a) For each 〈field〉 in 〈field-list〉, if the field is set for entry 〈id〉 then:

i. The field value must be in the form [〈tag〉]〈label-list〉 where [〈tag〉] is op-
tional and 〈label-list〉 is a comma-separated list of entry labels 〈label1〉, …,
〈labeln〉;

ii. A new list is constructed where the ith element is: {\〈csname〉{〈labeli〉}}
unless 〈csname〉 hasn’t been set, inwhich case the ith element is just {〈labeli〉}
(the optional [〈tag〉] part is omitted);

iii. This new list is sorted according to the interpreter’s definition of the com-
mand given by 〈csname〉 (if provided) and the designated 〈sort〉 method;

iv. The field value is reconstructed with the labels in the corresponding order
(prefixed with [〈tag〉] if it was present in the original).

Note that there is no hierarchical structure in the sorting of the field list even if any of the
referenced entries has a parent.

For example, suppose the file entries.bib contains:

@index{bird}

@index{waterfowl, parent={bird} }

@index{duck,
parent={waterfowl},
seealso={swan,duckling,parrot,goose}

}

@index{swan,
parent={waterfowl},
seealso={goose,duck}

}

@index{goose,

205

5.7 Field and Label Options

parent={waterfowl},
seealso={duck}

}

@index{parrot, parent={bird} }

@index{duckling,
see={[related terms]fluffy,velociraptor,duck,tardigrade}

}

@index{fluffy}

@index{tardigrade, name={water bear} }

@index{velociraptor}

And suppose the document contains:

\documentclass{article}

\usepackage[record,style={tree}]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},
sort={en},
sort-label-list={{seealso,see}:en:glsentryname}

]

\begin{document}
\Gls{parrot}, \gls{tardigrade}, \gls{swan}, \gls{duck},
\gls{goose}, \gls{fluffy} \gls{duckling}, \gls{velociraptor}.

\printunsrtglossaries
\end{document}

Then this reorders the see and seealso fields according to the referenced entry’s name
(obtained with \glsentryname).

For example, the see field for the duckling entry was originally:

see={[related terms]fluffy,velociraptor,duck,tardigrade}

but in the .glstex file it’s written as:

see={[related terms]duck,fluffy,velociraptor,tardigrade}

The reason for tardigrade being placed after velociraptor is because \glsentryname
{tardigrade} is expanded to “water bear” (and “W” comes after “V”). If no encapsulating
command was specified:

206

5.7 Field and Label Options

sort-label-list={{seealso,see}:en}

then the list would have been sorted according to the labels instead (and so tardigrade
would come before velociraptor). Note that the optional tag is kept at the start of the list.

The seealso fields have also been changed. For example, the duck entry originally had:

seealso={swan,duckling,parrot,goose}

but in the .glstex file it’s written as:

seealso={duckling,goose,parrot,swan}

Note that the hierarchical structure hasn’t been maintained. The glossary lists “duckling” (a
top-level entry) after “swan” (a level 2 entry) but the seealso field has duckling first.

If you want to maintain the hierarchy you can use \glsxtrhiername instead of \gls-
entryname:

\GlsXtrLoadResources[
src={entries},
sort={en},
sort-label-list={{seealso,see}:en:glsxtrhiername}

]

The separator between the levels is given by \glsxtrhiernamesep which is defined by
glossaries-extra to produce “ . ”. The bib2gls interpreter’s definition of this command is
different to assist sorting and simply expands to a full stop to prevent it from being replaced
by the default word break marker.

In this case \glsxtrhiername{swan} would be displayed as “bird .waterfowl . swan” if
used in the document, but the interpreter converts it to “bird.waterfowl.swan”, so with the
default break-at setting the actual sort value becomes bird.waterfowl.swan| (instead of
bird|waterfowl|swan| which would be the result if the interpreter used the same defini-
tion as glossaries-extra).

Therefore the seealso field for the duck entry ends up as:

seealso={parrot,goose,swan,duckling}

Now swan comes before duckling because the actual sort value started with a “B” not “S”.
This hierarchical information isn’t shown in the cross-reference by default, so the duck

cross-reference list appears in the document as: parrot, goose, swan & duckling.
If you want the hierarchical information to appear to help assist the reader, you can rede-

fine \glsseeitemformat in the document to use \glsxtrhiername:

\renewcommand*{\glsseeitemformat}[1]{\glsxtrhiername{#1}}

This means that the duck cross-reference now appears in the document as: bird . parrot,
bird .waterfowl . goose, bird .waterfowl . swan & duckling.

This next example document has two languages, English and Portuguese. Thefile entries-
en.bib contains the English terms, such as:

207

5.7 Field and Label Options

@index{cat, translations={gato,gatinho} }
@index{kitten, translations={gatinho} }
@index{staple, translations={grampo}}
@index{rivet, translations={rebite}}

The file entries-pt.bib contains the Portuguese terms, such as:

@index{gato, translations={cat,staple,rivet} }
@index{gatinho, translations={kitten} }

Both files have a custom field called translations that will need to be either defined or
aliased. This field contains a comma-separated list of labels for the corresponding entries in
the other language file that provide a possible translation. Where a word has multiple possi-
ble translations, I’d like the list sorted alphabetically. (In practice, it would make more sense
to sort them according to how likely the translation is, but this is for illustrative purposes.)
For convenience, the custom field is simply aliased to the user1 field.

The document has two glossaries for each set of terms. The English terms are sorted ac-
cording to sort={en-GB} in one resource set and the Portuguese terms are sorted according
to sort={pt-BR} in another resource set. This means that there are cross-resource refer-
ences, but since there are no instances of @preamble it should be possible to resolve the
references.

The document code is:

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[british,brazilian]{babel}
\usepackage[record,
nomain,
nostyles,
stylemods={bookindex},
style={bookindex}

]{glossaries-extra}
\usepackage{glossaries-prefix}

\newglossary*{en}{English Terms}
\newglossary*{pt}{Portuguese Terms}

\GlsXtrLoadResources[
selection={all},
type={en},
src={entries-en},
sort={en-GB},
field-aliases={translations=user1},

208

5.7 Field and Label Options

sort-label-list={user1:pt-BR:glsentryname}
]
\GlsXtrLoadResources[

selection={all},
type={pt},
src={entries-pt},
sort={pt-BR},
field-aliases={translations=user1},
sort-label-list={user1:en-GB:glsentryname}

]

\apptoglossarypreamble[en]{\selectlanguage{british}}
\apptoglossarypreamble[pt]{\selectlanguage{brazilian}}

\begin{document}
\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\glsxtrifhasfield{useri}{#1}{: \glsxtrseelist\glscurrentfieldvalue}{}%

}
\printunsrtglossaries
\end{document}

In verbose mode, the transcript file indicates that it’s performing the label list sorting. For
example, when sorting according to sort-label-list={user1:pt-BR:glsentryname},
the transcript file contains:

Label list sort method 'pt-BR' on field: user1

The cat entry has a list of two elements in this field: gato,gatinho. This is converted into
a new list where the first element is:

{\glsentryname{gato}}

and the second element is:

{\glsentryname{gatinho}}

Regardless of the level of verbosity, the transcript file will contain the conversions obtained
by the interpreter:

texparserlib: {\glsentryname{gato}} -> gato
texparserlib: {\glsentryname{gatinho}} -> gatinho

The kitten entry has the same list, and the same process is repeated for that entry. The
--verbose mode will provide additional information. The --debug mode will indicate
whether the referenced label was found in the current resource set or if it had to be fetched
from another resource set. So if the resulting order isn’t what you expect, check the transcript
file for messages.

209

5.7 Field and Label Options

prune-xr=〈boolean〉

If true, this is a shortcut for:

prune-see-match={entrytype={index(plural)?},see={},seealso={},alias={}},
prune-seealso-match={entrytype={index(plural)?},see={},seealso={},alias=
{}},

This will remove any labels in an entry’s see or seealso field where the referenced label
doesn’t have any records and hasn’t been selected as another form of dependency and whose
entry type is either @index or @indexplural and doesn’t have the see, seealso or alias
fields set.

Both prune-see-match and prune-seealso-match can be switched off at the same time
with prune-xr={false}.

prune-see-match=〈key=value list〉

The value has the same syntax as match. Omitting the value switches off the setting. This
option is not cumulative.

If a value is supplied, this setting will attempt to prune unnecessary labels from see fields.
Note that pruning may fail if there are cross-reference trails.

A label will be stripped from a see field if the label references an entry that has no records,
isn’t dependent on another entry, hasn’t previously been selected, and matches the given
criteria. If more that one pattern match is supplied, prune-see-op determines whether to
apply a logical AND or a logical OR.

For example, suppose the file entries.bib contains the following:

@index{pumpkin}
@index{cucumber}
@index{melon}
@index{cucurbit,see={gourd}}
@index{gourd,see={pumpkin,cucumber,melon}}
@index{courgette}
@index{marrow,seealso={courgette}}
@index{broccoli}
@index{cauliflower,seealso={broccoli}}

Suppose the document contains:

\GlsXtrLoadResources[src={entries}]
\begin{document}
\gls{cucurbit}, \gls{pumpkin}, \gls{melon}, \gls{broccoli},
\gls{marrow}, \gls{cauliflower}.
\printunsrtglossary[title=Index]
\end{document}

210

5.7 Field and Label Options

This uses the default selection={recorded and deps} setting, which selects recorded en-
tries (cucurbit, pumpkin, melon, broccoli, marrow and cauliflower) and their dependencies.
In this case, the dependencies are: courgette (because it’s listed in the marrow’s seealso
field), gourd (because it’s listed in the cucurbit’s see field), and cucumber (because it’s listed
in the gourd’s see field). The resulting list is:

broccoli 1
cauliflower 1, see also broccoli
courgette
cucumber
cucurbit 1, see gourd
gourd see pumpkin, cucumber & melon
marrow 1, see also courgette
melon 1
pumpkin 1

This means that courgette and cucumber appear in the glossary without a location list. If
this was an actual glossary with descriptions, this may not be a problem, but it looks strange
for an index since the cross-reference essentially leads the reader to a dead end.

Switching to selection={recorded no deps}will remove courgette, gourd and cucum-
ber but the see and seealso fields will be lost. Since gourd references both pumpkin and
melon (which are used in the document), it might be useful to keep the gourd entry. The aim
of pruning is to remove the unwanted cucumber entry from the gourd’s see list but retain
pumpkin and melon.

An appropriate filter is needed to switch on pruning. (This is in addition to the criteria
that the pruned entry has no records, isn’t dependent on another entry, and hasn’t previously
been selected.) This type of pruning is usually only necessary for indexes so a useful filter
may be simply on the entry type (either @index or @indexplural):

\GlsXtrLoadResources[src={entries},
prune-see-match={entrytype={index(plural)?}}]

Another possibility is to filter on an empty description:

\GlsXtrLoadResources[src={entries},prune-see-match={description={}}]

The result is that the cauliflower and marrow entries keep their seealso lists (since this
option only applies to see lists) and the courgette entry has been added (because it’s in
the marrow entry’s seealso list). The gourd entry is removed from the cucurbit’s see list
(because it matches the criteria) and is not selected (because it’s no longer a dependency).

In this case, I’d like to include the gourd entry because it has the see field set. This means
adjusting the criteria so that only entries without the see field can be pruned:

\GlsXtrLoadResources[src={entries},
prune-see-match={entrytype={index(plural)?},see={}}]

211

5.7 Field and Label Options

This means that gourd is now selected (and retained in the cucurbit’s see field) but cucumber
is removed from the gourd’s see field.

A similar method can be applied for the seealso fields using prune-seealso-match.
There’s no applicable setting for the alias field (since it’s expected that the alias be present
due to the nature of the way the alias field works).

For convenience, the prune-xr option is provided as a shortcut. If the resource command
in the above example is modified to:

\GlsXtrLoadResources[src={entries},prune-xr]

then the resulting list will be:
broccoli 1
cauliflower 1, see also broccoli
cucurbit 1, see gourd
gourd see pumpkin & melon
marrow 1
melon 1
pumpkin 1

Note that if the pumpkin and melon references are removed from the document, then
gourd will still be selected but will have no cross-reference. This is because the cucurbit
entry is checked for pruning while the gourd entry still has a non-empty see field so it’s not
removed from the cucurbit entry.

There are two ways around this problem: either switch the definitions of cucurbit and
gourd around in the .bib file or use prune-iterations to reprune (in this case, prune
-iterations={2} is sufficient).

This setting is only compatible with the “recorded and dep” selection criteria:
selection={recorded and deps}, selection={recorded and deps and see}
and selection={recorded and deps and see not also}.

prune-see-op=〈value〉

If the value of prune-see-match containsmore than one 〈key〉=〈pattern〉 element, the prune
-see-op determines whether to apply a logical AND or a logical OR. The 〈value〉 may be
either and or or. The default is prune-see-op={and}.

prune-seealso-match=〈key=value list〉

As prune-see-match but for seealso fields. If more that one pattern match is supplied,
prune-seealso-op determines whether to apply a logical AND or a logical OR.

This setting is only compatible with the “recorded and dep” selection criteria:
selection={recorded and deps}, selection={recorded and deps and see}
and selection={recorded and deps and see not also}.

212

5.7 Field and Label Options

prune-seealso-op=〈value〉

If the value of prune-seealso-match contains more than one 〈key〉=〈pattern〉 element, the
prune-seealso-op determines whether to apply a logical AND or a logical OR. The 〈value〉
may be either and or or. The default is prune-seealso-op={and}.

prune-iterations=〈number〉

If you have cross-reference trails, you may need to reprune. The value of this options indi-
cates the number of pruning iterations. The default is 1. The higher the number, the longer
bib2gls will take to complete. The value can’t be less that 1.

The maximum number of iterations is capped at 20. A cross-reference trail that long is
excessive for an index.

bibtex-contributor-fields=〈list〉

This option indicates that the listed fields all use BIBTEX’s name syntax (as used in BIBTEX’s
author and editor fields). The 〈list〉 value is required for this key but may be empty, which
indicates an empty set of fields (that is, the setting is switched off).

The values of these fields will be converted into the form:
\bibglscontributorlist{〈contributor list〉}{〈n〉}
where 〈n〉 is the number of names in the list and 〈contributor-list〉 is a comma-separated list
of names in the form:
\bibglscontributor{〈forenames〉}{〈von-part〉}{〈surname〉}{〈suffix〉}

The \bibglscontributorlist command is initially defined in bib2gls’s interpreter to
just do the first argument and ignore the second. This means that if you’re sorting on this
field, the “and” part between the final names doesn’t appear in the sort value. The actual
definition of \bibglscontributorlist provided in the .glstex file depends on whether
or not \DTLformatlist is defined. (Note that glossaries automatically loads datatool-base
so this command will be defined if you have at least v2.28 of datatool-base.)

For example, if the name field is specified as:
name={John Smith and Jane Doe and Dickie von Duck}

then bibtex-contributor-fields={name} will convert the name field value to:
\bibglscontributorlist{%
\bibglscontributor{John}{}{Smith}{},%
\bibglscontributor{Jane}{}{Doe}{},%
\bibglscontributor{Dickie}{von}{Duck}{}}{3}

With contributor-order={von} the sort value obtained from this field will be:
Smith, John,Doe, Jane,von Duck, Dickie

With one of the locale sort methods and with the default break-at={word}, this will end
up as:
Smith|John|Doe|Jane|von|Duck|Dickie

213

5.7 Field and Label Options

contributor-order=〈value〉

The \bibglscontributor command is defined in bib2gls’s interpreter and its definition
is dependent on this setting. The 〈value〉 may be one of (where the parts in square brackets
are omitted if that argument is empty):

• surname: \bibglscontributor expands to 〈surname〉[, 〈suffix〉][, 〈forenames〉][, 〈von-
part〉];

• von: \bibglscontributor expands to [〈von-part〉]〈surname〉[, 〈suffix〉][, 〈forenames〉];

• forenames: \bibglscontributor expands to [〈forenames〉][〈von-part〉]〈surname〉
[, 〈suffix〉].

The default value is von. Note that if you have multiple resource sets, this option governs the
way bib2gls’s version of \bibglscontributor behaves. The actual definition is written
to the .glstex using \providecommand, which means that LATEX will only pick up the first
definition.

For example:

\newcommand*{\bibglscontributor}[4]{%
#1\ifstrempty{#2}{}{ #2} #3\ifstrempty{#4}{}{, #4}%

}

\GlsXtrLoadResources[
src={entries},% data in entries.bib
bibtex-contributor-fields={name}

]

This will display the names in the glossary with the forenames first, but bib2gls will sort
according to surname.

An alternative approach, if you need an initial resource set such as with the no-interpret
-preamble.bib file:

\GlsXtrLoadResources[
src={no-interpret-preamble},
interpret-preamble={false},
bibtex-contributor-fields={name},
contributor-order={forenames}

]

\GlsXtrLoadResources[
src={entries},% data in entries.bib
bibtex-contributor-fields={name}

]

214

5.7 Field and Label Options

Note the need to use bibtex-contributor-fields={name} in the first resource set even
though there are no entries in the .bib file. This is because the definition of \bibgls-
contributor is only written to the .glstex file if bibtex-contributor-fields has been
set to a non-empty list. The second resource set will use the default bibtex-contributor
-fields={von} setting when obtaining the sort value.

encapsulate-fields={〈key=value list〉}

This option should take a comma-separated list of 〈field〉=〈cs-name-1arg〉 values, where 〈cs-
name-1arg〉 is the name of a control sequence that takes one argument. The value is required
for this key but may be empty, which indicates an empty set (that is, the setting is switched
off).

During the processing stage, each field identified in the list (if defined) will have its value
replaced with:

\〈cs-name-1arg〉{〈value〉}

where 〈value〉 was its previous value. An empty list switches off encapsulation (the default).
This action overrides any previous use of encapsulate-fieldswithin the same resource

set and is always performed before encapsulate-fields*, regardless of the order in the
resource set’s list of options.

encapsulate-fields*={〈key=value list〉}

This option should take a comma-separated list of 〈field〉=〈cs-name-2arg〉 values, where 〈cs-
name-2arg〉 is the name of a control sequence that takes two arguments. The value is required
for this key but may be empty, which indicates an empty set (that is, the setting is switched
off).

During the processing stage, each field identified in the list (if defined) will have its value
replaced with:

\〈cs-name-2arg〉{〈value〉}{〈label〉}

where 〈value〉 was its previous value and 〈label〉 is the entry’s label (including prefix, if
appropriate). An empty list switches off encapsulation (the default).

This action overrides any previous use of encapsulate-fields* within the same re-
source set, and is always performed after encapsulate-fields, regardless of the order in
the resource set’s list of options, so if the same field is listed in both settings, its value will
end up as:

\〈cs-name-2arg〉{\〈cs-name-1arg〉{〈value〉}}{〈label〉}

An alternative is to use the more complex assign-fields option.

215

5.7 Field and Label Options

format-integer-fields={〈key=value list〉}

This option should take a comma-separated list of 〈field〉=〈format〉 values, where 〈format〉 is
a string format pattern that contains a single numeric specifier. This will convert the value
stored in the identified field to the given format. If the field doesn’t contain an integer value
it won’t be changed. If the field contains a decimal value use format-decimal-fields
instead. This setting is performed before field encapsulation.

Since format patterns uses % as a placeholder, which can be problematic in the resource
command, you will need to use \% instead. You may also use \#, \$, \&, \{, \}, _ and \\ to
indicate the corresponding literal character. You can use \u〈XXXX 〉 to indicate a character
by its hexadecimal value, but remember that the resource options will be expanded when
they are written to the resource file so use \glshex or \string\u.

If youwant to format the definitionindex field youmust use save-definition-index
first. For example, to save this field and then zero-pad it to four digits:

save-definition-index,
format-integer-fields={definitionindex=\%04d}

This option can’t be used for the useindex field created with save-use-index as that field
isn’t set until after the field modifications are made.

format-decimal-fields={〈key=value list〉}

As format-integer-fields but for decimal values. If a field contains an integer then:

• if format-integer-fields has also been used to set a format for the given field, the
integer format will take precedence;

• otherwise the integer value will be treated as a decimal number.

If you get an error like:

Error: d != java.lang.Double

then it means you have used an invalid specifier. (The above error results from using %d
instead of %f or %g.)

interpret-fields={〈list〉}

This option indicates that the listed fields should be replaced by their interpreted values. The
value is required for this key but may be empty, which indicates an empty set of fields (that
is, the setting is switched off). Other fields not listed may still be interpreted depending on
other settings. As with the sort field, any special characters are replaced with commands
like \glsbackslash and \bibglsdollarchar. This option is applied after field-case
-change (if set).

For example, suppose I have a file entries.bib that contains definitions like:

216

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html#syntax

5.7 Field and Label Options

@symbol{pi,
name={\ensuremath{\pi}},
description={the ratio of a circle's circumference to its diameter},

}

@symbol{sigma,
name = {\ensuremath{\sigma}},
description = {standard deviation}

}

Instead of having a list of terms (glossary), suppose I want to have stand-alone definitions,
where the term appears in a section heading. I could define a command like this:

\newcommand{\definition}[1]{%
\ifglsentryexists{#1}%
{%

\section[\glsentryname{#}]{\glsadd{#1}\glsxtrglossentry{#1}}%
\Glossentrydesc{#1}\glspostdescription

}%
{\section[Missing `#1']{\glsadd{#1}}}%

}

which can be used in the document:

\tableofcontents
\definition{pi}
\definition{sigma}

A problem with this definition of my custom command occurs if I add hyperref to the docu-
ment, because this tries to write \pi and \sigma to the PDF bookmarks, which doesn’t work
because those commands can’t be automatically converted to characters permitted in a PDF
string. This leads to a warning from hyperref:

Token not allowed in a PDF string (Unicode)

Ideally I’d like to be able to convert these symbols to Unicode so that they can appear in the
bookmarks. Since bib2gls’ interpreter recognises these commands, I can get it to make the
conversion instead of trying to implement a method within TEX:

\glsaddstoragekey{pdfname}{}{\pdfname}
\GlsXtrLoadResources[

src={entries},
replicate-fields={name=pdfname},
replicate-missing-field-action={fallback},
interpret-fields={pdfname}

]

217

5.7 Field and Label Options

This first copies the name field to the custom pdfname and then interprets the copy. This
leaves the name field with the LATEX code to produce the symbol in the document, but the
pdfname field ends up with all markup stripped by the interpreter and the \pi and \sigma
are converted to the Unicode characters 0x1D70B (mathematical italic small pi) and 0x1D70E
(mathematical italic small sigma). With XƎLATEX or LuaLATEX these characters can be written
to the PDF bookmarks by adjusting the definition of the custom command:

\newcommand{\definition}[1]{%
\ifglsentryexists{#1}%
{%

\section
[\texorpdfstring{\glsentryname{#1}}{\pdfname{#1}}]
{\glsadd{#1}\glsxtrglossentry{#1}}%
\Glossentrydesc{#1}\glspostdescription

}%
{\section[Missing `#1']{\glsadd{#1}}}}

With pdfLATEX and fontenc, you will need hyperref’s unicode option:

\usepackage[unicode]{hyperref}

If you still encounter problems with the Unicode characters not appearing in the PDF book-
marks, then try the hex-unicode-fields option. For example:

hex-unicode-fields={pdfname}

This still requires hyperref’s unicode option.

interpret-fields-action={〈value〉}

This option governs the behaviour of interpret-fields. Available values are:

• replace: replace the field content with its interpreted value (default);

• replace non empty: only replace the field content with its interpreted value if the
interpreted value isn’t an empty string.

If a field value consists solely of commands that are unknown to the interpreter, then the
resulting value will end up empty. In this case, it may be more appropriate to leave the field
unchanged.

hex-unicode-fields={〈list〉}

This option will convert any Unicode characters (outside of the Basic Latin set) that are found
in the listed fields into \bibglshexunicodechar{〈hex-code〉} where 〈hex-code〉 is the hex-
adecimal character code.

The 〈list〉 should be a comma-separated list of field names. This action is performed after
interpret-fields.

If the field contents need to be added to the PDF bookmarks (as in the earlier example) then
you need to make sure you use hyperref’s unicode option otherwise you’ll get the warning:

218

5.7 Field and Label Options

Token not allowed in a PDF string (PDFDocEncoding):
removing `\char'

and the bookmarks will show "〈hex-code〉 instead of the Unicode character.

date-time-fields=〈list〉

This option indicates that the listed fields all contain date and time information. Primary en-
tries will have these fields parsed according to date-time-field-format and date-time
-field-locale and dual entries will have these fields parsed according to dual-date-time
-field-format and dual-date-time-field-locale. If the field value ismissing or doesn’t
match the given pattern it remains unchanged, otherwise it’s converted into the form:

\bibglsdatetime{〈year〉}{〈month〉}{〈day-of-month〉}{〈day-of-week〉}{〈day-of-year〉}
{〈era〉}{〈hour〉}{〈minute〉}{〈second〉}{〈millisec〉}{〈dst〉}{〈zone〉}{〈original〉}

where 〈original〉 is the value of the field before conversion. If the interpreter is on, the value
will be interpreted before being parsed if it contains \, $, {, } or ~. (Remember that ~ is
converted to the non-breaking space character 0xA0 unless --break-space is used.)

date-fields=〈list〉

As date-time-fields but for fields that only contain date (not time) information. If parsed
correctly, the field is converted to:

\bibglsdate{〈year〉}{〈month〉}{〈day-of-month〉}{〈day-of-week〉}{〈day-of-year〉}
{〈era〉}{〈original〉}

The fields are parsed according to date-field-format and date-field-locale for pri-
mary entries and according to dual-date-field-format and dual-date-field-locale
for dual entries.

time-fields=〈list〉

As date-time-fields but for fields that only contain time (not date) information. If parsed
correctly, the field is converted to:

\bibglstime{〈hour〉}{〈minute〉}{〈second〉}{〈millisec〉}{〈dst〉}{〈zone〉}{〈original〉}

The fields are parsed according to time-field-format and time-field-locale for pri-
mary entries and according to dual-time-field-format and date-time-field-locale
for dual entries.

date-time-field-format=〈value〉

This option also sets dual-date-time-field-format={〈value〉}. The value is the format
pattern used when parsing fields identified by date-time-fields. The 〈value〉 is as for
date-sort-format.

219

5.7 Field and Label Options

date-field-format=〈value〉

This option also sets dual-date-field-format={〈value〉}. The value is the format pat-
tern used when parsing fields identified by date-fields. The 〈value〉 is as for date-sort
-format.

time-field-format=〈value〉

This option also sets dual-time-field-format={〈value〉}. The value is the format pat-
tern used when parsing fields identified by time-fields. The 〈value〉 is as for date-sort
-format.

date-time-field-locale=〈value〉

This option also sets dual-date-time-field-locale={〈value〉}. The value is the locale
used when parsing fields identified by date-time-fields. The 〈value〉 is as for date-sort
-locale.

date-field-locale=〈value〉

This option also sets dual-date-field-locale={〈value〉}. The value is the locale used
when parsing fields identified by date-fields. The 〈value〉 is as for date-sort-locale.

time-field-locale=〈value〉

This option also sets date-time-field-locale={〈value〉}. The value is the locale used
when parsing fields identified by time-fields. The 〈value〉 is as for date-sort-locale.

Prefix Fields
If you use the glossaries-prefix package, the prefix set of fields become available (prefix,
prefixplural, prefixfirst and prefixfirstplural). The default behaviour of \pgls is
for no separator between the prefix and the text produced with \gls. This is because there
are situations where there shouldn’t be a space, although a space is more commonly required.

This means that a space needs to be appended to the required prefix fields, but an actual
space character can’t be used because xkeyval trims leading and trailing spaces. The \space
command needs to be used instead, but there are also situations where an non-breakable
space should be used (for example, where the prefix is a single character). It’s a bit tiresome
having to remember to put \space or ~ at the end of the field value.

The append-prefix-field option allows the automatic insertion of a space, but it may
be used without the glossaries-prefix package. The fields that contain prefixes are identified
by prefix-fields.

If you have any dual entries, then bib2gls will also recognise the special internal fields
dualprefix, dualprefixplural, dualprefixfirst and dualprefixfirstplural.

220

5.7 Field and Label Options

prefix-fields=〈list〉

Identifies the fields that are used to store prefixes. The default set is: prefix, prefixfirst,
prefixplural, prefixfirstplural, and their dual counterparts dualprefix, dualprefix-
first, dualprefixplural and dualprefixfirstplural.

append-prefix-field=〈value〉

Allowed values are:

• none: don’t append a space to the prefix fields (default);

• space: append the command identified by append-prefix-field-cs (\space by de-
fault) to the prefix field unless the field value endswith a character identified by append
-prefix-field-exceptions or a command identified by append-prefix-field-cs
-exceptions. Note that if the field value ends with anything else (such as an empty
group) then these exceptions won’t apply.

• space or nbsp: as above but uses ~ instead of \space if the field value matches the
pattern given by append-prefix-field-nbsp-match.

append-prefix-field-cs=〈cs〉

Identifies the command 〈cs〉 that should be used to append to the prefix fields. The default
value is \space. Remember to use \string or \protect to prevent the command from
being expanded as it’s written to the .aux file.

append-prefix-field-exceptions=〈sequence〉

This setting identifies the set of characters that, if found at the end of a prefix field, prevent
append-prefix-field from appending a space (either \space or ~).

The value should be a sequence of characters. You may use \string\u〈hex〉 to iden-
tify a character by its hexadecimal code. Spaces are ignored, so append-prefix-field
-exceptions={' - } is equivalent to append-prefix-field-exceptions={'-}.

The default set is the straight apostrophe character (0x0027), the hyphen-minus character
(0x002D), the tilde character (~), the hyphen character (0x2010), the non-breaking hyphen
(0x2011), and the right single quotation mark (0x2019).

append-prefix-field-cs-exceptions=〈sequence〉

This setting identifies the set of commands that, if found at the end of a prefix field, prevent
append-prefix-field from appending a space (either \space or ~). Any spaces found in
〈sequence〉 are ignored. The default setting is the set: \space, \nobreakspace and \␣.

Remember that you will need to use \string or \protect to prevent the command from
being expanded while the resource options are written to the .aux file.

221

5.7 Field and Label Options

append-prefix-field-nbsp-match=〈pattern〉

The value is the regular expression that identifies prefixes that should be followed by ~ in-
stead of \space. The default is append-prefix-field-nbsp-match={.} which indicates
a single character.

Case-Changing
The glossaries-extra package comes with the category attributes glossdesc and glossname,
which may take the values firstuc or title. These don’t change the actual name or
description fields, but instead \glossentryname and \glossentrydesc (which are used
by the default glossary styles) check for the corresponding attribute and apply the appropri-
ate case-change to the field value.

So \glossentryname will use \Glsentryname if the glossname attribute for the given
entry is set to firstuc and \glossentrydesc will use \Glsentrydesc if the glossdesc
attribute is set to firstuc. The title setting will instead use \capitalisewords applied
to the field value.

The resource options described in this section provide an alternative to those attributes that
actually modify the relevant field (rather than just adjusting the style code used to display
it). There are two forms of modification: the field is adjusted so that the original value is
encapsulated by a command or bib2gls will perform the actual case-change according to
its own algorithm. The results can vary according to the field content.

Where bib2gls itself performs the case change, its case-changing functions will use the
resource locale, but whether or not bib2gls recognises the correct rules for the locale de-
pends on whether or not the locale is correctly supported by the Java locale provider. The
language resource file may provide assistance with case-conversion.

Note the difference between \NoCaseChange (which prevents case-changing for both
bib2gls and in the LATEX document) and \BibGlsNoCaseChange (which only prevents
case-changing in bib2gls). The options that defer the case-change action to LATEX,
such as uc-cs, will treat \NoCaseChange as an exclusion but not \BibGlsNoCase-
Change.

Each of the case-changing resource options may take one of the following values:

• none: don’t apply any case-changing (default);

• lc-cs: make bib2gls behave as though the field assignment:

〈field〉 = {〈text〉}

had actually been specified as:

〈field〉 = {\bibglslowercase{〈text〉}}

which uses TEX to convert the field to lower case;

222

5.7 Field and Label Options

• uc-cs: make bib2gls behave as though the field assignment:

〈field〉 = {〈text〉}

had actually been specified as:

〈field〉 = {\bibglsuppercase{〈text〉}}

which uses TEX to convert the field to upper case;

• firstuc-cs: make bib2gls behave as though the field assignment:

〈field〉 = {〈text〉}

had actually been specified as:

〈field〉 = {\bibglsfirstuc{〈text〉}}

which uses TEX to convert the field to first-letter upper case;

• title-cs: make bib2gls behave as though the field assignment:

〈field〉 = {〈text〉}

had actually been specified as:

〈field〉 = {\bibglstitlecase{〈text〉}}

which uses TEX to convert the field to title case;

• lc: convert to lower case by making the appropriate modifications to tokens in the
field value that have a known lower case alternative (see below);

• uc: convert to upper case by making the appropriate modifications to tokens in the
field value that have a known upper case alternative (see below);

• firstuc: convert to first letter upper case by making the appropriate modification, if
it has a known upper case alternative (see below);

• title: convert to title case by making the appropriate modifications to the first letter
of each identified word in the field value that has a known upper case alternative (see
below).
A word-boundary is identified according to the word-boundaries setting. Words to
be excluded from the case-changing (unless they occur at the start) can be identified
with \MFUnocap in the @preamble or you can use --packages mfirstuc-english
for the exclusion list provided by the mfirstuc-english package. Alternatively, you can
use --custom-packages to load a simple package that contains the required \MFUno-
cap commands (in a similar style to mfirstuc-english).

223

5.7 Field and Label Options

The bib2glsword-boundary implementation is slightly differentwith this setting than
with the \capitalisewords command (implemented in TEX or by the TEX Parser Li-
brary when interpreting field values). Only words in the exclusion list that start with
an alphabetical character can be matched. Punctuation following a word-boundary is
not considered part of the next word. If you want to identify that a particular character
forms a word break, you can use \MFUwordbreak{〈char〉}. For example:

name={some word\MFUwordbreak{/}phrase}

If you need to selectively change the case, based on some condition (such as the entry
type) then you can use the assign-fields option instead, but remember that you will need
the override setting on. For example:

assign-fields={
name =[o] \TITLE{ name }
[entrytype -> original = "entry"]

}

This will convert the name field to title case for entries that were defined in the .bib file with
@entry. Note that if you also use a case-changing option, for example, name-case-change,
then all entries will have the change applied, according to the option’s designated behaviour,
regardless of whether or not the applicable field has already been altered by assign-fields.

Major changes have been introduced to mfirstuc v2.08. Some of the information below
refers to older versions and is not applicable with mfirstuc v2.08+. See the mfirstuc
manual for further details.

The firstuc-cs and firstuc options are essentially a sentence case change, but there’s
no check for sentence-breaks within the value, so even if the value contains multiple sen-
tences, only the first is changed. If the text to be changed starts with a punctuation character
it should be encapsulated with \MFUskippunc to apply the case-change to the following
object. For example:

name={\MFUskippunc{'}tis}

If the firstuc option is applied to the name field this will be converted to:

name={\MFUskippunc{'}Tis}

Using \NoCaseChange (provided by textcase) instead will have the same effect, but this isn’t
consistent with the behaviour of \makefirstuc so it’s best to use \MFUskippunc instead.

The 〈option〉-cs settings defer the actual case-changing to TEX, which means that the case-
changing has to be applied every time the field is typeset (and it introduces non-expandable
content to the field value). Be aware of the limitations of using any of the case-changing
commands. See the textcase and mfirstuc package documentation for further details [1, 11].

For the settings where bib2gls itself performs the case-change, then bib2glswill iterate
over each token of the field value and apply the rules listed below. Note that the case-change

224

5.7 Field and Label Options

implemented by bib2gls recognises the resource locale, but whether or not it recognises
the correct rules for the locale depends on whether or not the locale is correctly supported
by the Java locale provider.

1. If the token is a normal Unicode alphabetic character, it will be replaced with the cor-
responding upper or lower case character, as appropriate. In some cases, a single char-
acter, such as ß, is replaced by multiple characters, such as SS.

For title and firstuc, the title case character is used as the replacement, for uc the
upper case character is used as the replacement, and for lc the lower case character is
used as the replacement. Many characters have the same upper and title case alterna-
tive (for example, “a” will be converted to “A” for the title, firstuc and uc settings),
but some characters have different title and upper versions (for example, the digraph
“ǳ” has the title version “ǲ” and upper case version “Ǳ”).

If the option is firstuc then all the remaining tokens are skipped. If the option is
title then the subsequent tokens are skipped until a word-boundary is found.

2. If the token is a normal Unicode character that isn’t alphabetical, then this token will
be skipped for all options.

3. If $〈maths〉$ is encountered, it will be skipped. If the option is firstuc then all re-
maining tokens are skipped, so no case-change will be performed.

4. If a group {〈content〉} is found, then the case-change is applied to the entire 〈content〉
(whichmay be empty). This corresponds to theway \makefirstuc and \capitalise-
wordswork if a word starts with a group. Note that with firstuc and title the group
content will be converted according to uc, so the normal upper case character is used
rather than the title case character (if they are different).

If the option is firstuc then all the remaining tokens are skipped. If the option is
title then the subsequent tokens are skipped until a word-boundary is found. A
word-boundary can be marked up with \MFUwordbreak.

5. If a control sequence \〈csname〉 is found, then:

a) If the control sequence is \protect, this token is skipped for all options.

b) With firstuc and title, if \MFUskippunc{〈text〉} or \NoCaseChange{〈text〉}
occurs at the start of a word, then bib2gls will act as though the word hasn’t
started yet (so the next token will be considered for a case-change).

c) If the control sequence is one of: \o, \O, \l, \L, \ae, \AE, \oe, \OE, \aa, \AA,
\ss, \SS, \ng, \NG, \th, \TH, \dh, \DH, \dj or \DJ, then it’s replaced with its
case-change counterpart (if not already the correct case).

If the option is firstuc then all the remaining tokens are skipped. If the option
is title then the subsequent tokens are skipped until a word-boundary is found.

225

5.7 Field and Label Options

d) If the control sequence is in the no-case-change-cs list or is \ensuremath, \si
or if 〈csname〉 ends with “ ref ” (for example, \ref or \pageref) then the control
sequence and its argument is ignored. In the case where 〈csname〉 ends with
“ ref ”, a following star (*) or optional argument before the mandatory argument
will also be skipped. This allows for some common cross-referencing commands,
such as hyperref’s \autoref, which may have a starred form, but does not allow
for more complicated commands with multiple arguments.

If the option is firstuc then all the remaining tokens are skipped (so no case-
change will be performed). If the option is title then the subsequent tokens are
skipped until a word-boundary is found (so no case-change is performed for this
word).

e) If the control sequence is \glsentrytitlecase then:

lc the control sequence is converted to \glsxtrusefield;

uc the control sequence is converted to \GLSxtrusefield;

firstuc the control sequence is converted to \Glsxtrusefield and the re-
maining tokens are skipped;

title the control sequence is left unchanged and subsequent tokens are skipped
until a word-boundary is found.

The field and entry label arguments are skipped.

f) If the control sequence is \glshyperlink then the case-change is applied to its
optional argument. (If there was no optional argument in the original field value,
one will be inserted.) The label argument is skipped.

If the option is firstuc then all the remaining tokens are skipped. If the option
is title then the subsequent tokens are skipped until a word-boundary is found.

g) If the control sequence is \glsdisp, \glslink, \dglsdisp or \dglslink then
the case-change will be applied to the appropriate argument. The optional argu-
ment (if present) and the label are skipped.

If the option is firstuc then all the remaining tokens are skipped. If the option
is title then the subsequent tokens are skipped until a word-boundary is found.

h) If the control sequence has a known case variant, it will be substituted. For ex-
ample, \glswill be changed to \Gls or \GLS. In some cases there isn’t an appro-
priate variant. For example, \glsentrytext has a first-letter upper case version
\Glsentrytext, but not an all-caps version.

If the option is firstuc then all the remaining tokens are skipped. If the option
is title then the subsequent tokens are skipped until a word-boundary is found.

i) If the control sequence is followed by a group, then the appropriate case-change
is applied to the group contents. Unlike step 4, the case-change isn’t applied to
the entire group content with firstuc and title. (Again, this follows the way
that \makefirstuc and \capitalisewords work.)

226

5.7 Field and Label Options

If there are subsequent groups, they won’t be considered arguments, but will be
treated as groups, as per step 4. (This will only affect the title setting as they
will be skipped by the firstuc setting.) For complex cases, consider using a
semantic command that hides non-textual context such as the \strong example
described on page 121.

j) Otherwise the control sequence is skipped.

6. Anything else is skipped.

For example, if an entry is defined as:

@abbreviation{html,
short = {HTML},
long = {hypertext markup language},
description={a markup language for creating web pages}

}

then:

\GlsXtrLoadResources[
short-case-change={lc},
long-case-change={title},
description-case-change={firstuc}

]

will make the entry behave as if it had been defined as:

@abbreviation{html,
short = {html},
long = {Hypertext Markup Language},
description={A markup language for creating web pages}

}

whereas:

\GlsXtrLoadResources[
short-case-change={lc-cs},
long-case-change={title-cs},
description-case-change={firstuc-cs}

]

will make the entry behave as if it had been defined as:

@abbreviation{html,
short = {\bibglslowercase{HTML}},
long = {\bibglstitlecase{hypertext markup language}},
description={\bibglsfirstuc{a markup language for creating web pages}}

}

227

5.7 Field and Label Options

If the given field is missing, no change is made, except under certain circumstances (see the
relevant resource option for details). For example, if an abbreviation is simply defined as:

@abbreviation{html,
short = {html},
long = {hypertext markup language}

}

then:

\GlsXtrLoadResources[
name-case-change={uc},
description-case-change={title}

]

won’t have an effect. Although the default long-short abbreviation style sets the name and
description fields, bib2gls doesn’t have access to this information.

Remember that you can create missing fields by copying the value from another field. So
if the resource options are changed to:

\GlsXtrLoadResources[
name-case-change={uc},
description-case-change={title},
replicate-fields={short=name,long=description}

]

then bib2gls will act as though the entry had been defined as:

@abbreviation{html,
short = {html},
long = {hypertext markup language},
name = {HTML},
description = {Hypertext Markup Language}

}

If the long-short-sc abbreviation style is set (before \GlsXtrLoadResources) then this will
override the default style for the name and description, so \gls{html} will display the
short form using \textsc{html} but the name in the glossary will be displayed using just
HTML.

Note that with @index the name and text fields will automatically be created if they are
missing and name-case-change is used. For example, if an entry is defined as:

@index{duck}

then name-case-change={firstuc} will make this entry behave as though it was defined
as:

228

5.7 Field and Label Options

@index{duck,
name = {Duck},
text = {duck}

}

Suppose I have a slightly eccentric abbreviation definition:

@abbreviation{html,
short = "ht\emph{ml}",
long = "hypertext markup language"

}

then short-case-change={uc} would convert the value of the short field into:

HT\emphML

Note that \emph isn’t modified as it’s recognised as a command. There’s a difference between
a group that follows a control sequence and one that doesn’t. For example:

@abbreviation{html,
short = "{ht}ml",
long = "hypertext markup language"

}

In this case short-case-change={firstuc} will convert the short field value to:

{HT}ml

(The entire contents of the group {ht} has been converted.) Whereas with:

@abbreviation{html,
short = "\emph{ht}ml",
long = "hypertext markup language"

}

then short-case-change={firstuc} will convert the short field value to:

\emph{Ht}ml

(Only the first letter of the argument {ht} has been converted.)
There’s no attempt at interpreting the field contents at this point (but the value may later

be interpreted during sorting). For example, suppose a name field is defined using:

name = "z\ae\oe",

then with name-case-change={uc}, the value would be converted to

Z\AE\OE

because \ae and \oe have known upper case versions.
With name-case-change={uc-cs}, the name value would be converted to:

229

5.7 Field and Label Options

\bibglsuppercase{z\ae\oe}

If the interpreter is used during sorting, the sort value will be set to ZÆŒ because the inter-
preter recognises all three commands.

You can use \NoCaseChange{〈text〉} to prevent the given 〈text〉 from having the case
changed. For example, if the short field is defined as:

short = {a\NoCaseChange{bc}d}

then with short-case-change={uc}, this would be converted to

A\NoCaseChange{bc}D

Note that with firstuc and title, if \MFUskippunc{〈text〉} occurs at the start of a word
then it’s skipped, and the case change is applied to the material following its argument. For
example, suppose the short field is defined as:

short={\MFUskippunc{h}tml}

then the result is:

\MFUskippunc{h}Tml

whereas with:

short={{}html}

then the result is just {}html (since the case change is applied to the empty group, which
has no effect).

If you have a command that takes a label or identifier as an argument then it’s best to
hide the label in a custom command. For example, if the short field in the .bib definition
is defined as:

short = "ht\textcolor{red}{ml}",

then with short-case-change={uc} this would end up as:

HT\textcolor{RED}{ML}

which is incorrect. Instead, provide a command that hides the label (such as the \strong
example described on page 121).

230

5.7 Field and Label Options

no-case-change-cs=〈list〉

Instructs the non-TEX case-changing options (where bib2gls, not TEX, performs the mod-
ification) to treat the commands whose control sequence names are given in the comma-
separated 〈list〉 in the same way as it treats \ensuremath etc. That is, the case-change is
omitted for the argument that follows any of those commands.

For example, this manual defines some semantic commands such as \fieldfmt (to format
field names), \abbrstylefmt (to format abbreviation style names) and \glostylefmt (to
format glossary style names). If any these occur in section and subsection headings (which
are converted to title case) then the case-change would produce an inappropriate result.
These formatting commands shouldn’t have their argument changed so they are identified
with:

no-case-change-cs={fieldfmt,abbrstylefmt,glostylefmt}

word-boundaries=〈list〉

Governs how the title case-change option determines word boundaries. The 〈list〉 must
contain one or more of the following keywords:

white space anywhite space Unicode character that is not a non-breakable space indicates
a word-boundary;

cs space the control sequences \space or \␣ indicate a word-boundary;

dash a Unicode character that belongs to the “Punctuation, Dash” block indicates a word-
boundary;

nbsp the ~ active character or the Unicode non-breakable characters 0x00A0, 0x2007 and
0x202F indicate a word-boundary.

Any keyword that is not listed indicates that particular setting is off. This option is not cu-
mulative. Any subsequent use of word-boundarieswithin the same set of resource options
will override previous settings.

The default setting is word-boundaries={white space,cs space}, which excludes non-
breakable spaces and dashes.

Note that you can explicitly markup word-boundary punctuation using \MFUwordbreak.
For example:

name = {a book of rhyme\MFUwordbreak{/}verse}

short-case-change=〈value〉

Applies a case-change to the short field (if present). This option may take one of the values
described above.

See dual-short-case-change to adjust the dualshort field.

231

5.7 Field and Label Options

long-case-change=〈value〉

Applies a case-change to the long field (if present). This option may take one of the values
described above.

See dual-long-case-change to adjust the duallong field.

name-case-change=〈value〉

Applies a case-change to the name field. This option may take one of the values described
above.

If the text field hasn’t been set, the name value is first copied to the text field. If the
name field hasn’t been set (for example, with the @index entry type), it’s copied from the
fallback value (which depends on the entry type, see section 5.8) unless the entry type is
@abbreviation or @acronym, in which case if the name field is missing no action is per-
formed.

description-case-change=〈value〉

Applies a case-change to the description field (if present). This option may take one of the
values described above.

field-case-change={〈key=value list〉}

A general case-change instruction. The value should be a comma-separated list of 〈field〉=
〈setting〉 for each field that needs a case-change applied. The value is required for this key
but may be empty, which indicates this option is switched off.

The 〈setting〉 should be the same as the permitted values for the above options. This option
is applied after all fields have been parsed but before interpret-fields. If the specified
field is missing, the fallback for that field (if known, see section 5.8) is copied into the field.
For example:

field-case-change={user1=uc,user2=firstuc}

This manual provides a custom storage key called nametitle:

\glsxtrprovidestoragekey{nametitle}{}{}

The resource options copy the name value to this custom field and convert nametitle to title
case:

replicate-fields={name=nametitle},
field-case-change={nametitle=title},

This means that it’s possible to fetch the value of nametitle instead of name, which provides
an expandable title case form that’s suitable for the PDF bookmarks. (Note that LATEX3 now
provides some expandable case-changing commands.)

This option isn’t cumulative. If used multiple times in the same resource set, the last
instance will be the one used. If the key=value list is missing, no general case-changing is
applied (the default).

232

5.8 Field Fallbacks

5.8 Field Fallbacks
The options in this section don’t modify any field values but provide instructions on what
to do if bib2gls wants to know the value of a field where the field hasn’t been explicitly
set. The most common case is querying the sort field value with the default sort-field
={sort} setting. Being able to vary the fallback used according to the entry type allows a
more flexible approach than explicitly setting the sort field in the .bib file.

Note that if you specify a different field to use for the sort value with sort-field then the
fallback for that field will be used if that field is missing. The sort fallbacks will be irrelevant
if the sort field isn’t being queried. If the fallback system fails to provide a value for the field
identified by sort-field then bib2gls will follow the rule given by the missing-sort
-fallback setting.

If you require a complex sort value that can’t be implemented by the fallback system, you
can use assign-fields to explicitly set the sort field to a string expression (section 5.1).
Bear in mind that if the sort field is actually set to a value, either in the .bib file or through
resource options, then the sort fallback won’t be used and the sort fallback options describe
in this section won’t have any effect.

There are other fields that bib2gls may want to query that won’t necessarily be set in
the .bib file but may be inferred from another field. For example, if the sort field fallback
references the name field then the name field will also need a fallback if it hasn’t been set.

Another possibility is that the interpreter encounters content that includes commands
such as \gls. Since the interpreter can’t tell at what point in the document the first use flag
is changed, \gls is treated as \glstext (and similarly \glspl is treated as \glsplural) so
the text (or plural) field will be queried by the interpreter.

The commands \newglossaryentry and \longnewglossaryentry are the foundation
for all commands that define glossary entries. These commands both require that either the
name or the parent field are set. If the name is omitted, then its value is obtained from the
parent entry’s name. The description must also be provided but may be set to empty.
(Some entry types, such as @index, will set description to empty if that field is missing,
but for other entry types, such as @entry, the description is required and will trigger a
warning if omitted.)

All other entry definition commands, such as \newabbreviation and \glsxtrnewsymbol,
internally use one of those foundation commands.2 In the case of \newabbreviation (and
\newacronym), the name field is set by the style using values obtained from the short and/or
long fields. This is information that bib2gls is unaware of and may guess incorrectly when
trying to determine an appropriate value for the name field if it is omitted (which is typically
the case) from abbreviation entry types, such as @abbreviation or @acronym.

The general @entry entry type, uses the same rules as \newglossaryentry:

name If the parent field has been set, then the parent’s name field is used. If the parent’s
name field isn’t set, then the fallback for the parent’s name field is used (which will
depend on the parent’s entry type). If neither the name nor the parent field is set,
then a warning is issued since at least one of those fields must be set for @entry.

2Or the internal command that both \newglossaryentry and \longnewglossaryentry use.

233

5.8 Field Fallbacks

text If the text field is missing, it’s obtained from the name field or the fallback for the
name field, if that hasn’t been set.

plural If the name field has been set then the plural value is obtained by appending \gls-
pluralsuffix to the value of the text field (or the fallback for the text field, if that
hasn’t been set).

If the name field hasn’t been set but the parent field has been set, then the plural is
obtained from the parent’s plural field. If the parent’s plural field hasn’t been set
then the fallback for that value will be used, according to the parent’s entry type.

first The fallback for the first field is obtained from the text field (or the fallback for
the text field, if that hasn’t been set).

firstplural The fallback for the firstpluralfield is obtained by appending \glsplural-
suffix to the value of the first field, if that field has been set, otherwise it’s obtained
from the plural field (or the fallback for the plural field if that isn’t set).

Note that although bib2gls follows the \newglossaryentry rules in order to obtain the
fallback, it doesn’t explicitly set those fields in the .glstex file if they weren’t provided in
the .bib file or set using options such as replicate-fields or assign-fields.

The exception to this is the sort field, which will be obtained from the name field for most
entry types unless overridden by one of the applicable sort fallback options, such as entry
-sort-fallback. If the designated fallback (such as name) is missing, then the fallback value
for that field will be used.

The @index and @indexplural entry types are slightly different. They have their own
rules for obtaining the value of the name field, and will explicitly set it in the .glstex file
via the helper commands \bibglsnewindex and \bibglsnewindexplural.

In the case of @index, if the name field is missing, its value will be obtained from the entry’s
original label. If the sort field is missing, its value is obtained from the name field unless
a different fallback is specified with custom-sort-fallbacks. The remaining fallbacks are
as for @entry.

It’s more complicated for @indexplural, which has the following fallback rules:

name If the name field is missing, its value is obtained from the entry’s plural field (or the
fallback for the plural field, if that field is missing).

plural If the plural field is missing, its value is obtained by appending \glsplural-
suffix to the value of the text field (or the fallback for the text field, if that field is
missing).

text If the text field is missing, its value is obtained from the entry’s original label.

sort If the sort field is missing, its value is obtained from the name field unless a different
fallback is specified with custom-sort-fallbacks.

234

5.8 Field Fallbacks

The remaining fallbacks are as for @entry.
The most awkward of all the entry types are, as indicated earlier, the abbreviations where

the field values such as name and text are set by the abbreviation style. Therefore, there are
resource options specifically to identify the most appropriate fallback values for abbrevia-
tions. The default is to use the value of the short field as the fallback for the name, sort and
text fields. If this is inappropriate for your abbreviation style then you will need to use the
options listed below to provide more appropriate fallbacks. These options don’t actually set
the name and text fields in the .glstex file and don’t include any style formatting (such as
font changing commands), which are irrelevant to bib2gls.3

For other entry types, see their description in chapter 4.

abbreviation-name-fallback=〈field〉
The entry types that define abbreviations (such as @abbreviation and @acronym) will, by
default, fallback on the short field if the name field is missing and it’s required for some
reason (for example, with sort-field={name}). If you prefer to fallback on a different
field, then you can use this option to specify the field. For example, abbreviation-name
-fallback={long}. The 〈field〉 value must be a known field (not an internal field) but can’t
be the sort field.

Note that the default fallback for the sortfield for abbreviations is given by abbreviation
-sort-fallbackwhich is set to short not name by default. So changing the fallback for the
name field won’t have an effect unless the sort fallback is changed to name or sort-field
={name} is used or the name field is referenced in an option such as assign-fields.

Field concatenation isn’t available for this option.

abbreviation-text-fallback=〈field〉
Similar to abbreviation-name-fallback but for the text field. The default fallback is the
short field. Field concatenation isn’t available for this option.

Note that you can’t have both abbreviation-name-fallback={text} and abbreviation
-text-fallback={name} as it would cause an infinite loop.

abbreviation-sort-fallback=〈field〉
The entry types that define abbreviations (such as @abbreviation and @acronym) will, by
default, fallback on the short field if the sort field is missing (assuming sort-field=
{sort}). If you prefer to fallback on a different field, then you can use this option to specify
the field. For example, abbreviation-sort-fallback={long}. Note that if you use sort
-field={name}, then the fallback field will be given by abbreviation-name-fallback if
the name field is omitted.

The 〈field〉 may be a known field but not an internal field. It can’t be the sort field. It
may also be one of the keywords: id (for the entry’s label) or original id (for the entry’s

3The sort field will be set in the .glstex file as it’s useful for debugging, but it’s typically irrelevant.

235

5.8 Field Fallbacks

original label). The 〈field〉 may also be a composite in the form 〈field1〉+〈field2〉+… which
indicates that the sort value should be obtained by concatenating the values of given fields,
where the separator is given by field-concat-sep.

Note that missing-sort-fallback and custom-sort-fallbacks override this setting.

The abbreviation-sort-fallback setting is only usedwhen bib2gls tries to access
the sort field for an abbreviation and finds that the field hasn’t been set. This means
that this setting has no effect if you explicitly set the sort field or if you change the
field used for sorting (sort-field).

entry-sort-fallback=〈field〉
The regular entry types (such as @entry and @dualentry) will, by default, fallback on the
name field if the sort field is missing (assuming sort-field={sort}). If you prefer to
fallback on a different field, then you can use this option to specify the field. Note that
missing-sort-fallback and custom-sort-fallbacks override this setting.

The 〈field〉 may be a known field but not an internal field. It can’t be the sort field. It
may also be one of the keywords: id (for the entry’s label) or original id (for the entry’s
original label). The 〈field〉 may also be a composite in the form 〈field1〉+〈field2〉+… which
indicates that the sort value should be obtained by concatenating the values of given fields,
where the separator is given by field-concat-sep.

This setting doesn’t affect the index type of entries, such as @index or @indexplural.
This is useful if your glossary contains homographs (terms with the same spelling) which
can’t be distinguished by the sort comparators. For example, suppose my file entries.bib
contains:

@index{pagelist,
name={page list},
description={a list of individual pages or page ranges}

}

@index{glossary}

@entry{glossarylist,
parent={glossary},
description={list of technical words}

}

@entry{glosscol,
parent={glossary},
description={collection of glosses}

}

Now first consider a document that uses the default settings:

236

5.8 Field Fallbacks

\documentclass{article}

\usepackage[record,subentrycounter,style={treenoname}]{glossaries-extra}

\GlsXtrLoadResources[src={entries}]

\begin{document}
A test document describing \glspl{pagelist} and
\gls{glosscol} (collection) vs \gls{glossarylist} (list).

\printunsrtglossary
\end{document}

Thedefault behaviour for @entry if the sort field is missing is to fallback on the name field. If
the name field is missing (as with glossarylist and glosscol), then the value is obtained
from the name field from the parent entry. The parent entry for these homographs is the
glossary entry, which was defined with @index and doesn’t have the name field. For the
@index entries, if name is missing the value is obtained from the label.

Therefore both glossarylist and glosscol end up with the same sort value: glossary.
This triggers a message in verbose mode (--verbose) which can be found in the transcript
file:

Identical sort values for 'glossarylist' and 'glosscol'
Falling back on ID

So the actual sort values used are “glossarylist” and “glosscol”. This puts the glossarylist
entry before the glosscol entry.

Now suppose a minor modification is made to the document:

\GlsXtrLoadResources
[
src={entries},
entry-sort-fallback={description}

]

This means that when the sort function fails to find the sort field for the terms defined with
@entry, it will fallback on the description field. This doesn’t affect the terms defined with
@index, which still fallback on the name field. This time there’s no message in the transcript
file and the glosscol entry now comes before the glossarylist entry.

The entry-sort-fallback setting is only used when bib2gls tries to access the
sort field for a term defined with @entry and finds that the field hasn’t been set. This
means that this setting has no effect if you explicitly set the sort field or if you change
the field used for sorting (sort-field).

237

5.8 Field Fallbacks

symbol-sort-fallback=〈field〉
The entry types that define symbols (such as @symbol and @number) will, by default, fallback
on the entry’s original label if the sort field is missing (assuming the default sort-field=
{sort}). If you prefer to fallback on a different field, then you can use this option to specify
the field. For example, symbol-sort-fallback={name}.

The 〈field〉 may be a known field but not an internal field. It can’t be the sort field. It
may also be one of the keywords: id (for the entry’s label) or original id (for the entry’s
original label). The 〈field〉 may also be a composite in the form 〈field1〉+〈field2〉+… which
indicates that the sort value should be obtained by concatenating the values of given fields,
where the separator is given by field-concat-sep.

Note that missing-sort-fallback and custom-sort-fallbacks override this setting.

The symbol-sort-fallback setting is only used when bib2gls tries to access the
sort field for a symbol and finds that the field hasn’t been set. This means that this
setting has no effect if you explicitly set the sort field or if you change the field used
for sorting (sort-field).

bibtexentry-sort-fallback=〈field〉
Themain @bibtexentry entry types will, by default, fallback on the name if the sort field is
missing (assuming the default sort-field={sort}). If you prefer to fallback on a different
field, then you can use this option to specify the field.

The 〈field〉 may be a known field but not an internal field. It can’t be the sort field. It
may also be one of the keywords: id (for the entry’s label) or original id (for the entry’s
original label). The 〈field〉 may also be a composite in the form 〈field1〉+〈field2〉+… which
indicates that the sort value should be obtained by concatenating the values of given fields,
where the separator is given by field-concat-sep.

Note that missing-sort-fallback and custom-sort-fallbacks override this setting.

The bibtexentry-sort-fallback setting is only used when bib2gls tries to access
the sort field for a main entry defined with @bibtexentry and finds that the field
hasn’t been set. This means that this setting has no effect if you explicitly set the sort
field or if you change the field used for sorting (sort-field).

custom-sort-fallbacks={〈key=value list〉}
The value should be a key=value list in the form 〈entrytype〉=〈field〉 where 〈entrytype〉 is
the original entry type (before being aliased with entry-type-aliases). This will override
any of the sort fallback options listed below for entries whose original entry type matches
〈entrytype〉.

The 〈field〉 may be a known field but not an internal field. For obvious reasons, it can’t
be the sort field (since 〈field〉 is the fallback a missing sort field). It may also be one of

238

5.8 Field Fallbacks

the keywords: id (for the entry’s label) or original id (for the entry’s original label). The
〈field〉 may also be a composite in the form 〈field1〉+〈field2〉+… which indicates that the sort
value should be obtained by concatenating the values of the given fields, where the separator
is given by field-concat-sep.

For example, if the .bib file contains:

@unit{ohm,
name={\si{\ohm}},
description={electrical resistance}

}

@constant{pi,
name={\ensuremath{\pi}},
description={the ratio of the length of the circumference

of a circle to its diameter},
user1={3.14159}

}

@symbol{fx,
name={\ensuremath{f(x)}},
description={a function of x}

}

@number{zero,
name={0},
description={nothing or no quantity}

}

Then the resource options:

entry-type-aliases={unit=symbol,constant=number},
custom-sort-fallbacks={unit=name,constant=user1}

will treat the custom @unit and @constant entries as though they had been defined with
@symbol and @number, respectively, but the fallback for the sort field is different: the ohm
entry will use the name field for the sort fallback (because its original entry type was unit),
the pi entry will use the user1 field for the sort fallback (because its original entry type
was constant) and the fx and zero entries will use the label for the sort fallback (since nei-
ther symbol nor number were identified in custom-sort-fallbacks so the symbol-sort
-fallback is used).

If an entry hasn’t had its entry type aliased then 〈entrytype〉 is its actual entry type. For
example, consider the following definitions:

@abbreviation{svm,
short={SVM},
long={support vector machine}

239

5.8 Field Fallbacks

}
@acronym{laser,

short={laser},
long={light amplification by stimulated emission of radiation}

}

Then abbreviation-sort-fallback={short}willmake both entries fallback on the short
field (since abbreviation-sort-fallback applies to both @acronym and @abbreviation),
but the option:

custom-sort-fallbacks={abbreviation=long,acronym=short}

will make the entry defined with @abbreviation fallback on the long field and the entry
defined with @acronym will fallback on the short field.

Since the default setting is abbreviation-sort-fallback={short} this only needs to
be:

custom-sort-fallbacks={abbreviation=long}

In this case, the entry defined with @abbreviation (“SVM”) will use the setting given in
custom-sort-fallbacks, but the entry defined with @acronym (“laser”) will use the setting
given by abbreviation-sort-fallback since @acronym hasn’t been identified in custom
-sort-fallbacks.

This option also covers dual entries. For example:

custom-sort-fallbacks={
dualindexnumber=description,
dualindexnumbersecondary=user1

}

Note that the entry type for the dual is in the form 〈primary entry type〉secondary.

The custom-sort-fallbacks setting is only used when bib2gls tries to access the
sort field for an entry (whose original entry type has been identified in this setting)
and finds that the field hasn’t been set. This means that this setting has no effect if you
explicitly set the sort field or if you change the field used for sorting (sort-field).

field-concat-sep=〈value〉
This option sets the field concatenation separator to 〈value〉 used by the sort fallback op-
tions. The default is a space. An empty value indicates no separator. You may use \u〈hex〉
to indicate a character by its hexadecimal code (see section 1.6). Note that the more complex
field concatenation specification described in section 5.1 isn’t available for this option.

For example, suppose the .bib file contains:

240

5.9 Plurals

@abbreviation{ac,
short={AC},
long={alternating current}

}
@index{acacia}

Then the resource option:

\GlsXtrLoadResources[
sort={letter-nocase},
abbreviation-sort-fallback={short+long}

]

will set the ac sort value to “AC alternating current”. That is, the short value concatenated
with the long value using the default space separator. With the letter-nocase sortmethod,
this will put the ac entry before the acacia entry (because the space character comes before
“a”).

If the resource options are changed to:

\GlsXtrLoadResources[
sort={letter-nocase},
field-concat-sep={},
abbreviation-sort-fallback={short+long}

]

This will obtain the sort value for abbreviations from a concatenation of the 〈short〉 and
〈long〉 values without a separator. This means that the ac sort value will be “ACalternating
current” and so the ac entry will come after the acacia entry (since “l” comes after “c”).

This setting is only used for the sort fallback options that allow field concatenation (such
as entry-sort-fallback but not missing-sort-fallback).

Note that due to the way that the key=value list parser trims leading and trailing spaces,
you can’t simply do field-concat-sep={ } to indicate a space character as the value will
end up as an empty string. You can instead do field-concat-sep={\string\u20} but
since this is the default value there shouldn’t be much need for it.

Remember that the separator may be replaced with a break point marker depending on
the sort method and break-at setting.

5.9 Plurals
Some languages, such as English, have a general rule that plurals are formed from the sin-
gular with a suffix appended. This isn’t an absolute rule. There are plenty of exceptions (for
example, geese, children, churches, elves, fairies, sheep, mice), so a simplistic approach of
just doing \gls{〈label〉}[s] will sometimes produce inappropriate results, so the glossaries
package provides a plural key with the corresponding command \glspl.

241

5.9 Plurals

In some cases a plural may not make any sense (for example, if the term is a verb or
symbol), so the plural key is optional, but to make life easier for languages where the
majority of plurals can simply be formed by appending a suffix to the singular, the glossaries
package lets the plural field default to the value of the text field with \glspluralsuffix
appended. This command is defined to be just the letter “s”. This means that the majority of
terms in such languages don’t need to have the plural supplied as well, and you only need
to use it for the exceptions.

For languages that don’t have this general rule, the plural field will always need to be
supplied for nouns.

There are other plural fields, such as firstplural, longplural and shortplural. Again,
if you are using a language that doesn’t have a simple suffix rule, you’ll have to supply the
plural forms if you need them (and if a plural makes sense in the context).

If these fields are omitted, the glossaries package follows these rules:

• If firstplural is missing, then \glspluralsuffix is appended to the first field,
if that field has been supplied. If the first field hasn’t been supplied but the plural
field has been supplied, then the firstplural field defaults to the plural field. If
the plural field hasn’t been supplied, then both the plural and firstplural fields
default to the text field (or name, if no text field) with \glspluralsuffix appended.

• If the longplural field is missing, then \glspluralsuffix is appended to the long
field, if the long field has been supplied.

• If the shortplural field is missing then, with the base glossaries acronym mechanism,
\acrpluralsuffix is appended to the short field.

The last case is different with the glossaries-extra extension package. The shortplural
field defaults to the short field with \abbrvpluralsuffix appended unless overridden by
category attributes. This suffix command is set by the abbreviation styles. This means that
every time an abbreviation style is implemented, \abbrvpluralsuffix is redefined. Most
styles simply define this command as:

\renewcommand*{\abbrvpluralsuffix}{\glsxtrabbrvpluralsuffix}

where \glsxtrabbrvpluralsuffix expands to \glspluralsuffix. The “sc” styles (such
as long-short-sc) use a different definition:

\renewcommand*{\abbrvpluralsuffix}{\protect\glsxtrscsuffix}

This allows the suffix to be reverted back to the upright font, counteracting the affect of the
small-caps font.

This means that if you want to change or strip the suffix used for the plural short form, it’s
usually not sufficient to redefine \abbrvpluralsuffix, as the change will be undone the
next time the style is applied. Instead, for a document-wide solution, you need to redefine
\glsxtrabbrvpluralsuffix. Alternatively you can use the category attributes.

There are two attributes that affect the short plural suffix formation. The first is aposplural
which uses the suffix

242

5.10 Location List Options

'\abbrvpluralsuffix

That is, an apostrophe followed by \abbrvpluralsuffix is appended. The second attribute
is noshortplural which suppresses the suffix and simply sets shortplural to the same as
short.

With bib2gls, if you have some abbreviations where the plural should have a suffix and
some where the plural shouldn’t have a suffix (for example, the document has both English
and French abbreviations) then there are two approaches.

The first approach is to use the category attributes. For example:

\glssetcategoryattribute{french}{noshortplural}

Now just make sure all the French abbreviations are have their category field set to french:

\GlsXtrLoadResources[src={fr-abbrvs},category={french}]

The other approach is to use the options listed below for the given resource set. For ex-
ample:

\GlsXtrLoadResources[src={fr-abbrvs},short-plural-suffix={}]

short-plural-suffix=〈value〉
Sets the plural suffix for the default shortplural to 〈value〉. The 〈value〉 may be one of:

• 〈suffix〉: add the shortplural field, if missing, with the given 〈suffix〉.

• 〈empty〉: add the shortplural field, if missing, with no suffix.

• use-default: leave it to glossaries-extra to determine the appropriate default.

The default setting is short-plural-suffix={use-default}. If the =〈value〉 part is omit-
ted, then short-plural-suffix={} is assumed.

dual-short-plural-suffix=〈value〉
Sets the plural suffix for the default dualshortplural field to 〈value〉. As with short
-plural-suffix, the default setting is dual-short-plural-suffix={use-default}. If
the 〈value〉 is omitted or empty, the suffix is set to empty.

5.10 Location List Options
The record package option automatically adds two new keys: loclist and location.
These two fields are set by bib2gls from the information supplied in the .aux file (un-
less the option save-locations={false} is used). The location field contains the code
to typeset the formatted location list.

243

5.10 Location List Options

Note that the cross-referencing information provided with the see, seealso and alias
fields is put in the location list. If you only want the cross-reference and not any of the
locations, use save-locations={see} (or similar).

The loclist field has the syntax of an etoolbox internal list and includes every location
(except for the discarded duplicates and ignored records) with no range formations. Any
explicit range markup is stripped from the format information to leave just the encap name,
so you just get the start and end locations added as individual elements but they are still
encapsulated with the associated formatting command. Each item in the list is provided in
one of the following forms:

\glsseeformat[〈tag〉]{〈label list〉}{}

for the cross-reference supplied by the see field,

\glsxtruseseealsoformat{〈xr list〉}

for the cross-reference supplied by the seealso field,

\glsnoidxdisplayloc{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}

for standard the internal locations,

\glsxtrdisplaysupploc{〈prefix〉}{〈counter〉}{〈format〉}{〈src〉}{〈location〉}

for supplemental (external) locations and

\glsxtrdisplaylocnameref{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}{〈title〉}
{〈href 〉}{〈hcounter〉}{〈file〉}

for nameref records. (See section 5.11 for more information about supplemental locations
and --merge-nameref-on for more information about nameref records.)

You can iterate through the loclist value using one of etoolbox’s internal list loops (either
by first fetching the list using \glsfieldfetch or through glossaries-extra’s \glsxtrfield-
dolistloop or \glsxtrfieldforlistloop shortcuts).

The 〈format〉 is that supplied by the format key when using commands like \gls or
\glsadd (the encapsulator or encap in makeindex parlance). If omitted, the default format
={glsnumberformat} is assumed (unless this default value is changed with \GlsXtrSet-
DefaultNumberFormat. The value of the format key must be the name of a text-block
command without the leading backslash that takes a single argument (the location). The
location is encapsulated by that command. For example,

\gls[format={textbf}]{sample}

will display the corresponding location in bold, but note that this will no longer have a hy-
perlink if you’ve used hyperref. If you want to retain the hyperlink you need the location
encapsulated with \hyperbf instead of \textbf:

\gls[format={hyperbf}]{sample}

244

5.10 Location List Options

The \hyper〈xx〉 set of commands all internally use \glshypernumber which adds the ap-
propriate hyperlink to the location. See Table 6.1 in the glossaries [14] user manual for a list
of all the \hyper〈xx〉 commands.

Ranges can be explicitly formed using the parenthetical syntax format={(} and format=
{(} or format={(〈csname〉} and format={)〈csname〉} (where 〈csname〉 is again the name
of a text-block command without the initial backslash) in the optional argument of com-
mands like \gls or \glsadd. With glossaries-extra v1.50+, you can also use \glsstart-
range and \glsendrange (which is useful if the unbalanced parentheses upset syntax high-
lighting).

These explicit ranges will always form a range, regardless of min-loc-range, unless the
start and end coincide and --collapse-same-location-range is in effect. The explicit
range will be encapsulated with \bibglsrange (unless merge-ranges={true}). (This com-
mand is not used with implicit ranges that are formed by collating consecutive locations.)
The initial marker is stripped from the 〈format〉 argument of the location formatting com-
mands, such as \glsnoidxdisplayloc, to allow for easy conversion to the corresponding
text-block command.

Explicit ranges don’t merge with neighbouring locations (unless merge-ranges={true}),
but will absorb any individual locations within the range that doesn’t conflict. (Conflicts,
denoted interlopers, will be moved to the start of the explicit range, regardless of merge
-ranges.) For example, if \gls{sample} is used on page 1, \gls[format={(}]{sample}
is used on page 2, \gls{sample} is used on page 3, and \gls[format={)}]{sample} is
used on page 4, then the location list will be 1, 2–4. The entry on page 3 is absorbed into the
explicit range, but, with the default merge-ranges={false}, the range can’t be expanded to
include page 1. If the entry on page 3 had a different format to the explicit range, for example
\gls[format={textbf}]{sample} then this will cause a warning and the interloper will
be moved before the start of the range so that the location list would then be 1, 3, 2–4.

The merge-ranges={true} option will make explicit ranges behave like implicit ranges,
which allows them to merge with neighbouring ranges. The \bibglsrange command won’t
be used in this case (regardless of whether or not the range was merged with neighbouring
locations). Options such as min-loc-range won’t have an effect on the merged range, but
will still effect implicit ranges that haven’t been merged with an explicit range.

An ignored record identifies a term that needs to be treated as though it has a record for
selection purposes, but the record should not be included in the location list. The special
format format={glsignore} is provided by the glossaries package for cases where the lo-
cation should be ignored. (The command \glsignore simply ignores its argument.) This
works reasonably well if an entry only has the one location, but if the entry happens to be
indexed again, it can lead to an odd empty gap in the location list with a spurious comma.
If bib2gls encounters a record with this special format, the entry will be selected but the
record will be discarded.

This means that the location list will be empty if the entry was only indexed with the
special ignored format, but if the entry was also indexed with another format then the lo-
cation list won’t include the ignored records. (This format is used by \glsaddallunused
but remember that iterative commands like this don’t work with bib2gls. Instead, just use
selection={all} to select all entries. Those that don’t have records won’t have a location

245

5.10 Location List Options

list.)
For example, suppose you only want main matter locations in the number list, but you

want entries that only appear in the back matter to still appear in the glossary (without a
location list), then you could do:

\backmatter
\GlsXtrSetDefaultNumberFormat{glsignore}

If you also want to drop front matter locations as well:

\frontmatter
\GlsXtrSetDefaultNumberFormat{glsignore}
…
\mainmatter
\GlsXtrSetDefaultNumberFormat{glsnumberformat}
…
\backmatter
\GlsXtrSetDefaultNumberFormat{glsignore}

Note that explicit range formations aren’t discarded, so if glsignore is used in a range,
such as:

\glsadd[format={(glsignore}]{sample}
…
\glsadd[format={)glsignore}]{sample}

then the range will be included in the location list (encapsulated with \glsignore), but this
case would be a rather odd use of this special format and is not recommended.

The record counting commands, such as \rgls, use the special format glstriggerrecord-
format, which bib2gls also treats as an ignored record and the same rules as for glsignore
apply.

The locations are always listed in the order in which they were indexed, (except for the
cross-reference whichmay be placed at the start or end of the list or omitted). This is different
to xindy and makeindexwhere you can specify the ordering (such as lower case Roman first,
then digits, etc), but unlike those applications, bib2gls allows any location, although it may
not be able to work out an integer representation. (With xindy, you can define new location
formats, but you need to remember to add the appropriate code to the custom module.)

It’s possible to define a custom glossary style where \glossentry (and the child form
\subglossentry) ignore the final argument (which will be the location field) and instead
parse the loclist field and re-order the locations or process them in some other way. Re-
member that you can also use \glsnoidxloclist provided by glossaries. For example:

\glsfieldfetch{gls.sample}{loclist}{\loclist}% fetch location list
\glsnoidxloclist{\loclist}% iterate over locations

This uses \glsnoidxloclisthandler as the list’s handler macro, which simply displays
each location separated by \delimN. (See also Iteration Tips and Tricks [16].)

Each regular location is listed in the .aux file in the form:

246

http://www.dickimaw-books.com/latex/admin/html/foreachtips.shtml

5.10 Location List Options

\glsxtr@record{〈label〉}{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}

(See --merge-nameref-on for nameref records.) Exact duplicates are discarded. For exam-
ple, if cat is indexed twice on page 1:

\glsxtr@record{cat}{}{page}{glsnumberformat}{1}
\glsxtr@record{cat}{}{page}{glsnumberformat}{1}

then the second record is discarded. Only the first record is added to the location list.
Partial duplicates, where all arguments match except for 〈format〉, may be discarded de-

pending on the value of 〈format〉. For example, if page 1 of the document uses \gls{cat}
and \gls[format={hyperbf}]{cat} then the .aux file will contain:

\glsxtr@record{cat}{}{page}{glsnumberformat}{1}
\glsxtr@record{cat}{}{page}{hyperbf}{1}

This is a partial record match. In this case, bib2gls makes the following tests:

• If one of the formats includes an explicit range formation marker, the range takes
precedence.

• If one of the formats is glsnumberformat (as in the above example) or an ignored
record format such as glsignore, that formatwill be skipped. So in the above example,
the second record will be added to the location list, but not the first. (A message will
only be written to the transcript if the --debug switch is used.) The default gls-
numberformat will take precedence over the ignored record formats (glsignore and
glstriggerrecordformat).

• If amapping has been set with the --map-format switch thatmappingwill be checked.

• Otherwise the duplicate record will be discarded with a warning.

The location field is used to store the formatted location list. The code for this list is
generated by bib2gls based on the information provided in the .aux file, the presence of the
see or seealso field and the various settings described in this chapter. When you display the
glossary using \printunsrtglossary, if the location field is present it will be displayed
according to the glossary style (and other factors, such as whether the nonumberlist option
has been used, either as a package option or supplied in the optional argument of \print-
unsrtglossary). For more information on adjusting the formatting see the glossaries [14]
and glossaries-extra [13] user manuals.

save-locations=〈value〉
This was originally a boolean setting, but as from v3.0 there are additional values.

• false: don’t save anything in the location field;

• true: save cross-references and all non-ignored locations in the location field;

247

5.10 Location List Options

• see: only save cross-references (see, seealso and alias) in the location field;

• see not also: only save the see and alias cross-references (not seealso) in the
location field;

• alias only: only save the alias cross-references (not see or seealso) in the location
field.

By default, the locations will be processed and stored in the location and loclist fields.
However, if you don’t want the location lists (for example, you are using the nonumberlist
option or you are using xindywith a custom location rule), then there’s no need for bib2gls
to process the locations. To switch this function off, just use save-locations={false}.
Note that with this setting, if you’re not additionally using makeindex or xindy, then the
locations won’t be available even if you don’t have the nonumberlist option set.

The boolean nonumberlist key that may be used in \newglossaryentry can also be
used in a .bib file, but in this case it can’t have an empty value. The value must be either
true or false. If true then bib2glswon’t save the location or loclist fields, regardless
of the save-locations resource option.

The nonumberlist key provided by the base glossaries package doesn’t represent a real
field. The value isn’t saved but, if used, it will alter the indexing information that’s written
to the makeindex or xindy file. It’s a little hack to ensure that the location is hidden for a
specific entry when used with makeindex and xindy.
bib2glswill look for this key to determine if the location should be omitted for the given

entry, but it won’t write the key to the .glstex file.

save-loclist=〈boolean〉
If youwant the locationfield but don’t need loclist, you can use save-loclist={false}.
This can help to save resources and build time.

save-primary-locations=〈value〉
A synonym for save-principal-locations.

save-principal-locations=〈value〉
It’s sometimes useful to identify a principal location with a different format, such as bold or
italic. This helps the reader select which location to try first in the event of a long location list.
However, you may prefer to store the principal locations in a different field to give it a more
prominent position. In order to do this you need to specify the format (or formats) used to
identify principal locations with principal-location-formats and use save-principal
-locations to determine how to deal with these locations.

This option may take one of the following values:

• false: don’t save principal locations (default);

248

5.10 Location List Options

• retain: save principal locations in the primarylocations field but don’t remove
from the usual location list;

• default format: similar to retain but the format for the principal records in the
location field is converted to the default glsnumberformat encap (the records in
the primarylocations field retain their given format);

• start: save principal locations in the primarylocations field and also move to the
start of the usual location list;

• remove: save principal locations in the primarylocations field and remove from the
usual location list. You may want to consider using the --retain-formats switch
with this setting if you don’t want to lose a partial location match (for example, if the
principal location coincides with the start of an explicit range).

The principal locations are copied to the primarylocations field and are either encap-
sulated with \bibglsprimary or can be split into groups, according to principal-loc
-counters.

If you use save-principal-locations={remove}, the location fieldwill end up empty
if the locations for the associated entry were all identified as principal. If you use save
-principal-locations={start}, all principal locations will be moved to the start of the
location list stored in the location field, but there will be no additional markup (other than
the given format) to identify them. If you need additional markup, then use save-principal
-locations={remove} and adjust the location list format to insert the principal locations
at the start. This can be done by modifying the glossary style.

For example, the bookindex style inserts \glsxtrbookindexprelocation before the lo-
cation, so you could redefine this:

\renewcommand*{\glsxtrbookindexprelocation}[1]{%
\glsxtrifhasfield{primarylocations}{#1}%
{%

\glsxtrprelocation
\glscurrentfieldvalue
\glsxtrifhasfield{location}{#1}{;}{}%

}%
{}%
\glsxtrprelocation

}

(Note that if loc-prefix is used, the prefix will be in the location field and so will come af-
ter the principal locations in the above example. Similarly for cross-references unless they’ve
been omitted.)

You can switch from using the location field to the primarylocations field by locally
changing \GlsXtrLocationField:

\printunsrtglossary*{%

249

5.10 Location List Options

\renewcommand{\GlsXtrLocationField}{primarylocations}%
}

Remember that the handler used by \printunsrtglossary will fallback on the loclist
field if the field identified by \GlsXtrLocationField is missing or empty. You may want
to consider using save-loclist={false} to prevent this.

primary-location-formats=〈list〉
A synonym for principal-location-formats.

principal-location-formats=〈list〉
This option will automatically set save-principal-locations={retain} unless it has al-
ready been changed from the default save-principal-locations={false} setting. The
argument should be a comma-separated list of formats. If a record’s format is contained in
this list then it will be considered a principal location and it will be included in the associated
entry’s primarylocations field.

For example, suppose the file entries.bib contains:

@entry{bird,
name={bird},
description={feathered animal}

}
@entry{waterfowl,

name={waterfowl},
description={any bird that lives in or about water}

}
@entry{zebra,

name={zebra},
description={striped African horse}

}
@entry{parrot,

name={parrot},
description={mainly tropical bird with bright plumage}

}

and the document test.tex contains:

\documentclass{report}

\usepackage[colorlinks]{hyperref}
\usepackage[record,
postpunc={dot},
nostyles,

250

5.10 Location List Options

stylemods={tree,bookindex},
style={bookindex}]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},
principal-location-formats={hyperbf,hyperemph},
save-principal-locations={remove}

]

\renewcommand*{\glsxtrbookindexprelocation}[1]{%
\glsxtrifhasfield{primarylocations}{#1}%
{%

\glsxtrprelocation
\glscurrentfieldvalue
\glsxtrifhasfield{location}{#1}{;}{}%

}%
{}%
\glsxtrprelocation

}

\glsxtrnewglslike[format={hyperbf}]{}{\primary}{\primarypl}{\Primary}
{\Primarypl}

\begin{document}
\chapter{Sample}
\Primary{waterfowl}, \gls{bird} and \gls{zebra}.

\chapter{Another Sample}
\Gls{waterfowl}, \primary{bird} and \gls{zebra}.

\chapter{Yet Another Sample}
\Gls{waterfowl}, \gls{bird} and \primary{zebra}.

\chapter{Yet Another Sample Again}
\Gls{waterfowl}, \gls{bird}, \primarypl{parrot} and \gls{zebra}.

\printunsrtglossary*[style={tree},nonumberlist]{%
\renewcommand*{\glsextrapostnamehook}[1]{\glsadd[format={hyperemph}]

{#1}}%
}

\printunsrtglossary[title={Index},target={false}]
\end{document}

251

5.10 Location List Options

The principal-location-formats={hyperbf,hyperemph} setting in the above indi-
cates that locations encapsulated with \hyperbf and \hyperemph are principal records. In
this case, the bold format is used to indicate the principal location in the main document text
and the emphasized format is used to indicate the location in the main glossary.

The principal records are removed from the location field due to the save-principal
-locations={remove} setting. This can lead to a ragged location list. The option save
-principal-locations={default format} can allow the principal location to be absorbed
into a range.

The main glossary records are added through the category-independent post-name hook
with \glsadd. This won’t be implemented until the entries are actually defined as the page
number can’t be determined until the glossary can be displayed. This means that the docu-
ment build requires an extra bib2gls and LATEX run:

pdflatex test
bib2gls --group test
pdflatex test
bib2gls --group test
pdflatex test

For consistency, I’ve used \glsxtrnewglslike to provide commands used to indicate a
principal reference in the text. This means that if I decide to change the optional arguments
used for principal references I only need to edit one line. For example, I might want to change
the default counter:

\glsxtrnewglslike[format={hyperbf},counter={chapter}]{}{\primary}
{\primarypl}{\Primary}{\Primarypl}

Here’s another example that only has one principal format (hyperrm) that’s indexed through
the use of \GlsXtrAutoAddOnFormat, which sets up a hook that automatically inserts:

\glsadd[counter={chapter},format={hyperrm}]{〈label〉}

on each instance of \gls[format={primaryfmt}]{〈label〉} (or similar). Thismeans that the
entry is indexed twice when this particular format is used: first with the hyperrm format and
chapter counter (from the \glsadd command in the hook), and then with the primaryfmt
format and the default counter (as per normal behaviour):

\documentclass{report}

\usepackage[colorlinks]{hyperref}
\usepackage[
record={nameref},
postpunc={dot},
nostyles,
stylemods={tree,bookindex},
style={bookindex}]{glossaries-extra}

252

5.10 Location List Options

\GlsXtrLoadResources[
src={topics},
principal-location-formats={hyperrm},
save-principal-locations={remove},
save-loclist={false}

]

\newcommand{\primaryfmt}[1]{\hyperbf{#1}}

\GlsXtrAutoAddOnFormat{primaryfmt}{counter={chapter},format={hyperrm}}

\glsxtrnewglslike[format={primaryfmt}]{}{\primary}{\primarypl}{\Primary}
{\Primarypl}

\begin{document}
\chapter{Sample}
\Primary{waterfowl}, \gls{bird} and \gls{zebra}.

\chapter{Another Sample}
\Gls{waterfowl}, \primary{bird} and \gls{zebra}.

\chapter{Yet Another Sample}
\Gls{waterfowl}, \gls{bird} and \primary{zebra}.

\chapter{Yet Another Sample Again}
\Gls{waterfowl}, \gls{bird}, \primarypl{parrot} and \gls{zebra}.

\printunsrtglossary*[style={tree},title={Summary}]{%
\renewcommand*{\glsextrapostnamehook}[1]{\glsadd[format={hyperemph}]

{#1}}%
\renewcommand{\GlsXtrLocationField}{primarylocations}%

}

\printunsrtglossary[title={Index},target={false}]
\end{document}

Note that in this case, from bib2gls’ point of view, the principal format is hyperrm not
primaryfmt. This picks out the records createdwith the automated \glsadd, which have the
counter set to chapter. The first glossary (with the title “Summary”) switches the location
field to primarylocations so that only the principal records are listed. Since record=
{nameref} has been used this means that the chapter title is shown rather than the chapter
number.

The second glossary (“Index”) shows the location lists that only have the page counter (be-

253

5.10 Location List Options

cause the automated \glsadd records with the chapter counter have been removed because
they were identified as principal records). These just show the page number as that’s the
default display with record={nameref} for records with the page counter.

An alternative to \GlsXtrAutoAddOnFormat would be to simply define the custom com-
mands as follows:

\newcommand{\primary}[2][]{%
\glsadd[counter={chapter},format={hyperrm}]{#2}%
\gls[format={primaryfmt},#1]{#2}%

}
\newcommand{\primarypl}[2][]{%
\glsadd[counter={chapter},format={hyperrm}]{#2}%
\glspl[format={primaryfmt},#1]{#2}%

}
\newcommand{\Primary}[2][]{%
\glsadd[counter={chapter},format={hyperrm}]{#2}%
\Gls[format={primaryfmt},#1]{#2}%

}
\newcommand{\Primarypl}[2][]{%
\glsadd[counter={chapter},format={hyperrm}]{#2}%
\Glspl[format={primaryfmt},#1]{#2}%

}

This is more useful if you want to simply omit the format={primaryfmt} option (just re-
move it from the above four definitions), which makes it easier to merge the locations into
ranges in the index.

primary-loc-counters=〈value〉
A synonym for principal-loc-counters.

principal-loc-counters=〈value〉
This option determines whether the principal locations should be split into groups according
to the location counter. The value may be one or:

• combine: don’t split into groups (default);

• match: match the loc-counters setting;

• split: split into groups regardless of the loc-counters setting.

With principal-loc-counters={combine} orwith principal-loc-counters={match}
and the default loc-counters={as use} settings, no groups will be formed and the prin-
cipal locations will be encapsulated with \bibglsprimary. Otherwise, the locations will be

254

5.10 Location List Options

split into groups according to the counter and each group will be encapsulated with \bib-
glsprimarylocationgroup and separated with \bibglsprimarylocationgroupsep.

For example, suppose the file topics.bib contains the following entry:

@entry{zebra,
name={zebra},
description={striped African horse}

}

Thedocument sets up a principal location format identified by the custom command \primaryfmt:

\newcommand{\primaryfmt}[1]{\hyperbf{#1}}

The \GlsXtrAutoAddOnFormat command is used to automatically record an entry with the
chapter counter (using \glsadd) every time the entry is recorded with the principal location
format:

\GlsXtrAutoAddOnFormat{primaryfmt}{counter=chapter,format=primaryfmt}

This means that, for example,

\gls[format=primaryfmt]{〈zebra〉}

will also first do:

\glsadd[counter=chapter,format=primaryfmt]{〈zebra〉}

If resource set is loaded with:

\GlsXtrLoadResources[src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain}

]

then both the location field and the primarylocations field will include both the page
and chapter records mixed together. The primarylocations field will have the locations
encapsulated with \bibglsprimary.

With

\GlsXtrLoadResources[src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain},
primary-loc-counters={split}

]

the primarylocations field will have the locations split into two groups, each encapsulated
with \bibglsprimarylocationgroup. The location field will have the chapter and page
locations intermingled.

With

255

5.10 Location List Options

\GlsXtrLoadResources[src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain},
primary-loc-counters={split},
loc-counters={page}

]

The primarylocations field will be the same as before, but the location field will only
have the page locations.

Whereas with

\GlsXtrLoadResources[src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain},
primary-loc-counters={match},
loc-counters={page}

]

Both the primarylocations field and the location field will only have the page locations.
The order of the groups depends on whether split or match is used. With primary-loc

-counters={match} the counter group order will match loc-counters. Whereas with
primary-loc-counters={split} the counter group order will be determined by the order
of records.

So in the case of the above document where the chapter record is automatically added
before the page record (where the format is primaryfmt) then with:

\GlsXtrLoadResources[src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain},
primary-loc-counters={match},
loc-counters={page,chapter}

]

then both the location field and the primarylocations field will have the page group first,
followed by the chapter group. Whereas with:

\GlsXtrLoadResources[src={topics},
primary-location-formats={primaryfmt},
save-primary-locations={retain},
primary-loc-counters={skip},
loc-counters={page,chapter}

]

then the primarylocations field will have the chapter group first, followed by the page
group.

256

5.10 Location List Options

merge-ranges=〈boolean〉
This boolean option determines whether or not explicit ranges shouldmergewith neighbour-
ing locations on either side of the range. The default setting is merge-ranges={false}.

Note that \bibglsrangewon’t be usedwith merge-ranges={true}, regardless ofwhether
or not the range was merged with neighbouring locations. Options such as min-loc-range,
suffixF and suffixFFwon’t have an effect on the merged range, but will still effect implicit
ranges that haven’t been merged with an explicit range.

Regardless of the value of this option, interlopers will still be moved to the start of the
range and encapsulated with \bibglsinterloper.

min-loc-range=〈value〉
By default, three ormore consecutive locations 〈loc-1〉, 〈loc-2〉, …, 〈loc-n〉 are compressed into
the range 〈loc-1〉\delimR 〈loc-n〉 (an implicit range). Otherwise the locations are separated
by \bibglsdelimN or \bibglslastDelimN. As mentioned above, these aren’t merged with
explicit range formations unless merge-ranges={true}.

You can change how many consecutive locations are need to form an implicit range with
the min-loc-range setting where 〈value〉 is either none (don’t form ranges) or an inte-
ger greater than one indicating how many consecutive locations should be converted into a
range.
bib2gls determines if one location {〈prefix-2〉}{〈counter-2〉}{〈format-2〉}{〈location-2〉}

is one unit more than another location {〈prefix-1〉}{〈counter-1〉}{〈format-1〉}{〈location-1〉}
according to the following:

1. If 〈prefix-1〉 is not equal to 〈prefix-2〉 or 〈counter-1〉 is not equal to 〈counter-2〉 or
〈format-1〉 is not equal to 〈format-2〉, then the locations aren’t considered consecu-
tive.

2. If either 〈location-1〉 or 〈location-2〉 are empty, then the locations aren’t considered
consecutive.

3. If both 〈location-1〉 and 〈location-2〉 match the pattern (line break for clarity only)4

(.*?)(?:\\protect\s*)?(\\[\p{javaAlphabetic}@]+)\s*\{([\p{javaDigit}
\p{javaAlphabetic}]+)\}

then:

• if the control sequence matched by group 2 isn’t the same for both locations, the
locations aren’t considered consecutive;

4The Java class \p{javaDigit} used in the regular expression will match any digits in the Unicode “Number,
Decimal Digit” category not just the digits in the Basic Latin set. Similarly \p{javaAlphabetic}will also
match alphabetic characters outside the Basic Latin set.

257

5.10 Location List Options

• if the argument of the control sequence (group 3) is the same for both locations,
then the test is retried with 〈location-1〉 set to group 1 of the first pattern match
and 〈location-2〉 set to group 1 of the second pattern match;

• otherwise the test is retried with 〈location-1〉 set to group 3 of the first pattern
match and 〈location-2〉 set to group 3 of the second pattern match.

4. If both 〈location-1〉 and 〈location-2〉 match the pattern

(.*?)([^\p{javaDigit}]?)(\p{javaDigit}+)

then:

a) if group 3 of both pattern matches are equal then:

i. if group 3 isn’t zero, the locations aren’t considered consecutive;

ii. if the separators (group 2) are different the test is retried with 〈location-1〉
set to the concatenation of the first two groups 〈group-1〉〈group-2〉 of the
first pattern match and 〈location-2〉 set to the concatenation of the first two
groups 〈group-1〉〈group-2〉 of the second pattern match;

iii. if the separators (group 2) are the same the test is retried with 〈location-1〉
set to the first group 〈group-1〉 of the first pattern match and 〈location-2〉 set
to the first group 〈group-1〉 of the second pattern match.

b) If 〈group-1〉 of the first pattern match (of 〈location-1〉) doesn’t equal 〈group-1〉 of
the second pattern match (of 〈location-2〉) or 〈group-2〉 of the first pattern match
(of 〈location-1〉) doesn’t equal 〈group-2〉 of the second patternmatch (of 〈location-
2〉) then the locations aren’t considered consecutive;

c) If 0 < l2− l1 ≤ dwhere l2 is 〈group 3〉 of the second pattern match, l1 is 〈group 3〉
of the first pattern match and d is the value of max-loc-diff then the locations
are consecutive otherwise they’re not consecutive.

5. The next pattern matches for 〈prefix〉〈sep〉〈n〉 where 〈n〉 is a lower case Roman nu-
meral, which is converted to a decimal value and the test is performed in the same
way as the above decimal test.

6. The next pattern matches for 〈prefix〉〈sep〉〈n〉 where 〈n〉 is an upper case Roman nu-
meral, which is converted to a decimal value and the test is performed in the same way
as the above decimal test.

7. The next pattern matches for 〈prefix〉〈sep〉〈c〉 where 〈c〉 is either a lower case letter
from a to z or an upper case letter from A to Z. The character is converted to its code
point and the test is performed in the same way as the decimal pattern above.

8. If none of the above, the location aren’t considered consecutive.

Examples:

258

5.10 Location List Options

1. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{2}

These records are consecutive. The prefix, counter and format are identical (so the test
passes step 1), the locations match the decimal pattern and the test in step 4c passes.

2. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1}
\glsxtr@record{gls.sample}{}{page}{textbf}{2}

These records aren’t consecutive since the formats are different.

3. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{A.i}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{A.ii}

These records are consecutive. The prefix, counter and format are identical (so it passes
step 1). The locations match the lower case Roman numeral pattern, where A is con-
sidered a prefix and the dot is consider a separator. The Roman numerals i and ii are
converted to decimal and the test is retried with the locations set to 1 and 2, respec-
tively. This now passes the decimal pattern test (step 4c).

4. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{i.A}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{ii.A}

These records aren’t consecutive. They match the alpha pattern. The first location is
considered to consist of the prefix i, the separator . (dot) and the number given by the
character code of A. The second location is considered to consist of the prefix ii, the
separator . (dot) and the number given by the character code of A.

The test fails because the numbers are equal and the prefixes are different.

5. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1.0}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{2.0}

These records are consecutive. They match the decimal pattern, and then step 4a fol-
lowed by step 4(a)iii. The .0 part is discarded and the test is retried with the first
location set to 1 and the second location set to 2.

6. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{1.1}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{2.1}

These records aren’t consecutive as the test branches off into step 4(a)i.

7. \glsxtr@record{gls.sample}{}{page}{glsnumberformat}{\@alph{1}}
\glsxtr@record{gls.sample}{}{page}{glsnumberformat}{\@alph{2}}

These records are consecutive. The locations match the control sequence pattern. The
control sequences are the same, so the test is retried with the first location set to 1 and
the second location set to 2.

In this example, the location has been written to the file as \@alph{〈number〉} instead
of fully expanding according to the normal behaviour of \alph{〈counter〉}. (Note
that \glsxtrresourcefile changes the category code of @ to allow for internal com-
mands in locations.) This unusual case is for illustrative purposes.

259

5.10 Location List Options

max-loc-diff=〈value〉
This setting is used to determine whether two locations are considered consecutive. The
value must be an integer greater than or equal to 1. (The default is 1.)

For two locations, 〈location-1〉 and 〈location-2〉, that have numeric values n1 and n2 (and
identical prefix, counter and format), then the sequence 〈location-1〉, 〈location-2〉 is consid-
ered consecutive if

0 < n2 − n1 ≤ 〈max-loc-diff 〉

The default value of 1 means that 〈location-2〉 immediately follows 〈location-1〉 if n2 = n1+1.
For example, if 〈location-1〉 is “B” and 〈location-2〉 is “C”, then n1 = 66 and n2 = 67. Since

n2 = 67 = 66 + 1 = n1 + 1 then 〈location-2〉 immediately follows 〈location-1〉.
This is used in the implicit range formations within the location lists (as described in the

above section). So, for example, the list “1, 2, 3, 5, 7, 8, 10, 11, 12, 58, 59, 61” becomes “1–3, 5,
7, 8, 10–12, 58, 59, 61”.

The automatically indexing of commands like \gls means that the location lists can be-
come long and ragged. You could deal with this by switching off the automatic indexing and
only explicitly index pertinent use or you can adjust the value of max-loc-diff so that a
range can be formed even if there are one or two gaps in it. By default, any ranges that have
skipped gaps in this manner will be followed by \bibglspassim. The default definition of
this command is obtained from the resource file. For English, this is passim (space followed
by “passim”).

So with the above set of locations, if max-loc-diff={2} then the list becomes “1–12
passim, 58–61 passim” which now highlights that there are two blocks within the document
related to that term.

suffixF=〈value〉
If set, an implicit range consisting of two consecutive locations 〈loc-1〉 and 〈loc-2〉 will be
displayed in the location list as 〈loc-1〉〈value〉. This option doesn’t affect explicit ranges,
even with merge-ranges={true}.

Note that suffixF={} sets the suffix to the empty string. To remove the suffix formation
use suffixF={none}.

The default is suffixF={none}.

suffixFF=〈value〉
If set, an implicit range consisting of three or more consecutive locations 〈loc-1〉 and 〈loc-
2〉 will be displayed in the location list as 〈loc-1〉〈value〉. This option doesn’t affect explicit
ranges, even with merge-ranges={true}.

Note that suffixFF={} sets the suffix to the empty string. To remove the suffix formation
use suffixFF={none}.

The default is suffixFF={none}.

260

5.10 Location List Options

compact-ranges=〈value〉
The 〈value〉 may be an integer 〈n〉 or false (equivalent to compact-ranges={0}) or true
(equivalent to compact-ranges={3}). If no 〈value〉 is specified, true is assumed.

This setting allows location ranges such as 184–189 to appear more compactly as 184–9.
The end location is encapsulated in the command \bibglscompact, so the range would
actually become:

184\delimR\bibglscompact{digit}{18}{9}

If the location is in the form 〈cs〉{〈loc〉} (where 〈cs〉 is a command) then \bibglscompact
will be inside the argument. For example, if the range would normally be:

\custom{184}\delimR\custom{189}

then it would become:

\custom{184}\delimR\custom{\bibglscompact{digit}{18}{9}}

Thenumerical value given in compact-ranges={〈n〉} indicates that compaction should only
occur if the actual location consists of at least 〈n〉 characters, for 〈n〉 ≥ 2. Any value of 〈n〉
less than 2 will switch off compaction.

For example, 189 consists of 3 characters, so it will be compacted with compact-ranges=
{3} but not with compact-ranges={4}. Whereas \custom{89} would only be compacted
with compact-ranges={2} because 89 only consists of 2 characters.

The compaction isn’t limited to decimal digits but it will only occur if both the start and
end location have the same number of characters. For example, xvi–xviii can’t be compacted
because the start consists of three characters and the end consists of five characters, whereas
xxv–xxx can be compacted to xxv–x, which may look a little strange. In this case, you may
want to consider changing the definition of \bibglscompact so that it only performs the
compaction for digits.

see=〈value〉
If an entry has a see field, this can be placed before or after the location list, or completely
omitted (but the value will still be available in the see field for use with \glsxtrusesee).
The required 〈value〉 must be one of:

• omit: omit the see reference from the location list.

• before: place the see reference before the location list.

• after: place the see reference after the location list (default).

The separator between the location list and the cross-reference is provided by \bibgls-
seesep. This separator is omitted if the location list is empty. The cross-reference is written
to the location field using \bibglsusesee{〈label〉}.

261

5.10 Location List Options

seealso=〈value〉
This is like see but governs the location of the cross-references provided by the seealso
field. You need at least v1.16 of glossaries-extra for this option. The values are the same as
for see but the separator is given by \bibglsseealsosep. The cross-reference is written to
the location field using \bibglsuseseealso{〈label〉}.

alias=〈value〉
This is like see but governs the location of the cross-references provided by the alias field.
The separator is given by \bibglsaliassep. The cross-reference is written to the location
field using \bibglsusealias{〈label〉}.

alias-loc=〈value〉
If an entry has an alias field, the location list may be retained or omitted or transferred to
the target entry. The required 〈value〉 must be one of:

• keep: keep the location list;

• transfer: transfer the location list;

• omit: omit the location list.

The default setting is alias-loc={transfer}. In all cases, the target entry will be added
to the see field of the entry with the alias field, unless it already has a see field (in which
case the see value is left unchanged).

Note that with alias-loc={transfer}, both the aliased entry and the target entry must
be in the same resource set. (That is, both entries have been selected by the same instance of
\glsxtrresourcefile.) If you have glossaries-extra version 1.12, you may need to redefine
\glsxtrsetaliasnoindex to do nothing if the location lists aren’t showing correctly with
aliased entries. (This was corrected in version 1.13.)

loc-prefix=〈value〉
The loc-prefix setting indicates that the location lists should begin with \bibglsloc-
prefix{〈n〉}. The 〈value〉 may be one of the following:

• false: don’t insert \bibglslocprefix{〈n〉} at the start of the location lists (default).

• {〈prefix-1〉},{〈prefix-2〉},…,{〈prefix-n〉}: insert \bibglslocprefix{〈n〉} (where 〈n〉
is the number of locations in the list) at the start of each location list and the definition
of \bibglslocprefix will have an \ifcase condition:

\providecommand{\bibglslocprefix}[1]{%
\ifcase#1
\or 〈prefix-1〉\bibglspostlocprefix

262

5.10 Location List Options

\or 〈prefix-2〉\bibglspostlocprefix
…
\else 〈prefix-n〉\bibglspostlocprefix
\fi

}

• comma: equivalent to loc-prefix={{, }} but avoids confusion with the list syntax.
That is, the prefix is a comma followed by a space for non-empty location lists.

• list: equivalent to loc-prefix={\pagelistname }.

• true: equivalent to loc-prefix={\bibglspagename,\bibglspagesname}, where
the definitions of \bibglspagename and \bibglspagesname are obtained from the
tag.page and tag.pages entries in bib2gls’s language resource file. This setting
works best if the document’s language matches the language file. However, you can
redefine these commands within the document’s language hooks or in the glossary
preamble.

If 〈value〉 is omitted, true is assumed. The definition will be placed in the .glstex file
according to loc-prefix-def.

For example:

\GlsXtrLoadResources[type={main},loc-prefix-def={individual},src=
{entries1},loc-prefix={false}]
\GlsXtrLoadResources[type={main},loc-prefix-def={individual},src=
{entries2},loc-prefix]
\GlsXtrLoadResources[type={symbols},src={entries3},loc-prefix={p.,pp.}]

This works since the conflicting loc-prefix={p.,pp.} and loc-prefix={true} are in
different glossaries (assigned through the type key). The entries fetched from entries1.bib
won’t have a location prefix. The entries fetched from entries2.bib will have the location
prefix obtained from the language resource file. The entries fetched from entries3.bibwill
have the location prefix “p.” or “pp.” (Note that using the type option isn’t the same as setting
the type field for each entry in the .bib file.)

If the type option isn’t used:

\GlsXtrLoadResources[src={entries1},loc-prefix={false}]
\GlsXtrLoadResources[src={entries2},loc-prefix]
\GlsXtrLoadResources[src={entries3},loc-prefix={p.,pp.}]

then loc-prefix={true} takes precedence over loc-prefix={p.,pp.} (since it was used
first). The entries fetched from entries1.bib still won’t have a location prefix, but the
entries fetched from both entries2.bib and entries3.bib have the location prefixes ob-
tained from the language resource file.

Note that if you identify some glossaries but not others (for example, you have dual entries
in separate glossaries but only use type and not dual-type), then you will need to use loc
-prefix-def={global} or loc-prefix-def={local}.

263

5.10 Location List Options

loc-prefix-def=〈value〉
This determines how the location prefix identified by loc-prefix is written to the .glstex
file. The value may be one of:

• global the definition is globally defined using \providecommand;

• local the definition is locally defined using \providecommand in the general glossary
preamble (\glossarypreamble);

• individual the definition is locally defined using \providecommand in the glossary
preamble of each type that has been identified in the current resource set, using options
like type and dual-type (\apptoglossarypreamble).

The default is loc-prefix-def={individual}. Note that this can lead to an undefined
control sequence error if locations appear in a glossary that hasn’t been detected by the
resource set.

loc-suffix=〈value〉
This is similar to loc-prefix but there are some subtle differences. In this case 〈value〉
may either be the keyword false (in which case the location suffix is omitted) or a comma-
separated list 〈suffix-0〉,〈suffix-1〉,…,〈suffix-n〉 where 〈suffix-0〉 is the suffix to use when the
location list only has a cross-reference with no locations, 〈suffix-1〉 is the suffix to use when
the location list has one location (optionally with a cross-reference), and so on. The final
〈suffix-n〉 in the list is the suffix when the location list has 〈n〉 or more locations (optionally
with a cross-reference).

This option will append \bibglslocsuffix{〈n〉} to location lists that either have a cross-
reference or have at least one location. Unlike \bibglslocprefix, this command isn’t used
when the location list is completely empty. Also, unlike \bibglslocprefix, this suffix
command doesn’t have an equivalent to \bibglspostlocprefix.

If 〈value〉 omitted, loc-suffix={\@.} is assumed. The default is loc-suffix={false}.
The way the definition is written to the .glstex file is determined by loc-suffix-def.

Note that if you identify some glossaries but not others (for example, you have dual entries
in separate glossaries but only use type and not dual-type), then you will need to use
loc-suffix-def={global} or loc-suffix-def={local}.

loc-suffix-def=〈value〉
This determines how the location suffix identified by loc-suffix is written to the .glstex
file. The value may be one of:

• global the definition is globally defined using \providecommand;

• local the definition is locally defined using \providecommand in the general glossary
preamble (\glossarypreamble);

264

5.10 Location List Options

• individual the definition is locally defined using \providecommand in the glossary
preamble of each type that has been identified in the current resource set, using options
like type and dual-type (\apptoglossarypreamble).

The default is loc-suffix-def={individual}. Note that this can lead to an undefined
control sequence error if locations appear in a glossary that hasn’t been detected by the
resource set.

loc-counters=〈list〉
Commands like \gls allow you to select a different counter to use for the location for that
specific instance (overriding the default counter for the entry’s glossary type). This is done
with the counter option. For example, consider the following document:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,style={tree}]{glossaries-extra}

\GlsXtrLoadResources[
src={entries}% data in entries.bib

]

\begin{document}

\gls{pi}.
\begin{equation}
\gls[counter={equation}]{pi}
\end{equation}
\begin{equation}
\gls[counter={equation}]{pi}
\end{equation}

\newpage
\begin{equation}
\gls[counter={equation}]{pi}
\end{equation}

\newpage
\gls{pi}.

\newpage
\gls{pi}.

\newpage

265

5.10 Location List Options

\gls{pi}.

\newpage
\printunsrtglossaries
\end{document}

This results in the location list “1, 1–3, 3–5”. This looks a little odd and it may seem as though
the implicit range formation hasn’t worked, but the locations are actually: page 1, equation 1,
equation 2, equation 3, page 3, page 4 and page 5. Ranges can’t be formed across different
counters.

The loc-counters={〈list〉} option instructs bib2gls to group the locations according to
the counters given in the comma-separated 〈list〉. If a location has a counter that’s not listed
in 〈list〉, then the location is discarded.

For example:

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

This will first list the locations for the equation counter and then the locations for the page
counter. Each group of locations is encapsulated within the command \bibglslocation-
group{〈n〉}{〈counter〉}{〈locations〉}. The groups are separated by \bibglslocationgroup-
sep.

The 〈list〉 value must be non-empty. Use loc-counters={as-use} to restore the default
behaviour, where the locations are listed in the document order of use, or save-locations
={false} to omit the location lists. Note that you can’t form counter groups from supple-
mental location lists.

save-index-counter=〈value〉
This option requires at least version 1.29 of glossaries-extra. The 〈value〉 may be one of:

• false: don’t create the indexcounter field (default);

• true: create the indexcounter field with the value set to the first wrglossary location;

• 〈encap〉: create the indexcounter field with the value set to the first wrglossary loca-
tion where the format is 〈encap〉.

This setting will have no effect if the indexcounter package option hasn’t been used. In the
case where the 〈value〉 is 〈encap〉, make sure that this format takes priority in the location
precedence rules (--map-format). If the location with that 〈encap〉 format value is discarded
then it can’t be saved.

The indexcounter package option (glossaries-extra v1.29+) creates a new counter called
wrglossary that’s incremented every time a term is indexed (recorded), except for cross-
references such as \glssee. The increment is performed using \refstepcounter and is

266

5.10 Location List Options

followed by \label{wrglossary.〈n〉} where 〈n〉 is the value of the wrglossary counter.
This option is intended for use with the hyperref package to allow locations to link back to
the particular part of the page where the term was referenced rather than to the top of the
page.

Take care not to confuse this with the indexed special internal field introduced in
glossaries-extra v1.49+. This is incremented on a per-entry basis and does not have an
associated counter.

The indexcounter package option also automatically implements the option counter=
{wrglossary}, which means that each instance of \gls{〈id〉} writes the label information
to the .aux file:

\newlabel{wrglossary.〈n〉}{{〈n〉}{〈page〉}{}{wrglossary.〈n〉}{}}

(where 〈page〉 is the page number) followed by the record:

\glsxtr@record{〈id〉}{}{wrglossary}{glsnumberformat}{〈n〉}

The location here is actually the value of the wrglossary counter not the page number, but
bib2gls can pick up the corresponding 〈page〉 from the \newlabel command. It then re-
places the record’s location 〈n〉 with:

\glsxtr@wrglossarylocation{〈n〉}{〈page〉}

(but it only does this for records that have the wrglossary counter).
The glossaries-extra package (v1.29+) adjusts the definition of \glshypernumber (which

is internally used by \glsnumberformat, \hyperbf etc when hyperref has been loaded) so
that if the counter is wrglossary then \pageref is used instead of \hyperlink. This means
that the page number is displayed in the location list but it links back to the place where the
corresponding \label occurred.

This method works partially with makeindex and xindy but from their point of view the
location is the value of the wrglossary counter, which interferes with their ability to merge
duplicate page numbers and form ranges. Since bib2gls is designed specifically to work
with glossaries-extra, it’s aware of this special counter andwill merge and collate the locations
according to the corresponding page number instead.

With the default --merge-wrglossary-records switch, if a term has multiple wrglossary
records for a given page they will be merged. The reference link will be the dominant record
for that page.

The save-index-counter option allows you to save the first of the wrglossary locations
for a given entry or the first instance of a specific format of the wrglossary locations for a
given entry. This location is stored in the indexcounter internal field using:

\GlsXtrSetField{〈id〉}{indexcounter}{\glsxtr@wrglossarylocation{〈n〉}
{〈page〉}}

267

5.10 Location List Options

Since \glsxtr@wrglossarylocation simply expands to its first argument, the correspond-
ing label can be obtained with:

wrglossary.\glsxtr@wrglossarylocation{〈n〉}{〈page〉}

For convenience, glossaries-extra-bib2gls provides:

\GlsXtrIndexCounterLink{〈text〉}{〈label〉}

which will do:

\hyperref[wrglossary.〈value〉]{〈text〉}

where 〈value〉 is the value of the indexcounter field if it has been set. If the indexcounter
field hasn’t been set (or if hyperref hasn’t been loaded) then just 〈text〉 is done.

This provides a convenient way of encapsulating the name in the glossary so that it links
back to the first wrglossary entry or the first format={〈encap〉} wrglossary entry. This en-
capsulation can be done by providing a new glossary style or more simply by redefining
\glsnamefont:

\renewcommand{\glsnamefont}[1]{%
\GlsXtrIndexCounterLink{#1}{\glscurrententrylabel}}

Here’s a complete example:

\documentclass{article}

\usepackage{lipsum}% dummy filler text
\usepackage[colorlinks]{hyperref}
\usepackage[record,indexcounter]{glossaries-extra}

\newcommand{\primary}[1]{\hyperbf{#1}}

\GlsXtrLoadResources[
src={entries},% terms defined in entries.bib
save-index-counter={primary}

]

\renewcommand{\glsnamefont}[1]{%
\GlsXtrIndexCounterLink{#1}{\glscurrententrylabel}}

\begin{document}

A \gls{sample}. \lipsum*[1] A \gls{duck}.

An equation:
\begin{equation}

268

5.11 Supplemental Locations

\gls[counter={equation}]{pi}
\end{equation}

\lipsum[2]

Another \gls[format={primary}]{sample}. \lipsum*[3] Another
\gls{duck}.

\gls{pi}. \lipsum[4]

A \gls{sample}. \lipsum*[5] A \gls{duck} and
\gls[format={primary}]{pi}.

\lipsum*[6] A \gls[format={primary}]{duck}.

\printunsrtglossaries
\end{document}

Note that the counter={equation} entry will have its own independent location. In this
example, it’s difficult to tell the difference between 1 (the equation reference) and 1 (the page
reference) in the location list for the pi entry.

The format={primary} instances indicate principal references. They’re displayed in bold
(since \primary is defined to use \hyperbf) and these are the locations saved in the index-
counterfield because that’s the 〈encap〉 identified by the save-index-counter={primary}
setting.

5.11 Supplemental Locations
These options require at least version 1.14 of glossaries-extra. If you require locations from
multiple external sources, then you need at least version 1.36 of glossaries-extra (or, more
specifically, glossaries-extra-bib2gls, which is automatically loaded by the record={only}
package option).

The glossaries-extra package (from v1.14) provides a way of manually adding locations in
supplemental documents through the use of the thevalue option in the optional argument
of \glsadd. Setting values manually is inconvenient and can result in errors, so bib2gls
provides a way of doing this automatically. Both the main document and the supplementary
document need to use the record option. The entries provided in the src set must have the
same labels as those used in the supplementary document. (The simplest way to achieve this
is to ensure that both documents use the same .bib files and the same prefixes.)

For example, suppose the file entries.bib contains:

@entry{sample,
name={sample},
description="an example entry"

269

5.11 Supplemental Locations

}

@abbreviation{html,
short="html",
long={hypertext markup language}

}

@abbreviation{ssi,
short="ssi",
long="server-side includes"

}

@index{goose,plural="geese"}

Now suppose the supplementary document is contained in the file suppl.tex:
\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,counter={section}]{glossaries-extra}

\GlsXtrLoadResources[src={entries}]

\renewcommand{\thesection}{S\arabic{section}}
\renewcommand{\theHsection}{\thepart.\thesection}

\begin{document}
\part{Sample Part}
\section{Sample Section}
\gls{goose}. \gls{sample}.

\part{Another Part}
\section{Another Section}
\gls{html}.
\gls{ssi}.

\printunsrtglossaries
\end{document}

This uses the section counter for the locations and has a prefix (\thepart.) for the section
hyperlinks.

Now let’s suppose I have another document called main.tex that uses the sample entry,
but also needs to include the location (S1) from the supplementary document. The manual
approached offered by glossaries-extra is quite cumbersome and requires setting the external-
location attribute and using \glsaddwith thevalue={S1}, theHvalue={I.S1} and format
={glsxtrsupphypernumber}.

270

5.11 Supplemental Locations

This can be simplified with bib2gls by using the supplemental-locations option, de-
scribed below.

Version 1.36 of glossaries-extra-bib2gls introduces some special location formatting com-
mands that don’t use the externallocation attribute, but instead have an extra argument that
indicates the external reference. The additional argument means that it can’t be used by the
format key, but with bib2gls you don’t use \glsadd to record the external locations. In-
stead it obtains the records from the corresponding supplementary .aux file, and adjusts the
location encapsulator as appropriate.

If bib2gls detects an older version of glossaries-extra, it will only allow one external sup-
plemental source, and will set the externallocation attribute and use the glsxtrsupphyper-
number format. Otherwise bib2gls will allow multiple sources and use the newer method.

supplemental-locations=〈basename〉
The value should be the base name (without the extension) of the supplementary document
(suppl in the above example). If you have at least version 1.36 of glossaries-extra, the value
may be a comma-separated list of base names (without the extensions) of the supplementary
documents. If an older version is detected, bib2glswill issue a warning and only accept the
first element of the list.

For example:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
supplemental-locations={suppl},% fetch records from suppl.aux
src={entries}]

\begin{document}
\Gls{sample} document.

\printunsrtglossaries
\end{document}

The location list for samplewill now be “1, S1” (page 1 from the main document and S1 from
the supplementary document).

With glossaries-extra v1.36+, a regular location from the supplementary document will be
encapsulated with:

\glsxtrdisplaysupploc{〈prefix〉}{〈counter〉}{〈format〉}{〈src〉}{〈location〉}

By default, this simply creates an external hyperlink to the supplementary document with
the location as the hyperlink text. The hyperlink is created using 〈src〉 as the target path

271

5.11 Supplemental Locations

with the fragment part (anchor) formed from the prefix and location. The externallocation
attribute is not set in this case. The actual formatting is done via:

\glsxtrmultisupplocation{〈location〉}{〈src〉}{〈format〉}

which ignores the 〈format〉 argument by default. Its definition is simply:

\newcommand*{\glsxtrmultisupplocation}[3]{%
{% scope required to localise changes
\def\glsxtrsupplocationurl{#2}%
\glshypernumber{#1}%

}%
}

This locally sets the command \glsxtrsupplocationurl, which is checked by \glshyper-
number to establish an external rather than internal link. You can redefine the supplemental
location command to retain the original encap used in the target document:

\renewcommand*{\glsxtrmultisupplocation}[3]{%
{% scope required to localise changes
\def\glsxtrsupplocationurl{#2}%
\csuse{#3}{#1}%

}%
}

but remember that if a hyperlink is required, the identified control sequence name must
correspond to a command that uses \glshyperlink (such as \hyperbf), otherwise you will
lose the hyperlink.

With older versions of glossaries-extra, the original location format from the supplemen-
tary document will be replaced by glsxtrsupphypernumber, which again produces an ex-
ternal hyperlink. The externallocation attribute also needs to be set (this can be done auto-
matically with supplemental-category) to identify the external document. The original
format can’t be accessed.

In both cases, if the document hasn’t loaded the hyperref package, the location will simply
be displayed without a hyperlink. Even if both the main and the supplementary documents
have loaded hyperref, note that not all PDF viewers can handle external hyperlinks, and some
that can open the external PDF file may not recognise the destination within that file.

The special nameref locations (see --merge-nameref-on) are still identified with \gls-
xtrdisplaylocnameref but the 〈file〉 argument will now be set.

As from bib2gls v1.7, any awkward characters in the file path are replaced with \bib-
glshrefchar or (for non-ASCII characters, when supported) \bibglshrefunicode. Both
commands take two arguments: the hexadecimal character code and the actual character. In
the case of \bibglshrefchar, the second argument is ignored, and the first is preceded by
a literal percent character, so file name.pdf will be converted to:

file\bibglshrefchar{20}{ }name.pdf

272

5.11 Supplemental Locations

which will expand to file%20name.pdf. In the case of \bibglshrefunicode, the first
argument is ignored, so skráarnafn.pdf will be converted to:

skr\bibglshrefunicode{E1}{á}arnafn.pdf

which will expand to skráarnafn.pdf.
The supplementary location lists are encapsulated within \bibglssupplemental. With

glossaries-extra v1.36+, this command will encapsulate the sub-lists with \bibglssupple-
mentalsublist.

So the above example with an old version of glossaries-extra (pre 1.36) will set the supple-
mental location list (which only consists of one location) to:

\bibglssupplemental
{1}{\setentrycounter[I]{section}\glsxtrsupphypernumber{S1}}

and the external target must be supplied through the externallocation attribute, which can
be set with the supplemental-category option.

Whereas with at least version 1.36, the list will be:

\bibglssupplemental{1}{\bibglssupplementalsublist{1}{suppl.pdf}
{\glsxtrdisplaysupploc{I}{section}{glsnumberformat}{suppl.pdf}{S1}}}

If an entry has both a main location list and a supplementary location list (such as the
sample entry above), the lists will be separated by \bibglssupplementalsep. The sub-
lists (when supported) are separated by \bibglssupplementalsubsep.

supplemental-selection=〈value〉
In the above example, only the sample entry is listed in the main document, even though
the supplementary document also references the goose, html and ssi entries. By default,
only those entries that are referenced in the main document will have supplementary lo-
cations added (if found in the supplementary document’s .aux file). You can additionally
include other entries that are referenced in the supplementary document but not in the main
document using supplemental-selection. The 〈value〉 may be one of the following:

• all: add all the entries in the supplementary document that have been defined in the
.bib files listed in src for this resource set in the main document.

• selected: only add supplemental locations for entries that have already been selected
by this resource set.

• 〈label-1〉,…,〈label-2〉: in addition to all those entries that have already been selected by
this resource set, also add the entries identified in the comma-separated list. If a label
in this list doesn’t have a record in the supplementary document’s .aux file, it will be
ignored.

273

5.11 Supplemental Locations

Any records in the supplementary .aux file that aren’t defined by the current resource set
(through the .bib files listed in src) will be ignored. Entry aliases aren’t taken into account
when including supplementary locations.

For example:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
supplemental-locations={suppl},
supplemental-selection={html,ssi},
src={entries}]

\begin{document}
\Gls{sample} document.

\printunsrtglossaries
\end{document}

This will additionally add the html and ssi entries even though they haven’t been used in
this document. The goose entry used in the supplementary document won’t be included.

supplemental-category=〈value〉
The category field for entries containing supplemental location lists may be set using this
option. If unset, 〈value〉 defaults to the same as that given by the category option. The
〈value〉may either be a known identifier (as per category) or the category label. For exam-
ple:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
supplemental-locations={suppl},
supplemental-selection={html,ssi},
supplemental-category={supplemental},
src={entries}]

\begin{document}
\Gls{sample} document.

274

5.12 Sorting

\printunsrtglossaries
\end{document}

A value of false will switch off this setting (the default).

5.12 Sorting
Entries are typically displayed in an ordered list, but the glossaries-extra package is versatile
enough to be used in wider contexts than simple terms, symbols or abbreviations. For ex-
ample, entries could contain theorems or problems where the name supplies the title and the
description provides a description of the theorem or problem. Another field might then
contain the proof or solution. Therefore, somewhat unusually for an indexing application,
bib2gls also provides the option to shuffle the entries instead of sorting them.

This section covers the resource options for sorting primary entries. See section 5.14
for sorting dual entries and also sort-label-list for sorting field values that contain a
comma-separated list of entry labels (such as the see or seealso fields).

The sort methods that use a comparison function (that is, all the sort methods except those
listed in table 5.1) require a sort value for each entry. The function compares these values to
determine the order. By default, this sort value is obtained from the sort field but for greater
flexibility it’s best to not actually set this field. bib2gls has a set of fallbacks that it uses if
a field it needs to access is missing. These fallbacks depend on the entry type and resource
settings (see section 5.8).

For example, if a term defined with @index doesn’t have the sort field set then bib2gls
will use the value given by the name field because name is the fallback field for sort for
@index entries. If the name field isn’t set either then bib2gls will use the fallback for that
field. In the case of @index that’s the entry’s label. If the sort field is explicitly set then
there’s no need to use the fallback.

If, on the other hand, a term defined with @symbol doesn’t have the sort field set then
bib2gls will use the value from the field identified by symbol-sort-fallback, which is
the entry’s label by default (not the name field).

Thismeans that if I don’t explicitly set the sort field for any entries then I can, for example,
sort terms defined with @index by name and those defined with @symbol by description
with the setting:

symbol-sort-fallback={description}

If the field used to obtain the sort value is changed (with sort-field) then the sort field
won’t be queried. This reduces the flexibility of selecting the most appropriate field for given
entry types. For example, sort-field={name}will force all entries to be sorted by the name
field, which may not be appropriate for symbols.

If you choose a field whose value must be a label (such as parent or group) then the
sort value will be that label.

275

5.12 Sorting

You can have @preamble definitions that can be hidden from bib2gls’s interpreter. For
example, no-interpret-preamble.bib might contain:

@preamble{"\providecommand{\sortop}[2]{#1 #2}"}

which is loaded using:

\GlsXtrLoadResources[src={no-interpret-preamble},
interpret-preamble={false}]

This provides a custom command:

\sortop{〈text1〉}{〈text2〉}

for internal use in the document. (Remember it won’t be defined on the first LATEX run before
the .glstex file has been created and so is only used within entry fields.)

Another file, say, interpret-preamble.bib may provide a definition for bib2gls:

@preamble{"\providecommand{\sortop}[2]{#2, #1}"}

which can be processed with:

\GlsXtrLoadResources[src={interpret-preamble}]

to provide bib2gls with this definition. The entries.bib file could contain:

@entry{caesar,
name={\sortop{Gaius Julius}{Caesar}},
first={Julius Caesar},
text={Caesar},
description={Roman politician and general}

}

and then be processed with:

\GlsXtrLoadResources[src={entries}]

The definition provided in interpret-preamble.bib, which swaps the two arguments
around, is now picked up by bib2gls, so the sort value becomes Caesar, Gaius Julius,
but this new definition doesn’t affect the document since LATEX has already defined \sortop
from the first resource set, so the namewill appear as “Gaius Julius Caesar” in the glossary. (If
you have \renewcommand rather than \providecommand, you can prevent the redefinition
occurring in the document with write-preamble={false}.)

Alternatively both of these .bib files can be loaded in one resource set:

\GlsXtrLoadResources[src={interpret-preamble,entries}]

Another possibility is to provide a custom package that contains the command definitions
for the bib2gls interpreter and load it with --custom-packages instead of having the
interpret-preamble.bib file.

276

5.12 Sorting

sort=〈value〉
The sort key indicates how primary entries should be sorted. If the 〈value〉 is omitted, sort
={resource} is assumed. Note the differences between the keywords resource, doc and
locale:

resource The default resource locale, which can be specified with the locale option. If
that option hasn’t been set, then resource will be equivalent to doc. This option is
new to bib2gls v3.3. Previous versions had sort={doc} as the default.

doc The document locale if it has been detected by tracklang. If no document language has
been detected (or identified with --locale), then doc will be equivalent to locale.

locale The default Java locale.

The 〈method〉-reverse options reverse the result returned by the corresponding 〈method〉
comparator. However 〈method〉-reverse may not produce a list that’s the exact reverse of
the underlying non-reversed 〈method〉 as the hierarchical structure or associated settings can
affect the order.

No Sort Field

Most of the sort methods listed in table 5.1 don’t actually perform any sorting. This may
cause a problem for hierarchical entries. In some cases this can lead to detached child entries
or an attempt to define a child entry before its parent. The methods listed in this section all
ignore the sort-field setting and all the various sort fallback settings, except where noted
below.

• none (or unsrt): don’t sort the entries. (The entries will be in the order they were
processed when parsing the data.)
If you need to order by definition but also maintain hierarchy then use:

save-definition-index,
sort-field={definitionindex},
sort={integer}

• random: shuffles rather than sorts the entries. This won’t work if there are hierar-
chical entries, so it’s best to use this option with flatten. The seed for the random
generator can be set using shuffle (which also automatically sets sort={random}
and flatten).

• use: order of use. This order is determined by the records written to the .aux file
by the record package option. Dependencies and cross-references (including those
identified with \glssee) come after entries with records.
Note that this is different from using the analogous option with makeindex or xindy,
which does actually sort numerically, where each entry has an associated number set
on the first use of that term that’s used as the sort value.
If you need to order by use but also maintain hierarchy then use:

277

5.12 Sorting

Table 5.1: Summary of Available Sort Options: No Sort Field

none or unsrt don’t sort
random shuffle entries
use order of use
use-reverse reverse order of use
recordcount† order of record count
recordcount-reverse† reverse order of record count

†Requires --record-count switch.

Table 5.2: Summary of Available Sort Options: Alphabet

〈lang tag〉 sort according to this language tag
〈lang tag〉-reverse reverse sort according to this language tag
resource sort according to the default resource locale
resource-reverse reverse sort according to the default resource locale
doc sort according to the document locale
doc-reverse reverse sort according to the document locale
locale sort according to the default Java locale
locale-reverse reverse sort according to the default Java locale
custom sort according to sort-rule={〈custom rule〉}
custom-reverse reverse sort according to sort-rule={〈custom rule〉}

Table 5.3: Summary of Available Sort Options: Letter (Non-Locale)

letter-case case-sensitive letter sort
letter-case-reverse reverse case-sensitive letter sort
letter-nocase case-insensitive letter sort
letter-nocase-reverse reverse case-insensitive letter sort
letter-upperlower upper-lower letter sort
letter-upperlower-reverse reverse upper-lower letter sort
letter-lowerupper lower-upper letter sort
letter-lowerupper-reverse reverse lower-upper letter sort

Table 5.4: Summary of Available Sort Options: Letter-Number

letternumber-case case-sensitive letter-number sort
letternumber-case-reverse reverse case-sensitive letter-number sort
letternumber-nocase case-insensitive letter-number sort
letternumber-nocase-reverse reverse case-insensitive letter-number sort
letternumber-upperlower upper-lower letter-number sort
letternumber-upperlower-reverse reverse upper-lower letter-number sort
letternumber-lowerupper lower-upper letter-number sort
letternumber-lowerupper-reverse reverse lower-upper letter-number sort

278

5.12 Sorting

Table 5.5: Summary of Available Sort Options: Numerical

integer integer sort
integer-reverse reverse integer sort
hex hexadecimal sort
hex-reverse reverse hexadecimal sort
octal octal sort
octal-reverse reverse octal sort
binary binary sort
binary-reverse reverse binary sort
float float sort
float-reverse reverse float sort
double double sort
double-reverse reverse double sort
numeric locale-sensitive numeric sort
numeric-reverse reverse locale-sensitive numeric sort
currency locale-sensitive currency sort
currency-reverse reverse locale-sensitive currency sort
percent locale-sensitive percent sort
percent-reverse reverse locale-sensitive percent sort
numberformat locale-sensitive custom numeric sort
numberformat-reverse reverse locale-sensitive custom numeric sort

Table 5.6: Summary of Available Sort Options: Date-Time

date locale-sensitive date sort
date-reverse reverse locale-sensitive date sort
datetime locale-sensitive date-time sort
datetime-reverse reverse locale-sensitive date-time sort
time locale-sensitive time sort
time-reverse reverse locale-sensitive time sort

279

5.12 Sorting

save-use-index,
sort-field={useindex},
sort={integer}

• use-reverse: reverses the order that would be obtained with sort={use} without
reference to hierarchy.

• recordcount: order of record count (starting from 0). This order is determined by
the total number of records written to the .aux file for each entry. Unlike the above
methods, this performs a hierarchical sort. If letter groups are enabled with --group,
this method will assign the entries to the number group.

This option requires the --record-count switch. Although that switchmakes bib2gls
write the total record count to the .glstex file in the recordcount internal field (so
that it can be accessed in the document), bib2gls doesn’t actually have a field it-
self that contains the information. So although this option behaves much like sort=
{integer} it’s not possible to select a field containing the required value. In the event
of two or more entries having the same record count, the identical-sort-action
option is used to determine the relative ordering between them.

• recordcount-reverse: reverse order of record count (ending with 0). All the above
notes applying to recordcount also apply here.

Suppose the file entries.bib contains definitions of a set of symbols that don’t have any
intuitive ordering (for example, they are all pictographs) then there may be no point in trying
to order them, in which case you can do:

\GlsXtrLoadResources[src={entries},sort={none}]

Alternatively, you could list them in order of use:

\GlsXtrLoadResources[src={entries},sort={use}]

or by frequency of use. For example, starting with entries that don’t have any records fol-
lowed by the least used entries (a rarely-used symbol may be harder to remember and most
likely to be looked up in the glossary):

\GlsXtrLoadResources[src={entries},sort={recordcount}]

Or starting with the most used entries:

\GlsXtrLoadResources[src={entries},sort={recordcount-reverse}]

It all depends on what’s likely to be most useful to the reader.
Consider the following:

280

5.12 Sorting

\newglossary*{frequent}{Most Frequently Used Terms}
\GlsXtrLoadResources[src={entries},sort={use},
secondary={recordcount-reverse:frequent}

]
\newcommand{\filterhook}[1]{%

\GlsXtrIfFieldCmpNum*{recordcount}{#1}{>}{10}%
{}%
{\printunsrtglossaryskipentry}%

}
\begin{document}
\printunsrtglossary*[target={false},type={frequent}]{%

\let\printunsrtglossaryentryprocesshook\filterhook
}
% Main body of the document …
\printunsrtglossary
\end{document}

This has a summary at the start of the document that only contains entries that have at least
10 records and is ordered according to the total number of records (starting with the most
frequently used entry). The main glossary at the end of the document is ordered according
to use and contains all selected entries.

Compare this with the following:

\GlsXtrLoadResources[src={entries},sort={use}]
\newcommand{\filterhook}[1]{%

\GlsXtrIfFieldCmpNum*{recordcount}{#1}{>}{10}%
{}%
{\printunsrtglossaryskipentry}%

}
\begin{document}
\printunsrtglossary*[target={false},
title={Most Frequently Used Terms}]{%
\let\printunsrtglossaryentryprocesshook\filterhook

}
% Main body of the document …
\printunsrtglossary
\end{document}

This again has a summary at the start of the document that only contains entries that have
at least 10 records but is now ordered according to use.

Both examples assume there are no child entries as the filtering can cause parent entries
to be omitted. Both examples require --record-count but only the first example sorts ac-
cording to the record count.

281

5.12 Sorting

Alphabet

The sort methods listed in table 5.2 are for alphabets that are defined by a rule. These usually
ignore most punctuation and may ignore modifiers (such as accents). Use with break-at
to determine whether or not to split at word boundaries. The collation rules (except for the
custom options) are obtained from the locale provider (see page 31).

• 〈lang tag〉: sort according to the rules of the locale given by the ietf language tag
〈lang tag〉.

• 〈lang tag〉-reverse: reverse sort according to the rules of the locale given by the ietf
language tag 〈lang tag〉.

• resource: equivalent to sort={〈lang tag〉} where 〈lang tag〉 is obtained from the
default resource locale.

• resource-reverse: equivalent to sort={〈lang tag〉-reverse} where 〈lang tag〉 is
obtained from the default resource locale.

• locale: equivalent to sort={〈lang tag〉} where 〈lang tag〉 is obtained from the Java
locale (which usually matches the operating system’s locale).

• locale-reverse: equivalent to sort={〈lang tag〉-reverse} where 〈lang tag〉 is ob-
tained from the Java locale.

• doc: sort the entries according to the document locale. This is equivalent to sort=
{〈lang tag〉} where 〈lang tag〉 is the locale associated with the document language.
In the case of a multi-lingual document, 〈lang tag〉 is the locale of the last language
resource file to be loaded through tracklang’s interface. It’s best to explicitly set the
locale for multi-lingual documents to avoid confusion. If no document language has
been set, this option is equivalent to sort={locale}.

• doc-reverse: as doc but in reverse order.

• custom: sort the entries according to the rule provided by sort-rule.

• custom-reverse: reverse sort the entries according to the rule provided by sort
-rule.

Note that sort={〈lang tag〉} can provide more detail about the given locale than sort=
{doc}, depending on how the document language has been specified. For example, with:

\documentclass{article}
\usepackage[ngerman]{babel}
\usepackage[record]{glossaries}
\GlsXtrLoadResources[src={german-terms}]

the language tag will be de-1996, which doesn’t have an associated region, so this is equiv-
alent to using sort={de-1996}. Whereas with:

282

5.12 Sorting

\documentclass[de-DE-1996]{article}
\usepackage[ngerman]{babel}
\usepackage[record]{glossaries}
\GlsXtrLoadResources[src={german-terms}]

the language tag will be de-DE-1996 because tracklang has picked up the locale from the
document class options, so this is equivalent to using sort={de-DE-1996}. This is only
likely to cause a difference if a language has different sorting rules according to the region
or if the language may be written in multiple scripts.

If no document locale has been set and the locale resource option hasn’t been used then
the sort={resource} and sort={doc}will be equivalent to sort={locale}. For example,
with:

\documentclass{article}
\usepackage[record]{glossaries}
\GlsXtrLoadResources[src={german-terms}]

the language tag will be whatever is the default locale for the jvm. For a user in Germany,
this could be de-DE-1996 and for a user in Austria this could be de-AT-1996.

A multilingual document will need to have the sort specified when loading the resource
set to ensure the correct language is chosen. For example:

\GlsXtrLoadResources[src={english-terms},sort={en-GB}]
\GlsXtrLoadResources[src={german-terms},sort={de-DE-1996}]

Alternatively (as from bib2gls v3.3), use locale:

\GlsXtrLoadResources[locale={en-GB},src={english-terms}]
\GlsXtrLoadResources[locale={de-DE-1996},src={german-terms}]

Letter (Non Locale)

The sort methods listed in table 5.3 use letter comparators. These simply compare the charac-
ter codes. The -nocase options first convert the sort field to lower case before performing
the sort to provide a case-insensitive comparison.

Punctuation isn’t ignored. Use sort={〈lang tag〉} with break-at={none} to emulate
xindy’s locale letter ordering. The examples below show the ordering of the list antelope,
bee, Africa, aardvark and Brazil.

• letter-case: case-sensitive letter sort. Upper case and lower case are in separate
letter groups. Example:

Africa (letter group upper case “A”), Brazil (letter group upper case “B”), aardvark
(letter group lower case “a”), antelope (letter group lower case “a”), bee (letter group
lower case “b”).

283

5.12 Sorting

• letter-case-reverse: reverse case-sensitive letter sort. Example:
bee (letter group lower case “b”), antelope (letter group lower case “a”), aardvark
(letter group lower case “a”) Brazil (letter group upper case “B”), Africa (letter group
upper case “A”).

• letter-nocase: case-insensitive letter sort. (All upper case characters will have first
been converted to lower case in the sort value.) Example:
aardvark (letter group “A”), Africa (letter group “A”), antelope (letter group “A”),
bee (letter group “B”), Brazil (letter group “B”).

• letter-nocase-reverse: reverse case-insensitive letter sort. Example:
Brazil (letter group “B”), bee (letter group “B”), antelope (letter group “A”), Africa
(letter group “A”), aardvark (letter group “A”).

• letter-upperlower: each character pair is first compared according to their lower
case values. If these are equal, then they are compared according to case. This puts
upper and lower case in the same letter group but the upper case comes first. Example:
Africa (letter group “A”), aardvark (letter group “A”), antelope (letter group “A”),
Brazil (letter group “B”), bee (letter group “B”).

• letter-upperlower-reverse: reverse upper-lower letter sort. This now puts the
lower case letters first within the letter group. Example:
bee (letter group “B”), Brazil (letter group “B”), antelope (letter group “A”), aardvark
(letter group “A”), Africa (letter group “A”).

• letter-lowerupper: each character pair is first compared according to their lower
case values. If these are equal, then they are compared according to case. This puts
upper and lower case in the same letter group but the lower case comes first. Example:
aardvark (letter group “A”), antelope (letter group “A”), Africa (letter group “A”),
bee (letter group “B”), Brazil (letter group “B”).

• letter-lowerupper-reverse: reverse lower-upper letter sort. This now puts the
upper case letters first within the letter group. Example:
Brazil (letter group “B”), bee (letter group “B”), Africa (letter group “A”), antelope
(letter group “A”), aardvark (letter group “A”).

Letter-Number

The sort methods listed in table 5.4 use a letter-integer hybrid. They behave in a similar
way to the above letter sort methods, but if an integer number pattern is detected in the
string then the sub-string containing the number will be compared. This only detects base
10 integers (unlike the numeric methods such as sort={hexadecimal} or sort={float})
but in addition to recognising all the digits in the Unicode “Number, Decimal Digit” category
it also recognises the subscript and superscript digits, such as 1 (0x00B9) and 2 (0x00B2).

284

5.12 Sorting

As with the letter sort methods, letters are compared using a character code comparison
not by a locale alphabet. The closest locale-sensitive equivalent is to use sort-number-pad
with a locale sort method. Alternatively, use \IfTeXParserLib or \IfNotBibGls and \bib-
glspaddigits to pad the number for the interpreter but not in the TEX document.

a61 = a61 a61 = a61

b62 = b62 b62 = b62

c63 = c63 c63 = c63

131 < 636 1 > 6
232 b62 2 b62

f66 a61 f66 a61

o6f r72 o6f r72

o6f o6f

(a) (b)

Figure 5.1: Regular letter comparison vs letter-number comparison. Comparing the strings
abc12foo and abc6bar: (a) letter-case; (b) letternumber-case.

For example, suppose the first string is abc12foo and the second string is abc6bar. Fig-
ure 5.1(a) shows the regular letter comparison using sort={letter-case}, where the sub-
script indicates the hexadecimal character code. The first three characters from each string
are identical (abc). At this point there’s no difference detected, so the comparator moves on
to the next character, 131 for the first string and 636 for the second string. Since 0x31 is less
than 0x36, the first string (abc12foo) is considered less than the second (abc6bar).

With the letter-number comparison using sort={letternumber-case}, the comparator
starts in much the same way. The first three characters from each string are still identical,
so the comparator moves on to the next character, 1 for the first string and 6 for the second.
These are now both recognised as digits, so the comparator looks ahead and reads in any
following digits (if present). For the first case, this is the sub-string 12 and, for the second
case, 6 (figure 5.1(b)). These are both compared according to their integer representation
12 > 6, so abc12bar is considered greater than abc6foo (that is, abc12bar comes after
abc6foo).

The same result occurs for other numbering systems, for example if the Basic Latin digits
1, 2 and 6 are replaced with the corresponding Devanagari digits १, २ and ६. (But note that
the letter comparisons will still be based on their Unicode values not according to a particular
locale. This type of sort method is intended primarily for symbolic values, such as chemical

285

5.12 Sorting

formulae, rather than for words or phrases.)
Signed integers are also recognised, so abc-12foo is less than abc+6bar, which is again

different from the result obtained with a straight letter comparator where the character +
(0x2B) comes before the character - (0x2D). The sign must be followed by at least one digit
for it to be recognised as a number otherwise it’s treated as a punctuation character.

If only one sub-string is numeric then the letter-number-rule is used to determine
the result. Where both sub-strings are non-numeric, then the letter-number-punc-rule
setting is used to determine the result according to the category of the characters, which may
be one of the following:

• white space: belongs to the Unicode “Separator, Space” category. If both characters
are white space, then they are compared according to their Unicode values otherwise
they are ordered according to the letter-number-punc-rule setting.

• letter: belongs to one of the Unicode categories “Letter, Uppercase”, “Letter, Lower-
case”, “Letter, Titlecase”, “Letter, Modifier” or “Letter, Other”. If both characters are
letters then, for sort method letternumber-〈modifier〉, the characters are compared
in the same way as the corresponding letter-〈modifier〉 sort method otherwise they
are ordered according to the letter-number-punc-rule setting.

• punctuation: everything else. If both characters are punctuation, then they are com-
pared according to their Unicode value otherwise they are ordered according to the
letter-number-punc-rule setting.

For simplicity, the actual sort value used during sorting isn’t a simple string but is converted
into a list of objects that represent one of: letter, integer, space or other (punctuation). This
reduces the amount of parsing of substrings that needs to be performed.

The examples below show the ordering of the list: CH2O, C10H10O4, C5H4NCOOH, CO, Cl, Co,
Co2O3, Co2, CO2, CoMoO4 and CoCl2, for the setting letter-number-rule={between}, where
the subscripts are the Unicode subscript characters.

• letternumber-case: case-sensitive letter-number sort. Example:

CH2O, CO, CO2, C5H4NCOOH, C10H10O4, Cl, Co, CoCl2, CoMoO4, Co2, Co2O3.

(Order determined by: H < O < 5 < 10 < l < o.)

• letternumber-case-reverse: reverse case-sensitive letter-number sort. Example:

Co2O3, Co2, CoMoO4, CoCl2, Co, Cl, C10H10O4, C5H4NCOOH, CO2, CO, CH2O.

• letternumber-nocase: case-insensitive letter-number sort. The sort value is first
converted to lower case. Note that letter-number-rule={between} doesn’t make
sense in this context as there won’t be any upper case characters in the sort value, so
numbers will always come before letters. Example:

C5H4NCOOH, C10H10O4, CH2O, Cl, CO, Co, CO2, Co2, Co2O3, CoCl2, CoMoO4.

(Order determined by: 5 < 10 < h < l < o.)

286

5.12 Sorting

• letternumber-nocase-reverse: reverse case-insensitive letter-number sort, so num-
bers will now always come after letters. Example:

CoMoO4, CoCl2, Co2O3, Co2, CO2, Co, CO, Cl, CH2O, C10H10O4, C5H4NCOOH.

• letternumber-upperlower: upper-lower letter-number sort. This behaves slightly
differently to letter-upperlowerwhen usedwith letter-number-rule={between}
and has amore complicated rule that’s determined by the character following the num-
ber and implied numbers inserted between letters. (There was a bug in earlier versions
that has been corrected in v1.8 so you may find a slightly different ordering when
upgrading.) Example:

CH2O, C5H4NCOOH, C10H10O4, Cl, CO, CO2, Co, Co2, CoCl2, CoMoO4, Co2O3.

(Order determined by: H < 5H < 10H < l < O < o, and for the terms starting with CO
or Co: 2 comes after null and C < M < 2O.)

Compare this with letter-number-rule={before letter}which results in the or-
der:

C5H4NCOOH, C10H10O4, CH2O, Cl, CO, CO2, Co, Co2, Co2O3, CoCl2, CoMoO4.

• letternumber-upperlower-reverse: reverse upper-lower letter-number sort. Ex-
ample (with letter-number-rule={between}):

Co2O3, CoMoO4, CoCl2, Co2, Co, CO2, CO, Cl, C10H10O4, C5H4NCOOH, CH2O.

Compare this with letter-number-rule={before letter}which results in the or-
der:

CoMoO4, CoCl2, Co2O3, Co2, Co, CO2, CO, Cl, CH2O, C10H10O4, C5H4NCOOH.

Remember that the associated settings are reversed as well. So letter-number-rule
={before letter} results in numbers after letters.

• letternumber-lowerupper: lower-upper letter-number sort. As with the upper-
lower option, this behaves slightly differently to letter-lowerupperwhen used with
letter-number-rule={between} and has a more complicated rule. Example:

CH2O, C5H4NCOOH, C10H10O4, Cl, Co, Co2, CoCl2, CoMoO4, Co2O3, CO, CO2.

Compare this with letter-number-rule={before letter}which results in the or-
der:

C5H4NCOOH, C10H10O4, CH2O, Cl, Co, Co2, Co2O3, CoCl2, CoMoO4, CO, CO2.

• letternumber-lowerupper-reverse: reverse lower-upper letter-number sort. Ex-
ample (with letter-number-rule={between}):

CO2, CO, Co2O3, CoMoO4, CoCl2, Co2, Co, Cl, C10H10O4, C5H4NCOOH, CH2O.

287

5.12 Sorting

Numerical

The sort methods listed in table 5.5 use numeric comparisons. The sort value is expected to
be a numeric value. If it can’t be parsed then it’s treated as 0 (and a warning will be written
to the transcript). These all recognise the digits in the Unicode “Number, Decimal Digit”
category but, unlike the hybrid letter-number comparators above, they don’t recognise the
superscript or subscript digits. The “non-locale” in some of the descriptions below indicates
that the method doesn’t recognise locale-sensitive formatting, such as group separators.

• integer: integer sort. This is for non-locale integer sort values.

• integer-reverse: as above but reverses the order.

• hex: hexadecimal integer sort. This is for non-locale hexadecimal sort values.

• hex-reverse: as above but reverses the order.

• octal: octal integer sort. This is for non-locale octal sort values.

• octal-reverse: as above but reverses the order.

• binary: binary integer sort. This is for non-locale binary sort values.

• binary-reverse: as above but reverses the order.

• float: single-precision sort. This is for non-locale decimal sort values.

• float-reverse: as above but reverses the order.

• double: double-precision sort. This is for non-locale decimal sort values.

• double-reverse: as above but reverses the order.

• numeric: locale-sensitive numeric sort. Use numeric-locale to set the locale.

• numeric-reverse: as above but reverses the order.

• currency: locale-sensitive currency sort. Use numeric-locale to set the locale.

• currency-reverse: as above but reverses the order.

• percent: locale-sensitive percent sort. Use numeric-locale to set the locale.

• percent-reverse: as above but reverses the order.

• numberformat: locale-sensitive custom numeric sort. Use numeric-locale to set the
locale and numeric-sort-pattern to set the number pattern.

• numberformat-reverse: as above but reverses the order.

In general, it doesn’t make much sense to have hierarchical entries that need to be sorted
by a number, but it is possible as long as each level uses the same type of numbering.

288

5.12 Sorting

Date-Time

The sort methods listed in table 5.6 are for dates and times. Use date-sort-format and
date-sort-locale to specify the date format and locale.

• date: sort dates.

• date-reverse: as above but reverses the order.

• datetime: sort date and time information.

• datetime-reverse: as above but reverses the order.

• time: sort times.

• time-reverse: as above but reverses the order.

If the field you want to sort by contains a date then the simplest way to sort is to ensure
the date is in ISO format and then just use a letter sort. However it may be that the date is
in the format particular to your locale or you have a mix of ad and bc. In which case you
can use one of the date/time sort options (such as sort={date} or sort={date-reverse}).
The locale is assumed to be your default locale (as given by the jvm) but if you are using a
different locale this can be set with date-sort-locale. The pattern is assumed to be the
default for that locale but you can change this with date-sort-format. If you provide your
own custom pattern you must make sure that it matches the selected sort option.

Take care if you switch from using the jre to the cldr locale provider as you may find the
default pattern changes.

The locale and pattern information is used by bib2gls to parse the field. If the field value
can’t be parsed then bib2gls will issue a warning and assume the current date (or time).

The actual sort value that’s used by the comparator is numeric. In the case of the time-
based sort={datetime} and sort={time} (or their -reverse versions), this value is the
number ofmilliseconds since 1st January, 1970. In the case of sort={date} (or sort={date-
reverse}), this value is obtained from a(y× 10000+m× 100+ d) where y is the year,m is
the month number, d is the day of month number, and a is an integer representation of the
era (−1 for bc and +1 for ad).

Unlike the numeric sort methods (such as sort={integer}) the date-time sort methods
set the sort field to a value that can be more easily parsed within the document and that
shouldmostly achieve the same ordering if a letter comparator were to be used with it (except
for bc dates, where the order needs to be reversed). This has the by-product of providing a
field that you can access within the document that can be more easily parsed by LATEX.

In general, it doesn’t make much sense to have hierarchical entries that need to be sorted
by date, but it is possible as long as each level uses the same date format.

For example, suppose my .bib file contains:

@entry{journalentry,
name={10 Jan 2017},
description={an interesting journal entry}

}

289

5.12 Sorting

The name field uses an abbreviated UK date format. If all my other entries also use this format
in the name then I can sort them chronologically:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort={date},
date-sort-locale={en-GB},
date-sort-format={medium}

]

(The medium format is actually the default for this locale, and the locale matches my system
locale, so I could omit both date-sort-locale and date-sort-format.)

If --verbose mode is on, the transcript will show the label, sort value and numeric value
for each entry. In this case, the information is:

journalentry -> '+1 2017-01-10' [20170110]

The first value is the label (journalentry), the second value is assigned to the sort field
(+1 2017-01-10) and the number in square brackets is the actual numeric value used by the
comparator. The signed number at the start of the sort field +1 is the numeric representation
of the era as used for the a variable in the computation of the numeric value (as described
earlier).

If I change the format to date-sort-format={short}, then the date can’t be parsed cor-
rectly and bib2gls will issue the following warning:

Warning: Can't parse sort value '10 Jan 2017' for 'journalentry'
(pattern: 'dd/MM/yyyy')

This shows the value that bib2gls is trying to parse (10 Jan 2017) for the entry identified
by the given label (journalentry). The pattern bib2gls expects is also given (dd/MM/yyyy).

shuffle=〈seed〉
Automatically sets sort={random} and flatten. The value 〈seed〉 may be omitted. If
present, it should be an integer used as a seed for the random number generator.

sort-field=〈field〉
The sort-field key indicates which field provides the sort value. The 〈field〉 must be a
recognised field name or you may use sort-field={id} to sort according to the label. The
default value is the sort field (which is typically inferred rather than explicitly set).

Example:

\GlsXtrLoadResources[
src={entries-terms},% data in entries-terms.bib
sort-field={symbol},% sort by 'symbol' field
sort={letter-case}% case-sensitive letter sort

]

290

5.12 Sorting

This sorts the entries according to the symbol field using a case-sensitive letter comparison.

In general it’s better to use the default sort-field={sort} and adjust the fallbacks
instead (see section 5.8). The sort-field option is provided if you want to use a
specific field regardless of the entry type.

If an entry is missing a value for 〈field〉, then the value of the fallback field will be used
instead. If missing-sort-fallback is set, then that’s used as the fallback, otherwise it
depends on the entry type. If no fallback field can be found, the entry’s label will be used.

For the specific case with the default sort-field={sort} setting, the fallback for the
sort field is governed not only by the entry type but also by some associated settings:

• If the entry’s original type (before being aliased with entry-type-aliases) is identi-
fied in custom-sort-fallbacks, then if the sort field is missing the value is obtained
from the supplied custom mapping.

• If the entry is defined using @entry (or a dual form that acts like @entry), then if the
sort field is missing the value is obtained from the field identified by entry-sort
-fallback. If that field is also missing then that field’s fallback is used.

• For the index entry types like @index or @indexplural, then if the sort field is miss-
ing the value is obtained from the name field. If that field is also missing, then the value
is obtained from the particular entry type’s fallback for the name field. (For example,
the entry’s label for @index or the plural field for @indexplural.)

• If the entry is defined with an abbreviation type (for example, @abbreviation or
@acronym) then if the sort field is missing, bib2gls will fallback on the field given
by abbreviation-sort-fallback.

• The symbol-like entry types fallback on the field given by symbol-sort-fallback if
the sort field is missing.

• Entries defined using @bibtexentry fallback on the field given by bibtexentry-sort
-fallback, which defaults to the name field. Note that this only applies to the main
entry. The spawned @contributor entries behave like @index.

Use dual-sort-field when sorting dual entries.

missing-sort-fallback=〈field〉
With sort-field={〈sort-field〉}, if the value of the field identified by 〈sort-field〉 is missing,
then bib2gls behaves as follows:

1. If missing-sort-fallback={〈fallback-field〉} is set, then bib2gls will fallback on
the value provided by the field 〈fallback-field〉. If 〈fallback-field〉 is missing, then
bib2gls will query the entry type’s fallback for 〈fallback-field〉 (not for 〈sort-field〉).

291

5.12 Sorting

The 〈fallback-field〉 must be a known field but not an internal field. It can’t be the
sort field. (Take care not to cause an infinite loop if sort-field has been changed.)
Unlike the other sort fallback options, such as entry-sort-fallback, the 〈fallback-
field〉 can’t be a keyword (to identify the label) and can’t be a composite.

2. If the entry type has a fallback rule for 〈sort-field〉, then that rule is used (see sec-
tion 5.8). When sort-field={sort} this means:

• If the entry’s original entry type has been identified in custom-sort-fallbacks,
then bib2gls will fallback on the designated custom setting.

• If the entry was defined using one of the index types (such as @index), then
bib2gls will fallback on the name field.

• If the entry was defined using the @entry type (or a dual form that acts like
@entry), then bib2glswill fallback on the field given by entry-sort-fallback.

• If the entry was defined using one of the symbol types (such as @symbol), then
bib2gls will fallback on the field given by symbol-sort-fallback.

• If the entrywas defined using one of the abbreviation types (such as @abbreviation),
then bib2glswill fallback on the field given by abbreviation-sort-fallback.

• If the entrywas defined using @bibtexentry (but not the spawned @contributor
entries), then bib2gls will fallback on the field given by bibtexentry-sort
-fallback.

If 〈sort-field〉 is not sort, then there may not be a fallback, in which case the next
condition applies:

3. Otherwise the sort valuewill be set to the entry label and bib2glswill issue awarning.

The default setting is missing-sort-fallback={}, which means that step 1 above is omit-
ted.

Use dual-missing-sort-fallbackwhen sorting dual entries separately from primaries,
and use secondary-missing-sort-fallback for secondary sorting.

trim-sort=〈boolean〉
If the interpreter is used to determine the sort value, this setting governs whether or not
the interpreter should trim leading and trailing spaces. The default setting is trim-sort=
{true}.

This option automatically sets dual-trim-sort={〈boolean〉} and secondary-trim-sort
={〈boolean〉}.

sort-replace=〈list〉
This option may be used to perform regular expression substitutions on the sort value and
has the same syntax as labelify-replace. The value is required for this key but may be
empty, which indicates that the setting is switched off.

292

5.12 Sorting

This action is done after the interpreter parses the sort value (if applicable) and before
sort-number-pad (if applicable). For example, suppose the sort value is:

\ensuremath{\approx 3.14}

then the interpreter will convert this to ≈3.14 but:

sort-replace={{\glshex2248}{}}

can be used to strip the ≈ symbol (0x2248) so that the value can now be parsed as a number
if sort={double} has been used.

Use dual-sort-replace for dual and secondary-sort-replace for secondary sortmeth-
ods.

sort-rule=〈value〉
If the sort={custom} option is used, the sort rule must be provided with sort-rule. If
sort is not set to custom, the sort-rule setting will be ignored. This setting uses Java’s
RuleBasedCollator class [6], and the rule syntax needs to conform to that format.

Remember that the options will be expanded as they are written to the .aux file, so be
careful of any special characters that occur in the rule. For the special characters # % _ &
{ and } you can use \#, \%, _, \&, \{ and \}. These will be written to the .aux file with
the leading backslash, but bib2gls will remove it for this resource option. Remember that
the glossaries package provides \glsbackslash and \glstildechar which can be used to
produce a literal backslash (\) and tilde (~).

You can also use \string\u〈hex〉 (where 〈hex〉 is a hexadecimal code) to represent a Uni-
code character. For example:

\GlsXtrLoadResources[
sort={custom},
sort-rule={< a,A < b,B < c,C < ch,Ch,CH < d,D
< dd,Dd,DD < e,E < f,F < ff,Ff,FF
< g,G < ng,Ng,NG < h,H < ij,Ij,IJ
< i,I < j,J < k,K < l,L < ll,Ll,LL < m,M
< n,N < o,O < p,P < ph,Ph,PH < q,Q < r,R < rh,Rh,RH
< s,S < t,T < th,Th,TH < u,U < v,V < w,W < x,X < y,Y < z,Z
< \string\u00E6,\string\u00C6}

]

It’s best to use \string rather than \protect to avoid unwanted spaces interfering with
〈hex〉. Note that glossaries-extra v1.21+ provides5 \glshex which just does \string\u so
you can do \glshex 00E6 instead of \string\u00E6. This is only one character different,
but you can redefine \glsxtrresourceinit to locally set \u to \glshexwhile the protected
write is performed. For example:

5The command definition was moved to glossaries-extra-bib2gls from version 1.27 since it’s only needed with
bib2gls.

293

http://docs.oracle.com/javase/8/docs/api/java/text/RuleBasedCollator.html

5.12 Sorting

\renewcommand*{\glsxtrresourceinit}{\let\u\glshex}

Then you can just do \u00E6 instead of \string\u00E6. Note that \GlsXtrResourceInit-
EscSequences performs a similar assignment, so you can instead do:

\renewcommand*{\glsxtrresourceinit}{%
\GlsXtrResourceInitEscSequences

}

The glossaries-extra-bib2gls package (which is automatically loaded by the record option)
provides some commands for common rule blocks that may be used in the construction of
custom rules. For example:

sort-rule={\glsxtrcontrolrules
;\glsxtrspacerules
;\glsxtrnonprintablerules
;\glsxtrcombiningdiacriticrules
,\glsxtrhyphenrules
<\glsxtrgeneralpuncrules
<\glsxtrdigitrules
<\glsxtrfractionrules
<\glsxtrMathItalicGreekIrules
<\glsxtrGeneralLatinIVrules
<\glsxtrLatinAA
<\glsxtrLatinOslash

}

This places the Greek maths symbols (such as \alpha) before the Latin block. See the
glossaries-extra documentation for further details of these commands.

You might find it convenient to provide similar commands in a package for rules you may
often need. For example, suppose I have a package called, say, mapsymbols for providing
map symbols:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mapsymbols}
% some package or font loading stuff here to provide
% the appropriate symbols
\newcommand{\Stadium}{…}
\newcommand{\Battlefield}{…}
\newcommand{\Harbour}{…}
% etc

% Provide a rule block:
\newcommand{\MapSymbolOrder}{%
\glshex 2694 % crossed-swords 0x2694
< \glshex 2693 % anchor 0x2693

294

5.12 Sorting

< \glshex 26BD % football 0x26BD
}

In addition to mapsymbols.sty, I also need to create mapsymbols.bib to provide the ap-
propriate definitions for bib2gls:

@preamble{"\glsxtrprovidecommand{\Harbour}{\char"2693}
\glsxtrprovidecommand{\Battlefield}{\char"2694}
\glsxtrprovidecommand{\Stadium}{\char"26BD}"}

The use of \glsxtrprovidecommand will override any previous definitions of these com-
mands in bib2gls’s interpreter but will act like \providecommand within the document,
and so won’t interfere with the commands defined in mapsymbols.sty. Now I can just do:

\usepackage{mapsymbols}% my custom package
\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[
src={mapsymbols,% <--- my custom mapsymbols.bib
entries% data in entries.bib

},
sort={custom},
sort-rule={\glsxtrcontrolrules

;\glsxtrspacerules
;\glsxtrnonprintablerules
;\glsxtrcombiningdiacriticrules
,\glsxtrhyphenrules
<\glsxtrgeneralpuncrules
<\glsxtrdigitrules
<\glsxtrfractionrules
<\MapSymbolOrder % <--- custom map symbols
<\glsxtrMathItalicGreekIrules
<\glsxtrGeneralLatinIrules
}

]

An alternative to providing mapsymbols.bib is to provide a custom package just for
bib2gls’ use. For example, mapsymbols-bib2gls.sty:

% Provided for bib2gls only.
% Use \usepackage{mapsymbols} in the document.
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{mapsymbols-bib2gls}
\glsxtrprovidecommand{\Harbour}{\char"2693}
\glsxtrprovidecommand{\Battlefield}{\char"2694}
\glsxtrprovidecommand{\Stadium}{\char"26BD}
\endinput

295

5.12 Sorting

and instruct bib2gls to parse it with --custom-packages mapsymbols-bib2gls (and use
mapsymbols.sty in the document). Remember that bib2gls isn’t a TEX engine so make
sure to only use simple commands in this file.

break-at=〈option〉
This option automatically implements dual-break-at={〈option〉} and secondary-break
-at={〈option〉}.

The alphabet sort options (table 5.2) typically list non-letter characters before alphabetical
characters and spaces are quite often in the ignored set. This means that the alphabet sort
options are naturally in a letter order, similar to xindy’s ord/letorder module. (This isn’t
the same as sort={letter-nocase}, which just sorts according to the Unicode value not
according to a particular alphabet.)

In order to replicate makeindex and xindy’s default word order, bib2gls splits up the
sort value at word boundaries and inserts a marker (identified by break-marker). For ex-
ample, if the sort value is “sea lion” then it’s actually converted to sea|lion| whereas “sea”
becomes sea| and “seal” becomes seal|. The default marker is |which is commonly placed
in collation rules before digits but after the ignored characters, such as spaces and hyphens.

Note that this action removes non-letters, so for example, if the sort value is # (parameter)
then it will be converted to parameter| (hash, space and parentheses removed). If you only
want to break at spaces (optionally following a comma) use the following instead:

break-at={none},
sort-replace={{,? +}{|}}

You can change the construction of the break points with break-at={〈option〉} where
〈option〉 may be one of:

• word: break at word boundaries (default). Note that what constitutes a word varies
according to the locale but usually anything that’s not alphanumeric will designate a
word-boundary. The characters between words are discarded. For example, the sort
value “Tom, Dick, and Harry” becomes Tom|Dick|and|Harry, which has discarded
the comma and space characters.

• character: break after each character.

• sentence: break after each sentence.

• upper-notlower: break after any upper case character that’s not followed by a lower
case character. For example, “MathML” becomes MathM|L| and “W3C” becomes W|3C|.

• upper-upper: break after any upper case character that’s followed by an upper case
character.

• upper-notlower-word: first applies break-points according to upper-notlower and
then according to word.

296

5.12 Sorting

• upper-upper-word: first applies break-points according to upper-upper and then
according to word.

• none: don’t create break points. Use this option to emulate makeindex or xindy’s
letter ordering, or combine with sort-replace to insert custom break points.

This option is ignored when used with the non-alphabetic sort options. You can find the
break points in the sort field for the entry’s definition in the .glstex file (which is provided
for information rather than for use in the document). Alternatively, use the --debug switch
to show the break points in the transcript. (This will also show the collation rule.)

If you want to selectively apply break points only to certain entries, use break-at-match
or break-at-not-match.

break-marker=〈marker〉
This option automatically implements the dual and secondary settings dual-break-marker
={〈marker〉} and secondary-break-marker={〈marker〉}.

The break marker can be changed using break-marker={〈marker〉}, where 〈marker〉 is
the character to use. For example, break-marker={-} will use a hyphen. The marker may
be empty, which effectively strips the inter-word punctuation. For example, with break
-marker={}, “Tom, Dick, and Harry” becomes TomDickandHarry and “sea lion” simply be-
comes sealion. If 〈marker〉 is omitted, break-marker={} is assumed.

break-at-match=〈key=value list〉
This option automatically implements dual-break-at-match={〈option〉} and secondary
-break-at-match={〈option〉}.

If you have break-at set to create break points (for example, with break-at={word})
then you can specify which entries should have break points with this option. The value
has the same syntax as match. If an entry matches the criteria, then break points are added,
otherwise no break points are added. For example, to only have break points for entries
defined with @index or @indexplural:

break-at-match={entrytype=index(plural)?}

This option has no effect with break-at={none}.

break-at-match-op=〈value〉
This option automatically implements dual-break-at-match-op={〈option〉} and secondary
-break-at-match-op={〈option〉}.

If the value of break-at-match contains more than one 〈key〉=〈pattern〉 element, the
break-at-match-op determines whether to apply a logical AND or a logical OR.The 〈value〉
may be either and or or. The default is break-at-match-op={and}.

297

5.12 Sorting

break-at-not-match=〈key=value list〉
This option automatically implements dual-break-at-not-match={〈option〉} and secondary
-break-at-not-match={〈option〉}.

For example, to prevent entries defined with @symbol from having break points:

break-at-not-match={entrytype=symbol}

Like break-at-match but negates the match. This option has no effect with break-at=
{none}.

sort-number-pad=〈number〉
This option automatically implements the dual and secondary settings dual-sort-number
-pad={〈number〉}, secondary-sort-number-pad={〈number〉}.

If 〈number〉 is greater than 1, any integer sub-strings found in the sort value will be zero-
padded up to this value. Since the - character is often ignored by rule-based sort methods,
any signs found will be replaced with the markers given by sort-pad-plus and sort-pad
-minus, which should be chosen to ensure that negative numbers are ordered before positive
numbers (if this is desired). An unsigned number will have the sort-pad-plus marker
inserted before it. The default value is sort-number-pad={0}, which doesn’t implement
any padding.

If you use this with a locale sort method, it’s best to also set break-at={none}, as the
default word boundary break points will likely be confused by a mix of alphanumerics.

sort-pad-plus=〈marker〉
This option automatically implements the dual and secondary settings dual-sort-pad-plus
={〈marker〉}, secondary-sort-pad-plus={〈marker〉}.

This option only has an effect when used with sort-number-pad={〈number〉} where
〈number〉 is greater than 1. Positive numbers will have their sign replaced with 〈marker〉.
The default setting is sort-pad-plus={>}.

sort-pad-minus=〈marker〉
This option automatically implements the dual and secondary settings dual-sort-pad-minus
={〈marker〉}, secondary-sort-pad-minus={〈marker〉}.

This option only has an effect when used with sort-number-pad={〈number〉} where
〈number〉 is greater than 1. Negative numbers will have their sign replaced with 〈marker〉.
The default setting is sort-pad-plus={<}.

identical-sort-action=〈value〉
This option automatically implements the dual and secondary settings dual-identical
-sort-action={〈value〉} and secondary-identical-sort-action={〈value〉}.

298

5.12 Sorting

This option determines what the comparator should do if two entries at the same hierar-
chical level are considered equal. The 〈value〉 may be one of:

• none: don’t take any further action if sort values are identical;

• def if sort values are identical, order them according to definition;

• use: if sort values are identical, order them according to use in the document (order
determine by a normal record);

• id: if sort values are identical, compare the entry labels;

• original id: if sort values are identical, compare the original unprefixed entry labels
(as given in the .bib file);

• 〈field〉: if sort values are identical, compare the values from the given 〈field〉.

For the last three cases, a simple case-sensitive string comparison is used. If 〈value〉 isn’t a
recognised keyword or valid field an error will occur. The default setting is identical-sort
-action={id}. If you’re using one of the sort rules listed in table 5.2 and you also want a
locale-sensitive sort used on the fallback, then you need to use sort-suffix instead.
bib2gls allows duplicate sort values, but this can cause a problem for hierarchical entries

where parent entries with duplicate sort fields are clumped together and their children follow.
To prevent this from happening, the identical-sort-action={id} setting will fallback on
comparing the labels. Since all labels must be unique, this means comparisons between two
different entries are all either strictly higher or strictly lower.

This action occurs after any suffixes have been appended through sort-suffix.

sort-suffix=〈value〉
This option automatically implements the dual and secondary settings dual-sort-suffix
={〈value〉} and secondary-sort-suffix={〈value〉}. The value may be one of:

• none: don’t append a suffix to any sort value;

• non-unique: append a numeric suffix to non-unique sort values;

• 〈field〉: append the value of the given field (if set) to the sort field. The given field
must be defined (has an associated key for use in \newglossaryentry) but may be
unset. If the interpreter is on, the field contents will be interpreted. If the field is just
a label (such as the category field) you may find it simpler to use identical-sort
-action={〈field〉} instead.

The default setting is sort-suffix={none}.
This option only affects the alphabetic (table 5.2), letter (table 5.3) and letter-number (ta-

ble 5.4) sort rules. For the other types of sort methods (not including the no-sort options
listed in table 5.1) you’ll need to use identical-sort-action to prevent problems occur-
ring with duplicate sort values.

299

5.12 Sorting

In the case of sort-suffix={non-unique}, this will only append a suffix to the duplicate
sort values (within the same hierarchical level). The first sort value to be encountered isn’t
given a suffix.

The sort-suffix={〈field〉} setting will only append a suffix if that field is set, but (if set)
it will apply the suffix to all sort values, even those that are unique.

If you use --verbose, then bib2gls will write information in the transcript when it ap-
pends a suffix to the sort value. The message:

Sort value '〈sort〉' (entry '〈id〉') not unique for the entry's
hierarchical level.

indicates that an entry with the given 〈sort〉 value has already been found within the same
hierarchical level as the currently processed entry (whose label is given by 〈id〉). The same
hierarchical level in this context means that either both entries don’t have a parent or both
entries have the same parent. (That is, the entries are considered siblings.)

This message will then be followed by:

Appending suffix '〈suffix〉' to the sort value '〈sort〉'
for entry '〈id〉'.

which indicates that the entry (identified by the label 〈id〉) has been assigned the sort value
given by 〈sort〉〈suffix〉. If any break markers are applied, this is done after the suffix has been
appended.

For example, suppose in my document I want to write about makeglossaries (the appli-
cation) and \makeglossaries (the command). I might decide to define semantic commands:

\newcommand*{\application}[1]{\texttt{#1}}
\newcommand*{\command}[1]{\texttt{\glsbackslash #1}}

In my .bib file I might have:

@entry{cs.makeglossaries,
name={\command{makeglossaries}},
category={command},
description={opens glossary files}

}

@entry{ap.makeglossaries,
name={\application{makeglossaries}},
category={application},
description={Perl script}

}

If bib2gls is provided with the definitions of \application and \command (by interpret-
ing the @preamble or a package provided with --custom-packages) then it will deter-
mine that the sort value for cs.makeglossaries is \makeglossaries and the sort value
for ap.makeglossaries is just makeglossaries. These are two distinct sort values from

300

5.12 Sorting

bib2gls’s point of view although the sort rule may consider them identical if the rule ig-
nores the \ character (such as the locale sort methods), in which case, bib2gls will then act
according to identical-sort-action.

If bib2gls isn’t provided with these custom definitions, then it will ignore those se-
mantic commands and both entries will end up with the sort value makeglossaries. The
second instance will be recognised as a duplicate and the sort value will be converted to
makeglossaries1 (where the automated suffix is 1 and the suffix marker, see below, is the
empty string). Whereas with, say, sort-suffix-marker={.} then the sort value would
become makeglossaries.1.

For comparison, consider the following document:

\documentclass{article}

\usepackage[style={indexgroup}]{glossaries}

\makeglossaries

\newcommand*{\application}[1]{\texttt{#1}}
\newcommand*{\command}[1]{\texttt{\glsbackslash #1}}

\newglossaryentry{cs.makeglossaries}{%
name={\command{makeglossaries}},
description={opens glossary files}}

\newglossaryentry{ap.makeglossaries}{%
name={\application{makeglossaries}},
description={Perl script}}

\begin{document}
\gls{cs.makeglossaries} and \gls{ap.makeglossaries}.
\printglossaries
\end{document}

This uses makeindex, which puts both entries in the “Symbols” group (since they both
start with \ from the start of \command and \application, respectively). The ordering
is makeglossaries, \makeglossaries because “a” (second character of \application)
comes before “c” (second character of \command).

The switch to xindy just involves adding the xindy package option:

\usepackage[xindy,style={indexgroup}]{glossaries}

This results in a glossary that only contains one entry, \makeglossaries, because xindy
merges entries with duplicate sort values and the sort values end up as duplicates because
xindy discards the \application and \command control sequences. Although bib2gls also
ignores unknown control sequences, it doesn’t perform this merger.

If I add:

301

5.12 Sorting

@preamble{"\providecommand*{\application}[1]{\texttt{#1}}
\providecommand{\command}[1]{\texttt{\glsbackslash #1}}"}

to the earlier .bib file (called, say, entries.bib) then the document can be altered to use
bib2gls:

\documentclass{article}

\usepackage[record,style={indexgroup}]{glossaries-extra}

\GlsXtrLoadResources[src={entries.bib},
sort-suffix={non-unique},
identical-sort-action={none}

]

\begin{document}
\gls{cs.makeglossaries} and \gls{ap.makeglossaries}.
\printunsrtglossaries
\end{document}

This uses the default sort={locale} which considers \ an ignored (punctuation) character,
so both \makeglossaries and makeglossaries are listed in the “M” letter group, even
though the interpreter has determined that the sort value for cs.makeglossaries is the
literal string \makeglossaries. Note that in this case bib2gls doesn’t detect duplicate
sort values since it only uses a simple string comparison to detect duplicates rather than
using the collator.

If I switch to using a letter-based sort rule instead, for example sort={letter-nocase},
then \makeglossaries will be listed in the “Symbols” letter group since the leading \ from
the sort value \makeglossaries isn’t ignored with this rule.

Now let’s suppose I use interpret-preamble={false} to prevent bib2gls from inter-
preting the preamble:

\GlsXtrLoadResources[src={entries.bib},interpret-preamble={false}]

This means that the custom commands won’t be recognised and will therefore be ignored,
so both entries will have their sort values reduced to makeglosssaries.

The first entry to be processed is cs.makeglossaries because it’s the first to be selected.
This is assigned the sort value makeglossaries. (Note that, unless you use sort={unsrt},
the initial selection order is based on the record order. In this example, cs.makeglossaries
has the first record in the .aux file.)

The next entry to be processed is ap.makeglossaries. This also ends up with the sort
value makeglossaries so bib2gls converts this to makeglossaries1 and (with verbose
mode on) the following messages are written to the transcript:

Sort value 'makeglossaries' (entry 'ap.makeglossaries') not unique
for the entry's hierarchical level.

302

5.12 Sorting

Appending suffix '1' to the sort value 'makeglossaries' for entry
'ap.makeglossaries'.

Both entries are listed in the “M” letter group in the order \makeglossaries, makeglossaries.
If the records are reversed:

\gls{ap.makeglossaries} and \gls{cs.makeglossaries}.

then the sort value for cs.makeglossaries is now considered the duplicate and the order
is reversed: makeglossaries, \makeglossaries.

Suppose now I modify the .bib file so that ap.makeglossaries is defined as:

@entry{ap.makeglossaries,
name={\application{makeglossaries}},
category={application},
description={Perl script (must be used with \gls{cs.makeglossaries})}

}

and suppose the document only contains an explicit reference to ap.makeglossaries:

\begin{document}
\gls{ap.makeglossaries}
\printunsrtglossaries
\end{document}

Now ap.makeglossaries is the first entry to be selected because entries with records are
always selected before any (unrecorded) dependencies. In this case cs.makeglossaries is
only selected because it’s required by ap.makeglossaries. Now ap.makeglossaries is
the first to have its sort value assigned, and it’s cs.makeglossaries that has the duplicate.
This means that the ordering in the glossary is now: makeglossaries, \makeglossaries.

An oddity occurs if the glossary is moved to the start of the document:

\begin{document}
\printunsrtglossaries
\gls{ap.makeglossaries}
\end{document}

In this case, the first document build:

pdflatex myDoc
bibgls --group --verbose myDoc
pdflatex myDoc

leads to the ordering described above: makeglossaries, \makeglossaries. However, the
next document build has a new record for cs.makeglossaries occurring in the glossary
(within the description of ap.makeglossaries) which means it’s now the first entry to be
selected so the ordering switches to: \makeglossaries, makeglossaries. In this type of
situation you might be better off with the identical-sort-action={id} option instead.

Remember that you can temporarily switch off the indexing by locally setting:

303

5.12 Sorting

\GlsXtrSetDefaultGlsOpts{noindex}

Since the glossary preamble is scoped, you can simply do

\appto\glossarypreamble{\GlsXtrSetDefaultGlsOpts{noindex}}

to switch off the indexing within the glossary (or use \apptoglossarypreamble). Note that
this is different to using:

\GlsXtrSetDefaultNumberFormat{glsignore}

which creates an ignored record. Even though the record is ignored (and so won’t show in
the location list) the record still influences the selection order and the record count.

sort-suffix-marker=〈value〉
This automatically implements the dual and secondary settings dual-sort-suffix-marker
={〈value〉} and secondary-sort-suffix-marker={〈value〉}.

If a suffix is appended to the sort value (see above) then it will be separated by the suffix
marker, which can be set with sort-suffix-marker={〈value〉}where 〈value〉 is themarker.
By default the marker is empty. You can use \string\u〈hex〉 or \glshex〈hex〉 to indicate
Unicode characters outside the ascii range. If, for some reason, you want to use a special
character, such as #, you will need to precede it with \string (for example \string#) or use
the above hexadecimal markup. If you use \# it will be treated as a literal string containing
a backslash followed by a hash character.

encapsulate-sort={csname}

This option will encapsulate the sort value (after modifications such as sort-suffix and
sort-number-pad) with \〈csname〉{value}{entry-id} where 〈value〉 is the sort value thatwould
otherwise have been used and 〈entry-id〉 is the entry’s label. It will then be interpreted (if
enabled). Note that 〈value〉 may already have been interpreted in a previous step.

strength=〈value〉
This option automatically implements dual-strength={〈value〉} and secondary-strength
={〈value〉}.

The collation strength used by the alphabet sort methods (table 5.2) can be set to the fol-
lowing values: primary (default), secondary, tertiary or identical. These indicate the
difference between two characters, but the exact assignment is locale dependent. See the
documentation for Java’s Collator class [3] for further details.

For example, suppose the file entries.bib contains:

@index{resume}
@index{RESUME}
@index{resumee, name={r\'esum\'e}}

304

http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html

5.12 Sorting

@index{rat}
@index{rot}
@index{aardvark}
@index{zoo}

and the document contains:

\documentclass{article}

\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[sort={en},src={entries}]

\begin{document}
\gls{resumee}, \gls{resume}, \gls{RESUME},
\gls{aardvark}, \gls{rat}, \gls{rot}, \gls{zoo}.

\printunsrtglossaries
\end{document}

then this uses the default strength={primary}, so the entries are listed as aardvark, rat,
résumé, resume, RESUME, rot, zoo.

If the strength is changed to secondary:

\GlsXtrLoadResources[sort={en},src={entries},strength={secondary}]

then the entries are listed as aardvark, rat, resume, RESUME, résumé, rot, zoo.
If the strength is changed to tertiary or identical, there’s no difference from strength

={secondary} for this particular example.
This option is ignored by non-alphabet sorts (such as letter or numeric).

decomposition=〈value〉
This option automatically implements the dual and secondary settings dual-decomposition
={〈value〉} and secondary-decomposition={〈value〉}.

The collation decomposition used by alphabet sort methods (table 5.2) can be set to the
following values: canonical (default), full or none. This determines how Unicode com-
posed characters are handled. The fastest mode is none but is only appropriate for languages
without accents. The slowest mode is full but is the most complete for languages with non-
ASCII characters. See the documentation for Java’s Collator class [3] for further details.
This option is ignored by non-alphabet sorts (such as letter or numeric).

letter-number-rule=〈value〉
This automatically implements the dual and secondary settings dual-letter-number-rule
={〈value〉} and secondary-letter-number-rule={〈value〉}.

305

http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html

5.12 Sorting

If you use one of the letter-number sort methods (table 5.4), then you can determine the
comparison between a number and letter. The 〈value〉 may be one of:

• before letter: numbers are considered less than any letter.

• after letter: numbers are considered greater than any letter.

• between: (default) numbers come between letter cases. With the letternumber-case
sort option, this will put numbers after upper case and before lower case. This setting
doesn’t make much sense with the letternumber-nocase option but, if used, this
will put numbers before letters. The letternumber-upperlower and letternumber
-lowerupper options are more complicated. See section 5.12 for more detail.

• first: numbers are considered less than all characters (including punctuation and
spaces).

• last: numbers are considered greater than all characters (including punctuation and
spaces).

Note that the reverse sort methods will invert this setting. Remember also that the case-
insensitive letter-number sort methods always first convert the sort field to lower case,
which means that if you use one of them then there won’t be any upper case characters.

Use letter-number-punc-rule to determine the relative position of white space and
punctuation.

letter-number-punc-rule=〈value〉
This automatically implements the dual and secondary dual-letter-number-punc-rule=
{〈value〉} and secondary-letter-number-punc-rule={〈value〉}.

If you use one of the letter-number sort methods (table 5.4), then you can determine the
order of white space and punctuation. In this context, punctuation means any character
that’s not considered a letter, a number or white space. This means that characters such as
combining marks are considered punctuation.

The 〈value〉 may be one of the following:

• punc-space-first: punctuation comes first, followed by white space (then letters
and optionally numbers according to the letter-number rule);

• punc-space-last: punctuation followed by white space come last (after letters and
optionally numbers according to the letter-number rule);

• space-punc-first: white space comes first, followed by punctuation (then letters
and optionally numbers according to the letter-number rule);

• space-punc-last: white space followed by punctuation come last (after letters and
optionally numbers according to the letter-number rule);

306

5.12 Sorting

• space-first-punc-last: white space comes first (followed by letters and optionally
numbers according to the letter-number rule) and punctuation comes last;

• punc-first-space-last: punctuation comes first (followed by letters and optionally
numbers according to the letter-number rule) and white space comes last;

• punc-first-space-zero: punctuation comes first (although numbers may come be-
fore) and white space is replaced by the digit 0 (0x30);

• punc-last-space-zero: punctuation comes last (although numbers may come after)
and white space is replaced by the digit 0 (0x30).

• punc-first-space-zero-match-next: punctuation comes first (although numbers
may come before) and white space is replaced by the appropriate zero character (see
below);

• punc-last-space-zero-match-next: punctuation comes last (although numbers
may come after) and white space is replaced by the appropriate zero character (see
below).

Remember that the reverse sort methods will invert order governed by this setting.
For the space-zero-match-next settings, the sort value will have all spaces replaced

with a digit that represents zero. If the space isn’t followed by a digit, the basic Latin 0 (0x30)
will be used, otherwise bib2gls will try to match the zero with the following digit group.
For example, if the space is followed by 1 (0xB9) the space will be replaced by 0 (0x2070),
resulting in the sub-string 01 (0xB9 0x2070).

If just the space-zero (without the -match-next) is used then the space will just be
replaced with 0 resulting in the sub-string 01 (0x30 0x2070). In this case, the 0will be distinct
from 1 (rather than being considered a leading zero). However, for other numbering systems
the 0will be treated as a leading zero. For example, if the space is followed by the Devanagari
digit one (0x0967) then the sub-string will be 0x30 0x0967 but here the mixture is allowed
to form a number (with a leading zero) as both characters belong to the Unicode category
“Number, Decimal Digit”.

This means that the -match-next settings are only really needed if the sort string con-
tains the superscript or subscript digits that don’t belong to the “Number, Decimal Digit”
category. The plain space-zero alternatives are more efficient as they just perform a simple
substitution.

The TEX Parser Library used by bib2gls recognises the standard LATEX text-mode com-
mands 〈text〉 and \textsubscript{〈text〉} and will use the Unicode
superscript or subscript characters if they cover every character in 〈text〉, otherwise HTML
markup is used, but that’s then stripped by bib2gls. This means that:

C\textsubscript{10}H\textsubscript{10}O\textsubscript{4}

will be converted to: C10H10O4 but:

X\textsubscript{1, 2}

307

5.12 Sorting

will be converted to:

X_{1, 2}

which ends up as X1, 2.
Note that letter-number-rule={first} and letter-number-rule={last} overrides

this option when comparing a number with white space or punctuation.

numeric-sort-pattern=〈value〉
If you use the custom sort={numberformat} or sort={numberformat-reverse}, you
need to specify the format pattern with this option where 〈value〉 is a pattern recognised by
Java’s java.text.DecimalFormat class [4]. You can use \string\u〈hex〉 or \glshex〈hex〉
to indicate Unicode characters by their hexadecimal code. You can also use \#, \%, _, \&,
\{ and \} to indicate #, %, _, &, { and }.

Where the dual or secondary sort uses numberformat or numberformat-reverse, use
dual-numeric-sort-pattern for dual-sort and secondary-numeric-sort-pattern for
secondary.

numeric-locale=〈value〉
If you use any of the locale-sensitive numeric sort methods described in section 5.12, such as
sort={numeric}, use this option to set the locale if the default resource locale isn’t appro-
priate. The value may be:

• resource: use the default resource locale, if set, otherwise assume doc;

• doc: use the document locale or, if not set, assume numeric-locale={locale};

• locale: use the Java locale (which is usually the operating system’s locale);

• 〈lang-tag〉: set to the locale identified by the given a valid language tag 〈lang-tag〉.

Use dual-numeric-locale for dual-sort and secondary-numeric-locale for secondary.

If you use the locale resource option with numeric-locale={resource}, then the
locale option must be come before numeric-locale.

date-sort-locale=〈value〉
If you use a date/time sort method (table 5.6), then you can set the locale used by Java’s
date-time parser. The default setting is date-sort-locale={resource}.

The value may be resource (use the resource locale), doc (use the document locale),
locale (use the Java locale), or a valid language tag 〈lang-tag〉 identifying the locale.

Use dual-date-sort-locale and secondary-date-sort-locale for the dual and sec-
ondary.

308

http://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html

5.12 Sorting

If you use the locale resource option with date-sort-locale={resource}, then
the locale option must be come before date-sort-locale.

date-sort-format=〈value〉
If you use a date/time sort method (table 5.6), then you can set the format used by Java’s
date-time parser. If omitted, date-sort-format={default} is assumed. The 〈value〉 may
be one of:

• default: use the locale’s default format.

• short: use the locale’s short format.

• medium: use the locale’s medium format.

• long: use the locale’s long format.

• full: use the locale’s full format.

• 〈pattern〉: provide a custom pattern. This should match the specifications for Java’s
SimpleDateFormat class [7]. You may use \string\u〈hex〉 or \glshex 〈hex〉 to
indicate Unicode characters or \#, \%, _, \&, \{ and \} to indicate #, %, _, &, { and }.

With the custom setting, if the pattern only contains date (but not time) information, then
it must be used with sort={date} or sort={date-reverse}. If the pattern only contains
time (but not date) information, then it must be used with sort={time} or sort={time
-reverse}. If the pattern contains date and time information, then it must be used with
sort={datetime} or sort={datetime-reverse}.

For example, suppose each entry provides information about a person and the user1 field
is used to store their date of birth:

@entry{caesar,
name={Gaius Julius Caesar},
first={Julius Caesar},
text={Caesar},
description={Roman politician and general},
user1={13 July 100 BC}

}

@entry{wellington,
name={Arthur Wellesley, 1st Duke of Wellington},
first={Arthur Wellesley (Duke of Wellington)},
text={Wellington},
description={Anglo-Irish soldier and statesman},
user1={1 May 1769 AD}

}

309

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

5.12 Sorting

Then the entries can be sorted by date of birth using:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
sort-field={user1},
sort={date},
date-sort-format={d MMM y G}

]

The G (era) date pattern specifier expects a string, such as “AD”. It will match lower case
forms, such as “ad”, so if you have \textsc{ad} the interpreter will convert this to ad (strip-
ping the text-block command). However, in general it’s best to supply a semantic command
that ensures that the interpreted result matches the required format.

For example, if \era is provided with:

@preamble{"\providecommand{\era}[1]{\textsc{\MakeLowercase{#1}}}"}

If the definition is hidden from the interpreter (interpret-preamble={false}) and the
field value contains \era{AD} then the custom command will simply be stripped leaving AD
which can be matched by G.

If the definition is picked up by the interpreter then the field value will contain ad (from
\MakeLowercase) but this can be matched by G, so it isn’t a problem. However, if the def-
inition of \era is changed so that the era label supplied in the argument is converted to
something that doesn’t match G then the definition should be hidden from the interpreter.

Here’s a complete document that changes the group fields to use the year and era:

\documentclass{article}

\usepackage[record,style={indexgroup}]{glossaries-extra}

\newcommand{\bibglsdategroup}[7]{#1#4#7}
\newcommand{\bibglsdategrouptitle}[7]{\number#1\␣#4}

\GlsXtrLoadResources[
src={entries},
sort-field={user1},
sort={date},
date-sort-format={d MMM y G},
selection={all}

]

\begin{document}
\printunsrtglossaries
\end{document}

(The use of \number strips the leading zero from the year.)

310

5.13 Secondary Glossary

group-formation=〈value〉
If the group field hasn’t been set in the .bib file or through options like group, then it is as-
signed according to this option’s setting during sorting if --group has been used. Permitted
values:

• default: the group is assigned according to the sort method’s default group forma-
tion. This is the default setting.

• codepoint: the group is set to \bibglsunicodegroup{〈label〉}{〈character〉}{〈id〉}{〈type〉},
where the first argument is the first significant character (converted to lower case and
decomposed, if applicable) of the sort value.

• unicode category: the group is set to \bibglsunicodegroup{〈label〉}{〈character〉}
{〈id〉}{〈type〉}, where the first argument is the label identifying the Unicode category
of the first significant character of the sort value. For example, the label Ll signifies a
lower case letter and Lu signifies an upper case letter.

• unicode script: the group is set to \bibglsunicodegroup{〈label〉}{〈character〉}{〈id〉}
{〈type〉}, where the first argument is the label identifying the Unicode script of the first
significant character of the sort value. For example, the label LATIN indicates Latin,
GREEK indicates Greek and COMMON indicates common characters (such as mathemati-
cal Greek characters that are often used with non-Greek scripts).

• unicode category and script: the group is set to \bibglsunicodegroup{〈label〉}
{〈character〉}{〈id〉}{〈type〉}, where the first argument is the label corresponding to the
Unicode category and script of the first significant character of the sort value. For
example, the label Ll.LATIN indicates a lower case Latin letter.

This option has no effect with --no-group or if no sorting is applied. Use secondary-group
-formation for secondary sorting and dual-group-formation for dual entries.

Settings other than the default can cause the groups to become fragmented, so care is
needed if you use this option. See also section 1.3.

5.13 Secondary Glossary
The secondary glossary may only be used with action={define} (within the same resource
set) since it’s incompatible with the copy actions. You may use secondary in the first re-
source set and a copy action in a subsequent resource set.

secondary=〈value〉
It may be that you want to display a glossary twice but with a different order. For example,
the first time alphabetically and the second time by category. One way to do this is to have

311

5.13 Secondary Glossary

two \GlsXtrLoadResources that both load the same .bib file with different label-prefix
and sort settings, but this is only possible with selection={all} or by ensuring you ref-
erence each entry with both label prefixes. Another method is to use action={copy} but
this requires a second resource command with the same selection criteria.

A simpler method is to use a single \GlsXtrLoadResources with the secondary option.
The value (which must be supplied) should be in the format:

〈sort〉:〈field〉:〈type〉

or

〈sort〉:〈type〉

If the 〈field〉 is omitted, the value of sort-field is used. Remember that when the primary
entries are sorted, the sort field will be set, which means that the sort fallback field (see
section 5.8) won’t be used in the secondary sort. In general it’s best to supply the field unless
one type is sorted and the other isn’t. (The actual sort value obtained by the secondary sort
will be saved in the secondarysort field in case you require it.)

The value of 〈sort〉 is as for sort, but note that in this case the sort value unsrt or none
means to use the same ordering as the primary entries. For example, with sort={de-CH-
1996}, secondary={none:copies} the copies list will be ordered according to de-CH-
1996 and not according to the order in which they were read when the .bib file or files were
parsed. If 〈sort〉 is custom, then the rule should be provided with secondary-sort-rule.

This option will copy all the selected entries into the glossary labelled 〈type〉 sorted ac-
cording to 〈sort〉 (using 〈field〉 as the sort value). Note that this just copies the entry’s label to
the secondary glossary list rather than creating a duplicate entry, which saves resources but
it means that all the fields will be identical. If you want groups in your glossary, the group
information for the secondary glossaries will be stored in the internal secondarygroup field.
The group field will contain the group for the primary glossary.

In order to switch fields in \printunsrtglossary, you need at least v1.21 of glossaries-
extra which provides \glsxtrgroupfield to keep track of the appropriate field label. If
this command is defined, the preamble for the secondary glossary will be adjusted to locally
change the field to secondarygroup. With older versions, the group information in the
secondary glossary will be the same as for the primary glossary.

If the glossary 〈type〉 doesn’t exist, it will be defined with \provideignoredglossary*
{〈type〉} even if --no-provide-glossaries is set. Note that if the glossary already exists
and contains entries, the existing entries aren’t re-ordered. The new entries are simply ap-
pended to the list.

For example, suppose the .bib file contains entries like:

@entry{quartz,
name={quartz},
description={hard mineral consisting of silica},
category={mineral}

}

312

5.13 Secondary Glossary

@entry{cabbage,
name={cabbage},
description={vegetable with thick green or purple leaves},
category={vegetable}

}

@entry{waterfowl,
name={waterfowl},
description={any bird that lives in or about water},
category={animal}

}

and the document preamble contains:

\GlsXtrLoadResources[src={entries},sort={en-GB},
secondary={en-GB:category:topic}

]

This sorts the primary entries according to the default sort-field and then sorts the entries
according to the category field and copies this list to the topic glossary (which will be
provided if not defined.)

The secondary list can be displayed with the hypertargets switched off to prevent dupli-
cates. The cross-references will link to the original glossary.

For example:

\printunsrtglossary[title={Summary (alphabetical)}]
\printunsrtglossary[title={Summary (by topic)},target={false}]

The alternative (or if more than two lists are required) is to reload the same .bib file with
different label prefixes. For example, if the entries are stored in entries.bib:

\newglossary*{nosort}{Symbols (Unsorted)}
\newglossary*{byname}{Symbols (Letter Order)}
\newglossary*{bydesc}{Symbols (Ordered by Description)}
\newglossary*{byid}{Symbols (Ordered by Label)}

\GlsXtrLoadResources[
src={entries},% entries.bib
sort={unsrt},
type={nosort}

]

\GlsXtrLoadResources[
src={entries},% entries.bib
sort={letter-case},
type={byname},

313

5.13 Secondary Glossary

label-prefix={byname.}
]

\GlsXtrLoadResources[
src={entries},% entries.bib
sort={locale},
sort-field={description},
type={bydesc},
label-prefix={bydesc.}

]

\GlsXtrLoadResources[
src={entries},% entries.bib
sort={letter},
sort-field={id},
type={byid},
label-prefix={byid.}

]

secondary-match=〈key=value list〉
Similar to match but determines whether or not to include a primary entry in the sec-
ondary list. The syntax is the same but this option is governed by secondary-match-op
and secondary-match-action. Note that if an entry hasn’t been selected for the primary
list then it won’t be added to the secondary list, regardless of this setting.

secondary-not-match=〈key=value list〉
Similar to not-match but determines whether or not to include a primary entry in the sec-
ondary list. The syntax is the same but this option is governed by secondary-match-op and
secondary-match-action. Note that if an entry hasn’t been selected for the primary list
then it won’t be added to the secondary list, regardless of this setting.

secondary-match-op=〈value〉
As match-op but for the secondary list selection.

secondary-match-action=〈value〉
As match-action but for the secondary list selection.

secondary-missing-sort-fallback=〈field〉
As missing-sort-fallback but for secondary sorting.

314

5.13 Secondary Glossary

secondary-trim-sort=〈boolean〉
As trim-sort but for secondary sorting.

secondary-sort-replace=〈list〉
As sort-replace but for secondary sorting.

secondary-sort-rule=〈value〉
As sort-rule but for secondary custom sorting.

secondary-break-at=〈value〉
As break-at but for secondary entries.

secondary-break-marker=〈marker〉
As break-marker but for secondary entries.

secondary-break-at-match=〈key=value list〉

As break-at-match but for secondary entries.

secondary-break-at-match-op=〈value〉

As break-at-match-op but for secondary entries.

secondary-break-at-not-match=〈key=value list〉

As break-at-not-match but for secondary entries.

secondary-sort-number-pad=〈number〉
As sort-number-pad but for secondary entries.

secondary-sort-pad-plus=〈marker〉
As sort-pad-plus but for secondary entries.

secondary-sort-pad-minus=〈marker〉
As sort-pad-minus but for secondary entries.

315

5.13 Secondary Glossary

secondary-identical-sort-action=〈value〉
As identical-sort-action but for secondary entries.

secondary-sort-suffix=〈value〉
As sort-suffix but for secondary entries.

secondary-sort-suffix-marker=〈value〉
As sort-suffix-marker but for secondary entries.

secondary-strength=〈value〉
As strength but for secondary entries.

secondary-decomposition=〈value〉
As decomposition but for secondary entries.

secondary-letter-number-rule=〈value〉
As letter-number-rule but for secondary letter-number sorting.

secondary-letter-number-punc-rule=〈value〉
As letter-number-punc-rule but for secondary letter-number sorting.

secondary-numeric-sort-pattern=〈value〉
As numeric-sort-pattern but for secondary locale-sensitive numeric sorting.

secondary-numeric-locale=〈value〉
As numeric-locale but for secondary locale-sensitive numeric sorting.

secondary-date-sort-locale=〈value〉
As date-sort-locale but for secondary date-time sorting.

secondary-date-sort-format=〈value〉
As date-sort-format but for secondary date-time sorting.

316

5.14 Dual Entries

secondary-group-formation=〈value〉
As group-formation but for secondary sorting.

5.14 Dual Entries
General Dual Settings
dual-prefix=〈value〉

This option indicates the prefix to use for the dual entries. The default value is dual. (in-
cluding the terminating period). Any references to dual entries within the .bib file should
use the prefix dual. which will be replaced by 〈value〉 when the .bib file is parsed.

As from version 1.8, the dual label prefix is identified in the .glstex file with:

\bibglsdualprefixlabel{〈prefix〉}

primary-dual-dependency=〈boolean〉

This is a boolean setting that determines whether or not primary and dual entries should be
considered mutual dependencies. The default value is primary-dual-dependency={true},
which means that if a primary has records then the dual is added as a dependency and vice
versa. The setting primary-dual-dependency={false} can’t be used with dual-sort=
{none} or dual-sort={use} (but may be used with dual-sort={combine} and sort=
{none} or sort={use}).

combine-dual-locations=〈value〉

This setting allows the location lists for each primary entry to be merged with that of the
corresponding dual entry. The 〈value〉 may be one of:

• false This is the default setting. The location lists aren’t combined.

• both Both the primary and dual are given the combined location list.

• dual Only the dual is given the combined location list. The primary’s location list is
emptied.

• primary Only the primary is given the combined location list. The dual’s location list
is emptied.

• dual retain principal Like dual but any principal locations for primary entries
will have a copy left in the primary entry’s location list.

• primary retain principal Like primary but any principal locations for dual en-
tries will have a copy left in the dual entry’s location list.

For example, suppose the file entries.bib contains:

317

5.14 Dual Entries

@dualindexentry{array,
description={ordered list of values}

}

@dualindexentry{vector,
name={vector},
description={column or row of values}

}

@dualindexentry{set,
description={collection of values}

}

@dualindexentry{matrix,
plural={matrices},
description={rectangular array of values}

}

and the document contains:

\documentclass{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,index,style={indexgroup}]{glossaries-extra}

\GlsXtrLoadResources[
src={entries},
type={index},
label-prefix={idx.},
dual-prefix={gls.},
dual-type={main}

]

\begin{document}
\gls{gls.array}, \gls{gls.vector}, \gls{gls.set}, \gls{gls.matrix}.

\newpage
\gls{gls.array}, \gls{idx.vector}, \gls{idx.set}, \gls{gls.matrix}.

\newpage
\gls{gls.array}, \gls{gls.vector}, \gls{gls.set}, \gls{gls.matrix}.

\printunsrtglossaries
\end{document}

318

5.14 Dual Entries

In this case, the primary entries are placed in the index glossary type and are assigned the
prefix idx. but only two of the primary entries have been used in the document (both on
page 2).

The dual entries are assigned the prefix gls. and are placed in the main glossary. The
gls.array and gls.matrix entries have been indexed on pages 1, 2 and 3. The gls.vector
and gls.set entries have been indexed on pages 1 and 3.

With the default setting, some of the locations are in the main glossary (corresponding
to \gls{gls.array}, \gls{gls.vector}, \gls{gls.set} and \gls{gls.matrix}) and
some of the locations are in the index glossary (corresponding to \gls{idx.vector} and
\gls{idx.set}).

If the option combine-dual-locations={primary} is added to the resource set, then all
the locations are moved to the index glossary. The entries in the main glossary no longer
have locations. This is actually preferable for this type of document and it’s best not to
reference the primary (index) entries as the hyperlink created by \glswill point to the index,
but these entries don’t have descriptions, so it’s less useful than referencing the dual (main)
entries as then the hyperlink can point to the definition in the main glossary.

Dual Fields
dual-type=〈value〉

This option sets the type field for all dual entries. (The primary entries obey the type option.)
This will override any value of type provided in the .bib file (or created through amapping).
The 〈value〉 is required and should be one of:

• false: switches off this setting (default);

• same as entry: sets the type to the entry type (lower case and without the initial
@). For example, if the entry was defined with @dualentry, the type will be set to
dualentry. If you’ve used entry-type-aliases, this refers to the target entry type
not the original entry type provided in the .bib file.

• same as original entry: set the type field to the original entry type (lower case
and without the initial @) before it was aliased (behaves like same as entry if the
entry type wasn’t aliased).

• same as base: sets the type to the base name of the .bib file (without the extension)
that provided the entry definition (new to v1.1);

• same as primary: sets the type to the same as the corresponding primary entry’s
type (which may have been set with type). If the primary entry doesn’t have the type
field set, the dual’s type will remain unchanged.

• same as parent: sets the type to the same as the entry’s parent (new to v1.9). If the
entry doesn’t have a parent or if the parent doesn’t have the type field set, then no
change is made.

319

5.14 Dual Entries

• same as category set the type field to the same value as the category field (type
unchanged if category not set);

• 〈label〉: sets the type field to 〈label〉.

Remember that the glossary with that label must have already been defined (see sec-
tion 1.4). For example:

\newglossary*{english}{English}
\newglossary*{french}{French}

\GlsXtrLoadResources[src={entries},sort={en},dual-sort={fr},
type={english},
dual-type={french}]

Alternatively:

\newglossary*{dictionary}{Dictionary}

\GlsXtrLoadResources[src={entries},sort={en},dual-sort={fr},
type={dictionary},
dual-type={same as primary}]

dual-category=〈value〉

This option sets the categoryfield for all dual entries. (The primary entries obey the category
option.) This will override any value of category provided in the .bib file (or created
through a mapping). The 〈value〉 may be empty or one of:

• false: switch off this setting (default);

• same as entry: sets the category to the entry type (lower case and without the
initial @). For example, if the entry was defined with @dualentry, the category will
be set to dualentry. If you’ve used entry-type-aliases, this refers to the target
entry type not the original entry type provided in the .bib file.

• same as original entry: set the category field to the original entry type (lower
case and without the initial @) before it was aliased (behaves like same as entry if
the entry type wasn’t aliased).

• same as base: sets the category to the base name of the .bib file (without the
extension) that provided the entry definition (new to v1.1);

• same as primary: sets the category to the same as the corresponding primary en-
try’s category (whichmay have been set with category). If the primary entry doesn’t
have the category field set, the dual’s category will remain unchanged.

320

5.14 Dual Entries

• same as type: sets the category to the same as the value of the entry’s type field
(which may have been set with dual-type). If the entry doesn’t have the type field
set, the category will remain unchanged.

• 〈label〉: sets the category field to 〈label〉.

dual-counter=〈value〉

As counter but for the dual entries. In this case 〈value〉 may be the name of the counter or
same as primary which uses the counter for the primary entry or false to switch off this
setting.

dual-short-case-change=〈value〉

As short-case-change but applies to the dualshort field instead.

dual-long-case-change=〈value〉

As long-case-change but applies to the duallong field instead.

dual-field=〈value〉

If this option is used, this will add \glsxtrprovidestoragekey to the start of the .glstex
file providing the key given by 〈value〉. Any entries defined using a dual entry type, such
as @dualentry, will be written to the .glstex file with an extra field called 〈value〉 that is
set to the mirror entry. If 〈value〉 is omitted dual-field={dual} is assumed. If you use a
different value, you will need to redefine \GlsXtrDualField (either locally or globally). A
value of false will switch off this setting (the default).

For example, if the .bib file contains:

@dualentry{child,
name={child},
plural={children},
description={enfant}

}

Then with dual-field={dual} (or simply dual-field without a value) this will first add
the line:

\glsxtrprovidestoragekey{dual}{}{}

at the start of the file and will include the line:

dual={dual.child},

for the primary entry (child) and the line:

dual={child},

321

5.14 Dual Entries

for the dual entry (dual.child). It’s then possible to reference one entry from the other.
For example, the post-description hook could contain:

\ifglshasfield{dual}{\glscurrententrylabel}
{%
\space
(\glshyperlink{\glscurrentfieldvalue})%

}%
{}%

Note that this new field won’t be available for use within the .bib file (unless it was previ-
ously defined in the document before \glsxtrresourcefile).

dual-date-time-field-format=〈value〉

As date-time-field-format but is used for dual entries.

dual-date-field-format=〈value〉

As date-field-format but is used for dual entries.

dual-time-field-format=〈value〉

As time-field-format but is used for dual entries.

dual-date-time-field-locale=〈value〉

As date-time-field-locale but is used for dual entries.

dual-date-field-locale=〈value〉

As date-field-locale but is used for dual entries.

date-time-field-locale=〈value〉

As time-field-locale but is used for dual entries.

Dual Sorting
dual-sort=〈value〉

This option indicates how to sort the dual entries. The primary entries are sorted with the
normal entries according to sort, and the dual entries are sorted according to dual-sort
unless dual-sort={combine} in which case the dual entries will be combined with the
primary entries and all the entries will be sorted together according to the sort option.

If 〈value〉 isn’t set to combine then the dual entries are sorted separately according to
〈value〉 (as per sort) and the dual entries will be appended at the end of the .glstex file.

322

5.14 Dual Entries

The field used by the comparator is given by dual-sort-field. If dual-sort={custom},
then the dual entries are sorted according to the rule provided by dual-sort-rule.

For example:

\GlsXtrLoadResources[
src={entries-dual},
sort={en},
dual-sort={de-CH-1996}

]

This will sort the primary entries according to en (English) and the secondary entries accord-
ing to de-CH-1996 (Swiss German new orthography) whereas:

\GlsXtrLoadResources[
src={entries-dual},
sort={en-GB},
dual-sort={combine}

]

will combine the dual entries with the primary entries and sort them all according to the
en-GB locale (British English).

If not set, dual-sort defaults to combine. If 〈value〉 is omitted, resource is assumed.

dual-sort-field=〈field〉

This option indicates the field to use when sorting dual entries (when they haven’t been
combined with the primary entries). The default value is the same as the sort-field value.

dual-missing-sort-fallback=〈field〉

As missing-sort-fallback but for dual sorting.

dual-trim-sort=〈boolean〉

As trim-sort but for dual sorting.

dual-sort-replace=〈list〉

As sort-replace but for dual sorting.

dual-sort-rule=〈value〉

As sort-rule but for dual-sort={custom}.

dual-break-at=〈value〉

As break-at but for dual entries.

323

5.14 Dual Entries

dual-break-marker=〈marker〉

As break-marker but for dual entries.

dual-break-at-match=〈key=value list〉

As break-at-match but for dual entries.

dual-break-at-match-op=〈value〉

As break-at-match-op but for dual entries.

dual-break-at-not-match=〈key=value list〉

As break-at-not-match but for dual entries.

dual-sort-number-pad=〈number〉

As sort-number-pad but for dual entries.

dual-sort-pad-plus=〈marker〉

As sort-pad-plus but for dual entries.

dual-sort-pad-minus=〈marker〉

As sort-pad-minus but for dual entries.

dual-identical-sort-action=〈value〉

As identical-sort-action but for dual entries.

dual-sort-suffix=〈value〉

As sort-suffix but for dual entries.

dual-sort-suffix-marker=〈value〉

As sort-suffix-marker but for dual entries.

dual-strength=〈value〉

As strength but for dual entries.

dual-decomposition=〈value〉

As decomposition but for dual entries.

324

5.14 Dual Entries

dual-letter-number-rule=〈value〉

As letter-number-rule but for dual entries that use a letter-number sort.

dual-letter-number-punc-rule=〈value〉

As letter-number-punc-rule but for dual entries that use a letter-number sort.

dual-numeric-sort-pattern=〈value〉

As numeric-sort-pattern but for dual entries that use a locale-sensitive numeric sort.

dual-numeric-locale=〈value〉

As numeric-locale but for dual entries that use a locale-sensitive numeric sort.

dual-date-sort-locale=〈value〉

As date-sort-locale but for dual entries that use a date/time sort.

dual-date-sort-format=〈value〉

As date-sort-format but for dual entries that use a date/time sort.

dual-group-formation=〈value〉

As group-formation but for dual sorting.

Dual Mappings
dual-entry-map={{〈list1〉},{〈list2〉}}

This setting governs the behaviour of @dualentry definitions. The value consists of two
comma-separated lists of equal length identifying the field mapping used to create the dual
entry from the primary one. Note that the alias field can’t be mapped.

The default setting is:

dual-entry-map={
{name,plural,description,descriptionplural},
{description,descriptionplural,name,plural}

}

The dual entry is created by copying the value of the field in the first list 〈list1〉 to the field
in the corresponding place in the second list 〈list2〉. Any additional fields are copied over to
the same field. For example:

325

5.14 Dual Entries

@dualentry{cat,
name={cat},
description={chat},
see={dog}

}

defines two entries. The primary entry is essentially like:

@entry{cat,
name={cat},
plural={cat\glspluralsuffix },
description={chat},
descriptionplural={chat\glspluralsuffix },
see={dog}

}

and the dual entry is essentially like:

@entry{dual.cat,
description={cat},
descriptionplural={cat\glspluralsuffix },
name={chat},
plural={chat\glspluralsuffix },
see={dog}

}

(except they’re defined using \bibglsnewdualentry instead of \bibglsnewentry, and each
is considered dependent on the other.)

The see field isn’t listed in dual-entry-map so its value is simply copied directly over
to the see field in the dual entry. Note that the missing plural and descriptionplural
fields have been filled in using their fallback values (see section 5.8).

In general bib2gls doesn’t try to supply missing fields, but in the dual entry cases it needs
to do this for themapped fields. This is because the shuffled fieldsmight have different default
values from the glossaries-extra package’s point of view. For example, \longnewglossary-
entry doesn’t provide a default for descriptionplural if it hasn’t been set.

dual-abbrv-map={{〈list1〉},{〈list2〉}}

This is like dual-entry-map but applies to @dualabbreviation rather than @dualentry.
Note that the alias field can’t be mapped. The default setting is:

dual-abbrv-map={
{short,shortplural,long,longplural,dualshort,dualshortplural,
duallong,duallongplural},

{dualshort,dualshortplural,duallong,duallongplural,short,shortplural,
long,longplural}

}

326

5.14 Dual Entries

This essentially flips the short field with the dualshort field and the long field with the
duallong field. See @dualabbreviation for further details.

dual-abbrventry-map={{〈list1〉},{〈list2〉}}

This is like dual-entry-map but applies to @dualabbreviationentry rather than @dual-
entry. Note that the alias field can’t be mapped. The default setting is:

dual-abbrventry-map={
{long,short,shortplural},
{name,text,plural}

}

See @dualabbreviationentry for further details.

dual-symbol-map={{〈list1〉},{〈list2〉}}

This is like dual-entry-map but applies to @dualsymbol rather than @dualentry. Note
that the alias field can’t be mapped. The default setting is:

dual-symbol-map={
{name,plural,symbol,symbolplural},
{symbol,symbolplural,name,plural}

}

This essentially flips the name field with the symbol field.

dual-indexentry-map={{〈list1〉},{〈list2〉}}

This is like dual-entry-map but applies to @dualindexentry rather than @dualentry. The
default setting is:

dual-indexentry-map={
{name},
{name}

}

Note that there must always be at least one pair, even if it’s the same field, since this identifies
the field to use for the backlink, if set.

dual-indexsymbol-map={{〈list1〉},{〈list2〉}}

This is like dual-entry-map but applies to both @dualindexsymbol and @dualindexnumber.
The default setting is:

dual-indexsymbol-map={
{symbol,name,symbolplural,plural},
{name,symbol,plural,symbolplural}

}

327

5.14 Dual Entries

dual-indexabbrv-map={{〈list1〉},{〈list2〉}}

This is like dual-entry-map but applies to both the dual @dualindexabbreviation and
tertiary @tertiaryindexabbreviationentry entry types. The default setting is:

dual-indexabbrv-map={
{name},
{name}

}

Dual Back-Links
dual-entry-backlink={〈boolean〉}

This is a boolean setting. If 〈boolean〉 is missing true is assumed.
When used with @dualentry, if 〈boolean〉 is true, this will wrap the contents of the first

mapped field with \bibglshyperlink. The field is obtained from the first mapping listed in
dual-entry-map.

For example, if the document contains:

\GlsXtrLoadResources[dual-entry-backlink,
dual-entry-map={

{name,plural,description,descriptionplural},
{description,descriptionplural,name,plural}

},
src={entries-dual}]

and if the .bib file contains:

@dualentry{child,
name={child},
plural={children},
description={enfant}

}

Then the definition of the primary entry (child) in the .glstex filewill set the description
field to:

\bibglshyperlink{enfant}{dual.child}

and the dual entry (dual.child) will have the description field set to:

\bibglshyperlink{child}{child}

This use of the wrapper \bibglshyperlink (rather than explicitly using \glshyperlink)
and inserting the actual field value (rather than using commands like \glsentryname) allows
it to work with \makefirstuc if the field requires a case-change.

328

5.14 Dual Entries

The reason the description field is chosen for the modification is because the first field
listed in 〈list1〉 of dual-entry-map is the name field which maps to description (the first
field in the second list 〈list2〉). This means that the hyperlink for the dual entry should be
put in the description field.

For the primary entry, the name field is looked up in the second list from the dual-entry
-map setting. This is the third item in this second list, so the third item in the first list is
selected, which also happens to be the description field, so the hyperlink for the primary
entry is put in the description field.

dual-abbrv-backlink={〈boolean〉}

This is analogous to dual-entry-backlink but for entries defined with @dualabbrevia-
tion instead of @dualentry.

dual-symbol-backlink={〈boolean〉}

This is analogous to dual-entry-backlink but for entries defined with @dualsymbol in-
stead of @dualentry.

dual-abbrventry-backlink={〈boolean〉}

Analogous to dual-entry-backlink but for entries defined with @dualabbreviation-
entry instead of @dualentry. This setting can be problematic as the backlinks rely on the
relevant field being known to bib2gls. Since the abbreviation style typically sets the name
field (and sometimes the description field as well), you may find that no backlink appears.
A simple workaround is to use dual-field (or dual-field={dual}) to store the dual label
in the dual field, and then use a style that checks for this field and adds the backlink.

With glossaries-extra v1.30+ you can use:

\GlsXtrDualBackLink{〈text〉}{〈label〉}

which encapsulates 〈text〉 with a hyperlink to the dual. The 〈label〉 identifies the entry that
requires a backlink. The dual’s label is obtained from the field given by:

\GlsXtrDualField

which defaults to dual. Note that if you assign a different field label with dual-field, then
you will need to redefine \GlsXtrDualField as appropriate.

For example:

\renewcommand*{\glsuserdescription}[2]{%
\GlsXtrDualBackLink{\glslonguserfont{#1}}{#2}%

}
\setabbreviationstyle{long-short-user}
\GlsXtrLoadResources[src={entries},dual-field]

329

5.15 Tertiary Entries

dual-entryabbrv-backlink={〈boolean〉}

As dual-abbrventry-backlink but for entries defined with @dualentryabbreviation
instead of @dualabbreviationentry.

dual-indexentry-backlink={〈boolean〉}

This is analogous to dual-entry-backlink but for entries defined with @dualindexentry
instead of @dualentry.

dual-indexsymbol-backlink={〈boolean〉}

This is analogous to dual-entry-backlink but for entries definedwith @dualindexsymbol
and @dualindexnumber.

dual-indexabbrv-backlink={〈boolean〉}

This is analogous to dual-entry-backlink but for entries defined with @dualindexabbre-
viation and @tertiaryindexabbreviationentry.

dual-backlink={〈boolean〉}

Shortcut for:

dual-entry-backlink={〈boolean〉},
dual-abbrventry-backlink={〈boolean〉},
dual-abbrv-backlink={〈boolean〉},
dual-symbol-backlink={〈boolean〉},
dual-indexentry-backlink={〈boolean〉},
dual-indexsymbol-backlink={〈boolean〉},
dual-indexabbrv-backlink={〈boolean〉}

5.15 Tertiary Entries
tertiary-prefix={〈value〉}
This option indicates the prefix to use for the tertiary entries. The default value is tertiary.
(including the terminating period).

As from version 1.8, the tertiary label prefix is identified in the .glstex file with:

\bibglstertiaryprefixlabel{〈prefix〉}

tertiary-type={〈value〉}
This option indicates that the tertiary entries should have their type field set to 〈value〉. If
〈value〉 is empty the type is left unchanged. Unlike the type and dual-type options, there
are no recognised keywords.

330

5.16 Compound (Combined or Multi) Entries

tertiary-category={〈value〉}
This option indicates that the tertiary entries should have their category field set to 〈value〉.
If 〈value〉 is empty the category is left unchanged. Unlike the category and dual-category
options, there are no recognised keywords.

5.16 Compound (Combined or Multi) Entries
These options refer to compound entrieswhich are either defined in a .bibfilewith @compoundset
or are defined in the document using \multiglossaryentry (or \provideglossaryentry).
See section 4.10 for further details.

compound-options-global={〈boolean〉}
This is a boolean option. The default is compound-options-global={true}.

If true, the compound entry options described in this section, except for compound-write
-def, pick up all compound entries provided in the document (defined eitherwith @compoundset
or in the document with \multiglossaryentry).

If false, options only apply to compound entries defined with @compoundset in the cur-
rent resource set.

If cross-resource reference are disabled then any instances of @compoundset in subsequent
resource sets can only be picked up from the .aux file on the next build.

compound-dependent={〈boolean〉}
This is a boolean option. The default is compound-dependent={false}.

If you have chosen to switch off indexing for the other labels then they may not be selected
(unless they have been indexed via another method, such as explicitly using \gls). You can
use this option to make the other labels dependencies of the main label (if the entry given by
main label is present in the current resource set).

This means that if the main label is selected then the other labels should also be selected
(if dependencies are part of the selection criteria).

compound-add-hierarchy={〈boolean〉}
This is a boolean option. The default is compound-add-hierarchy={false}. If true, this
will set the parent field for each element ei to the previous element ei−1 in the list, provided
that:

• the element ei isn’t the first element in the list;

• the element ei and the previous element ei−1 are present in the current resource set;

• the element ei doesn’t already have the parent field set;

331

5.16 Compound (Combined or Multi) Entries

• the element ei isn’t an ancestor of the previous element ei−1.

• the previous element ei−1 isn’t an ancestor of the element ei.

For example, if the .bib file contains:

@abbreviation{clostridium,
short={C.},
long={Clostridium}

}
@index{botulinum}
@compoundset{cbot,
elements={clostridium,botulinum}}

Then the botulinum entry will have its parent field set to clostridium. The clostridium
entry won’t be adjusted (since it’s the first element in the list).

compound-has-records={〈boolean〉}
This option may take one of the following values:

true Any compound entry referenced with commands like \mgls is considered to have
records for each element for selection purposes, even if there are no records in the
.aux file. (This is useful on the first LATEX run where the compound entries are defined
with @compoundset.)

false The element records are created as they normally are with commands like \gls that
are internally used by \mgls.

default Behaves like compound-has-records={true} if the current resource set has any
.bib files containing one or more @compoundset entry types. Otherwise behaves like
compound-has-records={false}.

The default is compound-has-records={default}. If the value is omitted, true is as-
sumed.

compound-adjust-name={〈value〉}
If an entry has been identified as the main label in any compound entries then the name field
can be adjusted with this option. Allowed values:

• false don’t adjust the name field (default);

• unique only adjust the name field if the entry is the main label of exactly one set;

• once adjust the name field if the entry is the main label of any set. Only one adjust-
ment is made. If the entry is the main label of multiple compound entries there’s no
guarantee which set will be chosen for the adjustment.

332

5.16 Compound (Combined or Multi) Entries

If the value isn’t supplied, once is assumed. As with name-case-change, the pre-adjusted
name value will be copied to the text field provided the text field hasn’t already been set
and provided that the entry isn’t an abbreviation.

The adjusted value will be in the form:

\glsxtrmultientryadjustedname{〈sublist1〉}{〈name〉}{〈sublist2〉}{mlabel}

where 〈label〉 is the compound entry label, 〈name〉was the value of the name field before the
adjustment, 〈sublist1〉 is the list of other labels before the main label (which will be empty if
the main label is the first element in the set) and 〈sublist2〉 is the list of other labels after the
main label (which will be empty if the main label is the last element in the set).

The adjustment is made before name-case-change (if set). The control sequence case
changes (such as name-case-change={firstuc-cs}) will replace \glsxtrmultientry-
adjustednamewith the relevant command (\Glsxtrmultientryadjustedname for firstuc-
cs, \GlsXtrmultientryadjustedname for title-cs and \GLSxtrmultientryadjusted-
name for uc-cs).

compound-main-type={〈value〉}
Set the type field of the main entries. The 〈value〉 is required and should be one of:

• same as entry: sets the type to the entry type (lower case and without the initial @).
For example, if the entry was defined with @index, the type will be set to index. If
you’ve used entry-type-aliases, this refers to the target entry type not the original
entry type provided in the .bib file.

• same as original entry: set the type field to the original entry type (lower case
and without the initial @) before it was aliased (behaves like same as entry if the
entry type wasn’t aliased).

• same as base: sets the type to the base name of the .bib file (without the extension)
that provided the entry definition;

• same as category: sets the type to the same as the category field;

• same as parent: sets the type to the same as the entry’s parent. If the entry doesn’t
have a parent or if the parent doesn’t have the type field set, then no change is made.

• 〈label〉: sets the type field to 〈label〉.

This setting is governed by compound-type-override.

compound-other-type={〈value〉}
Set the type field of the other entries. The 〈value〉 is required and should be one of:

• same as main: sets the type to the same as the main entry.

333

5.16 Compound (Combined or Multi) Entries

• same as entry: sets the type to the entry type (lower case and without the initial @).
For example, if the entry was defined with @index, the type will be set to index. If
you’ve used entry-type-aliases, this refers to the target entry type not the original
entry type provided in the .bib file.

• same as original entry: set the type field to the original entry type (lower case
and without the initial @) before it was aliased (behaves like same as entry if the
entry type wasn’t aliased).

• same as base: sets the type to the base name of the .bib file (without the extension)
that provided the entry definition;

• same as category: sets the type to the same as the category field;

• same as parent: sets the type to the same as the entry’s parent. If the entry doesn’t
have a parent or if the parent doesn’t have the type field set, then no change is made.

• 〈label〉: sets the type field to 〈label〉.

This setting is governed by compound-type-override.

compound-type-override={〈boolean〉}
This is a boolean option. The default is compound-type-override={false}.

If true, then the options compound-main-type and compound-other-type will over-
write the type field otherwise those options will only set the type field if it hasn’t already
been set.

compound-write-def={〈value〉}
If compound entries are defined in the .bib files using @compoundset, this option governs
whether or not to write their definition to the .glstex file. The value may be one of:

none Don't write the definitions to the .glstex file. For example, if
you are reloading a .bib file from another resource set, you will need
this option to prevent duplicate definitions. (The alternative is to
define \bibglsdefcompoundset to use \providemultiglossaryentry instead
of \multiglossaryentry.)

all Write all definitions to the .glstex file, regardless of whether or
not they have been referenced using commands like \mgls.

ref Only write the definitions for compound entries that have been
referenced using commands like \mgls. (Default.)

The compound entries are defined in the .glstex file with \bibglsdefcompoundset.

334

6 Provided Commands
When bib2gls creates the .glstex file, it writes some definitions for custom commands
in the form \bibgls… which may be changed as required. The command definitions all use
\providecommandwhichmeans that you can define the commandwith \newcommand before
the resource file is loaded.

Note that if you try to redefine any of these commands after the resource file has been
loaded with \renewcommand, you will get an error on the first LATEX run when the .glstex
file doesn’t exist. You may prefer to use \glsrenewcommand instead, which will generate a
warning instead of an error.

Since many of the commands are actually used within the .glstex file, it’s best to use
\newcommand before the first resource set and \renewcommand between resource sets if ad-
justments are necessary.

6.1 Entry Definitions
This section lists the commands (\bibglsnew…) used to define entries. Note that the entry
definition commands are actually used when TEX inputs the resource file, so redefining them
after the resource file is loaded won’t have an effect on the entries defined in that resource
file (but will affect entries defined in subsequent resource files). Each provided command is
defined in the .glstex file immediately before the first entry that requires it, so only the
commands that are actually needed are provided.

The sort key may be set within the .glstex entry definition, but its value is usually not
required in the document unless you are using a hybrid method with record={hybrid} (in
which case, it’s redundant to get bib2gls to sort).

After each entry is defined, if it has any associated locations and the default save-loclist
={true} is set, then the locations are added using:

\glsxtrfieldlistadd{〈label〉}{〈field〉}{〈item〉}

Any additional fields that don’t have associated keys are then set (if required) with \GlsXtr-
SetField.

\bibglsnewentry

\bibglsnewentry{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with the @entry type. The definition pro-
vided in the .glstex file is:

335

6.1 Entry Definitions

\providecommand{\bibglsnewentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

This uses the starred form \longnewglossaryentry* that doesn’t automatically append
\nopostdesc (which interferes with the post-description hooks provided by category at-
tributes).

\bibglsnewsymbol

\bibglsnewsymbol{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with the @symbol type. The definition pro-
vided in the .glstex file is:

\providecommand{\bibglsnewsymbol}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={symbol},#2}

{#4}%
}

Note that this sets the sort field to the label, but this may be overridden by the 〈options〉 if
the sort field was supplied or if bib2gls has determined the value whilst sorting the entries.

This also sets the category to symbol, but again this may be overridden by 〈options〉 if
the entry had the category field set in the .bib file or if the categorywas overridden with
category={〈value〉}.

\bibglsnewnumber

\bibglsnewnumber{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with the @number type. The definition pro-
vided in the .glstex file is:

\providecommand{\bibglsnewnumber}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={number},#2}

{#4}%
}

This is much the same as \bibglsnewsymbol above but sets the category to number. Again
the sort and category keys may be overridden by 〈options〉.

336

6.1 Entry Definitions

\bibglsnewindex

\bibglsnewindex{〈label〉}{〈options〉}

This command is used to define terms identified with the @index type. The definition pro-
vided in the .glstex file is:

\providecommand*{\bibglsnewindex}[2]{%
\newglossaryentry{#1}{name={#1},category={index},description={},#2}%

}

This makes the name default to the 〈label〉, assigns the category to index and sets an empty
description. These settings may be overridden by 〈options〉.

Note that the description doesn’t include \nopostdesc to allow for the post-description
hook used by category attributes.

\bibglsnewindexplural

\bibglsnewindexplural{〈label〉}{〈options〉}{〈name〉}

This command is used to define terms identified with the @indexplural type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewindexplural}[3]{%
\newglossaryentry{#1}{name={#3},category={indexplural},description=

{},#2}%
}

This assigns the category to indexplural and sets an empty description. These settings
may be overridden by 〈options〉.

\bibglsnewabbreviation

\bibglsnewabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define terms identified with the @abbreviation type. The defini-
tion provided in the .glstex file is:

\providecommand{\bibglsnewabbreviation}[4]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

Since this uses \newabbreviation, it obeys the abbreviation style for its given category
(which may have been set in 〈options〉, either from the category field in the .bib file or
through the category option). Similarly the type will obey \glsxtrabbrvtype unless the
value is supplied in the .bib file or through the type option.

337

6.1 Entry Definitions

\bibglsnewacronym

\bibglsnewacronym{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define terms identified with the @acronym type. The definition
provided in the .glstex file is:
\providecommand{\bibglsnewacronym}[4]{%

\newacronym[#2]{#1}{#3}{#4}%
}

This works in much the same way as \bibglsnewabbreviation. Remember that with the
glossaries-extra package \newacronym is redefined to just use \newabbreviation with the
default type set to \acronymtype and the default category set to acronym.

\bibglsnewdualentry

\bibglsnewdualentry{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with the @dualentry type. The definition
provided in the .glstex file is:
\providecommand{\bibglsnewdualentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

\bibglsnewdualindexentry

\bibglsnewdualindexentry{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define primary terms identified with the @dualindexentry type.
The definition provided in the .glstex file is:
\providecommand{\bibglsnewdualindexentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},category={index},#2}{}%

}

Note that this definition ignores the 〈description〉 argument.

\bibglsnewdualindexentrysecondary

\bibglsnewdualindexentrysecondary{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define secondary terms identified with the @dualindexentry type.
The definition provided in the .glstex file is:
\providecommand{\bibglsnewdualindexentrysecondary}[4]{%

\longnewglossaryentry*{#1}{name={#3},#2}{#4}%
}

338

6.1 Entry Definitions

\bibglsnewdualindexsymbol

\bibglsnewdualindexsymbol{〈label〉}{〈options〉}{〈name〉}{〈symbol〉}{〈description〉}

This command is used to define primary terms identified with the @dualindexsymbol type.
The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualindexsymbol}[5]{%
\longnewglossaryentry*{#1}{name={#3},category={index},symbol={#4},#2}

{}%
}

Note that this definition ignores the 〈description〉 argument.

\bibglsnewdualindexsymbolsecondary

\bibglsnewdualindexsymbolsecondary{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define secondary terms identified with the @dualindexsymbol
type. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualindexsymbolsecondary}[5]{%
\longnewglossaryentry*{#1}{name={#3},category={symbol},symbol={#4},#2}

{#5}%
}

\bibglsnewdualindexnumber

\bibglsnewdualindexnumber{〈label〉}{〈options〉}{〈name〉}{〈symbol〉}{〈description〉}

This command is used to define primary terms identified with the @dualindexnumber type.
The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualindexnumber}[5]{%
\longnewglossaryentry*{#1}{name={#3},category={index},symbol={#4},#2}

{}%
}

Note that this definition ignores the 〈description〉 argument.

\bibglsnewdualindexnumbersecondary

\bibglsnewdualindexnumbersecondary{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define secondary terms identified with the @dualindexnumber
type. The definition provided in the .glstex file is:

339

6.1 Entry Definitions

\providecommand{\bibglsnewdualindexnumbersecondary}[5]{%
\longnewglossaryentry*{#1}{name={#3},category={number},symbol={#4},#2}

{#5}%
}

\bibglsnewdualindexabbreviation

\bibglsnewdualindexabbreviation{〈label〉}{〈dual-label〉}{〈options〉}{〈name〉}
{〈short〉}{〈long〉}{〈description〉}

This command is used to define primary terms identified with the @dualindexabbrevia-
tion type. The default definition provided in the .glstex file is:

\providecommand{\bibglsnewdualindexabbreviation}[7]{%
\longnewglossaryentry*{#1}{%
name={\protect\bibglsuseabbrvfont{#4}{\glscategory{#2}}},%
category={index},#3}{}%

}

In this case 〈dual-label〉 is the dual entry’s label, which is used to fetch the category label in
\bibglsuseabbrvfont. (The category field for the dual isn’t used since a custom defini-
tion of \bibglsnewdualindexabbreviationsecondary may override the value known to
bib2gls.)

Note that (as shown above) with the default abbreviation-name-fallback={short}
the name uses:

\bibglsuseabbrvfont{〈text〉}{〈category〉}

to format the name, which ensures that it uses the same font as the short form for the dual
abbreviation. This will use \glsuseabbrvfont if it’s defined otherwise it will be defined to
replicate that command. If abbreviation-name-fallback is set to some other field then
the name uses:

\bibglsuselongfont{〈text〉}{〈category〉}

instead, which ensures that it uses the same font as the long form for the dual abbreviation.

\bibglsnewdualindexabbreviationsecondary

\bibglsnewdualindexabbreviationsecondary{〈label〉}{〈options〉}{〈name〉}
{〈short〉}{〈long〉}{〈description〉}

This command is used to define secondary terms identified with the @dualindexabbrevia-
tion entry type. The definition provided in the .glstex file is:

340

6.1 Entry Definitions

\providecommand{\bibglsnewdualindexabbreviationsecondary}[6]{%
\ifstrempty{#6}%
{\newabbreviation[#2]{#1}{#4}{#5}}%
{\newabbreviation[#2,description={#6}]{#1}{#4}{#5}}%

}

This ensures that a missing or empty description doesn’t interfere with the abbreviation
style.

\bibglsnewdualabbreviationentry

\bibglsnewdualabbreviationentry{〈label〉}{〈options〉}{〈short〉}{〈long〉}
{〈description〉}

This command is used to define primary terms identified with the @dualabbreviation-
entry type. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualabbreviationentry}[5]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

Note that this definition ignores the 〈description〉 argument.

\bibglsnewdualabbreviationentrysecondary

\bibglsnewdualabbreviationentrysecondary{〈label〉}{〈options〉}{〈short〉}
{〈long〉}{〈description〉}

This command is used to define secondary terms identified with the @dualabbreviation-
entry type. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualabbreviationentrysecondary}[5]{%
\longnewglossaryentry*{#1}{#2}{#5}%

}

Note that this definition ignores the 〈short〉 and 〈long〉 arguments (which will typically be
empty unless the default mappings are changed).

\bibglsnewdualentryabbreviation

\bibglsnewdualentryabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉}
{〈description〉}

This command is used to define primary terms identified with the (now deprecated) entry
type @dualentryabbreviation. The definition provided in the .glstex file is:

341

6.1 Entry Definitions

\providecommand{\bibglsnewdualentryabbreviation}[5]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

Note that this definition ignores the 〈description〉 argument.

\bibglsnewdualentryabbreviationsecondary

\bibglsnewdualentryabbreviationsecondary{〈label〉}{〈options〉}{〈short〉}
{〈long〉}{〈description〉}

This command is used to define secondary terms identified with the (now deprecated) entry
type @dualentryabbreviation. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualentryabbreviationsecondary}[5]{%
\longnewglossaryentry*{#1}{#2}{#5}%

}

Note that this definition ignores the 〈short〉 and 〈long〉 arguments (which will typically be
empty unless the default mappings are changed).

\bibglsnewdualsymbol

\bibglsnewdualsymbol{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with the @dualsymbol type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewdualsymbol}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={symbol},#2}

{#4}}

\bibglsnewdualnumber

\bibglsnewdualnumber{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with the @dualnumber type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewdualnumber}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category={symbol},#2}

{#4}}

342

6.1 Entry Definitions

\bibglsnewdualabbreviation

\bibglsnewdualabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define terms identified with the @dualabbreviation type where
the duallong field is swapped with the long field and the dualshort field is swapped with
the short field. The definition provided in the .glstex file is:

\providecommand{\bibglsnewdualabbreviation}[4]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

\bibglsnewdualacronym

\bibglsnewdualacronym{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define terms identified with the @dualacronym type. The definition
provided in the .glstex file is:

\providecommand{\bibglsnewdualacronym}[4]{%
\newacronym[#2]{#1}{#3}{#4}%

}

This works in much the same way as \bibglsnewdualabbreviation. Remember that with
the glossaries-extra package \newacronym is redefined to just use \newabbreviation with
the default type set to \acronymtype and the default category set to acronym.

\bibglsnewtertiaryindexabbreviationentry

\bibglsnewtertiaryindexabbreviationentry{〈label〉}{〈dual-label〉}{〈options〉}
{〈name〉}{〈short〉}{〈long〉}{〈description〉}

This is used to define primary terms identified with the @tertiaryindexabbreviation-
entry type. It’s essentially the same as \bibglsnewdualindexabbreviation. The defini-
tion provided in the .glstex file is:

\providecommand{\bibglsnewtertiaryindexabbreviationentry}[7]{%
\longnewglossaryentry*{#1}{%

name={\protect\bibglsuseabbrvfont{#4}{\glscategory{#2}}},%
category={index},#3}%

}

343

6.1 Entry Definitions

\bibglsnewtertiaryindexabbreviationentrysecondary

\bibglsnewtertiaryindexabbreviationentrysecondary{〈label〉}{〈tertiary-label〉}
{〈options〉}{〈tertiary-opts〉}{〈primary-name〉}{〈short〉}{〈long〉}{〈description〉}

This command is used to define both the secondary and tertiary terms identified with the
@tertiaryindexabbreviationentry type. The secondary term is an abbreviation and the
tertiary term is a regular entry. The definition written to the .glstex file is:

\providecommand{\bibglsnewtertiaryindexabbreviationentrysecondary}[8]{%
\newabbreviation[#3]{#1}{#6}{#7}%
\longnewglossaryentry*{#2}%
{name={\protect\bibglsuselongfont{#7}{\glscategory{#1}}},#4}%
{#8}%

}

The 〈label〉 is the label for the secondary (abbreviation) entry and 〈tertiary-label〉 is the label
for the tertiary (regular) entry. The fifth argument (〈primary name〉) isn’t used but is provided
if required for a custom redefinition. The name field for the tertiary is obtained from the
〈long〉 argument encapsulated by \bibglsuselongfont to format the name, which ensures
that it uses the same font as the long form for the dual abbreviation. This will use \glsuse-
longfont if it’s defined otherwise it will be defined to replicate that command.

\bibglsnewbibtexentry

\bibglsnewbibtexentry{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define the main term identified with @bibtexentry. The definition
written to the .glstex file is:

\providecommand{\bibglsnewbibtexentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

\bibglsnewcontributor

\bibglsnewcontributor{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define terms identified with @contributor (typically implicitly
created through @bibtexentry). The definition written to the .glstex file is:

\providecommand{\bibglsnewcontributor}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

344

6.1 Entry Definitions

\bibglsnewprogenitor

\bibglsnewprogenitor{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define the main terms created by @progenitor. The definition is
written to the .glstex file as:

\providecommand{\bibglsnewprogenitor}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

\bibglsnewspawnindex

\bibglsnewspawnindex{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define the main terms created by @spawnindex. The definition is
written to the .glstex file as:

\providecommand{\bibglsnewspawnindex}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

\bibglsnewspawnedindex

\bibglsnewspawnedindex{〈label〉}{〈options〉}

This command is used to define the terms spawned by @progenitor or @spawnindex. The
definition is written to the .glstex file as:

\providecommand{\bibglsnewspawnedindex}[2]{%
\newglossaryentry{#1}{name={#1},category=index,description={},#2}%

}

\bibglsnewspawnindexplural

\bibglsnewspawnindexplural{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define the main terms created by @spawnindexplural. The defi-
nition is written to the .glstex file as:

\providecommand{\bibglsnewspawnindexplural}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

345

6.1 Entry Definitions

\bibglsnewspawnedindexplural

\bibglsnewspawnedindexplural{〈label〉}{〈options〉}{〈name〉}

This command is used to define the terms spawned by @spawnindexplural. The definition
is written to the .glstex file as:

\providecommand{\bibglsnewspawnedindexplural}[3]{%
\newglossaryentry{#1}{name={#3},category={indexplural},description=

{},#2}%
}

\bibglsnewspawnentry

\bibglsnewspawnentry{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define the main terms created by @spawnentry. The definition is
written to the .glstex file as:

\providecommand{\bibglsnewspawnentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

\bibglsnewspawnedentry

\bibglsnewspawnedentry{〈label〉}{〈options〉}

This command is used to define the terms spawned by @spawnentry. The definition is written
to the .glstex file as:

\providecommand{\bibglsnewspawnedentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

\bibglsnewspawnabbreviation

\bibglsnewspawnabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define the main terms created by @spawnabbreviation. The defi-
nition is written to the .glstex file as:

\providecommand{\bibglsnewspawnabbreviation}[4]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

346

6.1 Entry Definitions

\bibglsnewspawnedabbreviation

\bibglsnewspawnedabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define the terms spawned by @spawnabbreviation. The definition
is written to the .glstex file as:

\providecommand{\bibglsnewspawnedabbreviation}[4]{%
\newabbreviation[#2]{#1}{#3}{#4}%

}

\bibglsnewspawnacronym

\bibglsnewspawnacronym{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define the main terms created by @spawnacronym. The definition
is written to the .glstex file as:

\providecommand{\bibglsnewspawnacronym}[4]{%
\newacronym[#2]{#1}{#3}{#4}%

}

\bibglsnewspawnedacronym

\bibglsnewspawnedacronym{〈label〉}{〈options〉}{〈short〉}{〈long〉}

This command is used to define the terms spawned by @spawnacronym. The definition is
written to the .glstex file as:

\providecommand{\bibglsnewspawnedacronym}[4]{%
\newacronym[#2]{#1}{#3}{#4}%

}

\bibglsnewspawnsymbol

\bibglsnewspawnsymbol{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define the main terms created by @spawnsymbol. The definition is
written to the .glstex file as:

\providecommand{\bibglsnewspawnsymbol}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

347

6.1 Entry Definitions

\bibglsnewspawnedsymbol

\bibglsnewspawnedsymbol{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define the terms spawned by @spawnsymbol. The definition is
written to the .glstex file as:

\providecommand{\bibglsnewspawnedsymbol}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category=

{spawnedsymbol},#2}{#4}}

\bibglsnewspawnnumber

\bibglsnewspawnnumber{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define the main terms created by @spawnnumber. The definition is
written to the .glstex file as:

\providecommand{\bibglsnewspawnnumber}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

\bibglsnewspawnednumber

\bibglsnewspawnednumber{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define the terms spawned by @spawnnumber. The definition is
written to the .glstex file as:

\providecommand{\bibglsnewspawnednumber}[4]{%
\longnewglossaryentry*{#1}{name={#3},sort={#1},category=

{spawnednumber},#2}{#4}}

\bibglsnewspawndualindexentry

\bibglsnewspawndualindexentry{〈label〉}{〈options〉}{〈name〉}{〈description〉}

This command is used to define the progenitor’s primary term created by @spawndualindex-
entry. The definition is written to the .glstex file as:

\providecommand{\bibglsnewspawndualindexentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},category={index},#2}%

}

The 〈description〉 argument is ignored.

348

6.2 Compound Entry Sets

\bibglsnewspawndualindexentrysecondary

\bibglsnewspawndualindexentrysecondary{〈label〉}{〈options〉}{〈name〉}
{〈description〉}

This command is used to define the progenitor’s secondary (dual) term created by @spawn-
dualindexentry. The definition is written to the .glstex file as:

\providecommand{\bibglsnewspawndualindexentrysecondary}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2}{#4}%

}

6.2 Compound Entry Sets
\bibglsdefcompoundset

\bibglsdefcompoundset{〈options〉}{〈label〉}{〈main〉}{〈elements〉}

The default definition uses \multiglossaryentry.

6.3 Location Lists and Cross-References
These commands deal with the way the location lists and cross references are formatted. The
commands typically aren’t used until the entry information is displayed in the glossary, so
you may redefine these commands after the resource file has been loaded.

\bibglsseesep

\bibglsseesep

Any entries that provide a see field (and that field hasn’t be omitted from the location list
with see={omit}) will have \bibglsseesep inserted between the see part and the location
list (unless there are no locations, in which case just the see part is displayed without \bib-
glsseesep).

This command is provided with:

\providecommand{\bibglsseesep}{, }

You can define this before you load the .bib file:

\newcommand{\bibglsseesep}{; }
\GlsXtrLoadResources[src={entries}]

Or you can redefine it afterwards:

\GlsXtrLoadResources[src={entries}]
\glsrenewcommand{\bibglsseesep}{; }

349

6.3 Location Lists and Cross-References

\bibglsseealsosep

\bibglsseealsosep

This is like \bibglsseesep but is used with cross-reference lists provided with the seealso
field, if supported.

\bibglsaliassep

\bibglsaliassep

This is like \bibglsseesep but is used with cross-reference lists provided with the alias
field.

\bibglsusesee

\bibglsusesee{〈label〉}

Displays the formatted cross-reference list stored in the see field for the given entry. This
just defaults to \glsxtrusesee{〈label〉}.

\bibglsuseseealso

\bibglsuseseealso{〈label〉}

Displays the formatted cross-reference list stored in the seealso field for the given entry.
This just defaults to \glsxtruseseealso{〈label〉}.

\bibglsusealias

\bibglsusealias{〈label〉}

Displays the formatted cross-reference stored in the alias field for the given entry. This is
defined to use \glsseeformat.

\bibglsdelimN

\bibglsdelimN

Separator between individual locations, except for the last. This defaults to \delimN.

350

6.3 Location Lists and Cross-References

\bibglslastDelimN

\bibglslastDelimN

Separator between penultimate and final individual locations. This defaults to ,~ to discour-
age lonely locations.

\bibglscompact

\bibglscompact{〈pattern〉}{〈part1〉}{〈part2〉}

This command is used with compact-rangeswhen the end location in a range is compacted.
The first argument 〈pattern〉 indicates the location pattern: digit for digits, roman for lower
case Roman numerals, ROMAN for upper case Roman numerals and alpha for alphabetical
locations. The actual location is split into two parts, 〈part1〉 and 〈part2〉. The string concate-
nation 〈part1〉〈part2〉 forms the actual location.

This just does 〈part2〉 by default.

\bibglspassim

\bibglspassim

If max-loc-diff is greater than 1, then any implicit ranges that have skipped over gaps will
be followed by \bibglspassim, which is defined as:

\providecommand{\bibglspassim}{ \bibglspassimname}

You can define this before you load the .bib file:

\newcommand{\bibglspassim}{}
\GlsXtrLoadResources[src={entries}]

Or you can redefine it afterwards:

\GlsXtrLoadResources[src={entries}]
\glsrenewcommand{\bibglspassim}{}

\bibglspassimname

\bibglspassimname

Thedefault definition is obtained from the language resource file. For example, with bib2gls-
en.xml the provided definition is:

\providecommand{\bibglspassimname}{passim}

351

6.3 Location Lists and Cross-References

\bibglsrange

\bibglsrange{〈start〉\delimR 〈end〉}

Explicit ranges formed using format={(} and format={)} or format={(〈csname〉} and
format={)〈csname〉} (where 〈csname〉 matches and is a text-block command without the
initial backslash) in the optional argument of commands like \gls or \glsadd are encapsu-
lated within the argument of \bibglsrange. By default, this simply does its argument. This
command is not used with implicit ranges that are formed by collating consecutive locations
or when merge-ranges={true} is used.

\bibglsinterloper

\bibglsinterloper{〈location〉}

If an explicit ranges conflicts with a record, a warning will be issued and the conflicting
record (the interloper) will be shifted to the front of the range inside the argument of \bib-
glsinterloper. The default definition just does 〈location〉\bibglsdelimN so that it fits
neatly into the list.

For example, suppose on page 4 of my document I start a range with:

\glsadd[format={(}]{sample}

and end it on page 9 with:

\glsadd[format={)}]{sample}

This forms an explicit range, but let’s suppose on page 6 I have:

\gls[format={hyperbf}]{sample}

This record conflicts with the explicit range (which doesn’t include hyperbf in the format).
This causes a warning and the conflicting entry will be moved before the start of the explicit
range resulting in 6, 4–9.

Note that implicit ranges can’t be formed from interlopers (nor can implicit ranges be
merged with explicit ones with the default merge-ranges={false}), so if \gls[format
={hyperbf}]{sample} also occurs on pages 7 and 8 then the result will be 6, 7, 8, 4–9.
Either remove the explicit range or remove the conflicting entries. (Alternatively, redefine
\bibglsinterloper to ignore its argument, which will discard the conflicting entries.)

\bibglspostlocprefix

\bibglspostlocprefix

If the loc-prefix option is on, \bibglslocprefix will be inserted at the start of location
lists, and its default definition includes \bibglspostlocprefix placed after the prefix text.
This command is provided with:

352

6.3 Location Lists and Cross-References

\providecommand{\bibglspostlocprefix}{\␣}

which puts a space between the prefix text and the location list. You can define this before
you load the .bib file:

\newcommand{\bibglspostlocprefix}{: }
\GlsXtrLoadResources[src={entries},loc-prefix]

Or you can redefine it afterwards:

\GlsXtrLoadResources[src={entries},loc-prefix]
\glsrenewcommand{\bibglspostlocprefix}{: }

\bibglslocprefix

\bibglslocprefix{〈n〉}

If the loc-prefix option is on, this commandwill be provided. The location of the definition
is determined by the loc-prefix-def option. For example, if the document has:

\GlsXtrLoadResources[type={main},loc-prefix-def={individual},loc-prefix=
{p.,pp.},src={entries}]

then the following will be added to the .glstex file:

\apptoglossarypreamble[main]{%
\providecommand{\bibglslocprefix}[1]{%
\ifcase##1
\or p.\bibglspostlocprefix
\else pp.\bibglspostlocprefix
\fi

}%
}

However, if the type key is missing or if the option loc-prefix-def={local} is used, then
the following will be added instead:

\appto\glossarypreamble{%
\providecommand{\bibglslocprefix}[1]{%
\ifcase#1
\or p.\bibglspostlocprefix
\else pp.\bibglspostlocprefix
\fi

}%
}

If loc-prefix-def={global} is used then the definition is global (outside of the glossary
preamble).

353

6.3 Location Lists and Cross-References

\bibglspagename

\bibglspagename

If loc-prefix={true} is used, then this command is provided using the value of tag.page
from the language resource file. For example with bib2gls-en.xml the definition is:

\providecommand{\bibglspagename}{Page}

\bibglspagesname

\bibglspagesname

If loc-prefix={true} is used, then this command is provided using the value of tag.pages
from the language resource file. For example with bib2gls-en.xml the definition is:

\providecommand{\bibglspagesname}{Pages}

\bibglslocsuffix

\bibglslocsuffix{〈n〉}

If the loc-suffix option is on, this commandwill be provided. The location of the definition
depends on the loc-suffix-def option.

This command’s definition depends on the value provided by loc-suffix. For example,
with loc-suffix={\@.} the command is defined as:

\providecommand{\bibglslocsuffix}[1]{\@.}

(which ignores the argument).
Whereas with loc-suffix={〈A〉,〈B〉,〈C〉} the command is defined as:

\providecommand{\bibglslocsuffix}[1]{\ifcase#1 〈A〉\or 〈B〉\else 〈C〉\fi}

Note that this is slightly different from \bibglslocprefix as it includes the 0 case, which
in this instance means that there were no locations but there was a cross-reference. This
command isn’t added when the location list is empty.

\bibglslocationgroup

\bibglslocationgroup{〈n〉}{〈counter〉}{〈list〉}

When the loc-counters option is used, the locations for each entry are grouped together
according to the counter (in the order specified in the value of loc-counters). Each group
of locations is encapsulated within \bibglslocationgroup, where 〈n〉 is the number of
locations within the group, 〈counter〉 is the counter name and 〈list〉 is the formatted location

354

6.3 Location Lists and Cross-References

sub-list. By default, this simply does 〈list〉, but may be defined (before the resources are
loaded) or redefined (after the resources are loaded) as required.

For example:

\newcommand*{\bibglslocationgroup}[3]{%
\ifnum#1=1
#2:

\else
#2s:

\fi
#3%

}

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

This will prefix each group with the counter name, if there’s only one location, or the counter
name followed by “s”, if there are multiple locations within the group.

There are various ways to adapt this to translate the counter name to a different textual
label, such as:

\providecommand{\pagename}{Page}
\providecommand{\pagesname}{Pages}
\providecommand{\equationname}{Equation}
\providecommand{\equationsname}{Equations}

\newcommand*{\bibglslocationgroup}[3]{%
\ifnum#1=1
\ifcsdef{#2name}{\csuse{#2name}}{#2}:

\else
\ifcsdef{#2sname}{\csuse{#2sname}}{#2s}:

\fi
#3%

}

\bibglslocationgroupsep

\bibglslocationgroupsep

When the loc-counters option is set, this command is used to separate each location sub-
group. It may be defined before the resources are loaded:

\newcommand*{\bibglslocationgroupsep}{; }

355

6.3 Location Lists and Cross-References

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

or redefined after the resources are loaded:

\GlsXtrLoadResources[
loc-counters={equation,page},% group locations by counter
src={entries}% data in entries.bib

]

\glsrenewcommand*{\bibglslocationgroupsep}{; }

\bibglsprimary

\bibglsprimary{〈n〉}{〈locations〉}

When the save-principal-locations option is used, the principal locations are stored in
the primarylocations field encapsulated with this command, unless the locations are split
into groups according to the location counter.

The first argument is the number of locations in the list. The second argument is the list
of locations formatted in the usual way. The default definition is to ignore the first argument
and simply do the second.

If the locations are split into groups, then \bibglsprimarylocationgroup is used for
each group instead (separated with \bibglsprimarylocationgroupsep).

\bibglsprimarylocationgroup

\bibglsprimarylocationgroup{〈n〉}{〈counter〉}{〈list〉}

As \bibglslocationgroup but for primary group locations.

\bibglsprimarylocationgroupsep

\bibglsprimarylocationgroupsep

As \bibglslocationgroupsep but for primary group locations.

356

6.3 Location Lists and Cross-References

\bibglssupplemental

\bibglssupplemental{〈n〉}{〈list〉}

When the supplemental-locations option is used, the locations from a supplementary
document are encapsulated within the 〈list〉 part of \bibglssupplemental. The first argu-
ment 〈n〉 (ignored by default) is the number of supplementary locations.

If multiple supplemental sources are permitted (that is, bib2gls has detected that the
document is using at least version 1.36 of glossaries-extra), then the 〈list〉 part will consist
of sub-lists for each external source. In this case, 〈n〉 will be the total number of elements
across all the sub-lists.

\bibglssupplementalsublist

\bibglssupplementalsublist{〈n〉}{〈external document〉}{〈list〉}

If multiple supplemental sources are permitted, this will be used to format each sub-list,
where 〈n〉 (ignored by default) is the number of elements in the sub-list, 〈external document〉
(ignored by default) is the external source and 〈list〉 is the list of supplementary locations in
〈external document〉.

\bibglssupplementalsep

\bibglssupplementalsep

The separator between the main location list and the supplementary location list. By default
this is just \bibglsdelimN. This may be defined before the resources are loaded:

\newcommand{\bibglssupplementalsep}{; }

\GlsXtrLoadResources[
supplemental-locations={supplDoc},
src={entries}]

or redefined after the resources are loaded:

\GlsXtrLoadResources[
supplemental-locations={supplDoc},
src={entries}]

\glsrenewcommand{\bibglssupplementalsep}{; }

357

6.4 Letter Groups

\bibglssupplementalsubsep

\bibglssupplementalsubsep

The separator between the supplementary location sub-lists. By default this is just \bibgls-
delimN.

\bibglshrefchar

\bibglshrefchar{〈hex〉}{〈char〉}

Expands to a literal percent character followed by 〈hex〉. The second argument is ignored.

\bibglshrefunicode

\bibglshrefunicode{〈hex〉}{〈char〉}

Expands to the second argument. The first argument is ignored.

\bibglshexunicodechar

\bibglshexunicodechar{〈hex〉}

This command is used by the hex-unicode-fields option when replacing any Unicode
characters. The argument 〈hex〉 is the hexadecimal character code. Note that the argument
isn’t preceded by the double-quote character " (which is normally used to identify hexadec-
imal numbers in LATEX). Instead, the definition needs to insert this character, if appropriate.

If bib2gls has detected that the hyperref package has been loaded, it will provide a def-
inition that may be used in PDF bookmarks provided that hyperref’s unicode option is set.
Otherwise the commandwill simply do \symbol{"〈hex〉} (which will require an appropriate
font in order to render the symbol correctly).

6.4 Letter Groups
The commands listed in this section are provided for use with the --group switch and
glossary styles that display the letter group title. If these need their definitions altered,
they should be defined before the resource file is loaded if field expansion is on (--expand
-fields) otherwise they may be redefined afterwards.

The base glossaries package determines group titles through a fairly simplistic rule. Both
makeindex and xindy write the line:

\glsgroupheading{〈label〉}

358

6.4 Letter Groups

to the associated glossary file at the start of each new letter group. For example, the “A” letter
group will be written as:

\glsgroupheading{A}

This is quite straightforward and the heading title can just be “A”. The “Symbols” group is
written as:

\glsgroupheading{glssymbols}

To allow for easy translation, the base glossaries package has the simple rule:

• if \〈heading〉groupname exists use that;

• otherwise just use 〈heading〉.

There’s no \Agroupname provided, but \glssymbolsgroupname is provided and is sup-
ported by the associated language modules, such as glossaries-french. (Similarly for the
“Numbers” group.)

The glossary styles that provide hyperlinks to the groups (such as indexhypergroup) use
〈heading〉 to form the target name. A problem arises when active characters occur in 〈head-
ing〉, which happens with extended characters and inputenc.

The glossaries-extra package (as from version 1.14) provides:

\glsxtrsetgrouptitle{〈group label〉}{〈group title〉}

to set the title for a group with the given label. The internal workings of \glsgroupheading
are modified to use a slightly altered rule:

• if a title has been set using \glsxtrsetgrouptitle{〈heading〉}{〈title〉} for the given
〈heading〉, use that;

• if \〈heading〉groupname exists, use that;

• just use 〈heading〉 for the title.

So if \glsxtrsetgrouptitle hasn’t been used, it falls back on the original rule.
The problem is now how to make the indexing application use the desired label in the

argument of \glsgroupheading instead of selecting the heading based on the first character
of each sort value for each top-level entry in that group. This can’t be done with makeindex,
and with xindy it requires a custom language module, which isn’t a trivial task.

With bib2gls, a different approach is used. The .glstex file created isn’t comparable
to the .gls file created by makeindex or xindy. There’s nowhere for bib2gls to write the
\glsgroupheading line as it isn’t creating the code that typesets the glossary list. Instead
it’s creating the code that defines the entries. The actual group heading is inserted by \print-
unsrtglossary and it’s only able to do this by checking if the entry has a group field and
comparing it to the previous entry’s group field.

359

6.4 Letter Groups

The behaviour of the group formation implemented by the sort methods may be changed
with group-formation. With any setting other than group-formation={default}, the
group label is set to \bibglsunicodegroup{〈label〉}{〈character〉}{〈id〉}{〈type〉} and the title is
set to \bibglsunicodegrouptitle{〈label〉}{〈character〉}{〈id〉}{〈type〉} (see below) otherwise
the label and title are determined by the sort method.

The collators used by the locale and letter-based rules save the following information for
each entry based on the first significant letter of the sort field (if the letter is recognised as
alphabetical, according to the rule):

• 〈title〉The group’s title. This is typically title-cased. For example, if the rule recognises
the digraph “dz”, then the title is “Dz”. Exceptions to this are included in the language
resource file. If the key grouptitle.case.〈lc〉 exists, where 〈lc〉 is the lower case
version of 〈title〉, then the value of that key is used instead. For example, the Dutch
digraph “ij” should be converted to “IJ”, so bib2gls-en.xml includes:

<entry key="grouptitle.case.ij">IJ</entry>

(See the --group switch for more details.)

• 〈letter〉 This is the actual letter at the start of the given entry’s sort field, which may
be lower case or may contain diacritics that don’t appear in 〈title〉.

• 〈id〉 A numeric identifier. This may be the collation key or the code point for the given
letter, depending on the sort method.

• 〈type〉 The entry’s glossary type. If not known, this will be empty. (bib2gls won’t
know if you’ve modified the associated \bibglsnew… command to set the type. It
can only know the type if it’s in the original .bib definition or is set using resource
options such as type.)

The group field is then set using:

group={\bibglslettergroup{〈title〉}{〈letter〉}{〈id〉}{〈type〉}}

This field needs to expand to a simple label, which \bibglslettergroup is designed to do.
Note that non-letter groups are dealt with separately (see below).

\bibglssetlastgrouptitle

In the last resource (.glstex) file, after all the relevant group titles have been set with the
commands listed below, there’s a final title setting:

\bibglssetlastgrouptitle{〈cs〉}{〈specs〉}

This does nothing by default, but the arguments are set to correspond to the group with
the maximum id for that resource file. It’s provided as a convenient way of overriding the
final group title without the inconvenience of looking up the group label in the .glstex

360

6.4 Letter Groups

file. If you have multiple glossaries or if you want to override a different group, then you
need to inspect the .glstex file to work out the corresponding label (by finding the group
assignment for one of the entries in that group).

The 〈cs〉 argument is the control sequence used in the group field to obtain the label from
〈specs〉. For example, if the highest 〈id〉 is 2147418112 from:

group={\bibglslettergroup{Ø}{Ø}{2147418112}{}}

then the last group is identified with:

\bibglssetlastgrouptitle{\bibglslettergroup}{{Ø}{Ø}{2147418112}{}}

In this case 〈cs〉 is \bibglslettergroup and 〈specs〉 are the arguments for that command.
If you want \bibglssetlastgrouptitle to change the group title then you need to define
it before the resource set. For example:

\newcommand*{\bibglssetlastgrouptitle}[2]{%
\glsxtrsetgrouptitle{#1#2}{Foreign Words}}

\GlsXtrLoadResources[src={entries}]

If you need to change a particular group title, then it has to be done after the resource set:

\GlsXtrLoadResources[src={entries}]
\glsxtrsetgrouptitle
{\bibglslettergroup{{Ø}{Ø}{2147418112}{}}}% label
{Foreign Words}% title

\bibglshypergroup

\bibglshypergroup{〈type〉}{〈group-id〉}

If the .log file indicates that hyperref has been loaded and the --group switch is used,
then this command will be used to create the navigation information for glossary styles such
as indexhypergroup. Note that this requires at least glossaries v4.53 and glossaries-extra v1.53.
If older versions are detected, this command will simply ignore its arguments.

Top-Level Groups Only
The default group-level setting will only create groups for the top-level entries. Any sub-
entries are considered to be part of the top-level entry’s group. If hierarchical groups are
enabled, the commands defined in section 6.4 are provided.

361

6.4 Letter Groups

\bibglssetlettergrouptitle

For each letter group that’s detected, bib2gls will write the line:

\bibglssetlettergrouptitle{{〈title〉}{〈letter〉}{〈id〉}{〈type〉}}

in the .glstex file, which sets the group’s title using:

\glsxtrsetgrouptitle{〈group label〉}{〈group title〉}

where the 〈group label〉 part matches the corresponding group value.
Note that \bibglssetlettergrouptitle only has a single argument, but that argument

contains the four arguments needed by \bibglslettergroup and \bibglslettergroup-
title. These arguments are as described above.

If \glsxtrsetgrouptitle has been defined (glossaries-extra version 1.14 onwards), then
\bibglssetlettergrouptitle will be defined as:

\providecommand{\bibglssetlettergrouptitle}[1]{%
\glsxtrsetgrouptitle{\bibglslettergroup#1}{\bibglslettergrouptitle#1}}

If an earlier version of glossaries-extra is used, then this function can’t be supported and the
command will be defined to simply ignore its argument. This will fall back on the original
method of just using 〈title〉 as the label.

Since \bibglssetlettergrouptitle is used in the .glstex file to set the group titles,
the associated commands need to be defined before the resource file is loaded if their defi-
nitions require modification. After the resource file has been loaded, you can adjust the title
of a specific group, but you’ll need to check the .glstex file for the appropriate arguments.
For example, if the .glstex file contains:

\bibglssetlettergrouptitle{{Æ}{æ}{7274496}{}}

but you actually want the group title to appear as “Æ (AE)” instead of just “Æ”, then after the
resource file has been loaded you can do:

\glsxtrsetgrouptitle
{\bibglslettergroup{Æ}{æ}{7274496}{}}% label
{Æ (AE)}% title

\bibglslettergroup

\bibglslettergroup{〈title〉}{〈letter〉}{〈id〉}{〈type〉}

This command is used to determine the letter group label. The default definition is 〈type〉〈id〉,
which ensures that no problematic characters occur in the label since 〈type〉 can’t contains
special characters and 〈id〉 is numeric. The 〈type〉 is included in case there are multiple
glossaries, since the hyperlink name must be unique.

362

6.4 Letter Groups

\bibglslettergrouptitle

\bibglslettergrouptitle{〈title〉}{〈letter〉}{〈id〉}{〈type〉}

This command is used to determine the letter group title. The default definition is \unexpanded
{〈title〉}, which guards against any expansion issues that may arise with characters outside
the basic Latin set.

For example:

@entry{angstrom,
name={\AA ngstr\"om}
description={a unit of length equal to one hundred-millionth

of a centimetre}
}

The sort value is “ Ångström ”. With sort={en} the 〈title〉 part will be A but with sort=
{sv} the 〈title〉 part will be Å. In both cases the 〈letter〉 argument will be Å.

Take care if you are using a script that needs encapsulating. For example, with the CJKutf8
package the cjk characters need to be placedwithin theCJK environment, so any letter group
titles that contain cjk characters will need special attention.

For example, suppose the .bib file contains entries in the form:

@dualentry{〈label〉,
name = {\cjkname{〈cjk characters〉}},
description = {〈English translation〉}

}

and the document contains:

\usepackage{CJKutf8}
\usepackage[record,style={indexgroup},nomain]{glossaries-extra}

\newglossary*{japanese}{Japanese to English}
\newglossary*{english}{English to Japanese}

\newrobustcmd{\cjkname}[1]{\begin{CJK}{UTF8}{min}#1\end{CJK}}

\GlsXtrLoadResources[
src={testcjk},% bib file
sort={ja-JP},% locale used to sort primary entries
dual-sort={en-GB},% locale used to sort dual entries
type={japanese},% put the primary entry in the 'japanese' glossary
dual-type={english},% put the dual entry in the 'english' glossary
dual-prefix={en.}

]

363

6.4 Letter Groups

then cjk characters will appear in the 〈title〉 argument of \bibglslettergrouptitlewhich
causes a problem because they need to be encapsulated within the CJK environment. This
can be more conveniently done with the user supplied \cjkname{〈CJK characters〉}, but the
cjk characters need to be protected from expansion so \unexpanded is also needed. The
new definition of \bibglslettergrouptitle needs to be defined before \GlsXtrLoad-
Resources. For example:

\newcommand{\bibglslettergrouptitle}[4]{\unexpanded{\cjkname{#1}}}

There’s a slight problem here in that the English letter group titles also end up encapsulated.
An alternative approach is to use the 〈type〉 part to provide different forms. For example:

\newcommand*{\englishlettergroup}[1]{#1}
\newcommand*{\japaneselettergroup}[1]{\cjkname{#1}}
\newcommand{\bibglslettergrouptitle}[4]{%
\unexpanded{\csuse{#4lettergroup}{#1}}}

\bibglssetothergrouptitle

The label and title for symbol groups are dealt with in a similar way to the letter groups, but
in this case the title is set using:

\bibglssetothergrouptitle{{〈character〉}{〈id〉}{〈type〉}}

This is defined in an analogous manner:

\providecommand{\bibglssetothergrouptitle}[1]{%
\glsxtrsetgrouptitle{\bibglsothergroup#1}{\bibglsothergrouptitle#1}}

where the group label is obtained using \bibglsothergroup and the group title is obtained
from \bibglsothergrouptitle. Note that since non-alphabetic characters don’t have up-
per or lower case versions, there are only three arguments. The other difference between this
and the letter group version is that the 〈id〉 is given in hexadecimal format (corresponding
to the character code).

For example, suppose my .bib file contains:

@entry{sauthor,
name={/Author},
description = {author string}

}

If a locale sort is used, the leading slash / will be ignored and this entry will belong to the
“A” letter group using the letter commands described above. If, instead, one of the character
code sort methods are used, such as sort={letter-case}, then this entry will be identified
as belonging to a symbol (or “other”) group and the title will be set using:

\bibglssetothergrouptitle{{/}{2F}{}}

364

6.4 Letter Groups

\bibglsothergroup

\bibglsothergroup{〈character〉}{〈id〉}{〈type〉}

This expands to the label for symbol groups. This just defaults to glssymbols (ignoring all
arguments), which replicates the label used when makeindex or xindy generate the glossary
files.

\bibglsothergrouptitle

\bibglsothergrouptitle{〈character〉}{〈id〉}{〈type〉}

This expands to the title for symbol groups. This just expands to \glssymbolsgroupname
by default.

\bibglssetemptygrouptitle

Used when the sort value degenerates to an empty string. This command sets the label and
title.

\bibglssetemptygrouptitle{{〈type〉}}

(Note the inner group, as with the other similar \bibglsset…grouptitle commands.)

\bibglsemptygroup

\bibglsemptygroup{〈type〉}

This expands to the label for empty groups. This defaults to glssymbols tomake it consistent
with non-letter groups (since the sort value likely contained unknown symbol commands).

\bibglsemptygrouptitle

\bibglsemptygrouptitle{〈type〉}

This expands to the group title for empty group. This just expands to \glssymbolsgroup-
name by default.

\bibglssetnumbergrouptitle

The numeric sort methods (table 5.5) all create number groups instead of letter or symbol
groups. These behave in an analogous way to the above.

\bibglssetnumbergrouptitle{{〈value〉}{〈id〉}{〈type〉}}

In this case 〈value〉 is the actual numeric sort value, and 〈id〉 is a decimal number obtained
from converting 〈value〉 to an integer. This command is defined as:

365

6.4 Letter Groups

\providecommand{\bibglssetnumbergrouptitle}[1]{%
\glsxtrsetgrouptitle{\bibglsnumbergroup#1}{\bibglsnumbergrouptitle#1}}

\bibglsnumbergroup

The number group label is obtained from:

\bibglsnumbergroup{〈value〉}{〈id〉}{〈type〉}

This just defaults to glsnumbers.

\bibglsnumbergrouptitle

The number group title is obtained from:

\bibglsnumbergrouptitle{〈value〉}{〈id〉}{〈type〉}

This just defaults to \glsnumbersgroupname.

\bibglssetdatetimegrouptitle

The date-time sort methods (table 5.6) create date-time groups. These behave in an analogous
way to the above.

\bibglssetdatetimegrouptitle{{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}{〈ss〉}
{〈zone〉}{〈title〉}{〈group-id〉}{〈type〉}}

This command is defined as:

\providecommand{\bibglssetdatetimegrouptitle}[1]{%
\glsxtrsetgrouptitle
{\bibglsdatetimegroup#1}%
{\bibglsdatetimegrouptitle#1}%

}

\bibglsdatetimegroup

\bibglsdatetimegroup{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}
{〈title〉}{〈group-id〉}{〈type〉}

This command is used for date-time group labels with datetime sorting (table 5.6). This
has ten arguments, which means a little trickery is needed to deal with the tenth argument.
The default definition is:

\providecommand{\bibglsdatetimegroup}[9]{#1#2#3\@firstofone}

This forms the group label from the year 〈YYYY 〉, month 〈MM〉, day 〈DD〉 and 〈type〉.

366

6.4 Letter Groups

\bibglsdatetimegrouptitle

\bibglsdatetimegrouptitle{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}
{〈title〉}{〈group-id〉}{〈type〉}

This command is used for date-time group titles with datetime sorting (table 5.6). The
default definition is:

\providecommand{\bibglsdatetimegrouptitle}[9]{#1-#2-#3\@gobble}

This sets the title to the numeric 〈YYYY 〉-〈MM〉-〈DD〉 but may be redefined as appropriate.

\bibglssetdategrouptitle

The date sort methods (table 5.6) create date groups (the time isn’t included). These behave
in an analogous way to the above.

\bibglssetdategrouptitle{{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-id〉}
{〈type〉}}

This command is defined as:

\providecommand{\bibglssetdategrouptitle}[1]{%
\glsxtrsetgrouptitle{\bibglsdategroup#1}{\bibglsdategrouptitle#1}}

\bibglsdategroup

\bibglsdategroup{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-id〉}{〈type〉}

This command is used for date group labels with date (no time) sorting (table 5.6). The
default definition is:

\providecommand{\bibglsdategroup}[7]{#1#2#4#7}

This forms the group label from the year, month, era and type. In this case, the era is a textual
representation not the numeric value used in calculating the sort value.

\bibglsdategrouptitle

\bibglsdategrouptitle{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-id〉}
{〈type〉}

This command is used for date group titles with date (no time) sorting (table 5.6). The default
definition is:

\providecommand{\bibglsdategrouptitle}[7]{#1-#2}

This just sets the title to the numeric year-month form 〈YYYY 〉-〈MM〉.

367

6.4 Letter Groups

\bibglssettimegrouptitle

The time sort methods (table 5.6) create time groups (the date isn’t included). These behave
in an analogous way to the above.

\bibglssettimegrouptitle{{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}
{〈type〉}}

This command is defined as:

\providecommand{\bibglssettimegrouptitle}[1]{%
\glsxtrsetgrouptitle{\bibglstimegroup#1}{\bibglstimegrouptitle#1}}

\bibglstimegroup

\bibglstimegroup{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}{〈type〉}

This command is used for time group labels with time (no date) sorting (table 5.6). This
command is defined as:

\providecommand{\bibglstimegroup}[7]{#1#2#7}

\bibglstimegrouptitle

\bibglstimegrouptitle{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}{〈type〉}

This command is used for time group titles with time (no date) sorting (table 5.6). This
command is defined as:

\providecommand{\bibglstimegrouptitle}[7]{#1}

\bibglssetunicodegrouptitle

\bibglssetunicodegrouptitle{{〈label〉}{〈character〉}{〈id〉}{〈type〉}}

This command is used to assign the group titles when the group formation is set to any value
other than the default. For example, this command will be used with group-formation=
{codepoint}. The label is obtained from \bibglsunicodegroup and the title is obtained
from \bibglsunicodegrouptitle.

\bibglsunicodegroup

\bibglsunicodegroup{〈label〉}{〈character〉}{〈id〉}{〈type〉}

The 〈label〉 depends on the group-formation setting:

368

6.4 Letter Groups

• group-formation={codepoint}: the 〈label〉 is the Unicode value of 〈character〉 (con-
verted to lower case and decomposed, if applicable);

• group-formation={unicode category}: the 〈label〉 is the Unicode category of 〈char-
acter〉 (for example, Lu means an upper case letter);

• group-formation={unicode script}: the 〈label〉 is the Unicode script associated
with 〈character〉 (for example, LATIN);

• group-formation={unicode category and script}: the 〈label〉 identifies both
the Unicode category and script associated with 〈character〉 (for example, Lu.LATIN).

(Similarly for secondary-group-formation and dual-group-formation.) By default this
command expands to 〈type〉〈label〉.

The 〈character〉 is the first significant character of the sort value. The 〈id〉 is the hexadec-
imal code of (possibly decomposed) 〈character〉. The case of codepoint 〈id〉 may or may not
correspond to the case of 〈character〉.

For example, with group-formation={codepoint}, an unset type and a sort value of
“Ångström” with “Å” as a significant character distinct from “A” then the group field will be
assigned using:

group={\bibglsunicodegroup{å}{Å}{C5}{}}

whereas with group-formation={unicode category and script} it will be:

group={\bibglsunicodegroup{Lu.LATIN}{Å}{C5}{}}

(upper case Latin letter).
If instead “Å” is considered equivalent to “A” according to the collator, then with group

-formation={codepoint}, the value will be:

group={\bibglsunicodegroup{a}{Å}{61}{}}

Note that the 〈id〉 is now 0x61 (the decomposed “A” converted to lower case) not 0xC5.

\bibglsunicodegrouptitle

\bibglsunicodegrouptitle{〈label〉}{〈character〉}{〈id〉}{〈type〉}

The title for Unicode group formations is simply defined as \unexpanded{〈label〉} so you
will need to change it to something more appropriate. For example (before the resource set):

\newcommand{\bibglsunicodegrouptitle}[4]{%
\ifnum"#3>64
\ifnum"#3 < 91

A--Z%
\else

\ifnum"#3 > 96

369

6.4 Letter Groups

\ifnum"#3 < 123
A--Z%

\fi
\fi

\fi
\fi

}

This will make the title “A–Z” if 〈id〉 is greater than 64 and less than 91 or greater than 96
and less than 123 (and will be empty otherwise).

Note that this setting can create an odd effect if the sorting causes the groups to be split
up. For example, if some of the sort values start with extended or non-Latin characters this
can break up the groups. First check how the group labels are assigned using:

\newcommand{\bibglsunicodegrouptitle}{\bibglsunicodegroup}

then adjust the definition of \bibglsunicodegroup until the grouping is correct, and then
change the definition of \bibglsunicodegrouptitle so that the title is correct.

\bibglssetmergedgrouptitle

Used when groups are merged by merge-small-groups. This command sets the label and
title.

\bibglssetmergedgrouptitle{{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}}

(Note the inner group, as with the other similar \bibglsset…grouptitle commands.)

\bibglsmergedgroup

\bibglsmergedgroup{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}

This expands to the label for merged groups.

\bibglsmergedgrouptitle

\bibglsmergedgrouptitle{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}

This expands to the group title for merged groups.

\bibglsmergedgroupfmt

\bibglsmergedgroupfmt{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}

Used by \bibglsmergedgrouptitle and \bibglsmergedgrouphierfmt to format merged
group titles. The first argument 〈n〉 is the total number of groups that have been merged, the

370

6.4 Letter Groups

second argument, 〈g1〉 is the first group title, {〈g2〉…〈gn〉} are the middle group titles (empty
if 〈n〉 = 2), and 〈gn〉 is the last group title.

The default definition is:

\providecommand{\bibglsmergedgroupfmt}[4]{#2,
\ifcase#1\or\or\or #3,
\else…, \fi #4}

Hierarchical Groups
Hierarchical letter groups are set with analogous commands that have hier appended to the
command name. There are also two extra arguments, 〈parent〉 (the parent entry’s label) and
〈level〉 (the hierarchical level).

\bibglsgrouplevel

\bibglsgrouplevel{〈label〉}n

This command is used when group-level is used to apply group formations for different
hierarchical levels. The 〈label〉 argument is the label thatwould normally be applied to level 0.
The 〈n〉 argument is the hierarchical level (0 for top-level entries). By default, this command
simply expands to 〈label〉.

\bibglshiersubgrouptitle

Hierarchical group titles are formatted using:

\bibglshiersubgrouptitle{level}{parent}{title}

This is defined as:

\providecommand{\bibglshiersubgrouptitle}[3]{\ifnum#1>0 \Glsxtrhiername
{#2} / \fi #3}

The first argument 〈level〉 is the hierarchical level, the second argument is the parent entry
label (empty for 〈level〉 = 0), and the third argument 〈title〉 is the normal title that would
apply to the group with the default group-level={0} setting. Note that this uses \Gls-
xtrhiername{〈parent〉} if 〈level〉 > 0. If this isn’t required then redefine \bibglshiersub-
grouptitle to simply expand to 〈title〉 (#3).

\bibglssetlettergrouptitlehier

\bibglssetlettergrouptitlehier{{〈title〉}{〈letter〉}{〈id〉}{〈type〉}{〈parent〉}
{〈level〉}}

As \bibglssetlettergrouptitle but used for hierarchical groups.

371

6.4 Letter Groups

\bibglslettergrouphier

\bibglslettergrouphier{〈title〉}{〈letter〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉}

As \bibglslettergroup but used for hierarchical groups. It expands to the hierarchical
letter group label. This is defined as:

\providecommand{\bibglslettergrouphier}[6]{#4#5#3}

\bibglslettergrouptitlehier

\bibglslettergrouptitlehier{〈title〉}{〈letter〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉}

As \bibglslettergrouptitle but used for hierarchical groups. It expands to the hierar-
chical letter group title. This is defined as:

\providecommand{\bibglslettergrouptitlehier}[6]{\protect\bibglshiersub-
grouptitle{#6}{#5}{\unexpanded{#1}}}

\bibglssetothergrouptitlehier

\bibglssetothergrouptitlehier{{〈character〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉}}

As \bibglssetothergrouptitle but used for hierarchical groups.

\bibglsothergrouphier

\bibglsothergrouphier{〈character〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉}

As \bibglsothergroup but used for hierarchical groups. It expands to the hierarchical
other group label. This is defined as:

\providecommand{\bibglsothergrouphier}[5]{#3#4glssymbols}

\bibglsothergrouptitlehier

\bibglsothergrouptitlehier{〈character〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉}

As \bibglsothergrouptitle but used for hierarchical groups. It expands to the hierarchi-
cal other group title. This is defined as:

\providecommand{\bibglsothergrouptitlehier}[5]{\protect\bibglshiersub-
grouptitle{#5}{#4}{\protect\glssymbolsgroupname}}

372

6.4 Letter Groups

\bibglssetemptygrouptitlehier

\bibglssetemptygrouptitlehier{{〈type〉}{〈parent〉}{〈level〉}}

As \bibglssetemptygrouptitle but used for hierarchical groups.

\bibglsemptygrouphier

\bibglsemptygrouphier{〈type〉}{〈parent〉}{〈level〉}

As \bibglsemptygroup but used for hierarchical groups. It expands to the hierarchical
empty group label. This is defined as:
\providecommand{\bibglsemptygrouphier}[3]{#1#2glssymbols}

\bibglsemptygrouptitlehier

\bibglsemptygrouptitlehier{〈type〉}{〈parent〉}{〈level〉}

As \bibglsemptygrouptitle but used for hierarchical groups. It expands to the hierarchi-
cal empty group title. This is defined as:
\providecommand{\bibglsemptygrouptitlehier}[3]{\protect\bibglshiersub-
grouptitle{#3}{#2}{\protect\glssymbolsgroupname}}

\bibglssetnumbergrouptitlehier

\bibglssetnumbergrouptitlehier{{〈value〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉}}

As \bibglssetnumbergrouptitle but used for hierarchical groups.

\bibglsnumbergrouphier

\bibglsnumbergrouphier{〈value〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉}

As \bibglsnumbergroup but used for hierarchical groups. It expands to the hierarchical
number group label. This is defined as:
\providecommand{\bibglsnumbergrouphier}[5]{#3#4glsnumbers}

\bibglsnumbergrouptitlehier

\bibglsnumbergrouptitlehier{〈value〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉}

As \bibglsnumbergrouptitle but used for hierarchical groups. It expands to the hierar-
chical number group title. This is defined as:
\providecommand{\bibglsnumbergrouptitlehier}[5]{\protect\bibglshiersub-
grouptitle{#5}{#4}{\protect\glsnumbersgroupname}}

373

6.4 Letter Groups

\bibglssetdatetimegrouptitlehier

\bibglssetdatetimegrouptitlehier{{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}
{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}{〈type〉}{〈parent〉}{〈level〉}}

As \bibglssetdatetimegrouptitle but used for hierarchical groups.

\bibglsdatetimegrouphier

\bibglsdatetimegrouphier{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}
{〈title〉}{〈group-id〉}{〈type〉}{〈parent〉}{〈level〉}

As \bibglsdatetimegroup but used for hierarchical groups. It expands to the hierarchical
date-time group label. Since this has more than 9 arguments, it is defined in two parts:

\providecommand{\bibglsdatetimegrouphier}[9]{#1#2#3\bibglsdatetimegroup-
hierfinalargs}

The final arguments are obtained with \bibglsdatetimegrouphierfinalargs.

\bibglsdatetimegrouphierfinalargs

\bibglsdatetimegrouphierfinalargs{〈type〉}{〈parent〉}{〈level〉}

This picks up the final three arguments for \bibglsdatetimegrouphier:

\providecommand*{\bibglsdatetimegrouphierfinalargs}[3]{#1#2}

\bibglsdatetimegrouptitlehier

\bibglsdatetimegrouptitlehier{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}{〈ss〉}
{〈zone〉}{〈title〉}{〈group-id〉}{〈type〉}{〈parent〉}{〈level〉}

As \bibglsdatetimegrouptitle but used for hierarchical groups. It expands to the hi-
erarchical date-time group title. Since this has more than 9 arguments, it is defined in two
parts:

\providecommand{\bibglsdatetimegrouptitlehier}[9]{\bibglsdatetimegroup-
titlehierfinalargs{#1-#2-#3}}

The final arguments are obtained with \bibglsdatetimegrouptitlehierfinalargs.

374

6.4 Letter Groups

\bibglsdatetimegrouptitlehierfinalargs

\bibglsdatetimegrouptitlehierfinalargs{date}{〈type〉}{〈parent〉}{〈level〉}

This picks up the final three arguments for \bibglsdatetimegrouptitlehier:

\providecommand*{\bibglsdatetimegrouptitlehierfinalargs}[4]
{\protect\bibglshiersubgrouptitle{#4}{#3}{#1}}

In this case, the first argument is set by \bibglsdatetimegrouptitlehier to the date
(〈YYYY 〉-〈MM〉-〈DD〉). The remaining arguments are the 〈type〉, 〈parent〉 and 〈level〉 in-
formation.

\bibglssetdategrouptitlehier

\bibglssetdategrouptitlehier{{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-
id〉}{〈type〉}{〈parent〉}{〈level〉}}

As \bibglssetdategrouptitle but used for hierarchical groups.

\bibglsdategrouphier

\bibglsdategrouphier{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-id〉}{〈type〉}
{〈parent〉}{〈level〉}

As \bibglsdategroup but used for hierarchical groups. It expands to the hierarchical date
group label. This is defined as:

\providecommand{\bibglsdategrouphier}[9]{#1#2#4#7#8}

\bibglsdategrouptitlehier

\bibglsdategrouptitlehier{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-id〉}
{〈type〉}{〈parent〉}{〈level〉}

As \bibglsdategrouptitle but used for hierarchical groups. It expands to the hierarchical
date group title. This is defined as:

\providecommand{\bibglsdategrouptitlehier}[9]{\protect\bibglshiersub-
grouptitle{#9}{#8}{#1-#2}}

\bibglssettimegrouptitlehier

\bibglssettimegrouptitlehier{{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}
{〈type〉}{〈parent〉}{〈level〉}}

As \bibglssettimegrouptitle but used for hierarchical groups.

375

6.4 Letter Groups

\bibglstimegrouphier

\bibglstimegrouphier{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}{〈type〉}
{〈parent〉}{〈level〉}

As \bibglstimegroup but used for hierarchical groups. It expands to the hierarchical time
group label. This is defined as:

\providecommand{\bibglstimegrouphier}[9]{#1#2#7#8}

\bibglstimegrouptitlehier

\bibglstimegrouptitlehier{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}
{〈type〉}{〈parent〉}{〈level〉}

As \bibglstimegrouptitle but used for hierarchical groups. It expands to the hierarchical
time group title. This is defined as:

\providecommand{\bibglstimegrouptitlehier}[9]{\protect\bibglshiersub-
grouptitle{#9}{#8}#1}

\bibglssetunicodegrouptitlehier

\bibglssetunicodegrouptitlehier{{〈label〉}{〈character〉}{〈id〉}{〈type〉}
{〈parent〉}{〈level〉}}

As \bibglssetunicodegrouptitle but used for hierarchical groups.

\bibglsunicodegrouphier

\bibglsunicodegrouphier{〈label〉}{〈character〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉}

As \bibglsunicodegroup but used for hierarchical groups. This expands to the hierarchical
group label:

\providecommand{\bibglsunicodegrouphier}[6]{#4#5#3}

\bibglsunicodegrouptitlehier

\bibglsunicodegrouptitlehier{〈label〉}{〈character〉}{〈id〉}{〈type〉}{〈parent〉}
{〈level〉}

As \bibglsunicodegrouptitle but used for hierarchical groups. This expands to the hi-
erarchical group title:

\providecommand{\bibglsunicodegrouptitlehier}[6]{\protect\bibglshiersub-
grouptitle{#6}{#5}{\unexpanded{#1}}}

376

6.4 Letter Groups

\bibglssetmergedgrouptitlehier

\bibglssetmergedgrouptitlehier{{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}
{〈parent〉}{〈level〉}}

As \bibglssetmergedgrouptitle but used for hierarchical groups.

\bibglsmergedgrouphier

\bibglsmergedgrouphier{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}{〈parent〉}
{〈level〉}

As \bibglsmergedgroup but used for hierarchical groups. This expands to the hierarchical
group label:

\providecommand{\bibglsmergedgrouphier}[8]{merged.#1}

\bibglsmergedgrouptitlehier

\bibglsmergedgrouptitlehier{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}
{〈parent〉}{〈level〉}

As \bibglsmergedgrouptitle but used for hierarchical groups. This expands to the hier-
archical group title:

\providecommand{\bibglsmergedgrouptitlehier}[8]{%
\unexpanded{\ifnum#8=0\bibglsmergedgroupfmt{#3}{#4}{#5}{#6}\else\bib-

glsmergedgrouphierfmt{#3}{#4}{#5}{#6}\fi}%
}

This uses \bibglsmergedgroupfmt (〈level〉 = 0) or \bibglsmergedgrouphierfmt (〈level〉 >
0) to format the title.

\bibglsmergedgrouphierfmt

\bibglsmergedgrouphierfmt{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}

Used by \bibglsmergedgrouphierfmt to format merged hierarchical group titles. The first
argument 〈n〉 is the total number of groups that have been merged, the second argument,
〈g1〉 is the first group title, {〈g2〉…〈gn〉} are the middle group titles (empty if 〈n〉 = 2), and
〈gn〉 is the last group title.

The default definition depends on whether or not bib2gls has detected hyperref in the
document’s .log file. If it has, then the definition is:

377

6.5 Flattened Entries

\providecommand{\bibglsmergedgrouphierfmt}[4]{#2,
\texorpdfstring{{\def\bibglshiersubgroup-
title##1##2##3##3\ifcase#1\or\or\or
#3, \else\ldots, \fi
#4}}{\ifcase#1\or\or\or
#3, \else\ldots, \fi #4}}

Otherwise the definition is:

\providecommand{\bibglsmergedgrouphierfmt}[4]{#2,
{\def\bibglshiersubgrouptitle##1##2##3##3\ifcase#1\or\or\or
#3, \else\ldots, \fi
#4}}

This locally redefines \bibglshiersubgrouptitle to just do its final argument to allow for
a more compact title.

6.5 Flattened Entries
These commands relate to the way the name field is altered when flattening lonely child
entries with the flatten-lonely option.

\bibglsflattenedhomograph

\bibglsflattenedhomograph{〈name〉}{〈parent label〉}

The default definition simply does 〈name〉.
This command is used if the child and parent names are identical. For example, suppose

the .bib file contains:

@index{super.glossary, name={glossary}}

@entry{glossarycol,
parent={super.glossary},
description={collection of glosses}

}

@entry{glossarylist,
parent={super.glossary},
description={list of technical words}

}

Thechild entries don’t have a name field, so the value is assumed to be the same as the parent’s
name field. Here’s an example document where both child entries are used:

378

6.5 Flattened Entries

\documentclass{article}

\usepackage[record,subentrycounter,style={treenoname}]{glossaries-extra}

\GlsXtrLoadResources[src={entries}]

\begin{document}
\gls{glossarycol} (collection) vs \gls{glossarylist} (list).

\printunsrtglossary
\end{document}

This uses one of the glossary styles designed for homographs and the glossary has the struc-
ture:

glossary
1) collection of glosses 1
2) list of technical words 1

If only one child entry is selected, then the result looks a little odd. For example:

glossary
1) collection of glosses 1

With the flatten-lonely option, the parent is removed and the child is moved up a hier-
archical level. With flatten-lonely={postsort} this would normally adjust the name so
that it appears as 〈parent name〉, 〈child name〉 but in this case it would look a little odd for
the name to appear as “glossary, glossary” so instead the name is set to:

\bibglsflattenedhomograph{glossary}{super.glossary}

(where the first argument is the original name and the second argument is the label of the
parent entry).

This means that the name simply appears as “glossary”, even if the flatten-lonely=
{postsort} option is used. Note that if the parent entry is removed, the parent label won’t
be of much use. You can test for existence using \ifglsentryexists in case you want to
vary the way the name is displayed according to whether or not the parent is still present.

\bibglsflattenedchildpresort

\bibglsflattenedchildpresort{〈child name〉}{〈parent name〉}

Used by the flatten-lonely={presort} option. This defaults to just 〈child name〉. If
you want to change this, remember that you can let the interpreter know by adding the
definition to @preamble. For example:

@preamble{"\providecommand{\bibglsflattenedchildpresort}[2]{#1 (#2)}"}

379

6.6 Other

\bibglsflattenedchildpostsort

\bibglsflattenedchildpostsort{〈parent name〉}{〈child name〉}

Used by the flatten-lonely={postsort} option. This defaults to 〈parent name〉, 〈child
name〉.

Note that the arguments are in the reverse order to those of the previous command. This
is done to assist the automated first letter upper-casing. If either command is redefined to
alter the ordering, then this can confuse the case-changing mechanism, in which case you
may want to consider switching on the expansion of the name field using:

\glssetexpandfield{name}

(before \GlsXtrLoadResources).

6.6 Other
\bibglscopytoglossary

\bibglscopytoglossary{〈entry-label〉}{〈glossary-type〉}

This command is provided if the copy-to-glossary option is set and is used to copy an
entry to another glossary. The definition is:

\providecommand{\bibglscopytoglossary}[2]%
\ifglossaryexists*{}%
{\GlsXtrIfInGlossary{#1}{#2}{}{\glsxtrcopytoglossary{#1}{#2}}}%
{}%

This ensures that the entry is only copied if the glossary exists and if the entry hasn’t already
been copied to it.

This command isn’t used by the action={copy} or action={copy or define} settings,
which use \glsxtrcopytoglossary directly.

\bibglssettotalrecordcount

\bibglssettotalrecordcount{〈entry-label〉}{〈value〉}

This command is provided if --record-count is used. It’s used to set the recordcount field
to the total number of records for the given entry. This is defined as:

\providecommand*{\bibglssettotalrecordcount}[2]{%
\GlsXtrSetField{#1}{recordcount}{#2}%

}

380

6.6 Other

\bibglssetrecordcount

\bibglssetrecordcount{〈entry-label〉}{〈counter〉}{〈value〉}

This command is provided if --record-count is used. It’s used to set the recordcount.
〈counter〉 field to the total number of records associated with the given counter for the given
entry. This is defined as:
\providecommand*{\bibglssetrecordcount}[3]{%
\GlsXtrSetField{#1}{recordcount.#2}{#3}%

}

\bibglssetlocationrecordcount

\bibglssetlocationrecordcount{〈entry-label〉}{〈counter〉}{〈location〉}{〈value〉}

This command is provided if --record-count-unit is used. It’s used to set the recordcount.
〈counter〉.〈location〉 field to the total number of records associated with the given location
for the given entry. This is defined as:
\providecommand*{\bibglssetlocationrecordcount}[4]{%
\GlsXtrSetField{#1}{recordcount.#2.\glsxtrdetoklocation#3}{#4}%

}

\bibglshyperlink

\bibglshyperlink{〈text〉}{〈label〉}

Used by the back link options, this just defaults to:
\glshyperlink[〈text〉]{〈label〉}

\bibglssetwidest

\bibglssetwidest{〈level〉}{〈name〉}

This is used by set-widest to set the widest name for the given hierarchical level where the
glossary type can’t be determined. This is defined as:
\providecommand*{\bibglssetwidest}[2]{\glsxtrSetWidest{}{#1}{#2}}

if \glsxtrSetWidest has been defined, or:
\providecommand*{\bibglssetwidest}[2]{\glsupdatewidest[#1]{#2}}

if \glsupdatewidest is defined, otherwise it will be defined to use \glssetwidest:
\providecommand*{\bibglssetwidest}[2]{\glssetwidest[#1]{#2}}

Since this isn’t scoped, this will affect other glossaries. In general, if you have more than one
glossary it’s best to set the type using options like type.

381

6.6 Other

\bibglssetwidestfortype

\bibglssetwidestfortype{〈type〉}{〈level〉}{〈name〉}

This is used by set-widest to set the widest name for the given hierarchical level where the
glossary type is known. This is defined as:

\providecommand*{\bibglssetwidestfortype}[3]{%
\glsxtrSetWidest{#1}{#2}{#3}%

}

if \glsxtrSetWidest has been defined, or:

\providecommand*{\bibglssetwidestfortype}[3]{%
\apptoglossarypreamble[#1]{\glsupdatewidest[#2]{#3}}%

}

if \glsupdatewidest is defined, otherwise it will be defined to use \glssetwidest:

\providecommand*{\bibglssetwidestfortype}[3]{%
\apptoglossarypreamble[#1]{\glssetwidest[#2]{#3}}%

}

Since the glossary preamble is scoped, this won’t affect other glossaries.

\bibglssetwidestfallback

\bibglssetwidestfallback{〈glossary list〉}

This is used by set-widest instead of \bibglssetwidest when all name fields end up as
an empty string when interpreted by bib2gls. This typically means that all the name fields
contain unknown commands. This fallback command will use:

\glsxtrSetWidestFallback{2}{〈glossary list〉}

if defined otherwise it will use \glsFindWidestLevelTwo, which sets the widest name for
the top-level and first two sub-levels across all the listed glossaries.

\bibglssetwidestfortypefallback

\bibglssetwidestfortypefallback{〈type〉}

This is used by set-widest instead of \bibglssetwidestfortype when all name fields
end up as an empty string when interpreted by bib2gls. This typically means that all the
name fields contain unknown commands. This fallback command will append \bibglsset-
widestfallback to the glossary preamble for the given type.

382

6.6 Other

\bibglssetwidesttoplevelfallback

\bibglssetwidesttoplevelfallback{〈glossary list〉}

This is used by set-widest instead of \bibglssetwidest when all name fields end up as
an empty string when interpreted by bib2gls. This typically means that all the name fields
contain unknown commands. This fallback command will use:

\glsxtrSetWidestFallback{0}{〈glossary list〉}

if defined otherwise it will use \glsFindWidestTopLevelName, which sets the widest name
for the top-level.

\bibglssetwidesttoplevelfortypefallback

\bibglssetwidesttoplevelfortypefallback{〈type〉}

This is used by set-widest instead of \bibglssetwidestfortype when all name fields
end up as an empty string when interpreted by bib2gls. This typically means that all the
name fields contain unknown commands. This fallback command will append \bibglsset-
widesttoplevelfallback to the glossary preamble of the given type.

\bibglscontributorlist

\bibglscontributorlist{〈list〉}{〈number〉}

This is used when bibtex-contributor-fields is set. The definition depends on whether
or not \DTLformatlist has been defined:

\ifdef\DTLformatlist
{% datatool v2.28+
\providecommand*{\bibglscontributorlist}[2]{\DTLformatlist{#1}}

}
{% datatool v2.27 or earlier
\providecommand*{\bibglscontributorlist}[2]{%
\def\bibgls@sep{}%
\@for\bibgls@item:=#1\do{\bibgls@sep\bibgls@item\def\bibgls@sep{, }}%

}
}

The second argument allows you to provide definitions like:

\newcommand*{\bibglscontributorlist}[2]{%
\ifcase#2
\or

383

6.6 Other

name:
\else
names:

\fi
\DTLformatlist{#1}%

}

\bibglscontributor

\bibglscontributor{〈forenames〉}{〈von-part〉}{〈surname〉}{〈suffix〉}

This is used when bibtex-contributor-fields is set. The definition depends on the value
of contributor-order. Note that if you have multiple resource sets, that option governs
the way bib2gls’s version of \bibglscontributor behaves. The definition is written to
the .glstex using \providecommand, so LATEX will only pick up the first definition.

\bibglsdatetime

\bibglsdatetime{〈year〉}{〈month〉}{〈day-of-month〉}{〈day-of-week〉}{〈day-of-year〉}
{〈era〉}{〈hour〉}{〈minute〉}{〈second〉}{〈millisec〉}{〈dst〉}{〈zone〉}{〈original〉}

Used to encapsulate date-time fields identified with date-time-fields. Since \bibgls-
datetime requires more than nine arguments, the remaining four arguments are picked up
with:
\bibglsdatetimeremainder{〈millisec〉}{〈dst〉}{〈zone〉}{〈original〉}
The default definitions are:
\providecommand{\bibglsdatetime}[9]{\bibglsdatetimeremainder}
\providecommand{\bibglsdatetimeremainder}[4]{#4}

\bibglsdate

\bibglsdate{〈year〉}{〈month〉}{〈day-of-month〉}{〈day-of-week〉}{〈day-of-year〉}
{〈era〉}{〈original〉}

Used to encapsulate date fields identified with date-fields. The default definition is:
\providecommand{\bibglsdate}[7]{#7}

\bibglstime

\bibglstime{〈hour〉}{〈minute〉}{〈second〉}{〈millisec〉}{〈dst〉}{〈zone〉}{〈original〉}

Used to encapsulate date fields identified with time-fields. The default definition is:
\providecommand{\bibglstime}[7]{#7}

384

6.6 Other

\bibglsprimaryprefixlabel

\bibglsprimaryprefixlabel{〈prefix〉}

A hook to pick up the primary prefix label (identified with label-prefix) if required. This
does nothing by default. If required, this command should be defined before the resource set
is loaded.

\bibglsdualprefixlabel

\bibglsdualprefixlabel{〈prefix〉}

A hook to pick up the dual prefix label (identified with dual-prefix) if required. This does
nothing by default. If required, this command should be defined before the resource set is
loaded.

\bibglstertiaryprefixlabel

\bibglstertiaryprefixlabel{〈prefix〉}

A hook to pick up the tertiary prefix label (identified with tertiary-prefix) if required.
This does nothing by default. If required, this command should be defined before the resource
set is loaded.

\bibglsexternalprefixlabel

\bibglsexternalprefixlabel{〈n〉}{〈prefix〉}

A hook to pick up the 〈n〉th external prefix label (identified with ext-prefixes) if required.
This does nothing by default and won’t be used if the list of external prefixes is empty. If
required, this command should be defined before the resource set is loaded.

\bibglshashchar

\bibglshashchar

Expands to a literal hash character (#).

\bibglsunderscorechar

\bibglsunderscorechar

Expands to a literal underscore character (_).

385

6.6 Other

\bibglsdollarchar

\bibglsdollarchar

Expands to a literal dollar character ($).

\bibglsampersandchar

\bibglsampersandchar

Expands to a literal ampersand character (&).

\bibglscircumchar

\bibglscircumchar

Expands to a literal circumflex character (^).

\bibglsaposchar

\bibglsaposchar

Expands to a literal apostrophe character ('). This command is only provided if --replace
-quotes is used.

\bibglsdoublequotechar

\bibglsdoublequotechar

Expands to a literal double-quote character ("). This command is only provided if --replace
-quotes is used.

\bibglsuppercase

\bibglsuppercase{〈text〉}

Converts 〈text〉 to upper case. This just uses \glsuppercase (if glossaries v4.50+, glossaries-
extra v1.49+ and mfirstuc v2.08+) or \MakeTextUppercase by default.

\bibglslowercase

\bibglslowercase{〈text〉}

Converts 〈text〉 to lower case. This just uses \glslowercase (if glossaries v4.50+, glossaries-
extra v1.49+ and mfirstuc v2.08+) \MakeTextLowercase by default.

386

6.6 Other

\bibglstitlecase

\bibglstitlecase{〈text〉}

Converts 〈text〉 to title case. This just uses \capitalisewords by default.

\bibglsfirstuc

\bibglsfirstuc{〈text〉}

Converts the first letter of 〈text〉 to upper case. This just uses \makefirstuc by default.

\BibGlsNoCaseChange

Behaves as \NoCaseChange within bib2gls, so it will prevent its argument from being al-
tered by options such as short-case-change or if the interpreter encounters this command
within a case-changing command such as \glsuppercase. However, the definition provided
in the .glstex file simply expands to 〈text〉 in the document without adding the command
to the case-changing exclusion list so it won’t prevent any case-change within the LATEX doc-
ument.

\bibglsdefinitionindex

\bibglsdefinitionindex{〈label〉}

If save-definition-index has been set this command expands to the definition index of
the entry identified by 〈label〉. This command will only be provided in the .glstex file if
save-definition-index has been set. However, the command is always defined by the
TEX Parser Library but will expand to empty if the associated resource option hasn’t been
set.

\bibglsuseindex

\bibglsuseindex{〈label〉}

If save-use-index has been set this command expands to the order of use index of the entry
identified by 〈label〉. This command will only be provided in the .glstex file if save-use
-index has been set. However, the command is always defined by the TEX Parser Library
but will expand to empty if the associated resource option hasn’t been set.

387

7 Converting Existing .tex to .bib

There are some supplementary command line tools provided with bib2gls that can convert
certain types of data from existing documents to .bib files:

• convertgls2bib converts data from commands like \newglossaryentry to .bib
entry data (see section 7.2).

• datatool2bib converts datatool databases to .bib entry data (see section 7.2).

These command line tools share the same common switches listed in section 3.1. Addi-
tionally, they share the switches listed in section 7.1, but they may also have their specific
switches, which are described in the relevant section.

It’s likely that you will need to post-process the .bib files or at least double-check
that the conversion has been performed adequately.

The .bib format has case-insensitive field names. However, the source files input by the
converter tool typically have case-sensitive labels that correspond to the destination .bib
field. The converter tools will convert the fields to lower case after any mappings have been
applied. Use --field-case to change this. Additionally, the .bib format prohibits certain
characters in field names and entry labels (such as spaces), so these will be stripped. The
resulting field names must be non-empty.

The TEX Parser Library is used to parse the input files. The conversion tool may automat-
ically implement the relevant packages (such as datatool and datagidx for datatool2bib).
However, the behaviour of some commands may be modified to better suit the conversion
process.

Note that \IfTeXParserLibwill expand to its first argument, but \IfNotBibGlswill also
expand to its first argument, since it’s only defined to expand to its second argument by the
bib2gls interpreter not by the TEX Parser Library core code.

Avoid any overly complicated code within the .tex file. The TEX Parser Library isn’t a TEX
engine! The input .tex file doesn’t need to be a complete document, but if you want certain
commands recognised from packages that the TEX Parser Library supports, you’ll need to
include \usepackage in the .tex file. If you want to quit parsing the .tex file at the start
of the document, use the --preamble-only switch.

The TEX Parser Library recognises \input and \include and so will also parse the
referenced file if either command is encountered. If you have multiple files, it’s better
to pass just the relevant file to the conversion tool rather than the main document file.

388

7.1 Shared Conversion Tool Switches

7.1 Shared Conversion Tool Switches
--texenc 〈encoding〉
The character encoding of the source .tex file. If omitted, the jvm’s default encoding is
assumed (which may or may not be the same as the operating system’s default).

--bibenc 〈encoding〉
The character encoding of the .bib file. If omitted, the same encoding as the .tex file is
assumed.

--space-sub 〈replacement〉 (or -s 〈replacement〉)
The .bib format doesn’t allow spaces in labels. If your original definitions in your .tex file
have spaces, use this option to replace spaces in labels. Each space will be substituted with
〈replacement〉. Where applicable, the cross-referencing fields, see, seealso and alias, will
also be adjusted, but any references using \gls etc will have to be substituted manually (or
use a global search and replace action in your text editor). If you want to strip the spaces, use
an empty string for 〈replacement〉. You’ll need to delimit this according to your operating
system. For example:

convertgls2bib --space-sub '' entries.tex entries.bib

Alternatively, use --field-map to supply an alternative field name.

Note that all forbidden punctuation characters (such as commas, equal signs and
braces) will be automatically stripped.

--preamble-only (or -p)
Stop parsing if the start of the document environment is found.

--no-preamble-only

Parse the entire file (default). Be prepared for a lot of “unknown command” warnings if you
make the conversion tool parse an entire document.

--overwrite

Allow existing .bib files to be overwritten. (Default unless otherwise specified.)

--no-overwrite

Don’t allow existing .bib files to be overwritten.

389

7.1 Shared Conversion Tool Switches

--ignore-fields 〈list〉 (or -f 〈list〉)
Omit all the fields listed in 〈list〉 from the .bib file. This option is cumulative. Note that
in earlier versions of convertgls2bib an empty list cancelled the list of ignored fields. As
from version 4.0, you will need to use --no-ignore-fields to clear the list.

Each item in the list should identify the field by its original case-sensitive key.

--no-ignore-fields

Cancels the effect of --ignore-fields.

--field-map 〈src=dest list〉 (or -m 〈src=dest list〉)
Provides a mapping from source labels to the field names used in the destination .bib file.
The argument should be a comma-separated list of 〈src-label〉=〈dest-field〉 pairs. This option
is cumulative.

For convertgls2bib, the source labels are the keys used in commands such as \new-
glossaryentry. These should ordinarily not need any mappings. However, you may, for
example, want to convert the user keys to something more appropriate. For datatool2bib,
the source labels are the column keys.

--no-field-map

Cancels all field mappings.

--field-case 〈setting〉
Specifies whether or not to change the case of the field name when writing to the .bib file.
Valid 〈setting〉: none (no case-change), lc (to lower case, default), uc (to upper case), title
(to title case), or sentence (to sentence case). Note that since spaces aren’t permitted in field
names, the last two are equivalent. The case-change is applied after mapping.

--index-conversion (or -i)
Use @index instead of @entry if the description is empty or, for convertgls2bib, if the
description is simply \nopostdesc or \glsxtrnopostpunc. (Only applies to terms that
would otherwise be converted to @entry, such as those defined with \newglossaryentry
in the case of convertgls2bib.)

--no-index-conversion

Don’t convert @entry to @index (default).

390

7.2 convertgls2bib: Conversion from glossaries or glossaries-extra

--log-file 〈filename〉 (or -t 〈filename〉)
The log file is optional for the converter applications. It’s provided for use with the TEX
Parser Library debugging modes (--debug-mode) which writes logging information to this
file (which can be sizeable). A log file will automatically be created if debugging is enabled,
otherwise it will need to be explicitly created with --log-file if required. The default
name, if automatically created, is the name of the converter application with the .log file
extension.

Unlike bib2gls’s --log-file switch, the conversion tools don’t have a correspond-
ing short switch.

7.2 convertgls2bib: Conversion from glossaries or
glossaries-extra

If you have already been using the glossaries or glossaries-extra package with a large file con-
taining all your definitions using commands like \newglossaryentry, then you can use the
supplementary tool convertgls2bib to convert the definitions to the .bib format required
by bib2gls. The syntax is:

convertgls2bib [〈options〉] 〈tex file〉 〈bib file〉

where 〈tex file〉 is the .tex file and 〈bib file〉 is the .bib file. This application is less secure
than bib2gls as it doesn’t use kpsewhich to check openin_any and openout_any. Take
care not to accidentally overwrite existing .bib files as there’s no check to determine if 〈bib
file〉 already exists with the default --overwrite.

If the .bib extension is missing from 〈bib file〉, it will be added. The extension is required
for 〈tex file〉.

7.2.1 Command Line Arguments
The 〈options〉 specific to convertgls2bib are described below. This is in addition to those
described in section 3.1 and section 7.1. Note that --split-on-type overrides the default
--overwrite setting.

--ignore-sort

Omit the sort field. This is the default since bib2gls can work out a more intuitive sort
value than either makeindex or xindy. This option is automatically set if the sort field is
included in --ignore-fields.

--no-ignore-sort

Don’t ignore the sort field.

391

7.2 convertgls2bib: Conversion from glossaries or glossaries-extra

--ignore-type

Omit the type field in the .bib file. You may find it more flexible not to be locked into a
specific glossary type if you have a large database of entries. This option is automatically set
if the type field is included in --ignore-fields.

--no-ignore-type

Don’t omit the type field (default unless --split-on-type).

--ignore-category

Omit the category field in the .bib file. This option is automatically set if the category
field is included in --ignore-fields.

--no-ignore-category

Don’t omit the category field (default unless --split-on-category).

--split-on-type (or -t)

Split the entries into separate files according to the type field. Any entries that have the type
field set to \glsdefaulttype or that don’t have the type field set and there’s no default
provided by the command used to define the entry (see below) then the @〈entry〉 data will be
written to the main 〈bib file〉. Otherwise entries will be written to the split file (in the same
directory as 〈bib file〉).

The split file name depends on whether or not the --split-on-category switch has also
been used. With both and if the category and field values are different then the file name is
〈type〉-〈category〉.bib otherwise it’s 〈type〉.bib.

Commands that have a default type are as follows:

• \newabbreviation, \newacronym, \oldacronym, \newdualentry: the default type
is assumed to be abbreviations (regardless of the definition of \acronymtype or
\glsxtrabbrvtype);

• \glsxtrnewsymbol: the default type is assumed to be symbols;

• \glsxtrnewnumber: the default type is assumed to be numbers;

• \newterm: the default type is assumed to be index.

This option automatically implements --ignore-type and --no-overwrite.

--no-split-on-type

Don’t split the entries into separate files according to their type (default).

392

7.2 convertgls2bib: Conversion from glossaries or glossaries-extra

--split-on-category (or -c)

Split the entries into separate files according to the category. If the category field isn’t
present and there’s no default provided by the command used to define the entry (see below)
then the @〈entry〉 data will be written to the main 〈bib file〉. Otherwise entries will be written
to the split file (in the same directory as 〈bib file〉).

The split file name depends on whether or not the --split-on-type switch has also been
used. With both and if the category and field values are different then the file name is 〈type〉
〈category〉.bib otherwise it’s 〈category〉.bib.

Commands that have a default category are as follows:

• \newabbreviation, \newacronym, \oldacronym, \newdualentry: the default cate-
gory is assumed to be abbreviation;

• \glsxtrnewsymbol: the default category is assumed to be symbol;

• \glsxtrnewnumber: the default category is assumed to be number;

• \newterm: the default category is assumed to be index.

For example, if you have both --split-on-type and --split-on-category, then the
default file name for \newabbreviation will be abbreviations-abbreviation.bib but
the default file name for \newterm will be index.bib. Whereas if you only have --split
-on-category and not --split-on-type, then then default file name for \newabbrevia-
tion will be abbreviation.bib.

This option automatically implements --ignore-category and --no-overwrite.

--no-split-on-category

Don’t split the entries into separate files according to their category (default).

--absorb-see

Absorb any cross-referencing information identifiedwith \glssee or \glsxtrindexseealso
commands into the corresponding entry (default).

--no-absorb-see

Don’t absorb any cross-referencing information identified with \glssee or \glsxtrindex-
seealso commands.

--internal-field-map 〈src=dest list〉

Appends the given internal field to key mappings to the predefined list. This action is cumu-
lative. The mappings are needed for \glssetexpandfield and \glssetnoexpandfield,
which use internal fields for their arguments. Note that this is different from --field-map
which maps the key used in commands like \newglossaryentry to the corresponding field
label written the .bib file.

393

7.2 convertgls2bib: Conversion from glossaries or glossaries-extra

7.2.2 Recognised Commands
The convertgls2bib application recognises the commands listed below as well as some
standard commands such as \newcommand. The TEX Parser Library is instructed to skip its
usual implementation of the glossaries and glossaries-extra packages as only a limited set of
commands need to be defined.

In all cases below, if 〈key=value list〉 contains:

see={[\seealsoname]〈label(s)〉}

or

see={[\alsoname]〈label(s)〉}

this will be substituted with:

seealso={〈label(s)〉}

For example:

\newterm[see={[\seealsoname]goose}]{duck}

will be written as:

@index{duck,
seealso = {goose}

}

Note that it won’t convert see={[see also]〈labels〉}. If you have used explicit text instead
of \seealsoname or \alsoname then consider performing a global search and replace on
your file using your text editor.

Additionally, if 〈key=value list〉 contains:

type={\glsdefaulttype}

then this field will be ignored. (This type value is recommended in 〈key=value list〉 when
loading files with \loadglsentries[〈type〉]{〈file〉} to allow the optional argument to set the
type. With bib2gls you can use the type option instead.)

\glsexpandfields

The base glossaries package provides:

\glsexpandfields

If present, this instructs convertgls2bib to expand all fields except for those explicitly
identified by \glssetnoexpandfield. Remember that there aremany commands that aren’t
recognised by convertgls2bib so it may not be possible to correctly expand field values.
Conversely, there are some commands that will be expanded by convertgls2bib that aren’t
expandable in TEX (such as \MakeUppercase and \char).

394

7.2 convertgls2bib: Conversion from glossaries or glossaries-extra

\glsnoexpandfields

The base glossaries package provides:

\glsnoexpandfields

If present, this instructs convertgls2bib to not expand fields unless explicitly identified by
\glssetexpandfield.

\glssetexpandfield

The base glossaries package provides:

\glssetexpandfield{〈field〉}

If present, this instructs convertgls2bib to expand the given field, even if \glsnoexpand-
fields has been used. Note that the argument should be the internal field label. The de-
fault set of mappings are recognised. Any additional mappings will need to be added with
--internal-field-map.

\glssetnoexpandfield

The base glossaries package provides:

\glssetnoexpandfield{〈field〉}

If present, this instructs convertgls2bib to not expand the given field, even if \glsexpand-
fields has been used. Unlike the default behaviour with the glossaries package, there are
no fields explicitly switched off by default with convertgls2bib.

\loadglsentries

The base glossaries package provides:

\loadglsentries[〈type〉]{〈file〉}

This locally redefines \glsdefaulttype to 〈type〉 (if the optional argument is supplied) and
inputs 〈file〉. If the 〈file〉 doesn’t have an extension, .tex is assumed. (The TEX Parser Library
also recognises \input.)

In general, it’s better to simply use 〈file〉 as the source file when running convertgls2bib
instead of using the main document file as the source.

\newglossaryentry

The base glossaries package provides:

\newglossaryentry{〈label〉}{〈key=value list〉}

This is converted to:

395

7.2 convertgls2bib: Conversion from glossaries or glossaries-extra

@entry{〈label〉,
〈key=value list〉

}

\newentry is recognised as a synonym of \newglossaryentry.

\provideglossaryentry

The base glossaries package provides:

\provideglossaryentry{〈label〉}{〈key=value list〉}

This is converted to:

@entry{〈label〉,
〈key=value list〉

}

but only if 〈label〉 hasn’t already been defined.

\longnewglossaryentry

The base glossaries package provides:

\longnewglossaryentry{〈label〉}{〈key=value list〉}{〈description〉}

This is converted to:

@entry{〈label〉,
〈key=value list〉,
description = {〈description〉}

}

The starred version provided by the glossaries-extra package is also recognised. The un-
starred version strips trailing spaces from 〈description〉. (This doesn’t add \nopostdesc, but
glossaries-extra defaults to nopostdot.)

\longprovideglossaryentry

The base glossaries package provides:

\longprovideglossaryentry{〈label〉}{〈key=value list〉}{〈description〉}

As above, but only if 〈label〉 hasn’t already been defined.

396

7.2 convertgls2bib: Conversion from glossaries or glossaries-extra

\newterm

The base glossaries package provides:

\newterm[〈key=value list〉]{〈label〉}

(when the index option is used). This is converted to:

@index{〈label〉,
〈key=value list〉

}

if the optional argument is present, otherwise it’s just converted to:

@index{〈label〉}

If --space-sub is used and 〈label〉 contains one or more spaces, then name will be set if
not included in 〈key=value list〉. For example, if entries.bib contains:

\newterm{sea lion}
\newterm[seealso={sea lion}]{seal}

then:

convertgls2bib --space-sub '-' entries.bib entries.tex

will write the terms to entries.tex as:

@index{sea-lion,
name = {sea lion}

}

@index{seal,
seealso = {sea-lion}

}

whereas just:

convertgls2bib entries.bib entries.tex

will write the terms to entries.tex as:

@index{sea lion}

@index{seal,
seealso = {sea lion}

}

which will cause a problem when the .bib file is parsed by bib2gls (and will probably also
cause a problem for bibliographic management systems).

397

7.2 convertgls2bib: Conversion from glossaries or glossaries-extra

\newabbreviation

The glossaries-extra package provides:

\newabbreviation[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}

This is converted to:

@abbreviation{〈label〉,
short = {〈short〉},
long = {〈long〉},
〈key=value list〉

}

if the optional argument is present, otherwise it’s converted to:

@abbreviation{〈label〉,
short = {〈short〉},
long = {〈long〉}

}

\newacronym

The base glossaries package provides:

\newacronym[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}

(which is redefined by glossaries-extra to use \newabbreviation).
As above but uses @acronym instead. The base package also provides \oldacronym, which

emulates the way abbreviations were defined with the precursor glossary package. This has
different syntax to \newacronym but is also recognised by convertgls2bib and is converted
to @acronym.

\glsxtrnewsymbol

The glossaries-extra package provides:

\glsxtrnewsymbol[〈key=value list〉]{〈label〉}{〈symbol〉}

(when the symbols option is used). This is converted to:

@symbol{〈label〉,
name = {〈symbol〉}

}

if the optional argument is missing, otherwise it’s converted to:

@symbol{〈label〉,
name = {〈symbol〉},
〈key=value list〉

}

398

7.2 convertgls2bib: Conversion from glossaries or glossaries-extra

unless 〈key=value list〉 contains the name field, in which case it’s converted to:

@symbol{〈label〉,
〈key=value list〉

}

\newsym is recognised as a synonym for \glsxtrnewsymbol.

\glsxtrnewnumber

The glossaries-extra package provides:

\glsxtrnewnumber[〈key=value list〉]{〈label〉}

(when the numbers option is used). This is converted to:

@number{〈label〉,
name = {〈label〉}

}

if the optional argument is missing, otherwise it’s converted to:

@number{〈label〉,
name = {〈label〉},
〈key=value list〉

}

if name isn’t listed in 〈key=value list〉, otherwise it’s converted to:

@number{〈label〉,
〈key=value list〉

}

\newnum is recognised as a synonym for \glsxtrnewnumber.

\newdualentry

\newdualentry[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}{〈description〉}

This command isn’t provided by either glossaries or glossaries-extra but is used as an example
in the glossaries user manual [14] and in the sample file sample-dual.tex that accompanies
the glossaries package. Since this command seems to be used quite a bit (given the number
of times it crops up on sites like TEX on StackExchange), convertgls2bib also supports it
unless this command is defined using \newcommand or \renewcommand in the input file. In
which case the default definition will be overridden.

If the command definition isn’t overridden, then it’s converted to:

399

https://tex.stackexchange.com/

7.2 convertgls2bib: Conversion from glossaries or glossaries-extra

@dualabbreviationentry{〈label〉,
short = {〈short〉},
long = {〈long〉},
description = {〈description〉},
〈key=value list〉

}

if 〈key=value list〉 is supplied, otherwise it’s converted to:

@dualabbreviationentry{〈label〉,
short = {〈short〉},
long = {〈long〉},
description = {〈description〉}

}

For example, if the original .tex file contains:

\newcommand*{\newdualentry}[5][]{%
\newglossaryentry{main-#2}{name={#4},%

text={#3\glsadd{#2}},%
description={#5},%
#1

}%
\newacronym{#2}{#3\glsadd{main-#2}}{#4}%

}

\newdualentry{svm}% label
{SVM}% abbreviation
{support vector machine}% long form
{Statistical pattern recognition technique}% description

then the .bib file will contain:

@entry{main-svm,
name = {support vector machine},
description = {Statistical pattern recognition technique},
text = {SVM\glsadd{svm}}

}

@acronym{svm,
short = {SVM\glsadd{main-svm}},
long = {support vector machine}

}

since \newdualentry was defined with \newcommand. However, if the original file uses
\providecommand or omits the definition of \newdualentry, then the .bib file will contain:

400

7.3 datatool2bib: Conversion from datatool

@dualabbreviationentry{svm,
short = {SVM},
description = {Statistical pattern recognition technique},
long = {support vector machine}

}

7.3 datatool2bib: Conversion from datatool
A datatool database can be converted to a .bib file with the supplementary tool data-
tool2bib. The syntax is:

datatool2bib [〈options〉] 〈tex file〉 〈bib file〉

where 〈tex file〉 is the .tex file and 〈bib file〉 is the .bib file. This application is less secure
than bib2gls as it doesn’t use kpsewhich to check openin_any and openout_any. Take
care not to accidentally overwrite existing .bib files as there’s no check to determine if 〈bib
file〉 already exists with the default --overwrite.

This tool is primarily intended to convert datagidx databases, so it will automatically as-
sume that datagidx is loaded. It can, however, be used for general databases, but you will
need to choose an appropriate column with unique values for the entry label (with --label
or use --auto-label).

The 〈tex file〉may be a complete document (inwhich case, youmaywant to use --preamble
-only if the database commands are all in the preamble) or may be a file that just contains
the database construction commands. The conversion tool uses the TEX Parser Library which
has some limited support for datatool, including database construction commands and file
input commands \DTLloaddb, \DTLloaddbtex and the newer \DTLread.

For example, suppose I have a document file called myDoc.tex that contains:

\documentclass{article}
\usepackage{datatool}
\DTLnewdb{mydata}
\DTLnewrow{mydata}
\DTLnewdbentry{mydata}{Forename}{John}
\DTLnewdbentry{mydata}{Surname}{Smith}
% ...
\begin{document}
% ...
\end{document}

Then I can extract this data with:

datatool2bib --preamble-only myDoc.tex mydata.bib

If the database commands are instead in a separate file called, say, mydata.tex which is
simply input in myDoc.tex then mydata.tex can then be used for the 〈tex file〉 input file:

401

7.3 datatool2bib: Conversion from datatool

datatool2bib mydata.tex mydata.bib

Note that the TEX Parser Library also recognises commands such as \dtlexpandnewvalue.
If this is in myDoc.tex rather than in mydata.tex and only mydata.tex is parsed then the
TEX Parser Library won’t encounter \dtlexpandnewvalue and so won’t enable new value
expansion. You can, however, use --setup expand-new-value to switch on new value
expansion.

If the data source is in a CSV file, then the TEX Parser Library can parse it but only if
the file is referenced in \DTLloaddb (pre datatool v3.0) or \DTLread (datatool v3.0+). For
the newer \DTLread command, the format=.csv setting is required to parse CSV files or
format=.tsv for TSV files. If the file contains LATEX commands, content=tex is required
otherwise content=literal is required.

So in order to convert a CSV file called mydata.csv to a .bib file, the TEX Parser Library
needs to parse:

\DTLread[format=csv,content=literal]{mydata.csv}

Rather than having to parse the entire document source file or create a stub file that simply
contains this command, you can use the --read switch instead:

datatool2bib --read format=csv,content=literal mydata.csv mydata.bib

This is equivalent to creating a stub file with just the \DTLread line.
In general, better results are obtained if datatool2bib parses \newterm and \newacro

instead of the actual datagidx databases. The custom datagidx databases have a number of
columns for internal use that are not applicable to bib2gls.

When you run datatool2bib from the command line, there will be two lines reporting
the number of databases found by parsing the input. For example:

1 database (datatool) found
0 databases (datagidx) found

The first line indicates the number of regular datatool databases that were found by the
TEX Parser Library. The second line indicates the number of datagidx databases that were
detected by scanning for \newterm and \newacro.

In the first case, the source field labels will correspond to the column keys (such as Label,
Name, Description and Symbol), whereas in the second case the source field labels will cor-
respond to the option keys for \newterm and \newacro (such as description and symbol,
but not the label key, which will be dropped from the list after its value is saved elsewhere).

7.3.1 Command Line Arguments
The 〈options〉 specific to datatool2bib are described below. This is in addition to those
described in section 3.1 and section 7.1.

402

7.3 datatool2bib: Conversion from datatool

--label 〈column-key〉 (or -L 〈column-key〉)

Obtain the .bib entry label from the column identified by the 〈column-key〉. Note that the
column key is the original case-sensitive column label not the mapped field. The label will be
obtained by copying the value from the given column and processing according to --space
-sub (and stripping forbidden characters). This option is not applicable to \newterm and
\newacro.

The chosen column should have unique values (and should still be unique after pro-
cessing).

The default setting is --label Label since this is the column used for labels with datagidx
(but is only applicable if you save the database with \DTLwrite rather than having data-
tool2bib parse \newterm and \newacro).

If you are converting a general datatool database, either choose a different column or
switch on the auto label.

--auto-label (or -a)

If there is no appropriate column for a label, this option may be used to automatically gen-
erate the label in the form 〈prefix〉〈n〉. If --auto-label-prefix is set, that will provide the
〈prefix〉, otherwise the prefix will match the database label.

--no-auto-label

Switches off automatic labelling. The labels will be created from the column identified by
--label.

--auto-label-prefix 〈prefix〉

Sets the prefix for use with --auto-label. This option automatically implements --auto
-label.

--read 〈options〉 (or -r 〈options〉)

Instead of parsing the provided .tex file in the usual manner, the --read option will act as
though the input is:

\DTLread[〈options〉]{filename}

where 〈filename〉 is the input filename supplied to datatool2bib. This can be use where
the source file is a CSV file rather than a LATEX file.

--setup 〈options〉

Implements \DTLsetup{〈options〉} before parsing. Note that this can be counteracted by
any changes to the settings within the file being parsed.

403

7.3 datatool2bib: Conversion from datatool

--save-datum

Equivalent to:

--save-value "-value" --save-currency "-currency"

For example, if the CSV file products.csv contains:

ID,Product,Quantity,Price
1,Sample,3,"$1,234.50"

then with:

datatool2bib --label Product --read "format=csv,content=literal" products.csv products.bib

The products.bib file will contain:

@entry{Sample,
id = {1},
product = {Sample},
quantity = {3},
price = {\$1,234.5}

}

Whereas with:

datatool2bib --save
-datum --label Product --read "format=csv,content=literal" products.csv products.bib

@entry{Sample,
id = {1},
product = {Sample},
quantity = {3},
price = {\$1,234.5},
price-value = {1234.5},
price-currency = {\$}

}

Note that the original number formatting is retained in the price field but the plain numeric
value is saved in the price-value field and the currency symbol is saved in the price-
currency field. These custom fields will all need to be defined or aliased when the .bib file
is read by bib2gls.

For further information on the datatool datum format see the datatool v3.0+ user manual.
You need to set the decimal and number group characters with \DTLsetnumberchars and
the currency symbol with \DTLnewcurrencysymbol for the values to be parsed correctly.

404

7.3 datatool2bib: Conversion from datatool

--no-save-datum

Equivalent to:

--no-save-value --no-save-currency

--save-value 〈suffix〉

If a field contains a formatted numeric value or currency (according to the current datatool
settings), the numeric value will be saved in the field 〈field〉〈prefix〉 if it’s different from the
value in 〈field〉.

--no-save-value

Don’t save numeric values in a separate field (default).

--save-currency 〈suffix〉

If a field contains a formatted currency (according to the current datatool settings), the cur-
rency symbol will be saved in the field 〈field〉〈prefix〉.

--no-save-currency

Don’t save the currency symbol in a separate field (default).

--split

If multiple databases are found in the input file, create a separate output file for each database.
If the output 〈bib file〉 provided to datatool2bib is given as 〈base〉.bib then each database
〈dbname〉 will be saved in the file 〈base〉-〈dbname〉.bib.

--no-split

All data found from parsing the input file will be saved in the single output 〈bib file〉 (default).

--detect-symbols

Attempt to detect entries that should be @symbol or @number based on the value of the
name field. This tries to expand the value of the name field with \DTLgidxParen and \DTL-
gidxIgnore locally defined to discard their argument. If the result is empty or if the first
character of the result is not alphabetic then, if the result parses as an integer, @number will
be chosen otherwise @symbol will be chosen. (An empty result can occur if the name field
solely consists of commands that are unknown to the TEX Parser Library, which suggests
symbols rather than words.)

This setting is only applicable for entries defined with datagidx’s \newterm command, not
with general datatool databases. Note that if this results in a change to the entry type from

405

7.3 datatool2bib: Conversion from datatool

its default @entry then --index-conversion won’t convert the type to @index, regardless
of whether or not the description field is set.

--no-detect-symbols

Don’t attempt to detect symbols (default).

--numeric-locale 〈lang-tag〉

For use with --detect-symbols, this switch identifies the locale used for numeric parsing
to determine whether or not the @number entry type should be used. If omitted, the jvm’s
default locale is assumed.

--adjust-gls

This setting is the default. Any instance of commands like \gls (datagidx) found in field
values will have their labels adjusted, if they have been modified due to stripping spaces etc.
Also, the syntax of datagidx’s \gls (datagidx) is slightly different from glossaries’s \gls as
the format is incorporated at the start of the label. If this is detected, the format will be added
as an optional argument, matching the glossaries syntax.

Additionally, commands that have different names from those provided by glossaries will
be replaced with the closest match. For example, \glsnl (datagidx) will be replaced with
\gls* (no hyperlink).

--no-adjust-gls

Don’t adjust commands like \gls (datagidx) in field values.

--dependency-field 〈field〉

Sets the name of the dependency field. Has no effect with --no-strip-glsadd. With
--strip-glsadd, the label from the stripped \glsadd (datagidx) argument will be added to
the field identified by 〈field〉. The default is dependency which will be ignored by bib2gls
unless instructed otherwise (via resource options such as field-aliases or by defining the
field with commands such as \glsaddstoragekey).

For example, 〈field〉 could be set to see (but be aware that this won’t be merged with any
existing see value for the same entry) or the new document to use the created .bib file could
define 〈field〉 and reference it in dependency-fields.

The 〈field〉will have any invalid content stripped andwill be adjusted tomatch the --field
-case setting. If the 〈field〉 ends up as an empty string, it will behave as --no-dependency
-field.

--no-dependency-field

Don’t save any labels stripped with --strip-glsadd.

406

7.3 datatool2bib: Conversion from datatool

--strip

Switch on all strip options.

--no-strip

Switch off all strip options.

--strip-glsadd

Any instance of \glsadd (datagidx) found in field values will be stripped, along with the
argument. Note that this command is provided by datagidx and, unlike the analogous glos-
saries command, it doesn’t have an optional argument but instead allows the format option
to be included in the mandatory argument.

This setting is the default as \glsadd is rarely needed in field values with bib2gls, as
dependencies and the selection criteria are usually sufficient.

--no-strip-glsadd

No search is made for \glsadd (datagidx) in field values. Note that this means that no ad-
justments for the different syntax will be made.

--strip-acronym-font

Any instance of \acronymfont found in field values will be strip and the braces around the
argument will be removed.

This setting is the default since \acronymfont should not be used with glossaries-extra.

--no-strip-acronym-font

No search is made for \acronymfont in the field values. Note that the use of \acronymfont
is deprecated with glossaries-extra as it has a different abbreviation mechanism to the base
glossaries package.

--strip-case-change

The following case-changing commands will be stripped from field values and the braces
around the argument will be removed: \uppercase, \lowercase, \MakeTextUppercase,
\MakeTextLowercase, \MakeUppercase, \MakeLowercase, and the mfirstuc commands.

--no-strip-case-change

Don’t strip the case-changing commands from field values (default).

407

7.3 datatool2bib: Conversion from datatool

7.3.2 Recognised Commands
This section lists datatool and datagidx commands that are recognised by datatool2bib.
(There may be other commands that are also recognised but aren’t relevant to the conversion
process.) See the datatool user manual for further information.

\DTLsetup

Some but not all datatool settings are recognised by the TEX Parser Library. Of those that
are recognised, the settings pertinent to datatool2bib are: default-name, store-datum,
new-value-trim, new-value-expand, and io.

The io setting takes a comma-separated list of default I/O options applicable to \DTLread
(and \DTLwrite). Recognised I/O options: name, keys, headers, expand, format, add-
delimiter, csv-escape-chars, csv-content, csv-blank, csv-skip-lines (and syn-
onym omitlines), no-header (and synonym noheader), auto-keys (and synonym autokeys),
overwrite, load-action, delimiter, and separator.

\DTLread

Loads a database from the given file, where the format should be identified in 〈options〉 with
the format key. The default is format=csv, which indicates that the file is a CSV file. For
tab-separated files, use format=tsv. If the CSV/TSV file contains TEX markup within the
cells, use csv-content=tex otherwise use csv-content=literal.

Note that:

datatool2bib --read 〈io-options〉 〈filename〉 〈bib file〉

is equivalent to creating a file otherfile.tex with a single line:

\DTLread[〈io-options〉]{〈filename〉}

and then running:

datatool2bib otherfile.tex 〈bib file〉

The TEX Parser Library also recognises \DTLwrite but datatool2bib redefines the
command to do nothing.

\dtlexpandnewvalue

New values will be expanded before being added to the database. Note that the TEX Parser
Library may not expand commands in the same way as TEX, and it won’t be able to expand
unknown commands.

\dtlnoexpandnewvalue

New values will not be expanded before being added to the database (default).

408

7.3 datatool2bib: Conversion from datatool

\DTLnewdb

Defines a new database with the given label.

\DTLnewrow

Creates a new row in the database identified the given label.

\DTLnewdbentry

Adds a new entry to the final row of the given database.
For example:

\DTLnewdb{mydata}
\DTLnewrow{mydata}
\DTLnewdbentry{mydata}{Forename}{John}
\DTLnewdbentry{mydata}{Surname}{Smith}
\DTLnewdbentry{mydata}{Email}{j.smith@example.com}
\DTLnewrow{mydata}
\DTLnewdbentry{mydata}{Forename}{Jane}
\DTLnewdbentry{mydata}{Surname}{Doe}
\DTLnewdbentry{mydata}{Email}{j.doe@example.com}

This can be converted using, for example (assuming the above is in the file mydata.tex):

datatool2bib --auto-label mydata.tex mydata.bib

This will create the file mydata.bib, which will contain:

@entry{mydata1,
forename = {John},
surname = {Smith},
email = {j.smith@example.com}

}

@entry{mydata2,
forename = {Jane},
surname = {Doe},
email = {j.doe@example.com}

}

(Use --index-conversion to use @index instead of @entrywhere there’s no description.)
The assign-fields resource option can be used to set the name field to a concatenation of
the forename and surname fields (which would need to be aliased or defined if required).

409

7.3 datatool2bib: Conversion from datatool

\DTLaction

This general purpose action command can be used to create and append to databases. The
applicable actions that are recognised by the TEX Parser Library (and therefore by data-
tool2bib) are: new, new row, new entry, and add column.

For example:

\DTLsetup{default-name=mydata}
\DTLaction{new}
\DTLaction[

assign =
{

Name = {José Arara},
Score = 68,
Award = {\$2,453.99}

}
]{new row}
\DTLaction[

assign =
{

Name = {Zoë Zebra},
Score = 73,
Award = {\$2,542}

}
]{new row}

This can be converted using, for example (assuming the above is in the file mydata.tex):

datatool2bib --label Name mydata.tex mydata.bib

This will create the file mydata.bib, which will contain:

@entry{JoséArara,
name = {José Arara},
score = {68},
award = {\$2,453.99}

}

@entryZoëZebra,
name = {Zoë Zebra},
score = {73},
award = {\$2,542}

Again, use --index-conversion to use @index instead of @entry if the description field
is missing.

The .dtltex and .dbtex file formats are also recognised by the TEX Parser Library. The
commands used in those files are not intended for document use, but the files may be passed

410

7.3 datatool2bib: Conversion from datatool

to datatool2bib as the input file. See the datatool v3.0+ user manual for further details of
those formats.

\newgidx

Defines a new datagidx database, which may be referenced in \newterm and \newacro by
the database key in their optional argument (which be parsed and then dropped from the
field list).
\newterm

This is similar to the \newterm command provided by glossaries (via the index package
option), but has slightly different behaviour. With datagidx, the mandatory argument is the
name. The label may be supplied in the optional argument. If omitted, the label is obtained
from the name. The datatool2bib application will try to mimic the process used by data-
gidx to create the label from the name, but may not produce an exact match. It’s therefore
important to double-check the resulting .bib file afterwards.

Each \newterm will be converted to @entry unless it has both the long and short fields
set, in which case it will be converted to @abbreviation. If there is no description and
--index-conversion is used, then @index will be used instead of @entry (but not if the
term has been identified as an abbreviation).
\newacro

This is simply awrapper command that internally uses \newterm. However, datatool2bib
has a slightly different behaviour that doesn’t add the formatting or case-changing com-
mands (since these can be dealt with by the abbreviation style or bib2gls resource options).

411

8 Examples
The example files described here can be found in the examples sub-directory. The .bib files
are listed first and then sample files that use the .bib data. Make sure you have the latest
versions of glossaries, mfirstuc, glossaries-extra and bib2gls if youwant to try these out. (The
sample-media.tex file requires at least datatool v2.28.) If you get any undefined control
sequence or undefined style errors then you need to update your TEX distribution. Use the
--group switch when invoking bib2gls for all these examples if you want the glossaries
divided into groups. The set of system calls for the document build in the examples below
may require an extra LATEX run to ensure the PDF bookmarks are up-to-date when hyperref
is used.

These files are just examples of how to use bib2gls. There are other ways of defining
similar entries and sometimes alternatives are suggested. Use the code here as a starting
point if you need data like this and adapt it to a format appropriate for your requirements.
There are also some example documents in the Dickimaw Books gallery.

no-interpret-preamble.bib
The no-interpret-preamble.bib file contains command definitions used in some of the
name fields. Although these commands aren’t used explicitly in the document, they need to
be defined when the names are displayed in the document (typically in the glossary). These
commands aremuch like the \sortop command described on 276 and need to be hidden from
bib2gls’s interpreter. This file doesn’t contain any entry definitions and must be loaded
first with interpret-preamble={false}. The interpret-preamble.bib or interpret
-preamble2.bib file can then be loaded to provide alternative definitions for bib2gls’s
interpreter.

The first command is:

\sortname{〈first name(s)〉}{〈surname〉}

This is used in the name fields for entries containing information about a person. The aim
here is for bib2gls to sort according to 〈surname〉, 〈first name(s)〉 but for the glossary to
display 〈first name(s)〉 〈surname〉. For names with a “von” part, there’s another command:

\sortvonname{〈first name(s)〉}{〈von〉}{〈surname〉}

which has a similar purpose. The third command is:

\sortart{〈article〉}{〈text〉}

412

https://www.dickimaw-books.com/gallery

8 Examples: interpret-preamble.bib

This is the same as \sortname but is designed for titles, phrases or sentences that start with
an article (such as “a” or “the”). Although it has the same definition as \sortname in this file,
in the interpreted files the article part is omitted to completely ignore them in the sorting.
The fourth command is:

\sortmediacreator{〈first name(s)〉}{〈surname〉}

which again is functionally the same as \sortname.
The names could be specified using BIBTEX’s syntax instead with bibtex-contributor

-fields to convert it, but the aim here is to show a variety of ways to use bib2gls. For
an example of bibtex-contributor-fields, see the way the cast field in films.bib is
dealt with.

Although the file only contains ASCII characters, it starts with an encoding line to prevent
bib2gls from searching the entire file for it. (That’s not so much of an issue with a short
file, but may cause an unnecessary delay for much longer files.)

The contents of no-interpret-preamble.bib are as follows:
% Encoding: UTF-8

@preamble{"\providecommand{\sortname}[2]{#1 #2}
\providecommand{\sortvonname}[3]{#1 #2 #3}
\providecommand{\sortart}[2]{#1 #2}
\providecommand{\sortmediacreator}[2]{#1 #2}"}

interpret-preamble.bib
This provides definitions of \sortname, \sortvonname, \sortart and \sortmediacreator
in @preamble that can be picked up by the interpreter and used during sorting. Note that in
this case \sortart is defined to ignore the article to completely ignore it from sorting. If you
happen to have “a 〈something〉” and “the 〈something〉” where the 〈something〉s are identical,
you may want to append the article to disambiguate them.

The contents of interpret-preamble.bib are as follows:
% Encoding: UTF-8

@preamble{"\providecommand{\sortname}[2]{#2, #1}
\providecommand{\sortvonname}[3]{#2 #3, #1}
\providecommand{\sortart}[2]{#2}
\providecommand{\sortmediacreator}[2]{#2, #1}"}

interpret-preamble2.bib
An alternative to interpret-preamble.bib with a different definition of \sortmedia-
creator. This uses \renewcommand instead of \providecommand so write-preamble=
{false} is required to prevent LATEX from picking up the definitions.

413

8 Examples: constants.bib

The contents of interpret-preamble2.bib are as follows:

% Encoding: UTF-8

@preamble{"\providecommand{\sortname}[2]{#2, #1}
\providecommand{\sortvonname}[3]{#2 #3, #1}
\providecommand{\sortart}[2]{#2}
\renewcommand{\sortmediacreator}[2]{\MakeLowercase{#2}}"}

constants.bib
The constants.bib file contains mathematical constants. These all use a custom entry type
@constant, which must be aliased otherwise the entries will all be ignored. The entries all
have custom fields, which also need to be aliased. For example:

entry-type-aliases={constant=entry},
field-aliases={

constantname=name,
constantsymbol=symbol,
definition=description,
identifier=category,
value=user1

}

This setting means that, for example,

@constant{root2,
constantname={Pythagoras' constant},
constantsymbol={\ensuremath{\surd2}},
definition={the square root of 2},
value={1.41421},
identifier={constant}

}

is treated as though it was defined as:

@entry{root2,
name={Pythagoras' constant},
symbol={\ensuremath{\surd2}},
description={the square root of 2},
user1={1.41421},
category={constant}

}

This use of custom fields and entry types allows more flexibility. For example, I may have
another document that uses the same .bib file but requires a different definition:

414

8 Examples: constants.bib

@number{root2,
description={Pythagoras' constant},
name={\ensuremath{\surd2}}

}

which can be obtained with:

entry-type-aliases={constant=number},
field-aliases={

constantname=description,
constantsymbol=name

}

Since the other custom fields haven’t be aliased, they’re ignored.
The custom fields are: identifier (set to constant for all the entries), constantname

(the constant’s name), definition (a definition of the constant), value (the approximate
numeric value of the constant), constantsymbol (the symbolic representation of the con-
stant) and alternative (alternative symbol). There are three entries that don’t have the
custom value field: zero and one (the exact value is in the constantsymbol field in both
cases) and imaginary (where there’s no real number value).

I’ve provided some commands in the @preamble for constants that are represented by
Latin and Greek letters. These can be defined in the document before the resource set if
different notation is required. The upright Greek commands require the upgreek package.

If it’s likely that there may be a need to sort according to definition, then it would be
better to use \sortart describe above:

@constant{root2,
constantname={Pythagoras' constant},
constantsymbol={\ensuremath{\surd2}},
definition={\sortart{the}{square root of 2}},
value={1.41421},
identifier={constant}

}

Remember that this would need no-interpret-preamble.bib to ensure the command is
recognised in the document.

The contents of constants.bib are as follows:
% Encoding: UTF-8

% Requires upgreek.sty

@preamble{"\providecommand{\constanti}{\mathrm{i}}
\providecommand{\constantj}{\mathrm{j}}
\providecommand{\constante}{\mathrm{e}}
\providecommand{\constantpi}{\uppi}
\providecommand{\constantgamma}{\upgamma}

415

8 Examples: constants.bib

\providecommand{\constantphi}{\upphi}
\providecommand{\constantlambda}{\uplambda}"}

@constant{pi,
constantname={pi},
constantsymbol={\ensuremath{\constantpi}},
definition={the ratio of the length of the circumference

of a circle to its diameter},
value={3.14159},
identifier={constant}

}

@constant{eulercons ,
constantname={Euler's constant},
constantsymbol={\ensuremath{\constantgamma}},
definition={the limit of \[\sum_{r=1}^n\frac{1}{r}-\ln n\]

as $n\to\infty$},
value={0.57721},
identifier={constant}

}

@constant{e,
constantname={Euler's number},
constantsymbol={\ensuremath{\constante}},
definition={base of natural logarithms},
value={2.71828},
identifier={constant}

}

@constant{root2,
constantname={Pythagoras ' constant},
constantsymbol={\ensuremath{\surd2}},
definition={the square root of 2},
value={1.41421},
identifier={constant}

}

@constant{goldenratio ,
constantname={golden ratio},
constantsymbol={\ensuremath{\constantphi}},
definition={the ratio $\frac{1+\surd5}{2}$},
value={1.61803},
identifier={constant}

}

@constant{aperysconstant ,

416

8 Examples: chemicalformula.bib

constantname={Ap\'ery's constant},
constantsymbol={\ensuremath{\zeta(3)}},
definition={a special value of the Riemann zeta function},
value={1.2020569},
identifier={constant}

}

@constant{conwaysconstant ,
constantname={Conway's constant},
constantsymbol={\ensuremath{\constantlambda}},
definition={the invariant growth rate of all derived strings},
value={1.30357},
identifier={constant}

}

@constant{zero,
constantname={zero},
constantsymbol={\ensuremath{0}},
definition={nothing or nil},
identifier={constant}

}

@constant{one,
constantname={one},
constantsymbol={\ensuremath{1}},
definition={single entity, unity},
identifier={constant}

}

@constant{imaginary ,
constantname={imaginary unit},
constantsymbol={\ensuremath{\constanti}},
definition={defined as $\constanti^2 = -1$},
identifier={constant},
alternative={\ensuremath{\constantj}}

}

chemicalformula.bib
The chemicalformula.bib file contains chemical formulae. Each entry has a field that uses
\ce provided by mhchem so the document will need to load that package. Since all resource
files must be loaded in the preamble, it’s possible to ensure that the package is loaded using:

@preamble{"\usepackage{mhchem}"}

However, it’s best just to load it in the document otherwise it won’t be available before the

417

8 Examples: chemicalformula.bib

.glstex file has been loaded. Also, glossaries (and therefore glossaries-extra) must be loaded
after hyperref, which usually needs to be loaded last somost packages should be loaded before
glossaries-extra. Instead, I’ve just put a comment in the .bib file as a reminder.

All entries are defined using a custom entry type @chemical. This must be aliased us-
ing entry-type-aliases or the entries will be ignored. For example, to make @chemical
behave like @symbol:

entry-type-aliases={chemical=symbol}

Remember that with the @symbol type, if the sort field is omitted bib2gls will fallback on
the label by default. It can be changed to fallback on the name field instead using symbol
-sort-fallback={name}. This will require the use of the interpreter if the name contains a
command but bib2gls recognises the mhchem package and has a limited ability to interpret
\ce. If @chemical is changed to @entry instead then the fallback for the sort will be the
entry’s name.

All entries only contain custom fields, which will all be ignored by bib2gls unless defined
or aliased: identifier, which is set to chemical for all entries, formula, which is set to
the chemical formula, and chemicalname, which is set to the chemical name. This allows
the flexibility of determining whether the name or symbol field should contain the chemical
formula on a per-resource basis. For example:

field-aliases={formula=name,chemicalname=description}

or

field-aliases={chemicalname=name,formula=symbol}

The contents of chemicalformula.bib are as follows:
% Encoding: UTF-8

% requires mhchem.sty

@chemical{H2O,
formula={\ce{H2O}},
chemicalname={water},
identifier={chemical}

}

@chemical{Al2SO43,
formula={\ce{Al2(SO4)3}},
chemicalname={aluminium sulfate},
identifier={chemical}

}

@chemical{CH3CH2OH,
formula={\ce{CH3CH2OH}},
chemicalname={ethanol},

418

8 Examples: chemicalformula.bib

identifier={chemical}
}

@chemical{C6H12O6,
formula={\ce{C6H12O6}},
chemicalname={glucose},
identifier={chemical}

}

@chemical{CH2O,
formula={\ce{CH2O}},
chemicalname={formaldehyde},
identifier={chemical}

}

@chemical{H3O+,
formula={\ce{H3O+}},
chemicalname={hydronium},
identifier={chemical}

}

@chemical{SO42-,
formula={\ce{SO4^{2-}}},
chemicalname={sulfate},
identifier={chemical}

}

@chemical{O2,
formula={\ce{O2}},
chemicalname={dioxygen},
identifier={chemical}

}

@chemical{O,
formula={\ce{O}},
chemicalname={oxygen},
identifier={chemical}

}

@chemical{OF2,
formula={\ce{OF2}},
chemicalname={oxygen difluoride},
identifier={chemical}

}

@chemical{O2F2,

419

8 Examples: chemicalformula.bib

formula={\ce{O2F2}},
chemicalname={dioxygen difluoride},
identifier={chemical}

}

@chemical{OH-,
formula={\ce{OH-}},
chemicalname={hydroxide ion},
identifier={chemical}

}

@chemical{AlF3,
formula={\ce{AlF3}},
chemicalname={aluminium trifluoride},
identifier={chemical}

}

@chemical{Al2CoO4,
formula={\ce{Al2CoO4}},
chemicalname={cobalt blue},
identifier={chemical}

}

@chemical{As4S4,
formula={\ce{As4S4}},
chemicalname={tetraarsenic tetrasulfide},
identifier={chemical}

}

@chemical{C5H4NCOOH,
formula={\ce{C5H4NCOOH}},
chemicalname={niacin},
identifier={chemical}

}

@chemical{C10H10O4,
formula={\ce{C10H10O4}},
chemicalname={ferulic acid},
identifier={chemical}

}

@chemical{C8H10N4O2,
formula={\ce{C8H10N4O2}},
chemicalname={caffeine},
identifier={chemical}

}

420

8 Examples: bacteria.bib

@chemical{SO2,
formula={\ce{SO2}},
chemicalname={sulfur dioxide},
identifier={chemical}

}

@chemical{S2O72-,
formula={\ce{S2O7^{2-}}},
chemicalname={disulfate ion},
identifier={chemical}

}

@chemical{SbBr3,
formula={\ce{SbBr3}},
chemicalname={antimony(III) bromide},
identifier={chemical}

}

@chemical{Sc2O3,
formula={\ce{Sc2O3}},
chemicalname={scandium oxide},
identifier={chemical}

}

@chemical{Zr3PO44,
formula={\ce{Zr3(PO4)4}},
chemicalname={zirconium phosphate},
identifier={chemical}

}

@chemical{ZnF2,
formula={\ce{ZnF2}},
chemicalname={zinc fluoride},
identifier={chemical}

}

bacteria.bib
The bacteria.bib file contains bacteria abbreviations. These all use the @abbreviation
entry type with a short and long field.

The entries all have a custom field identifier set to bacteria. This will be ignored by
bib2gls unless it’s defined using \glsaddkey or \glsaddstoragekey or if it’s aliased with
field-aliases.

The contents of bacteria.bib are as follows:

421

8 Examples: bacteria.bib

% Encoding: UTF-8

@abbreviation{cbotulinum ,
short={C.~botulinum},
long={Clostridium botulinum},
identifier={bacteria}

}

@abbreviation{pputida,
short={P.~putida},
long={Pseudomonas putida},
identifier={bacteria}

}

@abbreviation{cperfringens ,
short={C.~perfringens},
long={Clostridium perfringens},
identifier={bacteria}

}

@abbreviation{bsubtilis ,
short={B.~subtilis},
long={Bacillus subtilis},
identifier={bacteria}

}

@abbreviation{ctetani,
short={C.~tetani},
long={Clostridium tetani},
identifier={bacteria}

}

@abbreviation{pcomposti ,
short={P.~composti},
long={Planifilum composti},
identifier={bacteria}

}

@abbreviation{pfimeticola ,
short={P.~fimeticola},
long={Planifilum fimeticola},
identifier={bacteria}

}

@abbreviation{cburnetii ,
short={C.~burnetii},

422

8 Examples: baseunits.bib

long={Coxiella burnetii},
identifier={bacteria}

}

@abbreviation{raustralis ,
short={R.~australis},
long={Rickettsia australis},
identifier={bacteria}

}

@abbreviation{rrickettsii ,
short={R.~rickettsii},
long={Rickettsia rickettsii},
identifier={bacteria}

}

baseunits.bib
The baseunits.bib file contains base si units. The entries are all defined using the custom
@unit entry type. This must be aliased with entry-type-aliases otherwise bib2gls will
ignore all the entries. For example:

entry-type-aliases={unit=symbol}

will make bib2gls treat the entries as though they were defined using @symbol. (Remember
that @symbol entry types use the label as the fallback field for sort.)

The entries all have custom fields unitname, unitsymbol and measurement, one of which
must be aliased or copied to name if @unit is aliased to an entry type that requires it. The
other custom fields may be aliased or copied to symbol and description as required. The
unitsymbolfields all use \si provided by the siunitx package, so that packagemust be loaded
in the document. This is one of the small number of packages recognised by bib2gls, so it’s
possible to sort according to the symbol if required.

The entries also all have a custom field identifier set to baseunit. This will be ignored
by bib2gls unless it’s defined using \glsaddkey or \glsaddstoragekey or if it’s aliased
with field-aliases.

The contents of baseunits.bib are as follows:
% Encoding: UTF-8

% requires siunix.sty

@unit{ampere,
unitname={ampere},
unitsymbol={\si{\ampere}},
measurement={electric current},
identifier={baseunit}

423

8 Examples: baseunits.bib

}

@unit{kilogram ,
unitname={kilogram},
unitsymbol={\si{\kilogram}},
measurement={mass},
identifier={baseunit}

}

@unit{metre,
unitname={metre},
unitsymbol={\si{\metre}},
measurement={length},
identifier={baseunit}

}

@unit{second,
unitname={second},
unitsymbol={\si{\second}},
measurement={time},
identifier={baseunit}

}

@unit{kelvin,
unitname={kelvin},
unitsymbol={\si{\kelvin}},
measurement={thermodynamic temperature},
identifier={baseunit}

}

@unit{mole,
unitname={mole},
unitsymbol={\si{\mole}},
measurement={amount of substance},
identifier={baseunit}

}

@unit{candela,
unitname={candela},
unitsymbol={\si{\candela}},
measurement={luminous intensity},
identifier={baseunit}

}

424

8 Examples: derivedunits.bib

derivedunits.bib
The derivedunits.bib file is much like baseunits.bib but contains derived units and in
this case the custom entry type is @measurement, which must be aliased otherwise the en-
tries will all be ignored. The entries all have a custom field identifier set to derivedunit.
This will be ignored by bib2gls unless it’s defined using \glsaddkey or \glsaddstorage-
key or if it’s aliased with field-aliases.

The contents of derivedunits.bib are as follows:

% Encoding: UTF-8

% requires siunitx.sty

@measurement{area,
unitname={square metre},
unitsymbol={\si{\metre\squared}},
measurement={area},
identifier={derivedunit}

}

@measurement{volume,
unitname={cubic metre},
unitsymbol={\si{\metre\cubed}},
measurement={volume},
identifier={derivedunit}

}

@measurement{velocity ,
unitname={metre per second},
unitsymbol={\si{\metre\per\second}},
measurement={velocity},
identifier={derivedunit}

}

@measurement{acceleration ,
unitname={metre per second squared},
unitsymbol={\si{\metre\per\square\second}},
measurement={acceleration},
identifier={derivedunit}

}

@measurement{density,
unitname={ampere per square metre},
unitsymbol={\si{\ampere\per\square\metre}},
measurement={density},
identifier={derivedunit}

}

425

8 Examples: people.bib

@measurement{luminance ,
unitname={candela per square metre},
unitsymbol={\si{\candela\per\square\metre}},
measurement={luminance},
identifier={derivedunit}

}

@measurement{specificvolume ,
unitname={cubic metre per kilogram},
unitsymbol={\si{\cubic\metre\per\kilogram}},
measurement={specific volume},
identifier={derivedunit}

}

@measurement{concentration ,
unitname={mole per cubic metre},
unitsymbol={\si{\mole\per\cubic\metre}},
measurement={concentration},
identifier={derivedunit}

}

@measurement{wavenumber ,
unitname={per metre},
unitsymbol={\si{\per\metre}},
measurement={wave number},
identifier={derivedunit}

}

people.bib
The people.bib file contains details about people. The name fields contain custom com-
mands provided in no-interpret-preamble.bib and interpret-preamble.bib. Remem-
ber that if no-interpret-preamble.bib is loaded first, the definitions provided in that file
will be the one in use in the document. The interpret-preamble.bib file then needs to be
loaded to provide the definitions for bib2gls’s interpreter.

The information for each person is supplied in an @entry type. There are some non-
standard fields: born, died and othername. These fields will be ignored unless keys are
provided (using \glsaddkey or \glsaddstoragekey) or the fields are aliased (using field
-aliases). The born and died fields have dates that are almost in the default en-GB locale
format with the jre locale provider, but they include a tilde ~ to prevent awkward line breaks.
By default bib2gls’s interpreter converts ~ to the non-breaking space character 0xA0 which
isn’t recognised by the date format. This can easily be fixed with the --break-space switch
which will interpret ~ as a normal breakable space (0x20), so with that switch sort={date}

426

8 Examples: people.bib

or sort={date-reverse} can be used on either of those fields. However, the cldr has a
slightly different default format than the jre for dates with en-GB, so it’s probably simplest
to actually specify the required format.

An alternative approach would be to provide a command that can be modified in the doc-
ument to adjust the date style. For example, the born field could be specified as:

born={\formatdate{13}{7}{100}{BC}}

The definition provided for the document could then be, for example:

\providecommand{\formatdate}[4]{\DTMdisplaydate{#3}{#2}{#1}{-1} #4}

(where \DTMdisplaydate is provided by the datetime2 package) and a definition could be
provided for bib2gls’s interpreter, for example:

\providecommand{\formatdate}[4]{#1/#2/#3 #4}

This would need the date format set. For example, date-sort-format={d/M/y G}.
Some of the entries, such as caesar, have a first field. In those cases the first field

is slightly different from the name field (for example, “Gaius” is omitted in caesar’s first
field). The other entries don’t have a first field. They can simply have the name copied to
first with the replicate-fields option (so that the full name is shown on first use) or
the first field can be ignored with ignore-fields (so all entries will use the text field on
first use). The replicate-override option can be used to force the name field to be copied
to the first field, even if the first field is already set. Alternatively, with replicate
-override={true} and replicate-fields={first=name}, the first field be copied to
the name field. For consistency, the first fields use the same custom commands as used in
the name field.

There’s one name with a “von” part. In this case the name field is set to:

\sortvonname{Manfred}{von}{Richthofen}

which will come under the “V” letter group since \sortvonname is defined as 〈von〉 〈sur-
name〉, 〈first name(s)〉

If you prefer that this name should come under “R” instead, then you need to adjust the
definition of \sortvonname:

@preamble{"\providecommand{\sortname}[2]{#2, #1}
\providecommand{\sortvonname}[3]{#3, #1 #2}"}

An alternative approach would be to format the names using BIBTEX’s contributor syntax and
use bibtex-contributor-fields={name} to convert them.

There are also some synonyms provided with @index entry types that have the alias
field to redirect to the main entry. These don’t include a description or any of the other
fields as that would be redundant. All the information can be found in the main entry.

Except for the aliases, the entries have a custom field identifier set to person. This will
be ignored by bib2gls unless it’s defined using \glsaddkey or \glsaddstoragekey or if
it’s aliased with field-aliases.

The contents of people.bib are as follows:

427

8 Examples: people.bib

% Encoding: UTF-8

@entry{caesar,
name={\sortname{Gaius Julius}{Caesar}},
first={\sortname{Julius}{Caesar}},
text={Caesar},
description={Roman politician and general},
born={13~July 100 BC},
died={15~March 44 BC},
identifier={person}

}

@entry{wellesley ,
name={\sortname{Arthur}{Wellesley}},
text={Wellington},
description={Anglo-Irish soldier and statesman},
born={1~May 1769 AD},
died={14~September 1852 AD},
othername={1st Duke of Wellington},
identifier={person}

}

@index{wellington ,
name={Wellington},
alias={wellesley},
identifier={person}

}

@entry{bonaparte ,
name={\sortname{Napoleon}{Bonaparte}},
text={Bonaparte},
description={French military and political leader},
born={15~July 1769 AD},
died={5~May 1821 AD},
identifier={person}

}

@entry{alexander ,
name={Alexander III of Macedon},
text={Alexander},
description={Ancient Greek king of Macedon},
born={20~July 356 BC},
died={10~June 323 BC},
othername={Alexander the Great},
identifier={person}

}

428

8 Examples: people.bib

@index{alexanderthegreat ,
name={Alexander the Great},
alias={alexander},
identifier={person}

}

@entry{vonrichthofen ,
name={\sortvonname{Manfred}{von}{Richthofen}},
text={von Richthofen},
description={Prussian ace fighter pilot in the German Air Force

during World War~I},
born={2~May 1892 AD},
died={21~April 1918 AD},
othername={The Red Baron},
identifier={person}

}

@index{redbaron ,
name={\sortart{The}{Red Baron}},
alias={vonrichthofen},
identifier={person}

}

@entry{dickens,
name={\sortname{Charles}{Dickens}},
text={Dickens},
description={English writer and social critic},
born={7~February 1812 AD},
died={9~June 1870 AD},
identifier={person}

}

@entry{chandler ,
name={\sortname{Raymond}{Chandler}},
text={Chandler},
description={American-British novelist and screenwriter},
born={23~July 1888 AD},
died={26~March 1959 AD},
identifier={person}

}

@entry{hammett,
name={\sortname{Samuel Dashiell}{Hammett}},
first={\sortname{Dashiell}{Hammett}},
text={Hammett},

429

8 Examples: people.bib

description={American author, screenwriter and political
activist},
born={27~May 1894 AD},
died={10~January 1961 AD},
identifier={person}

}

@entry{christie ,
name={\sortname{Dame Agatha Mary Clarissa}{Christie}},
first={\sortname{Agatha}{Christie}},
text={Christie},
othername={Lady Mallowan},
description={English crime novelist and playwright},
born={15~September 1890 AD},
died={12~January 1976 AD},
identifier={person}

}

@entry{landon,
name={\sortname{Christopher Guy}{Landon}},
first={\sortname{Christopher}{Landon}},
text={Landon},
description={British novelist and screenwriter},
born={29~March 1911 AD},
died={26~April 1961 AD},
identifier={person}

}

@entry{tolkien,
name={\sortname{John Ronald Reuel}{Tolkien}},
first={\sortname{J.R.R.}{Tolkien}},
text={Tolkien},
description={English writer, poet, philologist , and
university professor},
born={3~January 1892 AD},
died={2~September 1973 AD},
identifier={person}

}

@entry{baum,
name={\sortname{Lyman Frank}{Baum}},
first={\sortname{L.~Frank}{Baum}},
text={Baum},
description={American author},
born={15~May 1856 AD},
died={6~May 1919 AD},

430

8 Examples: people.bib

identifier={person}
}

@entry{mackenzie ,
name={\sortname{Compton}{Mackenzie}},
text={Mackenzie},
description={English-born Scottish writer, cultural

commentator , raconteur and Scottish nationalist},
born={17~January 1883 AD},
died={30~November 1972 AD},
identifier={person}

}

@entry{maclean,
name={\sortname{Alistair}{MacLean}},
text={MacLean},
description={Scottish novelist},
born={21~April 1922 AD},
died={2~February 1987 AD},
identifier={person}

}

@entry{dick,
name={\sortname{Philip K.}{Dick}},
text={Dick},
description={American science fiction writer},
born={16~December 1928 AD},
died={2~March 1982 AD},
identifier={person}

}

@entry{story,
name={\sortname{Jack Trevor}{Story}},
text={Story},
description={British novelist},
born={30~March 1917 AD},
died={5~December 1991 AD},
identifier={person}

}

@entry{greene,
name={\sortname{Henry Graham}{Green}},
first={\sortname{Graham}{Greene}},
text={Green},
description={English novelist},
born={2~October 1904 AD},

431

8 Examples: books.bib

died={3~April 1991 AD},
identifier={person}

}

books.bib
The books.bib file contains details about books. As above, the entries use custom commands
provided in no-interpret-preamble.bib and interpret-preamble.bib or interpret
-preamble2.bib. The entries all have a custom field identifier set to book and other
custom fields author and year. These will be ignored by bib2gls unless they’re defined
using \glsaddkey or \glsaddstoragekey or if they’re aliased with field-aliases.

There are other ways in which this data could be specified. For example, the description
field could contain a brief summary (or “log line”). The author field could use BIBTEX’s syntax
instead with bibtex-contributor-fields to convert it. Alternatively, the entries could be
defined using standard BIBTEX entry types that are all aliased to @bibtexentry.

The contents of books.bib are as follows:

% Encoding: UTF-8

@entry{ataleoftwocities ,
name={\sortart{A}{Tale of Two Cities}},
description={novel by Charles Dickens},
identifier={book},
author={\sortmediacreator{Charles}{Dickens}},
year={1859}

}

@entry{bleakhouse ,
name={Bleak House},
description={novel by Charles Dickens},
identifier={book},
author={\sortmediacreator{Charles}{Dickens}},
year={1852}

}

@entry{thebigsleep ,
name={\sortart{The}{Big Sleep}},
description={novel by Raymond Chandler},
identifier={book},
author={\sortmediacreator{Raymond}{Chandler}},
year={1939}

}

@entry{thelonggoodbye ,
name={\sortart{The}{Long Goodbye}},

432

8 Examples: books.bib

description={novel by Raymond Chandler},
identifier={book},
author={\sortmediacreator{Raymond}{Chandler}},
year={1953}

}

@entry{redharvest ,
name={Red Harvest},
description={novel by Dashiell Hammett},
identifier={book},
author={\sortmediacreator{Dashiell}{Hammett}},
year={1929}

}

@entry{murderontheorientexpress ,
name={Murder on the Orient Express},
description={novel by Agatha Christie},
identifier={book},
author={\sortmediacreator{Agatha}{Christie}},
year={1934}

}

@entry{whydidnttheyaskevans ,
name={Why Didn't They Ask Evans?},
description={novel by Agatha Christie},
identifier={book},
author={\sortmediacreator{Agatha}{Christie}},
year={1934}

}

@entry{icecoldinalex ,
name={Ice Cold in Alex},
description={novel by Christopher Landon},
identifier={book},
author={\sortmediacreator{Christopher}{Landon}},
year={1957}

}

@entry{thehobbit ,
name={\sortart{The}{Hobbit}},
description={novel by J.R.R. Tolkien},
identifier={book},
author={\sortmediacreator{J.R.R.}{Tolkien}},
year={1937}

}

433

8 Examples: books.bib

@entry{thelordoftherings ,
name={\sortart{The}{Lord of the Rings}},
description={novel by J.R.R. Tolkien},
identifier={book},
author={\sortmediacreator{J.R.R.}{Tolkien}},
year={1954}

}

@entry{thewonderfulwizardofoz ,
name={\sortart{The}{Wonderful Wizard of Oz}},
description={novel by L. Frank Baum},
identifier={book},
author={\sortmediacreator{L. Frank}{Baum}},
year={1900}

}

@entry{whiskygalore ,
name={Whisky Galore},
description={novel by Compton Mackenzie},
identifier={book},
author={\sortmediacreator{Compton}{Mackenzie}},
year={1947}

}

@entry{whereeaglesdare ,
name={Where Eagles Dare},
description={novel by Alistair MacLean},
identifier={book},
author={\sortmediacreator{Alistair}{MacLean}},
year={1967}

}

@entry{icestationzebra ,
name={Ice Station Zebra},
description={novel by Alistair MacLean},
identifier={book},
author={\sortmediacreator{Alistair}{MacLean}},
year={1963}

}

@entry{ubik,
name={Ubik},
description={novel by Philip K. Dick},
identifier={book},
author={\sortmediacreator{Philip K.}{Dick}},
year={1969}

434

8 Examples: films.bib

}

@entry{doandroidsdreamofelectricsheep ,
name={Do Androids Dream of Electric Sheep?},
description={novel by Philip K. Dick},
identifier={book},
author={\sortmediacreator{Philip K.}{Dick}},
year={1968}

}

@entry{thetroublewithharry ,
name={\sortart{The}{Trouble with Harry}},
description={novel by Jack Trevor Story},
identifier={book},
author={\sortmediacreator{Jack Trevor}{Story}},
year={1950}

}

@entry{brightonrock ,
name={Brighton Rock},
description={novel by Graham Greene},
identifier={book},
author={\sortmediacreator{Graham}{Greene}},
year={1938}

}

films.bib
The films.bib file contains details about films. As above, the entries use custom commands
provided in no-interpret-preamble.bib and interpret-preamble.bib. The entries all
have a custom field identifier set to film and other custom fields cast, director and
year. These will be ignored by bib2gls unless they’re defined using \glsaddkey or \gls-
addstoragekey or if they’re aliased with field-aliases.

This example file references entries defined in books.bib through the use of the special
ext1. prefix. To avoid a label conflict films.bib prefixes all labels with film. rather than
relying on label-prefix. This ensures that both books.bib and films.bib can be loaded
in the same resource set (otherwise they’d have to be loaded in separate resource sets with
different prefixes). Remember that you can use \glsxtrnewgls. For example:

\glsxtrnewgls{film.}{\film}

This means you can do, for example, just \film{bladerunner} if you want to reference a
film without worrying about the prefix.

As with all the example files, there are other ways in which to specify the data, depending
on your requirements. For example, the director field could use BIBTEX’s contributor syntax

435

8 Examples: films.bib

(as the cast field does). Some of the films actually had more than one director but only one
is listed per film in this sample file for simplicity. Similarly, the cast field only contains the
principal actors rather than the complete list. The book on which the film is based could be
contained in a cross-reference field or a custom basedon field.

The book “Do Androids Dream of Electric Sheep?” referenced at the end of the “Blade
Runner” film’s description ends with a question mark. (Similarly for “Why Didn’t They
Ask Evans?”) If the description field is simply set as:

description={a film starring Harrison Ford, Rutger Hauer
and Sean Young loosely based on the novel
\gls{ext1.doandroidsdreamofelectricsheep}},

then the postdot package option will produce an odd result as the inserted full stop immedi-
ately follows the question mark. This is an awkward situation. One possibility is to explicitly
put the full stop at the end of the description field for all the other entries and omit it for
the problematic entries, but this interferes with the possibility of a category-dependent post-
description hook.

Another option is to put \nopostdesc in the problematic entries. For example:

description={a film starring Harrison Ford, Rutger Hauer
and Sean Young loosely based on the novel
\gls{ext1.doandroidsdreamofelectricsheep}\nopostdesc},

Be careful with this as it will completely suppress the post-description hook. A third possi-
bility is to use \glsxtrnopostpunc instead:

description={a film starring Harrison Ford, Rutger Hauer
and Sean Young loosely based on the novel
\gls{ext1.doandroidsdreamofelectricsheep}\glsxtrnopostpunc},

This doesn’t interfere with the post-description hook but if a hook is provided the post-
punctuationmay then be required. In both of the above two cases, strip-trailing-nopost
could be used to remove the suppression commands from the description fields if a hook
is defined. However this doesn’t deal with hooks that only conditionally append text.

The best solution is with glossaries-extra v1.23+ which provides \glsxtrrestorepost-
punc for use in the category post-description hooks that counteracts \glsxtrnopostpunc.
This can be placed inside a conditional, as used in sample-media.tex, and does nothing if
\glsxtrnopostpunc doesn’t occur in the description field. (Note that \glsxtrrestore-
postpunc can’t be used to counteract \nopostdesc, since that completely suppresses the
hook.)

The contents of films.bib are as follows:

% Encoding: UTF-8

@entry{film.thebigsleep ,
name={\sortart{The}{Big Sleep}},
description={a film based on the novel

436

8 Examples: films.bib

\gls{ext1.thebigsleep}},
cast={Humphrey Bogart and Lauren Bacall},
identifier={film},
year={1946},
director={\sortmediacreator{Howard}{Hawks}}

}

@entry{film.thelonggoodbye ,
name={\sortart{The}{Long Goodbye}},
description={a film based on the novel
\gls{ext1.thelonggoodbye}},

cast={Elliott Gould and Nina van Pallandt},
identifier={film},
year={1973},
director={\sortmediacreator{Robert}{Altman}}

}

@entry{film.murderontheorientexpress ,
name={Murder on the Orient Express},
description={a film based on the novel
\gls{ext1.murderontheorientexpress}},

cast={Albert Finney and Lauren Bacall and Ingrid Bergman},
identifier={film},
director={\sortmediacreator{Sidney}{Lumet}},
year={1974}

}

@entry{film.whydidnttheyaskevans ,
name={Why Didn't They Ask Evans?},
description={a film based on the novel
\gls{ext1.whydidnttheyaskevans}\glsxtrnopostpunc},

cast={Francesca Annis and John Gielgud and Bernard Miles},
identifier={film},
director={\sortmediacreator{John}{Davies}},
year={1980}

}

@entry{film.icecoldinalex ,
name={Ice Cold in Alex},
description={a film based on the novel
\gls{ext1.icecoldinalex}},

cast={John Mills and Anthony Quayle and Sylvia Sims},
identifier={film},
year={1958},
director={\sortmediacreator{J. Lee}{Thompson}}

}

437

8 Examples: films.bib

@entry{film.anunexpectedjourney ,
name={\sortart{The}{Hobbit}:
\sortart{An}{Unexpected Journey}},

description={a film based on the novel \gls{ext1.thehobbit}},
cast={Martin Freeman and Ian McKellen and Richard Armitage},
identifier={film},
year={2012},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.desolationofsmaug ,
name={\sortart{The}{Hobbit}:
\sortart{The}{Desolation of Smaug}},

description={a film based on the novel
\gls{ext1.thehobbit}},

cast={Ian McKellen and Martin Freeman and Richard Armitage},
identifier={film},
year={2013},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.thebattleoffivearmies ,
name={\sortart{The}{Hobbit}:
\sortart{The}{Battle of Five Armies}},

description={a film based on the novel
\gls{ext1.thehobbit}},

cast={Ian McKellen and Martin Freeman and Richard Armitage},
identifier={film},
year={2014},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.thefellowshipofthering ,
name={\sortart{The}{Lord of the Rings}:
\sortart{The}{Fellowship of the Ring}},

description={a film based on the novel
\gls{ext1.thelordoftherings}},

cast={Elijah Wood and Ian McKellen and Orlando Bloom},
identifier={film},
year={2001},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.thetwotowers ,
name={\sortart{The}{Lord of the Rings}:

438

8 Examples: films.bib

\sortart{The}{Two Towers}},
description={a film based on the novel
\gls{ext1.thelordoftherings}},

cast={Elijah Wood and Ian McKellen and Viggo Mortensen},
identifier={film},
year={2002},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.thereturnoftheking ,
name={\sortart{The}{Lord of the Rings}:
\sortart{The}{Return of the King}},

description={a film based on the novel
\gls{ext1.thelordoftherings}},

cast={Elijah Wood and Viggo Mortensen and Ian McKellen},
identifier={film},
year={2003},
director={\sortmediacreator{Peter}{Jackson}}

}

@entry{film.thewizardofoz ,
name={\sortart{The}{Wizard of Oz}},
description={a film based on the novel
\gls{ext1.thewonderfulwizardofoz}},
cast={Judy Garland},
identifier={film},
year={1939},
director={\sortmediacreator{Victor}{Fleming}}

}

@entry{film.whiskygalore ,
name={Whisky Galore!},
description={a film based on the novel
\gls{ext1.whiskygalore}},

cast={Basil Radford and Joan Greenwood},
identifier={film},
year={1949},
director={\sortmediacreator{Alexander}{Mackendrick}}

}

@entry{film.whereeaglesdare ,
name={Where Eagles Dare},
description={a film based on the novel
\gls{ext1.whereeaglesdare}},

cast={Richard Burton and Clint Eastwood and Mary Ure},
identifier={film},

439

8 Examples: films.bib

year={1968},
director={\sortmediacreator{Brian G.}{Hutton}}

}

@entry{film.icestationzebra ,
name={Ice Station Zebra},
description={a film based on the novel
\gls{ext1.icestationzebra}},

cast={Rock Hudson and Ernest Borgnine},
identifier={film},
year={1968},
director={\sortmediacreator{John}{Sturges}}

}

@entry{film.bladerunner ,
name={Blade Runner},
description={a film loosely based on the novel
\gls{ext1.doandroidsdreamofelectricsheep}\glsxtrnopostpunc},

cast={Harrison Ford and Rutger Hauer and Sean Young},
identifier={film},
year={1982},
director={\sortmediacreator{Ridley}{Scott}}

}

@entry{film.thetroublewithharry ,
name={\sortart{The}{Trouble with Harry}},
description={a film based on the novel
\gls{ext1.thetroublewithharry}},

cast={John Forsythe and Shirley MacLaine},
identifier={film},
year={1955},
director={\sortmediacreator{Alfred}{Hitchcock}}

}

@entry{film.brightonrock ,
name={Brighton Rock},
description={a film based on the novel
\gls{ext1.brightonrock}},

cast={Richard Attenborough and Hermione Baddeley
and William Hartnell},

identifier={film},
year={1947},
director={\sortmediacreator{John}{Boutling}}

}

440

8 Examples: citations.bib

citations.bib
The citations.bib file is actually a BIBTEX file, but it can be parsed by bib2gls if the BIBTEX
entry types are converted to @bibtexentry, which can easily be done with:

entry-type-aliases={\GlsXtrBibTeXEntryAliases}

The field names will also need to be defined or aliased. For example:

field-aliases={title=name}

If bib2gls is then run with --cite-as-record any \citation commands found in the
.aux file will be treated as ignored records. The @preamble provides a formatting command
that’s used by both BIBTEX and bib2gls, so \providecommand is required rather than \new-
command as it will appear in both the .bbl and the .glstex files. (In general it’s best to use
\providecommand rather than \newcommand in the @preamble but in this case it’s essential.)
The contents of citations.bib are as follows:

% Encoding: UTF-8

@preamble{"\providecommand{\titlefmt}[1]{`#1'}"}

@article{duck2018,
author = {Dickie Duck and Jos\'{e} Arara and Polly Parrot},
title = {Avian friendship},
journal = {Fowl Times},
year = 2018,
volume = 7,
number = 5,
pages = "1032--5"

}

@book{duck2016,
author = {Dickie Duck},
title = {Feathered stunt doubles: \titlefmt{The Birds} and

other films},
publisher = {Duck Duck Goose},
year = 2016

}

@book{macaw,
author = {Prof Macaw},
title = {Annotated notes on the \titlefmt{Duck and Goose}

chronicles},
publisher = {Duck Duck Goose},
year = 2012

}

441

8 Examples: mathgreek.bib

@book{ing,
author = {Bor Ing},
title = {\titlefmt{Duck and Goose}: an allegory for modern

times?},
publisher = {Duck Duck Goose},
year = 2010

}

@article{parrot,
author = {Polly Parrot and Dickie Duck},
title = {\titlefmt{Duck and Goose} Cheat Sheet for Students},
journal = {Fowl Times},
year = 2013,
volume = 2,
number = 10,
pages = "15--23"

}

@book{parrot2012,
author = {A Parrot},
title = {My Friend is a Duck},
publisher = {Duck Duck Goose},
year = 2012

}

@book{quackalot ,
author = {Sir Quackalot},
title = {The Adventures of Duck and Goose},
publisher = {Duck Duck Goose},
year = 2011

}

mathgreek.bib
The mathgreek.bib file contains Greek letters for use in maths mode. These are all defined
with @symbol, which means that by default the sort field will be obtained from the label
not from the name field. However, if you want to sort by the name field (for example, with
sort-field={name}) the TEX Parser Library recognises all the mathematical Greek letter
commands provided in the LATEX kernel. Additionally it recognises \omicron which isn’t
provided by LATEX (the symbol can be reproduced with a lower case Latin “o”). Note that
glossaries-extra-bib2gls (glossaries-extra v1.27+) provides all the missing Greek letters (such
as \omicron).

The .bib file could just use o:

@symbol{omicron,

442

8 Examples: mathgreek.bib

name={\ensuremath{o}},
description={omicron},
identifier={mathgreek}

}

but this means that if bib2gls sorts according to the name field using a letter sort, this entry
will come before all the other Greek letters since the character “o” has Unicode value 0x6F
whereas, for example, mathematical italic small alpha (α) has Unicode value 0x1D6FC. This
means that for sorting purposes it’s better to use \omicron:

@symbol{omicron,
name={\ensuremath{\omicron}},
description={omicron},
identifier={mathgreek}

}

but LATEX needs a definition for this, so it’s provided in the @preamble:

@preamble{"\providecommand{\omicron}{o}"}

(With glossaries-extra v1.27+, this is no longer needed.) The TEX Parser Library and glossaries
-extra-bib2gls similarly provide the missing upper case Greek letters, and these can be dealt
with in the same way.

The contents of mathgreek.bib are as follows:
% Encoding: UTF-8

@preamble{"\providecommand{\omicron}{o}"}

@symbol{alpha,
name={\ensuremath{\alpha}},
description={alpha},
identifier={mathgreek}

}

@symbol{beta,
name={\ensuremath{\beta}},
description={beta},
identifier={mathgreek}

}

@symbol{gamma,
name={\ensuremath{\gamma}},
description={gamma},
identifier={mathgreek}

}

@symbol{delta,

443

8 Examples: mathgreek.bib

name={\ensuremath{\delta}},
description={delta},
identifier={mathgreek}

}

@symbol{varepsilon ,
name={\ensuremath{\varepsilon}},
description={epsilon (variant)},
identifier={mathgreek}

}

@symbol{zeta,
name={\ensuremath{\zeta}},
description={zeta},
identifier={mathgreek}

}

@symbol{eta,
name={\ensuremath{\eta}},
description={eta},
identifier={mathgreek}

}

@symbol{theta,
name={\ensuremath{\theta}},
description={theta},
identifier={mathgreek}

}

@symbol{iota,
name={\ensuremath{\iota}},
description={iota},
identifier={mathgreek}

}

@symbol{kappa,
name={\ensuremath{\kappa}},
description={kappa},
identifier={mathgreek}

}

@symbol{lambda,
name={\ensuremath{\lambda}},
description={lambda},
identifier={mathgreek}

444

8 Examples: mathgreek.bib

}

@symbol{mu,
name={\ensuremath{\mu}},
description={mu},
identifier={mathgreek}

}

@symbol{nu,
name={\ensuremath{\nu}},
description={nu},
identifier={mathgreek}

}

@symbol{xi,
name={\ensuremath{\xi}},
description={xi},
identifier={mathgreek}

}

@symbol{omicron,
name={\ensuremath{\omicron}},
description={omicron},
identifier={mathgreek}

}

@symbol{pi,
name={\ensuremath{\pi}},
description={pi},
identifier={mathgreek}

}

@symbol{rho,
name={\ensuremath{\rho}},
description={rho},
identifier={mathgreek}

}

@symbol{varsigma ,
name={\ensuremath{\varsigma}},
description={sigma (variant)},
identifier={mathgreek}

}

@symbol{sigma,
name={\ensuremath{\sigma}},

445

8 Examples: mathgreek.bib

description={sigma},
identifier={mathgreek}

}

@symbol{tau,
name={\ensuremath{\tau}},
description={tau},
identifier={mathgreek}

}

@symbol{upsilon,
name={\ensuremath{\upsilon}},
description={upsilon},
identifier={mathgreek}

}

@symbol{varphi,
name={\ensuremath{\varphi}},
description={phi (variant)},
identifier={mathgreek}

}

@symbol{chi,
name={\ensuremath{\chi}},
description={chi},
identifier={mathgreek}

}

@symbol{psi,
name={\ensuremath{\psi}},
description={psi},
identifier={mathgreek}

}

@symbol{omega,
name={\ensuremath{\omega}},
description={omega},
identifier={mathgreek}

}

@symbol{epsilon,
name={\ensuremath{\epsilon}},
description={epsilon},
identifier={mathgreek}

}

446

8 Examples: bigmathsymbols.bib

@symbol{vartheta ,
name={\ensuremath{\vartheta}},
description={theta (variant)},
identifier={mathgreek}

}

@symbol{varkappa ,
name={\ensuremath{\varkappa}},
description={kappa (variant)},
identifier={mathgreek}

}

@symbol{phi,
name={\ensuremath{\phi}},
description={phi},
identifier={mathgreek}

}

@symbol{varrho,
name={\ensuremath{\varrho}},
description={rho (variant)},
identifier={mathgreek}

}

@symbol{varpi,
name={\ensuremath{\varpi}},
description={pi (variant)},
identifier={mathgreek}

}

bigmathsymbols.bib
The bigmathsymbols.bib file contains mathematical symbols that have a large version in
display mode. As with mathgreek.bib the entries are defined using @symbol. This example
file requires the stix package as not all of the commands are provided by the LATEX kernel.
This file also has a preamble:

@preamble{"\providecommand{\bigoperatornamefmt}[1]{%
$\displaystyle#1\textstyle#1$}

\providecommand{\nary}[1]{$#1$-ary}"}

The first command \bigoperatornamefmt{〈text〉} is used in the name field to display both
the in-line and display versions of the symbol. The TEX Parser Library only has a limited
ability to interpret this as not all the symbols have Unicode in-line and large versions. In
some cases, such as the integral symbol

∫
, there is only a small version. (A large version

447

8 Examples: bigmathsymbols.bib

would require construction from 0x2320, 0x23AE and 0x2321, which is too complicated in
this context.) However, the interpreter works well enough to guess at the widest name if set
-widest is used. There’s no advantage in sorting according to the name field here, unless a
custom rule is provided, as the Unicode symbols are scattered about different blocks. Better
approaches are to sort according to document use (sort={use}) or to sort according to the
description field.

The other custom command is \nary{〈text〉} to provide semantic markup for “n-ary”.
This could be defined without an argument:

\providecommand{\nary}{n-ary}

but providing an argument will allow \nary{n} to work with first letter upper-casing in the
event that the description field has a case-change applied (otherwise it would end up as
“N -ARY”). Of course, it may be that no case-change should be applied, but this example is
just for illustrative purposes.

As with the other sample .bib files, each entry is given a custom identifier field, which
by default will be ignored. In this case, identifier is either set to naryoperator (for n-ary
operators) or integral for integrals.

The contents of bigmathsymbols.bib are as follows:
% Encoding: UTF-8

% requires stix.sty

@preamble{"\providecommand{\bigoperatornamefmt}[1]{%
$\displaystyle#1\textstyle#1$}

\providecommand{\nary}[1]{$#1$-ary}"}

@symbol{bigsqcap ,
name={\bigoperatornamefmt{\bigsqcap}},
text={\bigsqcap},
description={\nary{n} square intersection operator},
identifier={naryoperator}

}

@symbol{bigsqcup ,
name={\bigoperatornamefmt{\bigsqcup}},
text={\bigsqcup},
description={\nary{n} square union operator},
identifier={naryoperator}

}

@symbol{sum,
name={\bigoperatornamefmt{\sum}},
text={\sum},
description={\nary{n} summation},
identifier={naryoperator}

448

8 Examples: bigmathsymbols.bib

}

@symbol{prod,
name={\bigoperatornamefmt{\prod}},
text={\prod},
description={\nary{n} product},
identifier={naryoperator}

}

@symbol{coprod,
name={\bigoperatornamefmt{\coprod}},
text={\coprod},
description={\nary{n} coproduct},
identifier={naryoperator}

}

@symbol{bigcap,
name={\bigoperatornamefmt{\bigcap}},
text={\bigcap},
description={\nary{n} intersection},
identifier={naryoperator}

}

@symbol{bigcup,
name={\bigoperatornamefmt{\bigcup}},
text={\bigcup},
description={\nary{n} union},
identifier={naryoperator}

}

@symbol{bigodot,
name={\bigoperatornamefmt{\bigodot}},
text={\bigodot},
description={\nary{n} circled dot operator},
identifier={naryoperator}

}

@symbol{bigoplus ,
name={\bigoperatornamefmt{\bigoplus}},
text={\bigoplus},
description={\nary{n} circled plus operator},
identifier={naryoperator}

}

@symbol{bigotimes ,
name={\bigoperatornamefmt{\bigotimes}},

449

8 Examples: bigmathsymbols.bib

text={\bigotimes},
description={\nary{n} circled times operator},
identifier={naryoperator}

}

@symbol{biguplus ,
name={\bigoperatornamefmt{\biguplus}},
text={\biguplus},
description={\nary{n} union operator with plus},
identifier={naryoperator}

}

@symbol{bigvee,
name={\bigoperatornamefmt{\bigvee}},
text={\bigvee},
description={\nary{n} logical or},
identifier={naryoperator}

}

@symbol{bigwedge ,
name={\bigoperatornamefmt{\bigwedge}},
text={\bigwedge},
description={\nary{n} logical and},
identifier={naryoperator}

}

@symbol{int,
name={\bigoperatornamefmt{\int}},
text={\int},
description={integral},
identifier={integral}

}

@symbol{iint,
name={\bigoperatornamefmt{\iint}},
text={\iint},
description={double integral},
identifier={integral}

}

@symbol{iiint,
name={\bigoperatornamefmt{\iiint}},
text={\iiint},
description={triple integral},
identifier={integral}

}

450

8 Examples: mathsrelations.bib

@symbol{oint,
name={\bigoperatornamefmt{\oint}},
text={\oint},
description={contour integral},
identifier={integral}

}

@symbol{oiint,
name={\bigoperatornamefmt{\oiint}},
text={\oiint},
description={surface integral},
identifier={integral}

}

@symbol{oiiint,
name={\bigoperatornamefmt{\oiiint}},
text={\oiiint},
description={volume integral},
identifier={integral}

}

mathsrelations.bib
The mathsrelations.bib file contains mathematical relational symbols. These use the
maths shift character $ in the name field and just the symbol in the text field. This just il-
lustrates an alternative way of defining symbols. Since \ensuremath isn’t used, commands
like \gls must be explicitly placed in maths mode. For example, \gls{leq} rather than
simply \gls{leq}. The custom identifier field is set to relation.

The contents of mathsrelations.bib are as follows:
% Encoding: UTF-8

@symbol{leq,
name={\leq},
text={\leq},
description={less than or equal to},
identifier={relation}

}

@symbol{less,
name={$<$},
text={<},
description={less than},
identifier={relation}

}

451

8 Examples: mathsrelations.bib

@symbol{ll,
name={\ll},
text={\ll},
description={much less than},
identifier={relation}

}

@symbol{geq,
name={\geq},
text={\geq},
description={greater than or equal to},
identifier={relation}

}

@symbol{greater,
name={$>$},
text={>},
description={greater than},
identifier={relation}

}

@symbol{gg,
name={\gg},
text={\gg},
description={much greater than},
identifier={relation}

}

@symbol{equals,
name={$=$},
text={=},
description={equals},
identifier={relation}

}

@symbol{neq,
name={\neq},
text={\neq},
description={not equals},
identifier={relation}

}

@symbol{approx,
name={\approx},
text={\approx},

452

8 Examples: binaryoperators.bib

description={approximately},
identifier={relation}

}

@symbol{in,
name={\in},
text={\in},
description={in},
identifier={relation}

}

@symbol{ni,
name={\ni},
text={\ni},
description={not in},
identifier={relation}

}

binaryoperators.bib
The binaryoperators.bib file containsmathematical binary operators. The format ismuch
like the above mathsrelations.bibfile. The custom identifierfield is set to binaryoperator.

The contents of binaryoperators.bib are as follows:
% Encoding: UTF-8

@symbol{plus,
name={$+$},
text={+},
description={addition},
identifier={binaryoperator}

}

@symbol{minus,
name={$-$},
text={-},
description={subtraction},
identifier={binaryoperator}

}

@symbol{times,
name={\times},
text={\times},
description={multiplication},
identifier={binaryoperator}

}

453

8 Examples: unaryoperators.bib

@symbol{div,
name={\div},
text={\div},
description={division},
identifier={binaryoperator}

}

unaryoperators.bib
The unaryoperators.bib file contains mathematical unary operators. As above, this again
uses @symbol to define the symbols, but in this case \ensuremath is used in the name field
and there’s no text field. I’ve also used \mathord to ensure the symbol is treated as a unary
(rather than binary) operator, except for the \forall entry which is already defined as an
ordinary maths symbol.

The contents of unaryoperators.bib are as follows:

% Encoding: UTF-8

@symbol{factorial ,
name={\ensuremath{\mathord{!}}},
description={factorial},
identifier={unary}

}

@symbol{unaryplus ,
name={\ensuremath{\mathord{+}}},
description={plus},
identifier={unary}

}

@symbol{unaryminus ,
name={\ensuremath{\mathord{-}}},
description={minus},
identifier={unary}

}

@symbol{forall,
name={\ensuremath{\forall}},
description={for all},
identifier={unary}

}

454

8 Examples: mathsobjects.bib

mathsobjects.bib
The mathsobjects.bib file contains entries related to mathematical objects (sets, spaces,
vectors and matrices). This provides some custom formatting commands in the preamble:

\setfmt{〈symbol〉}

which is used to format 〈symbol〉 as a set,

\setcontentsfmt{〈contents〉}

which is used to format the set contents,

\setmembershipfmt{〈variable(s)〉}{〈condition〉}

which is used to format the set membership criteria,

\setcardfmt{〈maths〉}

which is used to format the cardinality of a set, (Note this uses \vert not | as in some of the
earlier examples.)

\numspacefmt{〈symbol〉}

which is used to format 〈symbol〉 as a number space,

\transposefmt{〈maths〉}

which is used to format matrix and vector transposes,

\invfmt{〈maths〉}

which is used to format inverses,

\vecfmt{〈symbol〉}

which is used to format 〈symbol〉 as a vector, and

\mtxfmt{〈symbol〉}

which is used to format 〈symbol〉 as a matrix. These commands are intended for use with
\glsxtrfmt, but \setmembershipfmt causes a problem as it has two arguments and \gls-
xtrfmt requires the control sequence to have exactly one argument. This means employing
a little trick. A command with just one argument is provided:

\setmembershiponeargfmt{{〈variable(s)〉}{〈condition〉}}

that requires the actual two arguments to be supplied inside #1. The outer grouping is re-
moved and the two-argument \setmembershipfmt command is applied:

\providecommand{\setmembershiponeargfmt}[1]{\setmembershipfmt#1}

455

8 Examples: mathsobjects.bib

This means that the entry needs to be referenced in the document using:

\glsxtrfmt{setmembership}{{〈variable(s)〉}{〈condition〉}}

The simplest thing to do here is to provide a wrapper command in the document, for example:

\newcommand*{\setmembership}[2]{\glsxtrfmt{setmembership}{{#1}{#2}}}

Now this can be used as:

\setmembership{〈variable(s)〉}{〈condition〉}

There are essentially two types of entry defined in this file: entries that demonstrate the
formatting for the objects and entries that represent specific objects. In the first case there’s
a custom format field that’s set to the control sequence name of the relevant semantic com-
mand. If this field is defined or aliased then it can be usedwith \glsxtrfmt (as in the example
above).

In both cases there’s a custom identifier field that reflects the type of object: set for
sets, numberspace for number spaces, matrix for matrices or vectors.

Be careful with the set cardinality example. Remember that nested links cause problems
and the glossaries-extra manual advises against using commands like \gls or \glsxtrfmt
within link text and that includes within the 〈text〉 argument of \glsxtrfmt. See sample
-maths.tex for suggested usage.

Some of the description fields use \sortart, so no-interpret-preamble.bib and
interpret-preamble.bib are also needed.

The contents of mathsobjects.bib are as follows:

% Encoding: UTF-8

% requires amssymb.sty

@preamble{"\providecommand{\setfmt}[1]{\mathcal{#1}}
\providecommand{\setcontentsfmt}[1]{\{#1\}}
\providecommand{\setmembershipfmt}[2]{\setcontentsfmt{#1: #2}}
\providecommand{\setmembershiponeargfmt}[1]{\setmembershipfmt#1}
\providecommand{\setcardfmt}[1]{\lvert#1\rvert}
\providecommand{\numspacefmt}[1]{\mathbb{#1}}
\providecommand{\transposefmt}[1]{#1^T}
\providecommand{\invfmt}[1]{#1^{-1}}
\providecommand{\vecfmt}[1]{\boldsymbol{#1}}
\providecommand{\mtxfmt}[1]{\boldsymbol{#1}}"}

@symbol{set,
name={\ensuremath{\setfmt{S}}},
description={\sortart{a}{set}},
format={setfmt},
identifier={set}

}

456

8 Examples: mathsobjects.bib

@symbol{setcontents ,
name={\ensuremath{\setcontentsfmt{\ldots}}},
description={set contents},
format={setcontentsfmt},
identifier={set}

}

@symbol{setmembership ,
name={\ensuremath{\setmembershipfmt{\vecfmt{x}}{\ldots}}},
description={set membership},
format={setmembershiponeargfmt},
identifier={set}

}

@symbol{setcard,
name={\ensuremath{\setcardfmt{\setfmt{S}}}},
description={\sortart{the}{cardinality of \setfmt{S}}},
format={setcardfmt},
identifier={set}

}

@symbol{numberspace ,
name={\ensuremath{\numspacefmt{S}}},
description={\sortart{a}{number space}},
format={numspacefmt},
identifier={numberspace}

}

@symbol{naturalnumbers ,
name={\ensuremath{\numspacefmt{N}}},
description={\sortart{the}{set of natural numbers}},
identifier={numberspace}

}

@symbol{integernumbers ,
name={\ensuremath{\numspacefmt{Z}}},
description={\sortart{the}{set of integers}},
identifier={numberspace}

}

@symbol{rationalnumbers ,
name={\ensuremath{\numspacefmt{Q}}},
description={\sortart{the}{set of rational numbers}},
identifier={numberspace}

}

457

8 Examples: mathsobjects.bib

@symbol{algebraicnumbers ,
name={\ensuremath{\numspacefmt{A}}},
description={\sortart{the}{set of algebraic numbers}},
identifier={numberspace}

}

@symbol{realnumbers ,
name={\ensuremath{\numspacefmt{R}}},
description={\sortart{the}{set of real numbers}},
identifier={numberspace}

}

@symbol{imaginarynumbers ,
name={\ensuremath{\numspacefmt{I}}},
description={\sortart{the}{set of imaginary numbers}},
identifier={numberspace}

}

@symbol{complexnumbers ,
name={\ensuremath{\numspacefmt{C}}},
description={\sortart{the}{set of complex numbers}},
identifier={numberspace}

}

@symbol{emptyset ,
name={\ensuremath{\emptyset}},
description={\sortart{the}{empty set}},
identifier={set}

}

@symbol{universalset ,
name={\ensuremath{\setfmt{U}}},
description={\sortart{the}{universal set}},
identifier={set}

}

@symbol{transpose ,
name={\ensuremath{\transposefmt{\vecfmt{x}}}},
description={\sortart{the}{transpose of \vecfmt{x}}},
format={transposefmt},
identifier={matrix}

}

@symbol{inverse,
name={\ensuremath{\invfmt{\mtxfmt{M}}}},

458

8 Examples: miscsymbols.bib

description={\sortart{the}{inverse of \mtxfmt{M}}},
format={invfmt},
identifier={matrix}

}

@symbol{vector,
name={\ensuremath{\vecfmt{v}}},
description={\sortart{a}{vector}},
format={vecfmt},
identifier={matrix}

}

@symbol{matrix,
name={\ensuremath{\mtxfmt{M}}},
description={\sortart{a}{matrix}},
format={mtxfmt},
identifier={matrix}

}

@symbol{0vec,
name={\ensuremath{\vecfmt{0}}},
description={\sortart{the}{vector of 0s}},
identifier={matrix}

}

@symbol{1vec,
name={\ensuremath{\vecfmt{1}}},
description={\sortart{the}{vector of 1s}},
identifier={matrix}

}

@symbol{identitymatrix ,
name={\ensuremath{\mtxfmt{I}}},
description={\sortart{the}{identity matrix}},
identifier={matrix}

}

miscsymbols.bib
The miscsymbols.bib file contains text symbols provided by the marvosym and ifsym pack-
ages. The ifsym package needs to be loaded with the weather option to provide the weather
commands. Unfortunately both packages define \Sun and \Lightning, which causes a con-
flict. See sample-textsymbols.tex for a workaround. Alternatively, you can load ifsym
without the weather option and use the internal definition of ifsym’s \Sun and \Lightning
commands:

459

8 Examples: miscsymbols.bib

@icon{sun,
icon={\textweathersymbol{16}},
description={sunny},
identifier={weather}

}

@icon{lightning,
icon={\textweathersymbol{26}},
description={thunderstorm},
identifier={weather}

}

This removes the conflict, and \Sun and \Lightning are as defined by marvosym.
This file uses a custom entry type @icon, which must be aliased to a recognised entry

identifier otherwise the entries will all be ignored. For example:

entry-type-aliases={icon=symbol}

There are three types of symbols defined: media controls, information and weather. They
have the custom identifier field set to mediacontrol, information and weather, re-
spectively. There are two other custom fields: icon and icondescription. These will need
to be aliased to name and description.

Neither of these packages are recognised by bib2gls, which means that set-widest
won’t be able to determine the widest name nor is this data suitable for sorting according to
the icon field (or its alias). Instead, either sort by label (which is the default for @symbol) or
by the description. If youwant to use one of the alttree styles you can still use set-widest,
but it will have to use the fallback command. Alternatively, you can omit set-widest and
explicitly use \glsFindWidestTopLevelName.

The contents of miscsymbols.bib are as follows:
% Encoding: UTF-8

% requires marvosym.sty and ifsym.sty

@icon{forward,
icon={\Forward},
icondescription={play},
identifier={mediacontrol}

}

@icon{forwardtoindex ,
icon={\ForwardToIndex},
icondescription={next track},
identifier={mediacontrol}

}

@icon{rewindtoindex ,

460

8 Examples: miscsymbols.bib

icon={\RewindToIndex},
icondescription={back to start of track},
identifier={mediacontrol}

}

@icon{rewind,
icon={\Rewind},
icondescription={rewind},
identifier={mediacontrol}

}

@icon{bicycle,
icon={\Bicycle},
icondescription={bicycle route},
identifier={information}

}

@icon{coffeecup ,
icon={\Coffeecup},
icondescription={caf\'e},
identifier={information}

}

@icon{info,
icon={\Info},
icondescription={information centre},
identifier={information}

}

@icon{gentsroom ,
icon={\Gentsroom},
icondescription={Gents},
identifier={information}

}

@icon{ladiesroom ,
icon={\Ladiesroom},
icondescription={Ladies},
identifier={information}

}

@icon{wheelchair ,
icon={\Wheelchair},
icondescription={wheelchair access provided},
identifier={information}

}

461

8 Examples: miscsymbols.bib

@icon{football ,
icon={\Football},
icondescription={football stadium},
identifier={information}

}

@icon{recycling ,
icon={\Recycling},
icondescription={recycling centre},
identifier={information}

}

@icon{cloud,
icon={\Cloud},
icondescription={cloudy},
identifier={weather}

}

@icon{fog,
icon={\Fog},
icondescription={foggy},
identifier={weather}

}

@icon{thinfog,
icon={\ThinFog},
icondescription={misty},
identifier={weather}

}

@icon{hail,
icon={\Hail},
icondescription={hail},
identifier={weather}

}

@icon{sun,
icon={\Sun},
icondescription={sunny},
identifier={weather}

}

@icon{lightning ,
icon={\Lightning},
icondescription={thunderstorm},

462

8 Examples: markuplanguages.bib

identifier={weather}
}

@icon{suncloud ,
icon={\SunCloud},
icondescription={overcast},
identifier={weather}

}

@icon{raincloud ,
icon={\RainCloud},
icondescription={rain},
identifier={weather}

}

@icon{weakraincloud ,
icon={\WeakRainCloud},
icondescription={drizzle},
identifier={weather}

}

@icon{snowcloud ,
icon={\SnowCloud},
icondescription={snow},
identifier={weather}

}

markuplanguages.bib
The markuplanguages.bib file includes a mixture of @entry and @abbreviation defini-
tions. A custom command is provided in @preamble to tag the letters in the long field that
are used to form the abbreviation. This simply does its argument and is provided in case it’s
not set up in the document. If you dowant to enable tagging using \GlsXtrEnableInitial-
Tagging, remember that this command must be used before the abbreviations are defined,
which means before the resource file is input with \GlsXtrLoadResources. Similarly, the
abbreviation style must be set before the abbreviations are defined.

For convenience @string is also used to define a .bib variable, whichmay be appended to
fields using the .bib concatenation character #. As with the other sample .bib files, there’s
a custom field identifier which will be ignored unless defined or aliased.

The empty braces at the start some of the fields are there to protect against first letter
uppercasing within TEX, where it might cause a problem. (For example, with the glossname
attribute.)

The contents of markuplanguages.bib are as follows:

% Encoding: UTF-8

463

8 Examples: markuplanguages.bib

@preamble{"\providecommand{\abbrvtag}[1]{#1}"}
@string{markuplang="\abbrvtag{m}arkup \abbrvtag{l}anguage"}

@entry{TeX,
name={{}\TeX},
description={a format for describing complex type and page layout

often used for mathematics , technical , and academic publications},
identifier={markuplanguage}

}

@entry{LaTeX,
name={{}\LaTeX},
description={a format of \glstext{TeX} designed to separate
content from style},

identifier={markuplanguage}
}

@entry{markdown ,
name={markdown},
description={a lightweight markup language with plain text

formatting syntax},
identifier={markuplanguage}

}

@abbreviation{xml,
short={XML},
long={e\abbrvtag{x}tensible }#markuplang ,
description={a markup language that defines a set of rules for

encoding documents},
identifier={markuplanguage}

}

@abbreviation{html,
short={HTML},
long={\abbrvtag{h}yper\abbrvtag{t}ext }#markuplang ,
description={the standard markup language for creating web pages},
identifier={markuplanguage}

}

@abbreviation{mathml,
short={MathML},
long={\abbrvtag{m\NoCaseChange{ath}}ematical }#markuplang ,
description={markup language for describing mathematical notation},
identifier={markuplanguage}

}

464

8 Examples: usergroups.bib

@abbreviation{xhtml,
short={XHTML},
long={e\abbrvtag{x}tensible \abbrvtag{h}yper\abbrvtag{t}ext }

markuplang ,
description={{}\glstext{xml} version of \glstext{html}},
identifier={markuplanguage}

}

@abbreviation{svg,
short={SVG},
long={\abbrvtag{s}calable \abbrvtag{v}ector \abbrvtag{g}raphics},
description={{}\glstext{xml}-based vector image format},
identifier={markuplanguage}

}

usergroups.bib
The usergroups.bib file requires either XƎLATEX or LuaLATEX as some of the entry labels use
non-ASCII characters. This file has a mixture of @abbreviation and @index entries. It also
uses @string for convenience and provides a custom command \dash in @preamble. Each
entry is the name of a TEX user group: the international TEX Users Group (tug) and all the lo-
cal groups. Most of them have an abbreviated name, so they’re definedwith @abbreviation.
There are a few without an abbreviation, so they’re defined with @index instead. There’s one
alias. (The information was obtained from tug’s user groups page [19].)

As with the other examples, there are some custom fields which will be ignored if they
aren’t defined or aliased: identifier (set to texusergroup), language (a comma-separated
list of language tags) and translation (provides a translation if the user group name isn’t
in English).

Not all entries have a translation field. It it’s omitted, then the user group name is in
English, otherwise it’s in the first language listed in the language field. Most of the language
tags are just the ISO 639-1 language code, but a few of them include the ISO 3166-1 region
code as well.

The contents of usergroups.bib are as follows:

% Encoding: UTF-8

% Requires XeLaTeX/LuaLaTeX for non-ASCII labels

@string{tug={\TeX\ Users Group}}

@preamble{"\providecommand{\dash}{\,---\,}"}

@abbreviation{TUG,
short={TUG},

465

http://tug.org/usergroups.html

8 Examples: usergroups.bib

long=tug,
language={en},
identifier={texusergroup}

}

@abbreviation{bgTeX,
short={bgTeX},
long={Bulgarian \LaTeX\ Users Group},
language={bg},
identifier={texusergroup}

}

@abbreviation{latex-br,
short={latex-br},
long={Grupo de Usuários},
language={pt-BR},
identifier={texusergroup},
translation={Brazilian }#tug

}

@abbreviation{CTeX,
short={CTeX},
long={Chinese \TeX\ Society},
identifier={texusergroup},
language={zh}

}

@abbreviation{CSTUG,
short={CSTUG},
long={Československé sdružení uživatelů TeXu, z.~s.},
language={cs},
identifier={texusergroup},
translation={Czech Republic }#tug

}

@abbreviation{DANTE,
short={DANTE e.V.},
long={Deutschsprachige Anwendervereinigung \TeX\ e.V.},
language={de},
identifier={texusergroup},
translation={German Speaking }#tug

}

@abbreviation{DKTUG,
short={DK-TUG},
long={Danish }#tug,

466

8 Examples: usergroups.bib

language={da},
identifier={texusergroup}

}

@index{EUG,
name={Estonian User Group},
language={et},
identifier={texusergroup}

}

@abbreviation{CervanTeX ,
short={CervanTeX},
long={Grupo de Usuarios de \TeX\ Hispanohablantes},
language={es},
identifier={texusergroup},
translation={Spanish Speaking }#tug

}

@abbreviation{TirantloTeX ,
short={Tirant lo \TeX},
long={Catalan }#tug,
language={ca},
identifier={texusergroup}

}

@abbreviation{GUTenberg ,
short={GUTenberg},
long={Groupe francophone des utilisateurs de \TeX},
language={fr},
identifier={texusergroup},
translation={French Speaking }#tug

}

@abbreviation{UKTUG,
short={UK-TUG},
long={UK }#tug,
language={en-GB},
identifier={texusergroup}

}

@abbreviation{ɛϕτ,
short={ɛϕτ},
long={Σύλλογος Ελλήνων Φίλων του \TeX},
language={el},
identifier={texusergroup},
translation={Greek \TeX\ Friends}

467

8 Examples: usergroups.bib

}

@abbreviation{MaTeX,
short={MaTeX},
long={Magyar \TeX\ Egyesület},
language={hu},
identifier={texusergroup},
translation={Hungarian }#tug

}

@abbreviation{ITALIC,
short={ITALIC},
long={Irish \TeX\ and \LaTeX\ In-print Community},
language={en-IE,en-GB},
identifier={texusergroup}

}

@abbreviation{ÍsTeX,
short={ÍsTeX},
long={Vefur íslenskra \TeX\ notenda},
language={is},
identifier={texusergroup},
translation={Icelandic }#tug

}

@abbreviation{GuIT,
short={GuIT},
long={Gruppo Utilizzatori Italiani di \TeX},
language={it},
identifier={texusergroup},
translation={Italian }#tug

}

@abbreviation{KTS,
short={KTS},
identifier={texusergroup},
long={Korean \TeX\ Society},
language={ko}

}

@index{KTUG,
alias={KTS},
identifier={texusergroup}

}

@index{LTVG,

468

8 Examples: usergroups.bib

name={Lietuvos \TeX'o Vartotojų Grupė},
language={lt},
identifier={texusergroup},
translation={Lithuanian }#tug

}

@index{mxTeX,
name={\TeX\ México},
language={es-MX},
identifier={texusergroup},
translation={Mexican }#tug

}

@abbreviation{NTG,
short={NTG},
long={Nederlandstalige \TeX\ Gebruikersgroep},
language={nl},
identifier={texusergroup},
translation={Netherlands }#tug

}

@index{NTUG,
name={Nordic \TeX\ Users Group},
language={da,et,fi,fo,is,nb,nn,sv},
identifier={texusergroup}

}

@abbreviation{GUST,
short={GUST},
long={Polska Grupa Użytkowników Systemu \TeX},
language={pl},
identifier={texusergroup},
translation={Polish }#tug

}

@abbreviation{GUTpt,
short={GUTpt},
long={Grupo de Utilizadores de \TeX},
language={pt},
identifier={texusergroup},
translation={Portuguese }#tug

}

@abbreviation{VietTUG,
short={VietTUG},
long={Vietnamese }#tug,

469

8 Examples: animals.bib

language={vi},
identifier={texusergroup}

}

@abbreviation{LUGSA,
short={LUGSA},
long={\LaTeX\ User Group\dash South Africa},
language={en-ZA},
identifier={texusergroup}

}

animals.bib
The animals.bib file contains entries defined using @entry. As with the above example
.bib files, there’s a custom identifier field that will be ignored unless defined or aliased.

The contents of animals.bib are as follows:
% Encoding: UTF-8

@entry{duck,
name={duck},
description={a waterbird with webbed feet},
identifier={animal}

}

@entry{parrot,
name={parrot},
description={mainly tropical bird with bright plumage},
identifier={animal}

}

@entry{goose,
name={goose},
plural={geese},
description={a large waterbird with a long neck, short legs,
webbed feet and a short broad bill},

identifier={animal}
}

@entry{swan,
name={swan},
description={a large waterbird with a long flexible neck,
short legs, webbed feet and a broad bill},

identifier={animal}
}

470

8 Examples: animals.bib

@entry{chicken,
name={chicken},
description={a domestic fowl},
identifier={animal}

}

@entry{aardvark ,
name={aardvark},
description={nocturnal African burrowing mammal},
identifier={animal}

}

@entry{zebra,
name={zebra},
description={wild African horse with black-and-white stripes},
identifier={animal}

}

@entry{armadillo ,
name={armadillo},
description={nocturnal insectivore with large claws},
identifier={animal}

}

@entry{zander,
name={zander},
description={large freshwater perch},
identifier={animal}

}

@entry{hedgehog ,
name={hedgehog},
description={small nocturnal mammal with a spiny coat and
short legs},

identifier={animal}
}

@entry{seal,
name={seal},
description={sea-dwelling fish-eating mammal with flippers},
identifier={animal}

}

@entry{sealion,
name={sea lion},
description={a large type of \gls{seal}},

471

8 Examples: minerals.bib

identifier={animal}
}

minerals.bib
The minerals.bib file contains entries defined using @entry. As with the above example
.bib files, there’s a custom identifier field that will be ignored unless defined or aliased.

The contents of minerals.bib are as follows:
% Encoding: UTF-8

@entry{quartz,
name={quartz},
description={hard mineral consisting of silica},
identifier={mineral}

}

@entry{corundum ,
name={corundum},
description={crystalline form of aluminium oxide},
identifier={mineral}

}

@entry{beryl,
name={beryl},
description={composed of beryllium aluminium cyclosilicate},
identifier={mineral}

}

@entry{amethyst ,
name={amethyst},
description={purple variety of \gls{quartz}},
identifier={mineral}

}

@entry{chalcedony ,
name={chalcedony},
description={cryptocrystalline variety of \gls{quartz}},
identifier={mineral}

}

@entry{citrine,
name={citrine},
description={yellow variety of \gls{quartz}},
identifier={mineral}

}

472

8 Examples: minerals.bib

@entry{aquamarine ,
name={aquamarine},
description={light blue variety of \gls{beryl}},
identifier={mineral}

}

@entry{aragonite ,
name={aragonite},
description={a crystal form of calcium carbonate},
identifier={mineral}

}

@entry{calcite,
name={calcite},
description={a crystal form of calcium carbonate},
identifier={mineral}

}

@entry{vaterite ,
name={vaterite},
description={a crystal form of calcium carbonate},
identifier={mineral}

}

@entry{bakerite ,
name={bakerite},
description={a borosilicate mineral},
identifier={mineral}

}

@entry{bilinite ,
name={bílinite},
description={an iron sulfate mineral},
identifier={mineral}

}

@entry{biotite,
name={biotite},
description={a common phyllosilicate mineral},
identifier={mineral}

}

@entry{cobaltite ,
name={cobaltite},
description={a sulfide mineral composed of cobalt, arsenic and

473

8 Examples: vegetables.bib

sulfur},
identifier={mineral}

}

@entry{cyanotrichite ,
name={cyanotrichite},
description={a hydrous copper aluminium sulfate mineral},
identifier={mineral}

}

@index{lettsomite ,
alias={cyanotrichite},
identifier={mineral}

}

@entry{diamond,
name={diamond},
description={a metastable allotrope of carbon},
identifier={mineral}

}

@entry{dolomite ,
name={dolomite},
description={an anhydrous carbonate mineral},
identifier={mineral}

}

@entry{quetzalcoatlite ,
name={quetzalcoatlite},
description={a rare tellurium oxysalt mineral},
identifier={mineral}

}

@entry{vulcanite ,
name={vulcanite},
description={a rare copper telluride mineral},
identifier={mineral}

}

vegetables.bib
The vegetables.bib file contains entries defined using @entry and an entry defined with
@index with just the alias field. As with the above example .bib files, there’s a custom
identifier field that will be ignored unless defined or aliased.

The contents of vegetables.bib are as follows:

474

8 Examples: vegetables.bib

% Encoding: UTF-8

@entry{cabbage,
name={cabbage},
description={vegetable with thick green or purple leaves},
identifier={vegetable}

}

@entry{brussels -sprout,
name={Brussels sprout},
description={small leafy green vegetable buds},
identifier={vegetable}

}

@entry{artichoke ,
name={artichoke},
description={a variety of thistle cultivated as food},
identifier={vegetable}

}

@entry{cauliflower ,
name={cauliflower},
description={type of cabbage with edible white flower head},
identifier={vegetable}

}

@entry{spinach,
name={spinach},
description={green, leafy vegetable},
identifier={vegetable}

}

@entry{marrow,
name={marrow},
description={long white-fleshed gourd with green skin},
identifier={vegetable}

}

@entry{courgette ,
name={courgette},
description={immature fruit of a vegetable \gls{marrow}},
identifier={vegetable}

}

@index{zucchini ,
name={zucchini},

475

8 Examples: terms.bib

alias={courgette},
identifier={vegetable}

}

terms.bib
The terms.bib file contains entries defined using @index. Unlike the above sample .bib
files, there are no custom fields here.

The contents of terms.bib are as follows:
% Encoding: UTF-8

@index{mineral}
@index{vegetable}
@index{animal}
@index{film}
@index{book}
@index{bacteria ,

text={bacterium},
plural={bacteria}

}
@index{chemical ,

name={chemical formula},
plural={chemical formulae}

}
@index{baseunit ,
name={base SI unit}

}
@index{derivedunit ,
name={derived SI unit}

}
@index{person,

plural={people}
}
@index{markuplanguage ,

name={markup language}
}

@index{mediacontrol ,
name={media control}

}

@index{information}

@index{weather}

476

8 Examples: topics.bib

@index{measurement}

topics.bib
The topics.bib file contains entries defined using @index. Again there are no custom fields
here.

The contents of topics.bib are as follows:

% Encoding: UTF-8

@index{information}
@indexplural{mediacontrol ,text={media control}}
@indexplural{weather,text={weather symbol}}

sample-hierarchical.tex
This example uses the terms.bib, animals.bib, minerals.bib and vegetables.bib files
to create a hierarchical glossary. These are specified with the resource option:

src={terms,animals,minerals,vegetables}

The custom identifier field is aliased to the parent field since it conveniently matches the
labels of the animal, mineral and vegetable entries in the terms.bib file:

field-aliases={identifier=parent}

The default selection setting means that only those terms referenced in the document and
their dependencies are selected. The referenced entries simply have “1” in the location list as
it’s only a trivial single-paged example.

The dependencies that haven’t actually been referenced in the document don’t have a
location list. (The “seal” entry is a dependency, but it’s also been referenced in the document,
so it has a location list.) The “quartz”, “beryl” and “marrow” entries are dependencies because
they occur in the description of some of the referenced entries. Normally this would mean
that they have no location list after the first LATEX+bib2gls+LATEX build but once the glossary
has been created the references to those dependent entries in the descriptions will create
records and so on the next bib2gls+LATEX they will also have location lists. This would
make the complete document build:

pdflatex sample-hierarchical
bib2gls --group sample-hierarchical
pdflatex sample-hierarchical
bib2gls --group sample-hierarchical
pdflatex sample-hierarchical

However, in this example I’ve decided to ignore any records created in the glossary:

477

8 Examples: sample-nested.tex

\GlsXtrSetDefaultNumberFormat{glsignore}

This means that the document build is the usual LATEX+bib2gls+LATEX.
I’ve used the treegroup style so I need to invoke bib2gls with the --group switch. This

creates letter groups for the top-level entries. Note that sub-entries never have letter groups.
The complete code is listed below. The document build is:

pdflatex sample-hierarchical
bib2gls --group sample-hierarchical
pdflatex sample-hierarchical

The complete document is shown in figure 8.1.
\documentclass[12pt,a4paper]{article}

\usepackage[T1]{fontenc}
\usepackage[colorlinks]{hyperref}

\usepackage[record,% use bib2gls
nostyles,% don't load default styles
postdot,% add a full stop after the description

% load glossary-tree.sty and patch styles:
stylemods={tree},
style=treegroup]{glossaries -extra}

\GlsXtrLoadResources[
src={terms,animals,minerals ,vegetables},% data these .bib files
field-aliases={identifier=parent}

]

\begin{document}
Some sample terms: \gls{duck}, \gls{sealion}, \gls{armadillo},
\gls{seal}, \gls{aardvark}, \gls{amethyst}, \gls{aquamarine},
\gls{diamond}, \gls{dolomite}, \gls{chalcedony}, \gls{citrine},
\gls{quetzalcoatlite}, \gls{cabbage}, \gls{cauliflower},
\gls{artichoke}, \gls{courgette}.

\GlsXtrSetDefaultNumberFormat{glsignore}% ignore records in the glossary
\printunsrtglossary
\end{document}

sample-nested.tex
As discussed in section 1.3 there are three ways of creating logical divisions when displaying
the entries through the use of the type, group and parent fields. In general, hierarchical
glossaries are created with the parent field and an appropriate glossary style (as in the
previous sample-hierarchical.tex example).

478

8 Examples: sample-nested.tex

Some sample terms: duck, sea lion, armadillo, seal, aardvark, amethyst,
aquamarine, diamond, dolomite, chalcedony, citrine, quetzalcoatlite, cab-
bage, cauliflower, artichoke, courgette.

Glossary
A

animal
aardvark nocturnal African burrowing mammal. 1
armadillo nocturnal insectivore with large claws. 1
duck a waterbird with webbed feet. 1
sea lion a large type of seal. 1
seal sea-dwelling fish-eating mammal with flippers. 1

M

mineral
amethyst purple variety of quartz. 1
aquamarine light blue variety of beryl. 1
beryl composed of beryllium aluminium cyclosilicate.
chalcedony cryptocrystalline variety of quartz. 1
citrine yellow variety of quartz. 1
diamond a metastable allotrope of carbon. 1
dolomite an anhydrous carbonate mineral. 1
quartz hard mineral consisting of silica.
quetzalcoatlite a rare tellurium oxysalt mineral. 1

V

vegetable
artichoke a variety of thistle cultivated as food. 1
cabbage vegetable with thick green or purple leaves. 1
cauliflower type of cabbage with edible white flower head. 1
courgette immature fruit of a vegetable marrow. 1
marrow long white-fleshed gourd with green skin.

1

Figure 8.1: sample-hierarchical.pdf

479

8 Examples: sample-nested.tex

This example creates a hierarchical effect but the entries don’t actually have a hierarchical
structure as none of them have the parent field set. Instead, what were the child entries in
sample-hierarchical.tex now have the type field set. The hierarchical effect is achieved
with \printunsrtinnerglossary (which requires at least glossaries-extra v1.44).

The \printunsrtinnerglossary command is unsuitable for use with tabular-like
styles, such as long, and can be problematic with list styles. However, those styles
aren’t suitable for hierarchical glossaries anyway.

Normally, hierarchy is achieve through definitions like:

@index{animal}
@entry{duck,name={duck},

description={a waterbird with webbed feet},
parent={animal}

}

The previous example did this by loading both the terms.bib and animals.bib files and
aliasing the custom identifier field to parent. In this example, the custom field is aliased
to type, which effectively makes the definitions behave like:

@index{animal}
@entry{duck,name={duck},

description={a waterbird with webbed feet},
type={animal}

}

The aim here is for the animal entry to be placed in the main glossary so that it’s listed with
\printunsrtglossary. The duck entry is placed in a glossary that has a label (animal) that
matches the label of the “parent” entry (even though it’s technically not a parent). This new
glossary (animal) can be automatically defined by invoking bib2gls with the --provide
-glossaries switch.

This example document defines a custom handler function that will do the current entry
as normal (with \glsxtrunsrtdo) but will then check for the existence of a glossary that
has the same label as the current entry. This requires the starred version of \ifglossary-
exists to included ignored glossaries in the existence check. If the glossary exists, it’s then
displayed using \printunsrtinnerglossary:

\newcommand{\nestedhandler}[1]{%
\glsxtrunsrtdo{#1}%
\ifglossaryexists*{#1}%
{%

\printunsrtinnerglossary[type={#1},leveloffset={++1},groups={false}]
{}{}%

}%
{}%

}

480

8 Examples: sample-nested.tex

The leveloffset option is required to achieve a hierarchical effect (provided the glossary
style supports it) and the groups={false} option is needed to prevent letter groups showing
for the nested glossary, which would otherwise create a strange effect. (This example uses
the treegroup style, which provides a hierarchical glossary with letter groups.)

The \printunsrtglossary handler macro then needs to be set to this custom macro
when the main glossary is displayed:

\printunsrtglossary*{\let\printunsrtglossaryhandler\nestedhandler}

Themain difficulty comes with ensuring that all the necessary entries are selected. Now that
the custom identifier field has been aliased to type rather than parent, the animal entry
is no longer considered a dependent. The duck entry has been referenced in the document
with \gls but the animal entry hasn’t. The previous example ensured that the animal entry
was selected because it was a parent of a selected entry. If the same resource options are used
in this example, the main glossary will be empty, which means that the nested glossaries
won’t be displayed either.

One way to ensure that the animal, mineral and vegetable entries are selected is to
identify the type field as a dependency field:

\GlsXtrLoadResources[src={terms,animals,minerals,vegetables},
field-aliases={identifier=type},
dependency-fields={type}

]

This will achieve the same effect as the sample-hierarchical.tex document, but it’s a far
more convoluted method. The reason this example document is listed here is to demonstrate
a sightly modified hierarchical effect that can’t be achieved through the normal method.

Suppose that, for some strange reason, I want the “animal”, “mineral” and “vegetable”
entries to be listed in a different order (say, reverse alphabetical). The other entries (“duck”
etc) need to be sorted in normal alphabetical order.

The sort option applies the same sort method to all hierarchical levels. The sort value
chosen for particular entries can be altered through the use of fallbacks (such as the entry
-sort-fallback or symbol-sort-fallback options) and a letter comparator may be used
to resolve identical sort values (identical-sort-action), but the same sort algorithm is
applied to all entries in the same set (primary, secondary or dual within the same resource
set). The only way to apply different sort methods is to separate the entries into different
resource sets (or use dual or secondary sorting).

This can be achieved by having one resource set for the main entries with one sort method
and another resource set for all the other entries with a different sort method:

\GlsXtrLoadResources[src={terms},sort={en-reverse}]
\GlsXtrLoadResources[src={animals,minerals,vegetables},sort={en},

field-aliases={identifier=type},dependency-fields={type}
]

This works when cross-resource dependencies are permitted (see section 1.5). In the event
that cross-resource dependencies aren’t permitted, the selection criteria is more complicated:

481

8 Examples: sample-nested.tex

\GlsXtrLoadResources[src={terms,animals,minerals,vegetables},
sort={en-reverse},
field-aliases={identifier=parent},
selection={ancestors but not recorded}

]
\GlsXtrLoadResources[

src={animals,minerals,vegetables},
field-aliases={identifier=type},
dependency-fields={type}
sort={en}

]

Fortunately in this example, cross-resource dependencies are permitted so the simpler al-
ternative works. (If they’re not permitted, the bib2gls transcript file will contain “Cross-
resource references can’t be supported for resource set 〈filename〉”.)

The complete code is listed below. The document build is:

pdflatex sample-nested
bib2gls --group --provide-glossaries sample-nested
pdflatex sample-nested

The complete document is shown in figure 8.2.

\documentclass[12pt,a4paper]{article}

\usepackage[T1]{fontenc}
\usepackage[colorlinks]{hyperref}

\usepackage[record,% use bib2gls
nostyles,% don't load default styles
postdot,% add a full stop after the description

% load glossary-tree.sty and patch styles:
stylemods={tree},
style=treegroup]{glossaries -extra}

\GlsXtrLoadResources[src={terms},sort={en-reverse}]

\GlsXtrLoadResources[
src={animals,minerals ,vegetables},
field-aliases={identifier=type},
dependency -fields=type,
sort={en}

]

\newcommand{\nestedhandler}[1]{%
\glsxtrunsrtdo{#1}%

% Is there a glossary whose label (type) matches this entry's label?

482

8 Examples: sample-constants.tex

\ifglossaryexists*{#1}%
{%

\printunsrtinnerglossary[type={#1},leveloffset=++1,groups=false]{}{}%
}%
{}%

}

\begin{document}
Some sample terms: \gls{duck}, \gls{sealion}, \gls{armadillo},
\gls{seal}, \gls{aardvark}, \gls{amethyst}, \gls{aquamarine},
\gls{diamond}, \gls{dolomite}, \gls{chalcedony}, \gls{citrine},
\gls{quetzalcoatlite}, \gls{cabbage}, \gls{cauliflower},
\gls{artichoke}, \gls{courgette}.

\GlsXtrSetDefaultNumberFormat{glsignore}% ignore records in the glossary

\printunsrtglossary*{%
\let\printunsrtglossaryhandler\nestedhandler

}

\end{document}

sample-constants.tex
This example uses the constants.bib file. The aim here is to just have a list of all the
constants defined in the .bib file. (There are no references in the document.) This means I
need to use:

selection={all}

in order to select all entries. I also need to alias the custom @constant entry type other-
wise all the entries will be ignored. I decided to make @constant behave like @number for
semantic reasons:

entry-type-aliases={constant=number}

The custom fields also need aliasing:

field-aliases={
identifier=category,
constantsymbol=name,
constantname=description,
value=user1,
definition=user2,
alternative=user3,

}

483

8 Examples: sample-constants.tex

Some sample terms: duck, sea lion, armadillo, seal, aardvark, amethyst,
aquamarine, diamond, dolomite, chalcedony, citrine, quetzalcoatlite, cab-
bage, cauliflower, artichoke, courgette.

Glossary
V

vegetable
artichoke a variety of thistle cultivated as food. 1
cabbage vegetable with thick green or purple leaves. 1
cauliflower type of cabbage with edible white flower head. 1
courgette immature fruit of a vegetable marrow. 1
marrow long white-fleshed gourd with green skin.

M

mineral
amethyst purple variety of quartz. 1
aquamarine light blue variety of beryl. 1
beryl composed of beryllium aluminium cyclosilicate.
chalcedony cryptocrystalline variety of quartz. 1
citrine yellow variety of quartz. 1
diamond a metastable allotrope of carbon. 1
dolomite an anhydrous carbonate mineral. 1
quartz hard mineral consisting of silica.
quetzalcoatlite a rare tellurium oxysalt mineral. 1

A

animal
aardvark nocturnal African burrowing mammal. 1
armadillo nocturnal insectivore with large claws. 1
duck a waterbird with webbed feet. 1
sea lion a large type of seal. 1
seal sea-dwelling fish-eating mammal with flippers. 1

1

Figure 8.2: sample-nested.pdf

484

8 Examples: sample-constants.tex

I decided to use the altlist style, so I’ve instructed bib2gls to determine the widest name:

set-widest

It’s always a good idea to specify the glossary type when using set-widest, although in
this example there’s only one glossary so it doesn’t make much difference.

type={main}

I decided to order the constants according to their (approximate) numerical value. I’ve aliased
the custom value field to user1, so I can sort by that field using a numerical comparison:

sort-field={user1},
sort={double}

There are three entries without the user1 field (as the custom value field is missing in the
.bib file): zero, one and imaginary. In the case of zero and one the exact value can be
obtained from the name field. Since I’ve change the default sort-field, I can’t use symbol
-sort-fallback. Instead I need to use:

missing-sort-fallback={name}

What happens with the imaginary entry? It has no real representation. The transcript
(.glg) file shows the message:

Warning: Can't parse sort value 'i' for: imaginary

With the numerical sort methods, if the field can’t be parsed the value defaults to 0. This
means that both zero and imaginary have 0 as the sort value, so the identical-sort
-action is implemented. The default settingmeans that bib2glswill fallback on comparing
the entry labels, so imaginary comes before zero.

Since I’m just using the alttree style, I only need glossary-tree. I can improve efficiency
in the document build by preventing the other glossary style packages from being loaded
using the nostyles package option. This also prevents glossary-tree from being loaded, but
I can both load it and patch the styles with glossaries-extra-stylemods through the option
stylemods={tree}. Since the default list style is no longer available, I need to set a new
default with style={alttree}. I also want to automatically insert a full stop after the de-
scription, which can be done with postdot. Don’t forget that the record option is always
needed when using bib2gls. This means that the glossaries-extra package needs to be loaded
as follows:

\usepackage[record,nostyles,postdot,stylemods={tree},style={alttree}]
{glossaries-extra}

I’ve assigned the custom constantname field to the description field and the custom
constantsymbol field to the name field. This means that by default the glossary list will
just show the symbolic representation and the constant’s name. I’d like to append the value
and definition after the description. With the base glossaries package this would require

485

8 Examples: sample-constants.tex

defining a new glossary style but with glossaries-extra it can easily be achieved through the
post-description hook.

I’ve aliased the custom identifier field to category, which means that all the entries
will have the category set to constant. The post-description hook is obtained from \gls-
xtrpostdesc〈category〉, so I need to define the command \glsxtrpostdescconstant. A
simple definition is:

\newcommand{\glsxtrpostdescconstant}{%
\space (approximately \glsentryuseri{\glscurrententrylabel})%
: \glsentryuserii{\glscurrententrylabel}%

}

This is fine if all entries have the user1 and user2 fields set. A more generic approach tests
for the existence of these fields. This can either be done with \ifglshasfield:

\newcommand{\glsxtrpostdescconstant}{%
\ifglshasfield{user1}{\glscurrententrylabel}%
{ (approximately \glscurrentfieldvalue)}%
{}%
\ifglshasfield{user2}{\glscurrententrylabel}%
{: \glscurrentfieldvalue}%
{}%

}

or with \glsxtrifhasfield:

\newcommand{\glsxtrpostdescconstant}%
\glsxtrifhasfield{useri}{\glscurrententrylabel}%
{ (approximately \glscurrentfieldvalue)}%
{}%
\glsxtrifhasfield{userii}{\glscurrententrylabel}%
{: \glscurrentfieldvalue}%
{}%

(Note the need to use the internal field label useri and userii with \glsxtrifhasfield.)
A modification can be made to also show the alternative representation (obtained from the

custom alternative field which has been aliased to user3):

\newcommand{\glsxtrpostdescconstant}%
\glsxtrifhasfield{useriii}{\glscurrententrylabel}%
{ (also denoted \glscurrentfieldvalue

\glsxtrifhasfield{useri}{\glscurrententrylabel}%
{, approximately \glscurrentfieldvalue}%
{}%

)%
}%

486

8 Examples: sample-constants.tex

{%
\glsxtrifhasfield{useri}{\glscurrententrylabel}%
{ (approximately \glscurrentfieldvalue)}%
{}%

}%
\glsxtrifhasfield{userii}{\glscurrententrylabel}%
{: \glscurrentfieldvalue}%
{}%

If you have at least glossaries-extra v1.31, it’s better to use:

\glsdefpostdesc{constant}

instead of:

\newcommand{\glsxtrpostdescconstant}

as it can guard against accidental misspelling of the glsxtrpostdesc part of the command
name.

The complete code is listed below. The document build is:

pdflatex sample-constants
bib2gls sample-constants
pdflatex sample-constants

The complete document is shown in figure 8.3.

\documentclass[12pt,a4paper]{article}

\usepackage[T1]{fontenc}
\usepackage{upgreek}

\usepackage[record,% use bib2gls
nostyles,% don't load default styles
postdot,% add dot after descriptions

% load glossary-tree.sty and patch styles:
stylemods={tree},
style=alttree]{glossaries -extra}

\GlsXtrLoadResources[
src={constants},% data in constants.bib
% make @constant behave like @number
entry-type-aliases={constant=number},
field-aliases={

identifier=category ,
constantsymbol=name,
constantname=description ,
value=user1,

487

8 Examples: sample-chemical.tex

definition=user2,
alternative=user3

},
type=main,
set-widest,
sort-field=user1,
missing-sort-fallback=name,
sort=double,
selection=all

]

\newcommand{\glsxtrpostdescconstant}{%
\glsxtrifhasfield{useriii}{\glscurrententrylabel}%
{ (also denoted \glscurrentfieldvalue

\glsxtrifhasfield{useri}{\glscurrententrylabel}%
{, approximately \glscurrentfieldvalue}%
{}%

)%
}%
{%

\glsxtrifhasfield{useri}{\glscurrententrylabel}%
{ (approximately \glscurrentfieldvalue)}%
{}%

}%
\glsxtrifhasfield{userii}{\glscurrententrylabel}%
{: \glscurrentfieldvalue}%
{}%

}

\begin{document}
\printunsrtglossary[title={Constants}]
\end{document}

sample-chemical.tex
This example just uses the chemicalformula.bib file. The aim here is to have a list of
chemical formulae referenced in the document but not have a number list. I could use the
nonumberlist package option to suppress the number list display, but it’s more efficient to
instruct bib2gls to not save the number list with:

save-locations={false}

All entries are defined in chemicalformula.bib using a custom entry type @chemical
which needs to be aliased in order for the entries to be recognised:

entry-type-aliases={chemical=symbol}

488

8 Examples: sample-chemical.tex

Constants

i imaginary unit (also denoted j): defined as i2 = −1.
0 zero: nothing or nil.
γ Euler’s constant (approximately 0.57721): the limit of

n∑
r=1

1

r
− lnn

as n → ∞.
1 one: single entity, unity.
ζ(3) Apéry’s constant (approximately 1.2020569): a special value of the Rie-

mann zeta function.
λ Conway’s constant (approximately 1.30357): the invariant growth rate

of all derived strings.√
2 Pythagoras’ constant (approximately 1.41421): the square root of 2.

ϕ golden ratio (approximately 1.61803): the ratio 1+
√
5

2
.

e Euler’s number (approximately 2.71828): base of natural logarithms.
π pi (approximately 3.14159): the ratio of the length of the circumference

of a circle to its diameter.

1

Figure 8.3: sample-constants.pdf

489

8 Examples: sample-chemical.tex

Additionally, the entries only have custom fields, so these also need to be aliased. In this case
I want the formula in the name field and the chemical name in the description field:

field-aliases={formula=name,chemicalname=description}

The @symbol entry type falls back on the label for the sort value by default, but I’ve decided
to fallback on the name field for sorting:

symbol-sort-fallback={name}

An alternative approach would simply be to alias @chemical to @entry instead.
Since the name field contains chemical formulae rather than words, it makes more sense

to use one of the letter sort methods rather than a locale collator. In this case the names
contain mixtures of letters and numbers, so one of the letter-number sort methods (listed in
table 5.4) would be appropriate.

I want to use the alttreegroup style (provided by glossary-tree). Since I don’t require the
other style packages, I’ve used nostyles to suppress the automatic loading and stylemods
={tree} to both load glossary-tree and patch it. The alttreegroup style needs to know the
widest name, so I’ve use set-widest for convenience. The default behaviour of the tree
styles is to format the name in bold. This is done through the command \glstreenamefmt
which is defined as:

\newcommand*{\glstreenamefmt}[1]{\textbf{#1}}

The group headings use \glstreegroupheaderfmt which defaults to \glstreenamefmt.
Since I want to keep bold headings, I need to redefine this as well:

\renewcommand*{\glstreenamefmt}[1]{#1}
\renewcommand*{\glstreegroupheaderfmt}[1]{\textbf{#1}}

(For amore compact layout, you could use mcolalttreegroup instead.) I also need the --group
switch to make the sort method automatically assign letter groups.

The complete code is listed below. The document build is:

pdflatex sample-chemical
bib2gls --group sample-chemical
pdflatex sample-chemical

The complete document is shown in figure 8.4.

\documentclass[a4paper]{article}

\usepackage[T1]{fontenc}
\usepackage[version=4]{mhchem}
\usepackage[record,% use bib2gls
nostyles,% don't load default styles
stylemods={tree},% load glossary-tree and patch styles
style=alttreegroup]{glossaries -extra}

490

8 Examples: sample-bacteria.tex

\GlsXtrLoadResources[
src={chemicalformula},% definitions in chemicalformula.bib
entry-type-aliases={chemical=symbol},
field-aliases={formula=name,chemicalname=description},
symbol-sort-fallback=name,% use name field as fallback for sort
sort=letternumber -case,% case-sensitive letter-number sort
set-widest,% needed for alttree styles
save-locations=false% don't create location lists

]

\renewcommand*{\glstreenamefmt}[1]{#1}
\renewcommand*{\glstreegroupheaderfmt}[1]{\textbf{#1}}

\begin{document}
\section{Sample}

Reference Entries: \gls{Al2SO43}, \gls{H2O}, \gls{C6H12O6},
\gls{CH3CH2OH}, \gls{CH2O}, \gls{OF2}, \gls{O2F2}, \gls{SO42-},
\gls{H3O+}, \gls{OH-}, \gls{O2}, \gls{AlF3}, \gls{O},
\gls{Al2CoO4}, \gls{As4S4}, \gls{C10H10O4}, \gls{C5H4NCOOH},
\gls{C8H10N4O2}, \gls{SO2}, \gls{S2O72-}, \gls{SbBr3},
\gls{Sc2O3}, \gls{Zr3PO44}, \gls{ZnF2}.

\printunsrtglossary
\end{document}

sample-bacteria.tex
This example just uses the bacteria.bib file. The aim here is to have a simple list of the
bacteria referenced in the document. Bacteria names are often shown in the long form on
first use (without the short form) and then the short form on subsequent use. This can easily
be done with the long-only-short-only style. Bacteria are usually typeset in italic. It’s best
to create a semantic command for this:

\newcommand{\bacteriafont}[1]{\emph{#1}}

There are two methods to apply this to the bacteria entries. The first is to redefine the for-
matting commands used by the long-only-short-only style:

\renewcommand*{\glsabbrvonlyfont}[1]{\bacteriafont{#1}}
\renewcommand*{\glslongonlyfont}[1]{\bacteriafont{#1}}

This is fine if I don’t intend to use this style for other types of abbreviations. However, I may
decide to extend the document at a later date to include other abbreviations that need long
-only-short-only but shouldn’t be emphasized. This can be done through the use of category

491

8 Examples: sample-bacteria.tex

1 Sample
Reference Entries: Al2(SO4)3, H2O, C6H12O6, CH3CH2OH, CH2O, OF2, O2F2,
SO4

2– , H3O+, OH– , O2, AlF3, O, Al2CoO4, As4S4, C10H10O4, C5H4NCOOH,
C8H10N4O2, SO2, S2O7

2– , SbBr3, Sc2O3, Zr3(PO4)4, ZnF2.

Glossary

A

AlF3 aluminium trifluoride
Al2(SO4)3 aluminium sulfate
Al2CoO4 cobalt blue
As4S4 tetraarsenic tetrasulfide

C

CH2O formaldehyde
CH3CH2OH ethanol
C5H4NCOOH niacin
C6H12O6 glucose
C8H10N4O2 caffeine
C10H10O4 ferulic acid

H

H2O water
H3O+ hydronium

O

O oxygen
OF2 oxygen difluoride
OH– hydroxide ion
O2 dioxygen
O2F2 dioxygen difluoride

S

SO2 sulfur dioxide
SO4

2– sulfate
S2O7

2– disulfate ion
SbBr3 antimony(III) bromide
Sc2O3 scandium oxide

Z

ZnF2 zinc fluoride
Zr3(PO4)4 zirconium phosphate

1

Figure 8.4: sample-chemical.pdf

492

8 Examples: sample-bacteria.tex

attributes. The font used for the name in the glossary is governed by the glossnamefont
attribute, the font used for the description in the glossary is governed by the glossdescfont
attribute and the font used by commands like \gls in the document is governed by the text-
format attribute (glossaries-extra v1.21+). So if I set the category to bacteria then I can
do:

\setabbreviationstyle[bacteria]{long-only-short-only}
\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}

and (if the description field is displayed in the glossary):

\glssetcategoryattribute{bacteria}{glossdescfont}{bacteriafont}

(Note that the attribute value is the control sequence name without the initial backslash.)
I’d like to use the bookindex style, which is provided by the glossary-bookindex package.1

This isn’t loaded automatically, but it can be loaded through the stylemods package option:

\usepackage[record,% use bib2gls
nostyles,% don't load default style packages
stylemods={bookindex},% load glossary-bookindex.sty and patch styles
style={bookindex}]{glossaries-extra}

I’ve used the nostyles package option to suppress loading the default style packages, since
I’m not using them. If you inspect the .log file, you may notice that glossary-tree is still
loaded. This is because it’s required by glossary-bookindex as the bookindex style is based on
the index style provided by glossary-tree. With this style I need to use the --group switch
to instruct the sort method to automatically create the letter groups.

The bookindex style doesn’t show the description field (which means I don’t need the
glossdescfont attribute) and, since the long-only-short-only style sets the name to the short
form by default, only the short form will show in the glossary. I’d rather it was just the long
form. This could simply be done using replicate-fields to copy the long field to the
name field:

replicate-fields={long=name}

Again, I want to consider the possibility of adding other types of abbreviations and this might
not be appropriate for them (for example, I mightwant some abbreviationswith the long form
followed by the short form in parentheses). Another approach is to redefine \glsxtrbook-
indexname which is used by the bookindex style to display the name. This takes the entry’s
label as the argument. The default definition is:

\newcommand*{\glsxtrbookindexname}[1]{\glossentryname{#1}}

This can be changed to test for the entry’s category:

1glossary-bookindex is distributed with glossaries-extra v1.21+.

493

8 Examples: sample-bacteria.tex

\renewcommand*{\glsxtrbookindexname}[1]{%
\glsifcategory{#1}{bacteria}
{\glossentrynameother{#1}{long}}%
{\glossentryname{#1}}%

}

Note that I’ve used \glossentrynameother here rather than \glsentrylong. This ensures
that it follows the same formatting as \glossentryname (so it will use \glsnamefont or the
glossnamefont attribute, the glossname attribute, and the post-name hook, if set). In this case
it picks up the glossnamefont attribute, which is used instead of \glsnamefont.

If the sort field is missing for abbreviation styles, the fallback value is the short field (not
the name field). In this case it would be better to fallback on the long field instead, which
can be done with the abbreviation-sort-fallback option:

abbreviation-sort-fallback={long}

If I do add other types of abbreviations, they will all be sorted according to the long form,
but at least this way I can have some 〈long〉 (〈short〉) names as well.

The complete code is listed below. The document build is:

pdflatex sample-bacteria
bib2gls --group sample-bacteria
pdflatex sample-bacteria

This simple example only references entries on the first page so all entries just have 1 in the
number list. The complete document is shown in figure 8.5.

\documentclass[12pt,a4paper]{article}

\usepackage[T1]{fontenc}

\usepackage[record,% use bib2gls
nostyles,% don't load default styles

% load glossary-bookindex.sty and patch styles:
stylemods={bookindex},
style=bookindex]{glossaries -extra}

% abbreviation style must be set before \GlsXtrLoadResources
\setabbreviationstyle[bacteria]{long-only-short-only}

\GlsXtrLoadResources[
src=bacteria ,% data in bacteria.bib
category=bacteria,
abbreviation -sort-fallback=long

]

\newcommand{\bacteriafont}[1]{\emph{#1}}

494

8 Examples: sample-units1.tex

\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}

\renewcommand*{\glsxtrbookindexname}[1]{%
\glsifcategory{#1}{bacteria}
{\glossentrynameother{#1}{long}}%
{\glossentryname{#1}}%

}

\begin{document}
\section{First Use}

\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\section{Next Use}

\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\printunsrtglossary[title={Bacteria Index}]
\end{document}

sample-units1.tex
This example uses the baseunits.bib and derivedunits.bib files. The aim here is to have
a glossary in two blocks: base units and derived units. This can be achieved by first loading
baseunits.bibwith group set to the desired group title (“Base Units” in this case) and then
load derivedunits.bibwith the group set to the desired title (“Derived Units” in this case).
Remember that the group field needs to be used as a label. If the group title contains any
problematic characters or commands, then it’s better to use labels:

group={baseunits}

for the first resource set and

group={derivedunits}

for the second, and then set the group titles:

\glsxtrsetgrouptitle{baseunits}{Base Units}
\glsxtrsetgrouptitle{derivedunits}{Derived Units}

495

8 Examples: sample-units1.tex

1 First Use
Clostridium botulinum, Pseudomonas putida, Clostridium perfringens , Bacil-
lus subtilis , Clostridium tetani , Planifilum composti , Planifilum fimeticola,
Coxiella burnetii , Rickettsia australis , Rickettsia rickettsii .

2 Next Use
C. botulinum, P. putida, C. perfringens , B. subtilis , C. tetani , P. composti ,
P. fimeticola, C. burnetii , R. australis , R. rickettsii .

Bacteria Index

B

Bacillus subtilis , 1

C

Clostridium botulinum, 1
Clostridium perfringens , 1
Clostridium tetani , 1
Coxiella burnetii , 1

P

Planifilum composti , 1
Planifilum fimeticola, 1
Pseudomonas putida, 1

R

Rickettsia australis , 1
Rickettsia rickettsii , 1

1

Figure 8.5: sample-bacteria.pdf

496

8 Examples: sample-units1.tex

I’ve used this method to make it easier to adapt to other languages that may need extended
characters in the group titles. The group option requires the --group switch to ensure that
the group field is correctly assigned.

The baseunits.bib file use a custom entry type @unit, which must be aliased otherwise
bib2gls will ignore the entries. I decided to use @symbol for semantic reasons:

entry-type-aliases={unit=symbol}

Similarly for the custom @measurement entry type in derivedunits.bib:

entry-type-aliases={measurement=symbol}

Remember that @symbol uses the label as the default sort fallback, so I’ve changed it to use
name instead:

symbol-sort-fallback={name}

An alternative approach would be to alias @unit and @measurement to @entry instead.
Since there’s no type set, all entries end up in the main glossary, but since there are two

resource commands the glossary ends up with sorted blocks.
The document doesn’t include any commands like \gls, so I’ve use selection={all}

to select all entries in the .bib files. There won’t be any number lists since there are no
records. I need a glossary style that shows the symbol field so I’ve used mcolindexgroup.
Again I’ve suppressed the automatic loading of the default styles with nostyles and used
stylemods={mcols} to load glossary-mcols and patch the styles. Note that although I’ve
used nostyles, the glossary-tree style is loaded as it’s required by glossary-mcols.

As with the previous example, the custom fields need to be aliased:

field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

}

The complete document code is listed below. The document build is:

pdflatex sample-units1
bib2gls --group sample-units1
pdflatex sample-units1

The complete document is shown in figure 8.6.

\documentclass[a4paper]{report}

\usepackage{siunitx}
\usepackage[record,% use bib2gls
nostyles,% don't load default styles
stylemods={mcols},% load glossary -mcols.sty and patch

497

8 Examples: sample-units2.tex

style=mcolindexgroup]{glossaries -extra}

\GlsXtrLoadResources[
src={baseunits},
% make @unit act like @symbol:
entry-type-aliases={unit=symbol},
field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

},
symbol-sort-fallback=name,
selection={all},
group={baseunits}

]

\GlsXtrLoadResources[
src={derivedunits},
% make @measurement act like @symbol:
entry-type-aliases={measurement=symbol},
field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

},
symbol-sort-fallback=name,
selection={all},
group={derivedunits}

]

\glsxtrsetgrouptitle{baseunits}{Base Units}
\glsxtrsetgrouptitle{derivedunits}{Derived Units}

\begin{document}

\printunsrtglossaries

\end{document}

sample-units2.tex
This example is provided for comparison with sample-units1.tex. Instead of having a
single glossary with sorted blocks this example has two glossaries:

\newglossary*{baseunits}{Base Units}
\newglossary*{derivedunits}{Derived Units}

498

8 Examples: sample-units2.tex

Glossary

Base Units

ampere (A) electric current
candela (cd) luminous intensity
kelvin (K) thermodynamic tempera-

ture
kilogram (kg) mass
metre (m) length
mole (mol) amount of substance
second (s) time

Derived Units

ampere per square metre (Am−2)
density

candela per square metre (cdm−2)
luminance

cubic metre (m3) volume
cubic metre per kilogram

(m3 kg−1) specific volume
metre per second (m s−1) velocity
metre per second squared (m s−2)

acceleration
mole per cubic metre (molm−3)

concentration
per metre (m−1) wave number
square metre (m2) area

1

Figure 8.6: sample-units1.pdf

499

8 Examples: sample-units2.tex

I’ve used the section package option to use \section* for the glossary titles. This overrides
the default \chapter* which is used with book or report type of classes. I’ve also used the
nomain option to suppress the creation of the main glossary as I want to define my own
glossary types instead.

As before the custom entry types need to be aliased:

entry-type-aliases={unit=symbol}

for the first resource set and

entry-type-aliases={measurement=symbol}

for the second. Similarly for the custom entry fields:

field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

}

The --group switch is needed to ensure that the group field is automatically assigned by the
sort method.

The complete document code is listed below. The document build is:

pdflatex sample-units2
bib2gls --group sample-units2
pdflatex sample-units2

The complete document is shown in figure 8.7.

\documentclass[a4paper]{report}

\usepackage{siunitx}
\usepackage[record,% use bib2gls
nomain,% don't define 'main' glossary
section,% use \section* for glossary headings
nostyles,% don't load default styles
stylemods={mcols},% load glossary -mcols.sty and patch
style=mcolindex]{glossaries -extra}

\newglossary*{baseunits}{Base Units}
\newglossary*{derivedunits}{Derived Units}

\GlsXtrLoadResources[
src={baseunits},
type=baseunits ,
% make @unit act like @symbol:
entry-type-aliases={unit=symbol},

500

8 Examples: sample-units3.tex

field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

},
symbol-sort-fallback=name,
selection={all}

]

\GlsXtrLoadResources[
src={derivedunits},
type=derivedunits ,
% make @measurement act like @symbol:
entry-type-aliases={measurement=symbol},
field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

},
symbol-sort-fallback=name,
selection={all}

]

\begin{document}
\chapter*{Glossaries}

\printunsrtglossary[type=baseunits ,nogroupskip]
\printunsrtglossary[type=derivedunits ,style=indexgroup]
\end{document}

sample-units3.tex
This is another example that uses the baseunits.bib and derivedunits.bib files. As
before the custom fields need to be aliased:

field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

}

This time I want two glossaries containing all the units (base and derived) where the first glos-
sary is ordered by name and the second is ordered by symbol. This can be done with a single
resource command that instructs bib2gls to make the custom @unit and @measurement
entry types behave like @dualsymbol:

501

8 Examples: sample-units3.tex

Glossaries

Base Units

ampere (A) electric current
candela (cd) luminous intensity
kelvin (K) thermodynamic tempera-

ture

kilogram (kg) mass
metre (m) length
mole (mol) amount of substance
second (s) time

Derived Units

A

ampere per square metre (Am−2) density

C

candela per square metre (cdm−2) luminance
cubic metre (m3) volume
cubic metre per kilogram (m3 kg−1) specific volume

M

metre per second (m s−1) velocity
metre per second squared (m s−2) acceleration
mole per cubic metre (molm−3) concentration

P

per metre (m−1) wave number

S

square metre (m2) area

1

Figure 8.7: sample-units2.pdf

502

8 Examples: sample-units3.tex

entry-type-aliases={
unit=dualsymbol,
measurement=dualsymbol

}

This causes the name and symbol fields to be swapped in the dual list. Remember that the
fallback for the sort field is the label for the symbol entry types so I need symbol-sort
-fallback={name} to fallback on name field instead. (Alternative, I could just sort by the
name field instead using sort-field={name}.)

The primary entries can still be sorted according to the default locale collator, but the dual
entries need a sort method that’s better suited to symbols. Fortunately, bib2gls has some
(very limited) support for siunitx and is able to interpret the \si commands in the sample
.bib files. Since si units are a mix of letters and numbers I’ve used one of the letter-number
methods listed in table 5.4.

I’ve decided to define a custom style for the first glossary. Since it’s based on the long3col
-booktabs style I need to load glossary-longbooktabs, which can conveniently be done with
the stylemods option. This uses longtable (provided by longtable, which is automatically
loaded) which means an extra LATEX call is required in the build process to ensure the column
widths are correct. Again I’m using nostyles to suppress the automatic loading of the
default styles, however glossary-tree will be loaded as it’s listed in the value of stylemods
and glossary-long will be loaded as it’s required by glossary-longbooktabs. I can’t use my
custom style in the style package option as it hasn’t been defined at that point. The default
list style is now unavailable since nostyles has prevented it from being defined, so I’ve used
style={alttree} to ensure there’s a valid default style.

Since my custom style is based on one of the long styles, I need to set the length register
\glsdescwidth to adjust the width of the description column:

\setlength{\glsdescwidth}{.4\hsize}

The long3col-booktabs style sets up a three column longtable so I just need to adjust the table
header (to rename the column headers) and the way each row is formatted:

\newglossarystyle{units}% style name
{% base it on long3col-booktabs

\setglossarystyle{long3col-booktabs}%
\renewcommand*{\glossaryheader}{%

\toprule
\bfseries Name &
\bfseries Measurement &
\bfseries Symbol
\tabularnewline\midrule\endhead
\bottomrule\endfoot}%

% main entries:
\renewcommand{\glossentry}[2]{%

\glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}} &

503

8 Examples: sample-units3.tex

\glossentrydesc{##1}\glspostdescription &
\glossentrysymbol{##1}\tabularnewline

}%
}

There are no sub-entries in this document so I haven’t bothered to redefine \subglossentry.
(The tabular styles aren’t appropriate for hierarchical glossaries.) This puts the symbol into
the third column (rather than the location list, which is ignored). This style supports the
letter group separator (although it doesn’t title the groups), so if I want this I need to use the
--group switch.

I also need to make sure I’ve defined a glossary for the dual entries:

\newglossary*{units}{Units of Measurement (by SI unit)}

and specify the glossary types for the primary and dual entries:

type={main},
dual-type={units}

The complete document code is listed below. The document build is:

pdflatex sample-units3
bib2gls --group sample-units3
pdflatex sample-units3
pdflatex sample-units3

The two pages of the document are shown in figure 8.8.

\documentclass[12pt,a4paper]{report}

\usepackage{siunitx}
\usepackage[record,% use bib2gls
nostyles,% don't load default styles

% load glossary-tree.sty and glossary-longbooktabs.sty and patch:
stylemods={tree,longbooktabs},
style=alttree]{glossaries -extra}

\newglossary*{units}{Units of Measurement (by SI unit)}

\GlsXtrLoadResources[
% data in baseunits.bib and derivedunits.bib:
src={baseunits ,derivedunits},
field-aliases={
unitname=name,
unitsymbol=symbol,
measurement=description

},
symbol-sort-fallback={name},

504

8 Examples: sample-units3.tex

selection=all,% select all entries
% make @measurement and @unit act like @dualsymbol:
entry-type-aliases={
measurement=dualsymbol ,
unit=dualsymbol ,

},
set-widest,% needed for alttree style
dual-sort={letternumber -upperlower},
type=main,% put primary entries in 'main' glossary
dual-type={units}% put dual entries in 'units' glossary

]

\setlength{\glsdescwidth}{.4\hsize}

% define custom glossary style
\newglossarystyle{units}% style name
{% base it on long3col-booktabs

\setglossarystyle{long3col-booktabs}%
\renewcommand*{\glossaryheader}{%

\toprule
\bfseries Name &
\bfseries Measurement &
\bfseries Symbol
\tabularnewline\midrule\endhead
\bottomrule\endfoot}%

% main entries:
\renewcommand{\glossentry}[2]{%

\glsentryitem{##1}\glstarget{##1}{\glossentryname{##1}} &
\glossentrydesc{##1}\glspostdescription &
\glossentrysymbol{##1}\tabularnewline

}%
}

\begin{document}

\printunsrtglossary[title={SI Units of Measurement},
style={units}]

\printunsrtglossary[type=units]

\end{document}

505

8 Examples: sample-media.tex

SI Units of Measurement

Name Measurement Symbol

ampere electric current A
ampere per square metre density Am−2

candela luminous intensity cd
candela per square metre luminance cdm−2

cubic metre volume m3

cubic metre per kilogram specific volume m3 kg−1

kelvin thermodynamic temperature K
kilogram mass kg

metre length m
metre per second velocity m s−1

metre per second squared acceleration m s−2

mole amount of substance mol
mole per cubic metre concentration molm−3

per metre wave number m−1

second time s
square metre area m2

1

Units of Measurement (by SI
unit)

A (ampere) electric current
Am−2 (ampere per square metre) density

cd (candela) luminous intensity
cdm−2 (candela per square metre) luminance

K (kelvin) thermodynamic temperature
kg (kilogram) mass

m (metre) length
m s−2 (metre per second squared) acceleration
m s−1 (metre per second) velocity
m−1 (per metre) wave number
m2 (square metre) area
m3 (cubic metre) volume
m3 kg−1 (cubic metre per kilogram) specific volume
mol (mole) amount of substance
molm−3 (mole per cubic metre) concentration

s (second) time

2

Figure 8.8: sample-units3.pdf

sample-media.tex
This example uses the sample files books.bib, films.bib, no-interpret-preamble.bib
and interpret-preamble.bib. The aim is to produce a combined list of books and films in
a single glossary. The films are based on some of the books so some of the entries have the
same name. The default setting for identical sort values is identical-sort-action={id},
which means that the ordering for the duplicate names is based on the entry labels. This can
lead to the odd effect of sometimes having the film listed first (film.thebigsleep comes be-
fore thebigsleep) and sometimes having the book listed first (brightonrock comes before
film.brightonrock).

One possible solution would be to also assign prefixes for the book labels, but label
-prefix is applied to all primary entries for the given resource set and can’t be applied
selectively, so this would require editing the books.bib file.

A more consistent approach would be to fallback on the category. This means that the
category field needs to be set. There are two simple ways to achieve this: use category=
{same as base} (which sets the category to books for entries in books.bib and to films
for entries in films.bib) or alias the custom identifier field to category. I’ve chosen
the latter method and also provided aliases for the custom year and cast fields:

field-aliases={identifier=category,year=user1,cast=user2},
identical-sort-action={category}

506

8 Examples: sample-media.tex

This ensures that books always come before films with the same title. An oddity is the film
“Whisky Galore!” which is one character different from the book “Whisky Galore” but the
default locale collator ignores punctuation so the two titles are considered identical by the
collator (but not by sort-suffix={non-unique}). If a letter comparison was used instead,
they would no longer be considered identical, but in this case the film would still be placed
after the book since the film title is longer.

Since I’ve set the category I can provide semantic formatting commands (as for sample
-bacteria.tex):

\newcommand*{\bookfont}[1]{\emph{#1}}
\newcommand*{\filmfont}[1]{\textsf{\em #1}}
\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}
\glssetcategoryattribute{film}{textformat}{filmfont}
\glssetcategoryattribute{film}{glossnamefont}{filmfont}

I’ve given films a slightly different format to make them easier to distinguish from books of
the same name.

Both books.bib and films.bib had the custom year field, indicating the year of first
publication or release, which I’ve assigned to the user1 field. I can define post-name hooks
for each category to append the year in brackets after the name is displayed in the glossary:

\newcommand*{\glsxtrpostnamebook}{%
\ifglshasfield{user1}{\glscurrententrylabel}%
{\space(published \glscurrentfieldvalue)}%
{}%

}

\newcommand*{\glsxtrpostnamefilm}{%
\ifglshasfield{user1}{\glscurrententrylabel}%
{\space(released \glscurrentfieldvalue)}%
{}%

}

As with the post-description hook, if you have at least glossaries-extra v1.31, it’s better to
use:

\glsdefpostname{〈category〉}

instead of:

\newcommand{\glsxtrpostname〈category〉}

as it can guard against accidental misspelling of the glsxtrpostname part of the command
name.

I’ve assigned the cast field to the user2 field, and since this field uses BIBTEX’s contributor
markup I need to convert this to a form that’s easier to customize:

507

8 Examples: sample-media.tex

bibtex-contributor-fields={user2}

I’m not sorting by this field and it would look better in the document to list the forenames
before the surname so I’ve also done:

contributor-order={forenames}

Since I have at least version 2.28 of datatool-base installed, the list will be formatted using
\DTLformatlist. If I want an Oxford comma, I need to redefine \DTLlistformatoxford
in the document:

\renewcommand*{\DTLlistformatoxford}{,}

If I want to change “&” to “and” I also need to redefine \DTLandname:

\renewcommand*{\DTLandname}{and}

If \DTLformatlist isn’t defined (datatool-base v2.27 or earlier), the cast list will look a little
odd as it uses a comma separator between all elements of this list, including the final pair (so
there’s no final & or “and”).

I’ve provided a post-description hook \glsxtrpostdesc〈category〉 to append the cast list:

\newcommand*{\glsxtrpostdescfilm}{%
\ifglshasfield{user2}{\glscurrententrylabel}%
{%
\glsxtrrestorepostpunc % requires glossaries-extra v1.23+
\␣featuring \glscurrentfieldvalue

}%
{}%

}

This uses \glsxtrrestorepostpunc to restore the post-description punctuation if it was
suppressed with \glsxtrnopostpunc. This means that if I decide not to include the user2
field then the post-description punctuation will be revert back to being suppressed for entries
containing \glsxtrnopostpunc in the description field.

I haven’t referenced any of the entries in the main body of the document, so I’ve used
selection={all} to select all entries. This means that there are no number lists on the
first document build (LATEX+bib2gls+LATEX) but the next build would show locations for the
books that have been referenced by the film entries. Since this looks a bit odd, I’ve added
save-locations={false} to prevent bib2gls from saving the locations.

I’ve used a style that shows letter group headings so I need to use the --group switch.
The complete document code is listed below. The document build is:

pdflatex sample-media
bib2gls --group sample-media
pdflatex sample-media

The four pages of the document are shown in figure 8.9.

508

8 Examples: sample-media.tex

\documentclass[11pt,a4paper]{report}

\usepackage[T1]{fontenc}
\usepackage[colorlinks]{hyperref}
\usepackage[record,% using bib2gls
nostyles,% don't load default styles
postdot,% append a dot after descriptions
stylemods={list},% load glossary-list.sty and fix styles
style=altlistgroup]{glossaries -extra}

\GlsXtrLoadResources[
src=no-interpret -preamble ,
interpret -preamble=false

]

\GlsXtrLoadResources[
src={interpret -preamble ,books,films},
field-aliases={identifier=category ,year=user1,cast=user2},
bibtex-contributor -fields={user2},
contributor -order={forenames},
identical -sort-action={category},
save-locations=false,
selection=all

]

% requires datatool-base.sty v2.28+:
\renewcommand*{\DTLlistformatoxford}{,}
\renewcommand*{\DTLandname}{and}

\newcommand*{\bookfont}[1]{\emph{#1}}
\newcommand*{\filmfont}[1]{\textsf{\em #1}}

\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}

\glssetcategoryattribute{film}{textformat}{filmfont}
\glssetcategoryattribute{film}{glossnamefont}{filmfont}

\newcommand*{\glsxtrpostnamebook}{%
\ifglshasfield{user1}{\glscurrententrylabel}%
{\space(published \glscurrentfieldvalue)}%
{}%

}

\newcommand*{\glsxtrpostnamefilm}{%
\ifglshasfield{user1}{\glscurrententrylabel}%

509

8 Examples: sample-people.tex

{\space (released \glscurrentfieldvalue)}%
{}%

}

\newcommand*{\glsxtrpostdescfilm}{%
\ifglshasfield{user2}{\glscurrententrylabel}%
{%

\glsxtrrestorepostpunc % requires glossaries -extra v1.23+
\ featuring \glscurrentfieldvalue

}%
{}%

}

\begin{document}
\printunsrtglossaries
\end{document}

sample-people.tex
This example uses the files people.bib, no-interpret-preamble.bib and interpret
-preamble.bib. The aim here is to have a list of people ordered alphabetically by surname
with a brief description, the same list ordered by date of birth and an index of all the people
without their details but with a number list indicating where that person was mentioned
in the document. The first two lists shouldn’t include aliases but the index should. Not all
the entries defined in people.bib are included in the document. Those that aren’t either
explicitly referenced or aliased are filtered by the selection criteria. I’ve used a style that
shows letter group headings so I need to use the --group switch.

Since this is just an example document all the \gls commands only occur on page 1, which
means that each number list is just “1”. A real document would have the references scattered
about. The aliases haven’t actually been referenced anywhere in the document.

The born, died and othername fields will be ignored by default since they don’t cor-
respond to recognised keys, so the keys either need to be defined or the fields need to be
mapped to existing keys. In this case I’ve decided to map them to the user1, user2 and
user3 fields using field-aliases:

field-aliases={born=user1,died=user2,othername=user3}

Although the aliases haven’t been referenced in the document, I’ve taken into account the
possibility that they might later be added. To prevent them from showing in the first two
lists I’ve filtered them out. This is easy to do since the aliases are all defined using @index
whereas the remaining (non-aliased) entries are defined using @entry so match can be used
to only select entries defined with @entry:

match={entrytype=entry}

510

8 Examples: sample-people.tex

Glossary

B

The Big Sleep (published 1939)

novel by Raymond Chandler.

The Big Sleep (released 1946)

a film based on the novel The Big Sleep featuring Humphrey Bogart
and Lauren Bacall.

Blade Runner (released 1982)

a film loosely based on the novel Do Androids Dream of Electric Sheep?
featuring Harrison Ford, Rutger Hauer, and Sean Young.

Bleak House (published 1852)

novel by Charles Dickens.

Brighton Rock (published 1938)

novel by Graham Greene.

Brighton Rock (released 1947)

a film based on the novel Brighton Rock featuring Richard Attenbor-
ough, Hermione Baddeley, and William Hartnell.

D

Do Androids Dream of Electric Sheep? (published 1968)

novel by Philip K. Dick.

H

The Hobbit (published 1937)

novel by J.R.R. Tolkien.

1

The Hobbit: The Battle of Five Armies (released 2014)

a film based on the novel The Hobbit featuring Ian McKellen, Martin
Freeman, and Richard Armitage.

The Hobbit: The Desolation of Smaug (released 2013)

a film based on the novel The Hobbit featuring Ian McKellen, Martin
Freeman, and Richard Armitage.

The Hobbit: An Unexpected Journey (released 2012)

a film based on the novel The Hobbit featuring Martin Freeman, Ian
McKellen, and Richard Armitage.

I

Ice Cold in Alex (published 1957)

novel by Christopher Landon.

Ice Cold in Alex (released 1958)

a film based on the novel Ice Cold in Alex featuring John Mills, An-
thony Quayle, and Sylvia Sims.

Ice Station Zebra (published 1963)

novel by Alistair MacLean.

Ice Station Zebra (released 1968)

a film based on the novel Ice Station Zebra featuring Rock Hudson and
Ernest Borgnine.

L

The Long Goodbye (published 1953)

novel by Raymond Chandler.

The Long Goodbye (released 1973)

a film based on the novel The Long Goodbye featuring Elliott Gould
and Nina van Pallandt.

The Lord of the Rings (published 1954)

novel by J.R.R. Tolkien.

The Lord of the Rings: The Fellowship of the Ring (released 2001)

a film based on the novel The Lord of the Rings featuring Elijah Wood,
Ian McKellen, and Orlando Bloom.

2

The Lord of the Rings: The Return of the King (released 2003)

a film based on the novel The Lord of the Rings featuring Elijah Wood,
Viggo Mortensen, and Ian McKellen.

The Lord of the Rings: The Two Towers (released 2002)

a film based on the novel The Lord of the Rings featuring Elijah Wood,
Ian McKellen, and Viggo Mortensen.

M

Murder on the Orient Express (published 1934)

novel by Agatha Christie.

Murder on the Orient Express (released 1974)

a film based on the novel Murder on the Orient Express featuring
Albert Finney, Lauren Bacall, and Ingrid Bergman.

R

Red Harvest (published 1929)

novel by Dashiell Hammett.

T

A Tale of Two Cities (published 1859)

novel by Charles Dickens.

The Trouble with Harry (published 1950)

novel by Jack Trevor Story.

The Trouble with Harry (released 1955)

a film based on the novel The Trouble with Harry featuring John
Forsythe and Shirley MacLaine.

U

Ubik (published 1969)

novel by Philip K. Dick.

W

Where Eagles Dare (published 1967)

novel by Alistair MacLean.

3

Where Eagles Dare (released 1968)

a film based on the novel Where Eagles Dare featuring Richard Burton,
Clint Eastwood, and Mary Ure.

Whisky Galore (published 1947)

novel by Compton Mackenzie.

Whisky Galore! (released 1949)

a film based on the novel Whisky Galore featuring Basil Radford and
Joan Greenwood.

Why Didn’t They Ask Evans? (published 1934)

novel by Agatha Christie.

Why Didn’t They Ask Evans? (released 1980)

a film based on the novel Why Didn’t They Ask Evans? featuring
Francesca Annis, John Gielgud, and Bernard Miles.

The Wizard of Oz (released 1939)

a film based on the novel The Wonderful Wizard of Oz featuring Judy
Garland.

The Wonderful Wizard of Oz (published 1900)

novel by L. Frank Baum.

4

Figure 8.9: sample-media.pdf

511

8 Examples: sample-people.tex

I’d like the first use of \gls to display the full name, except for the entry that has the
first field set. The remaining entries only have text set to a shortened version of the name
so they need to have the name field copied to the first field using replicate-fields:

replicate-fields={name={first}}

I’d like the first use to show the other name in parentheses where provided. The simplest
way to achieve this is by defining the post-link hook \glsxtrpostlink〈category〉. If the
category field isn’t specified it will default to general (for entries defined with @entry), so
I could just define \glsxtrpostlinkgeneral but to allow for the possibility of extending
the document to incorporate other types of entries I decided to set the category to people
through the use of the category option:

category={people}

This means that I now need to define a command called \glsxtrpostlinkpeople that
will be used after instances of \gls etc where the entry has the category set to people. This
first tests if that was the first use of the entry with \glsxtrifwasfirstuse and then tests
if the user3 field is set. If so, it does a space followed by that field’s value in parentheses.
The entry’s label can be obtained from \glslabel:

\newcommand*{\glsxtrpostlinkpeople}{%
\glsxtrifwasfirstuse
{%
\ifglshasfield{user3}{\glslabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}%
{}%

}

I’d also like to do something similar after the name when the entry is displayed in the
glossary. This means defining the post-name hook \glsxtrpostname〈category〉, in this case
\glsxtrpostnamepeople. The entry’s label is referenced with \glscurrententrylabel:

\newcommand*{\glsxtrpostnamepeople}{%
\ifglshasfield{user3}{\glscurrententrylabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}

(A different command is used since \glsmay occur in the description, which would interfere
with the current entry label if they shared the same command to reference the label.)

The post-description hook can be used to append the birth and death dates. Although all
the entries that have been selected from people.bib have a died field, I’ve added a check
for the corresponding user3 field in case new references are added for people who are still
alive:

512

8 Examples: sample-people.tex

\newcommand*{\glsxtrpostdescpeople}{%
\ifglshasfield{user1}{\glscurrententrylabel}
{% born
\space(\glscurrentfieldvalue\,--\,%

\ifglshasfield{user2}{\glscurrententrylabel}
{% died

\glscurrentfieldvalue
}%
{}%

)%
}%
{}%

}

The first list is quite straight-forward and can be created with:

\GlsXtrLoadResources[
src={people},
match={entrytype=entry},
category={people},
replicate-fields={name={first}},
field-aliases={born=user1,died=user2,othername=user3}

]

I have used the sort option and there’s no document language, so bib2gls will sort ac-
cording to my locale. The custom commands \sortname and \sortvonname ensure that the
entries are all sorted alphabetically according to the surnames.

The second list can easily be created by adding the secondary option:

secondary={date:user1:bybirth}

This sorts according to the user1 field (which was originally the birth field). Note that
different locales have different default date formats. There may also be a difference in the
default date format depending on the Java locale provider. For example, if you switch from
using the jre to using the cldr you may find a change in the default format. In case the
format provided in the .bib file isn’t recognised, the required format can be set with:

secondary-date-sort-format={d MMM YYYY G}

I’ve changed the date group headings by redefining \bibglsdategroup and \bibgls-
dategrouptitle, which means that the grouping in the bybirth glossary will be in the
form 〈year〉 〈era〉:

\newcommand{\bibglsdategroup}[7]{#1#4#7}
\newcommand{\bibglsdategrouptitle}[7]{\number#1 #4}

I’ve also defined the bybirth glossary and supplied a title:

513

8 Examples: sample-people.tex

\newglossary*{bybirth}{People (Ordered by Birth)}

The first two glossaries have entries with fairly long names (especially those with the
post-name hook), so the best style is the altlistgroup. The glossaries-extra-stylemods package
patches this style to discourage page breaks occurring after group headings, so I’ve also used
the stylemods option to automatically load that package. I’d like to use the bookindex style
for the index, which is provided by glossary-bookindex, so I need:

stylemods={list,bookindex}

This ensures that glossary-list and glossary-bookindex are loaded and patches the list styles.
The first two glossaries would look better with a terminating full stop, so I’ve used the

postdot package option. (The bookindex style doesn’t use the description field and there-
fore doesn’t use the post-description hook.) The index glossary type can be defined with the
index package option. I’ve set the default style to altlistgroup but this can locally be changed
to bookindex when I display the index. The record option is needed to use bib2gls, so the
glossaries-extra package is loaded with:

\usepackage[record,% using bib2gls
index,% create index glossary
postdot,% dot after descriptions

% load glossary-list.sty and glossary-bookindex.sty and patch:
stylemods={list,bookindex},
style={altlistgroup}]{glossaries-extra}

The index needs to include all the entries that have already been defined but also needs to
include the aliased entries. This means that existing entries simply need their label copied
to the index glossary but the other entries need to be defined so this requires setting the
action option:

action={define or copy}

I would also like to have groups in the index (which the bookindex style supports) so I need
to specify a field in which to save the group information using copy-action-group-field:

copy-action-group-field={indexgroup}

I need to remember to redefine \glsxtrgroupfield to this value before displaying the in-
dex:

\renewcommand{\glsxtrgroupfield}{indexgroup}

The aliased entries won’t be selected by default since they haven’t been used in the docu-
ment, so I need to change the selection criteria with selection:

selection={recorded and deps and see}

514

8 Examples: sample-people.tex

In the index, I’d like the surnames first. This can be done by redefining the custom com-
mands used in the name fields. There’s a slight complication here. These commands aren’t
defined on the first LATEX run as their definitions are written to the .glstex file by bib2gls,
so I can’t use \renewcommand (although I could use \glsrenewcommand). Instead I’ve pro-
vided some custom commands:

\newcommand*{\swaptwo}[2]{#2, #1}
\newcommand*{\swapthree}[3]{#2 #3, #1}

Now I just need to make an assignment using \let:

\let\sortname\swaptwo
\let\sortart\swaptwo
\let\sortvonname\swapthree

This doesn’t perform any check to determine if the commands are already defined so there
won’t be a problem on the first run.

The first two glossaries shouldn’t have number lists:

\printunsrtglossary[title={People (Alphabetical)},nonumberlist]
\printunsrtglossary[type={bybirth},target={false},nonumberlist]

I’d like to use hyperref but I have to switch off the hypertargets for the second glossary oth-
erwise I’ll end up with duplicate targets. This is done with target={false}. All references
using \gls etc will link to the first glossary.

I could also do this for the index but the cross-references in the aliased entries will link to
the first glossary rather than the relevant entry in the index. The simplest way to fix this is
to redefine \glolinkprefix to provide a different target:

\renewcommand*{\glolinkprefix}{idx:}

These redefinitions need to be done before the index. I’ve decided to use the starred \print-
unsrtglossary* to localise these changes, although that’s not needed for this document
since the index comes right at the end:

\printunsrtglossary*
[type={index},style={bookindex}]
{%
\let\sortname\swaptwo
\let\sortart\swaptwo
\let\sortvonname\swapthree
\renewcommand{\glsxtrgroupfield}{indexgroup}%
\renewcommand*{\glolinkprefix}{idx:}%

}

The complete document code is listed below. The document build is:

515

8 Examples: sample-people.tex

pdflatex sample-people
bib2gls --group --break-space sample-people
pdflatex sample-people

The four pages of the document are shown in figure 8.10.
\documentclass[12pt,a4paper]{report}

\usepackage[colorlinks]{hyperref}
\usepackage[record,% using bib2gls
index,% create index glossary
postdot,% dot after descriptions

% load glossary-list.sty and glossary-bookindex.sty and patch:
stylemods={list,bookindex},
style=altlistgroup]{glossaries -extra}

\newglossary*{bybirth}{People (Ordered by Birth)}

\newcommand{\bibglsdategroup}[7]{#1#4#7}
\newcommand{\bibglsdategrouptitle}[7]{\number#1\ #4}

\newcommand*{\swaptwo}[2]{#2, #1}
\newcommand*{\swapthree}[3]{#2 #3, #1}

\GlsXtrLoadResources[
src=no-interpret -preamble ,
interpret -preamble=false

]

\GlsXtrLoadResources[
src={interpret -preamble ,people},
match={entrytype=entry},
category={people},
replicate -fields={name={first}},
field-aliases={born=user1,died=user2,othername=user3},
secondary={date:user1:bybirth},
secondary -date-sort-format={d MMM YYYY G}

]

\GlsXtrLoadResources[
src={people},
type=index,
category=people,
action={define or copy},
copy-action-group-field={indexgroup},
selection={recorded and deps and see}

]

516

8 Examples: sample-people.tex

\newcommand*{\glsxtrpostlinkpeople}{%
\glsxtrifwasfirstuse
{%

\ifglshasfield{user3}{\glslabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}%
{}%

}

\newcommand*{\glsxtrpostnamepeople}{%
\ifglshasfield{user3}{\glscurrententrylabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}

\newcommand*{\glsxtrpostdescpeople}{%
\ifglshasfield{user1}{\glscurrententrylabel}
{% born

\space(\glscurrentfieldvalue\,--\,%
\ifglshasfield{user2}{\glscurrententrylabel}
{% died

\glscurrentfieldvalue
}%
{}%

)%
}%
{}%

}

\begin{document}
\chapter{Sample}
\section{First Use}

\gls{caesar}, \gls{wellesley}, \gls{bonaparte},
\gls{vonrichthofen} and \gls{alexander}.

\section{Next Use}

\gls{caesar}, \gls{wellesley}, \gls{bonaparte},
\gls{vonrichthofen} and \gls{alexander}.

\printunsrtglossary[title={People (Alphabetical)},nonumberlist]

\printunsrtglossary[type=bybirth,target=false,nonumberlist]

517

8 Examples: sample-authors.tex

\printunsrtglossary*
[type=index,style=bookindex]
{%

\let\sortname\swaptwo
\let\sortart\swaptwo
\let\sortvonname\swapthree
\renewcommand{\glsxtrgroupfield}{indexgroup}%
\renewcommand*{\glolinkprefix}{idx:}%

}
\end{document}

sample-authors.tex
This example uses the files people.bib, books.bib, no-interpret-preamble.bib and
interpret-preamble2.bib. The aim is to reference the books in books.bib and have
them listed by author. This means finding a way of assigning each book entry a parent field
that contains the label identifying the relevant author in people.bib. I’ve used a style that
shows letter group headings so I need to use the --group switch.

To recap, each author is defined in people.bib in the form:

@entry{dickens,
name={\sortname{Charles}{Dickens}},
text={Dickens},
description={English writer and social critic},
born={7~February 1812 AD},
died={9~June 1870 AD},
identifier={person}

}

and each book is defined in books.bib in the form:

@entry{bleakhouse,
name={Bleak House},
description={novel by Charles Dickens},
identifier={book},
author={\sortmediacreator{Charles}{Dickens}},
year={1852}

}

There’s a field here (the custom author field) that contains the author’s name, and this can
be aliased to the parent field with field-aliases:

field-aliases={author=parent}

but the author’s label in the people.bib file is just the lower case surname.

518

8 Examples: sample-authors.tex

Chapter 1

Sample

1.1 First Use

Julius Caesar, Arthur Wellesley (1st Duke of Wellington), Napoleon Bona-
parte, Manfred von Richthofen (The Red Baron) and Alexander III of Mace-
don (Alexander the Great).

1.2 Next Use

Caesar, Wellington, Bonaparte, von Richthofen and Alexander.

1

People (Alphabetical)

A

Alexander III of Macedon (Alexander the Great)

Ancient Greek king of Macedon (20 July 356 BC– 10 June 323 BC).

B

Napoleon Bonaparte

French military and political leader (15 July 1769 AD– 5 May 1821
AD).

C

Gaius Julius Caesar

Roman politician and general (13 July 100 BC– 15 March 44 BC).

V

Manfred von Richthofen (The Red Baron)

Prussian ace fighter pilot in the German Air Force during World War I
(2 May 1892 AD– 21 April 1918 AD).

W

Arthur Wellesley (1st Duke of Wellington)

Anglo-Irish soldier and statesman (1 May 1769 AD– 14 September 1852
AD).

2

People (Ordered by Birth)

357 BC

Alexander III of Macedon (Alexander the Great)

Ancient Greek king of Macedon (20 July 356 BC– 10 June 323 BC).

100 BC

Gaius Julius Caesar

Roman politician and general (13 July 100 BC– 15 March 44 BC).

1769 AD

Napoleon Bonaparte

French military and political leader (15 July 1769 AD– 5 May 1821
AD).

Arthur Wellesley (1st Duke of Wellington)

Anglo-Irish soldier and statesman (1 May 1769 AD– 14 September 1852
AD).

1892 AD

Manfred von Richthofen (The Red Baron)

Prussian ace fighter pilot in the German Air Force during World War I
(2 May 1892 AD– 21 April 1918 AD).

3

Index

A

Alexander III of Macedon
(Alexander the Great), 1

Alexander the Great, see Alexander
III of Macedon

B

Bonaparte, Napoleon, 1

C

Caesar, Gaius Julius, 1

R

Red Baron, The, see von Richthofen,
Manfred

V

von Richthofen, Manfred (The Red
Baron), 1

W

Wellesley, Arthur (1st Duke of
Wellington), 1

Wellington, see Wellesley, Arthur

4

Figure 8.10: sample-people.pdf

519

8 Examples: sample-authors.tex

Remember from chapter 2 that the interpreter will be used on the parent field if the value
contains \ or { or } and interpret-label-fields={true}. This means that with this
field alias and the interpreter on, bib2gls will attempt to interpret the field contents. So
all that’s needed is to ensure that bib2gls is given a definition of \sortmediacreator that
ignores the first argument and converts the second argument to lower case. This definition is
available in interpret-preamble2.bib but, since this file uses \renewcommand rather than
\providecommand, write-preamble={false} is required to prevent LATEX from picking up
this definition.

As with the sample-people.tex example, I need to copy the name field to the first field
if that field is missing using replicate-fields:

replicate-fields={name={first}}

and I also want to provide a semantic command to format the book title, so the field aliases
also need to convert the custom identifier field to category:

field-aliases={identifier=category,author=parent}

so that the document can set the textformat and glossnamefont attributes:

\newcommand*{\bookfont}[1]{\emph{#1}}
\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}

As with sample-media.tex, the terminating question mark at the end of some of the name
fields can cause an awkward situation if \gls is used at the end of a sentence. This can be
dealt with by getting bib2gls tomake a note of the fields that endwith sentence-terminating
punctuation through the use of the check-end-punctuation option. In this example, the
name, text and first fields are the same for all the books, so it’s sufficient just to check the
name field:

check-end-punctuation={name}

With glossaries-extra v1.23+ it’s easy to hook into the post-link hook to check if nameendpunc
exists:

\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%
\GlsXtrIfFieldUndef{nameendpunc}{\glslabel}{#2}{#1}%

}

This will now cause the full stops following:

\gls{whydidnttheyaskevans}.

and

\gls{doandroidsdreamofelectricsheep}.

520

8 Examples: sample-authors.tex

to be discarded.
The complete document code is listed below. The document build is:

pdflatex sample-authors
bib2gls --group sample-authors
pdflatex sample-authors

The resulting document is shown in figure 8.11.
\documentclass[12pt,a4paper]{article}

\usepackage[colorlinks]{hyperref}
\usepackage[record,% using bib2gls
nostyles,% don't load default styles
stylemods={bookindex},% load glossary-bookindex and patch styles
style=bookindex]{glossaries -extra}

\GlsXtrLoadResources[
src=no-interpret -preamble ,
interpret -preamble=false

]

\GlsXtrLoadResources[
src={interpret -preamble2,people,books},
write-preamble=false,
interpret -label-fields,
field-aliases={identifier=category ,author=parent},
check-end-punctuation={name},
replicate -fields={name={first}}

]

\newcommand*{\bookfont}[1]{\emph{#1}}
\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}

% requires glossaries -extra v1.23
\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%
\GlsXtrIfFieldUndef{nameendpunc}{\glslabel}{#2}{#1}%

}

\begin{document}
\section{Sample}

\gls{ataleoftwocities}. \gls{bleakhouse}. \gls{thebigsleep}.
\gls{thelonggoodbye}. \gls{redharvest}.
\gls{murderontheorientexpress}. \gls{whydidnttheyaskevans}.
\gls{icecoldinalex}. \gls{thehobbit}. \gls{thelordoftherings}.
\gls{thewonderfulwizardofoz}. \gls{whiskygalore}.

521

8 Examples: sample-citations.tex

\gls{whereeaglesdare}. \gls{icestationzebra}. \gls{ubik}.
\gls{doandroidsdreamofelectricsheep}. \gls{thetroublewithharry}.
\gls{brightonrock}.

\printunsrtglossary[title={Author and Book List}]

\end{document}

sample-citations.tex
This example uses the BIBTEX file citations.bib to create a document that has both a bib-
liography created by BIBTEX and glossaries created by bib2gls listing the authors and the
titles. There are no glossary reference commands, such as \gls, but bib2gls can be run with
--cite-as-record to treat the \citation commands (written to the .aux file by \cite)
as ignored records. Since \cite doesn’t record the page number, there are no associated
locations.

The main glossary isn’t required, so I’ve used nomain to suppress its creation. I want to
use both the altlist and indexgroup styles but none of the other styles, so I’ve used nostyles
to prevent the automatic loading of the default style packages and stylemods to load the
glossary-tree and glossary-list packages and patch the styles. A full stop is automatically
placed after the descriptions with postdot.

\usepackage[record,% using bib2gls
nomain,% don't define main glossary
postdot,% full stop after descriptions
nostyles,% don't load default styles
% load glossary-tree and glossary-list and patch styles:
stylemods={tree,list}
]{glossaries-extra}

Next I need to create the glossaries for the list of authors and list of titles:

\newglossary*{contributors}{Authors}
\newglossary*{titles}{Titles}

The simplest way of assigning the authors to the contributors glossary and the titles to
the titles glossary is to use:

type={contributors}

in the resource set and provide a modified version of \bibglsnewbibtexentry that assigns
type after the options:

\newcommand{\bibglsnewbibtexentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2,type={titles}}{#4}%

}

522

8 Examples: sample-citations.tex

1 Sample

A Tale of Two Cities . Bleak House. The Big Sleep. The Long Goodbye. Red
Harvest . Murder on the Orient Express . Why Didn’t They Ask Evans? Ice
Cold in Alex . The Hobbit . The Lord of the Rings . The Wonderful Wizard
of Oz . Whisky Galore. Where Eagles Dare. Ice Station Zebra. Ubik . Do
Androids Dream of Electric Sheep? The Trouble with Harry . Brighton Rock .

Author and Book List

B

Lyman Frank Baum
The Wonderful Wizard of Oz , 1

C

Raymond Chandler
The Big Sleep, 1
The Long Goodbye, 1

Dame Agatha Mary Clarissa
Christie

Murder on the Orient Express , 1
Why Didn’t They Ask Evans? , 1

D

Philip K. Dick
Do Androids Dream of Electric

Sheep? , 1
Ubik , 1

Charles Dickens
Bleak House, 1
A Tale of Two Cities , 1

G

Henry Graham Green
Brighton Rock , 1

H

Samuel Dashiell Hammett
Red Harvest , 1

L

Christopher Guy Landon
Ice Cold in Alex , 1

M

Compton Mackenzie
Whisky Galore, 1

Alistair MacLean
Ice Station Zebra, 1
Where Eagles Dare, 1

S

Jack Trevor Story
The Trouble with Harry , 1

T

John Ronald Reuel Tolkien
The Hobbit , 1
The Lord of the Rings , 1

1

Figure 8.11: sample-authors.pdf

523

8 Examples: sample-citations.tex

The standard BIBTEX entry types need aliasing to @bibtexentry:

entry-type-aliases={\GlsXtrBibTeXEntryAliases}

and the title field is aliased to name:

field-aliases={title=name}

(The other fields aren’t required for the glossary lists.) The category is set to the original
entry type:

category={same as original entry}

So, for example, an entry that’s provided in the .bib file with @article has the category
field set to article. (Compare this with category={same as entry}which would set the
category to bibtexentry.) The spawned entries are all defined using @contributor and
aren’t aliased so both the entry type and the original entry type are contributor.

In order to list the titles according to category, I’ve use this as the sort field:

sort-field={category}

and setting the sort suffix to the name field sub-sorts the @bibtexentry types according
to the title (which was aliased to the name) and the @contributor types according to the
author:

sort-suffix={name}

Next the groups identified by the labels article and book are assigned titles.

\glsxtrsetgrouptitle{article}{Articles}
\glsxtrsetgrouptitle{book}{Books}

The group field is actually set to the associated letter by the default sortmethod. The desired
labels are stored in the category field. Since the entries are sorted by category, then they
are naturally in those sub-blocks, which means that the group titles can be set by locally
redefining \glsxtrgroupfield to category:

\printunsrtglossary*[type={titles},style={indexgroup}]
{%
\renewcommand{\glsxtrgroupfield}{category}%
\renewcommand{\glstreenamefmt}[1]{\emph{#1}}%
\renewcommand{\glstreegroupheaderfmt}[1]{\textbf{#1}}%

}

This again contradicts the advice given in section 1.3 as I’m sorting by the group label. (Tech-
nically it’s sorting by the category label but this is being used as the group.) In this case it’s
not a problem as the labels closely match the titles and the sorting options ensure that the
groups aren’t broken up.

There’s no description field set for these entries, but the post-description hook can still
be used to append information. In this case, I’ve appended a cross-reference to the bibli-
ography. Since the bibliography entry and the glossary term both have the same label, the
citation can easily be obtained with \cite{\glscurrententrylabel}:

524

8 Examples: sample-citations.tex

\newcommand{\glsxtrpostdescarticle}{\cite{\glscurrententrylabel}}
\newcommand{\glsxtrpostdescbook}{\cite{\glscurrententrylabel}}

Note that this needs to be done for each BIBTEX entry type, but in this case the .bib file only
contains @article and @book entries. (Similarly for the group titles above.)

The list of contributors can simply be displayed with:

\printunsrtglossary[type={contributors},style={altlist}]

This will only list the names as there’s no description, but again the post-description hook
can be used, in this case for the contributor category. The hook iterates over the internal
list provided by the bibtexentry field. This allows the titles to be listed as well:

\newcommand{\glsxtrpostdesccontributor}{%
\glsxtrifhasfield{bibtexentry}{\glscurrententrylabel}%
{%

\glsxtrfieldforlistloop
{\glscurrententrylabel}{bibtexentry}%
{\contributorhandler}%

}%
{\par No titles.}%

}

The handler macro displays the name of the associated @bibtexentry term and the citation:

\newcommand{\contributorhandler}[1]{\par\glsentryname{#1} \cite{#1}}

The complete document code is listed below. The document build is:

pdflatex sample-citations
bib2gls --cite-as-record sample-citations
bibtex sample-citations
pdflatex sample-citations
pdflatex sample-citations

The resulting document is shown in figure 8.12.

\documentclass[12pt,a4paper]{article}

\usepackage[record,% using bib2gls
nomain,% don't define main glossary
postdot,% full stop after descriptions
nostyles,% don't load default styles
% load glossary-tree and glossary-list and patch styles:
stylemods={tree,list}
]{glossaries -extra}

\newglossary*{contributors}{Authors}

525

8 Examples: sample-citations.tex

\newglossary*{titles}{Titles}

\newcommand{\bibglsnewbibtexentry}[4]{%
\longnewglossaryentry*{#1}{name={#3},#2,type={titles}}{#4}%

}

\GlsXtrLoadResources[
src={citations},% data in citations.bib
entry-type-aliases={\GlsXtrBibTeXEntryAliases},
field-aliases={

title=name
},
type={contributors},
category={same as original entry},
sort-field={category},
sort-suffix={name}

]

\glsxtrsetgrouptitle{article}{Articles}
\glsxtrsetgrouptitle{book}{Books}

\newcommand{\contributorhandler}[1]{\par\glsentryname{#1} \cite{#1}}

\newcommand{\glsxtrpostdesccontributor}{%
\glsxtrifhasfield{bibtexentry}{\glscurrententrylabel}%
{%

\glsxtrfieldforlistloop
{\glscurrententrylabel}{bibtexentry}%
{\contributorhandler}%

}%
{\par No titles.}%

}

\newcommand{\glsxtrpostdescarticle}{\cite{\glscurrententrylabel}}
\newcommand{\glsxtrpostdescbook}{\cite{\glscurrententrylabel}}

\begin{document}
This is a sample document with some citations~\cite{macaw,parrot}
and some more citations~\cite{duck2018,duck2016} and don't
forget~\cite{ing,parrot2012} and lastly~\cite{quackalot}.

\printunsrtglossary[type=contributors ,style=altlist]
\printunsrtglossary*[type=titles,style=indexgroup]
{%
\renewcommand{\glsxtrgroupfield}{category}%
\renewcommand{\glstreenamefmt}[1]{\emph{#1}}%

526

8 Examples: sample-msymbols.tex

\renewcommand{\glstreegroupheaderfmt}[1]{\textbf{#1}}%
}

\bibliographystyle{unsrt}
\bibliography{citations}

\end{document}

This is a sample document with some citations [1, 2] and some more
citations [3, 4] and don’t forget [5, 6] and lastly [7].

Authors

Arara, José

Avian friendship [3].

Duck, Dickie

Avian friendship [3]

Feathered stunt doubles: ‘The Birds’ and other films [4]

‘Duck and Goose’ Cheat Sheet for Students [2].

Ing, Bor

‘Duck and Goose’: an allegory for modern times? [5].

Macaw, Prof

Annotated notes on the ‘Duck and Goose’ chronicles [1].

Parrot, A

My Friend is a Duck [6].

Parrot, Polly

Avian friendship [3]

‘Duck and Goose’ Cheat Sheet for Students [2].

Quackalot, Sir

The Adventures of Duck and Goose [7].

Titles

Articles

‘Duck and Goose’ Cheat Sheet for Students
Avian friendship

Books

‘Duck and Goose’: an allegory for modern times?

1

Annotated notes on the ‘Duck and Goose’ chronicles
Feathered stunt doubles: ‘The Birds’ and other films
My Friend is a Duck
The Adventures of Duck and Goose

References

[1] Prof Macaw. Annotated notes on the ‘Duck and Goose’ chronicles. Duck
Duck Goose, 2012.

[2] Polly Parrot and Dickie Duck. ‘Duck and Goose’ cheat sheet for students.
Fowl Times, 2(10):15–23, 2013.

[3] Dickie Duck, José Arara, and Polly Parrot. Avian friendship. Fowl Times,
7(5):1032–5, 2018.

[4] Dickie Duck. Feathered stunt doubles: ‘The Birds’ and other films. Duck
Duck Goose, 2016.

[5] Bor Ing. ‘Duck and Goose’: an allegory for modern times? Duck Duck
Goose, 2010.

[6] A Parrot. My Friend is a Duck. Duck Duck Goose, 2012.

[7] Sir Quackalot. The Adventures of Duck and Goose. Duck Duck Goose,
2011.

2

Figure 8.12: sample-citations.pdf

sample-msymbols.tex
This example uses bigmathsymbols.bib, mathsrelations.bib, binaryoperators.bib,
unaryoperators.bib and mathgreek.bib. The stix package is required for some of the
commands used in bigmathsymbols.bib, so that must be loaded in the document.

I’m using the mcolalttree style for this document, which means that the glossary-mcols
package is required and the styles need patching, which can be done with the stylemods
package option:

\usepackage[record,% using bib2gls
nostyles,% don't load default styles
postdot,% append a dot after descriptions

527

8 Examples: sample-msymbols.tex

stylemods={mcols},% load glossary-mcols.sty and patch
style={mcolalttree}]{glossaries-extra}

I’m not referencing any of the entries in the document as I’m just generating a complete
list of all the defined symbols. This means I need to tell bib2gls to select all entries and
don’t bother saving the location field:

save-locations={false},
selection={all}

Since I’m using a style that’s based on alttree I need to find the widest name, which can be
done with set-widest.

The simplest way of dividing the glossary into logical blocks is to sort according to the
category, but first I need to use field-aliases to convert the custom identifier field to
category:

field-aliases={identifier=category}

and sort by the category field:

sort-field={category}

Since this will cause identical sort values, I need to provide a a way of ordering these identical
values. Here I’ve decided to fallback on the description field:

identical-sort-action={description}

Thismeans that entries will be ordered by category and then description, which naturally
creates blocks of symbol types in the glossary. This only uses a simple case-sensitive string
comparison which is fine for English, but for another language it would be better to use
sort-suffix as in the sample-textsymbols.tex file.

Remember that I want a small vertical gap between each logical block. These need the
group field which, with the default locale sort, is obtained from the first letter of the sort
value. In this case the sort value is obtained from the category field, and as each category
happens to start with a different letter, this means I get the desired effect. However, in the
event that I add more entries with a new category that happens to start with the same letter
as an existing category, it’s better to provide a more future-proof method, so I’ve set the
group field to fetch its value from the category field:

replicate-fields={category=group}

(Since the field-aliases option is always performed before replicate-fields, the category
field will already have been set and is available for replicating.)

This means that I’m essentially sorting by the group labels, which this manual has warned
against doing. In this case, it’s an acceptable break from that rule as I’ve used options that
ensure the groups aren’t broken up during sorting and I’m not concerned with the group
titles. A method such as that used in sample-textsymbols2.tex would end up with titled
blocks, which I don’t want here. By using resource options such as field-aliases and
replicate-fields I can avoid the warning that’s triggered with the default --warn-non
-bib-fields.

The complete document code is listed below. The document build is:

528

8 Examples: sample-maths.tex

pdflatex sample-msymbols
bib2gls sample-msymbols
pdflatex sample-msymbols

The resulting document is shown in figure 8.13.
\documentclass[a4paper]{article}

\usepackage[T1]{fontenc}
\usepackage{stix}

\usepackage[record,% using bib2gls
nostyles,% don't load default styles
postdot,% append a dot after descriptions
stylemods={mcols},% load glossary -mcols.sty and patch
style=mcolalttree]{glossaries -extra}

\GlsXtrLoadResources[
src={bigmathsymbols ,mathgreek ,
mathsrelations ,binaryoperators ,unaryoperators},

sort-field={category},
identical -sort-action={description},
field-aliases={identifier=category},
replicate -fields={category=group},
set-widest,
save-locations=false,
selection=all

]

\begin{document}
\printunsrtglossaries
\end{document}

sample-maths.tex
This example uses bigmathsymbols.bib and mathsobjects.bib. It has a fairly similar
preamble to sample-msymbols.tex, but no-interpret-preamble.bib and interpret
-preamble.bib are now needed to provide the \sortart command:

\GlsXtrLoadResources[
src={no-interpret-preamble},
interpret-preamble={false}

]

There’s also an extra custom field to alias:

field-aliases={identifier=category,format=user1}

529

8 Examples: sample-maths.tex

Glossary

+ addition.
÷ division.
× multiplication.
− subtraction.

∮ ∮ contour integral.

∬ ∬ double integral.

∫ ∫ integral.

∯ ∯ surface integral.

∭ ∭ triple integral.

∰ ∰ volume integral.

𝛼 alpha.
𝛽 beta.
𝜒 chi.
𝛿 delta.
𝜖 epsilon.
𝜀 epsilon (variant).
𝜂 eta.
𝛾 gamma.
𝜄 iota.
𝜅 kappa.
𝜘 kappa (variant).
𝜆 lambda.
𝜇 mu.
𝜈 nu.
𝜔 omega.
𝑜 omicron.
𝜙 phi.
𝜑 phi (variant).
𝜋 pi.
𝜛 pi (variant).
𝜓 psi.
𝜌 rho.
𝜚 rho (variant).
𝜎 sigma.

𝜍 sigma (variant).
𝜏 tau.
𝜃 theta.
𝜗 theta (variant).
𝜐 upsilon.
𝜉 xi.
𝜁 zeta.
⨀

⨀

𝑛-ary circled dot operator.
⨁

⨁

𝑛-ary circled plus operator.
⨂

⨂

𝑛-ary circled times operator.
∐

∐

𝑛-ary coproduct.
⋂

⋂

𝑛-ary intersection.
⋀

⋀

𝑛-ary logical and.
⋁

⋁

𝑛-ary logical or.
∏

∏

𝑛-ary product.
⨅

⨅

𝑛-ary square intersection opera-
tor.

⨆

⨆

𝑛-ary square union operator.
∑

∑

𝑛-ary summation.
⋃

⋃

𝑛-ary union.
⨄

⨄

𝑛-ary union operator with plus.

≈ approximately.
= equals.
> greater than.
≥ greater than or equal to.
∈ in.
< less than.
≤ less than or equal to.
≫ much greater than.
≪ much less than.
≠ not equals.
∋ not in.

! factorial.
∀ for all.
− minus.
+ plus.

1

Figure 8.13: sample-msymbols.pdf

530

8 Examples: sample-maths.tex

I’ve aliased format to user1 since \glsxtrfmt defaults to that field. If I decided to use a
different field I also need to remember to redefine \GlsXtrFmtField to match.

As with sample-msymbols.tex I’m sorting by the category label and this value is copied
to the group field, but again I don’t have a hierarchical glossary as the logical blocks don’t
have titles.

In this document I only want to select entries that have been indexed, so I’ve omitted the
selection option I used in the sample-msymbols.tex example, however I still don’t want
any number lists so I still have save-locations={false}.

I want \glsxtrfmt to index the term (which it doesn’t by default) so that means I need to
redefine \GlsXtrFmtDefaultOptions to prevent it from using noindex:

\renewcommand{\GlsXtrFmtDefaultOptions}{}

I’ve provided some convenient wrapper commands that use \glsxtrfmt* or the non-linking
\glsxtrentryfmt that are in the form:

\newcommand{\set}[2][]{\glsxtrfmt*[#1]{set}{#2}}
\newcommand{\nlset}[1]{\glsxtrentryfmt{set}{#1}}

The use of the starred form allows:

\[\set{A} = \gls{bigcup}[_{i=1}^n] \set{B}[_i] \]

which produces:

A =
n⋃

i=1

Bi

Note the difference if the optional arguments aren’t used:

\[\set{A} = \gls{bigcup}_{i=1}^n \set{B}_i \]

This produces:
A =

⋃
n
i=1Bi

Be careful with the set cardinality example. You might be tempted to nest \set within
the argument of \setcard but this results in nested hyperlinks. These are unpredictable
and there’s no consistent handling of them between different PDF viewers. It can also be
confusing to the reader. If |B1 ∪ B2| shows up as what appears to be a single hyperlink,
where would the reader expect the target? This is the reason for providing the non-linking
commands like \nlset and \nlsetcard.

The complete document code is listed below. The document build is:

pdflatex sample-maths
bib2gls sample-maths
pdflatex sample-maths

The resulting document is shown in figure 8.14.

531

8 Examples: sample-maths.tex

\documentclass[a4paper]{article}

\usepackage[T1]{fontenc}
\usepackage{amssymb}

\usepackage[colorlinks]{hyperref}
\usepackage[record,% using bib2gls
nostyles,% don't load default styles
postdot,% append a dot after descriptions
stylemods={mcols},% load glossary -mcols.sty and patch
style=mcolalttree]{glossaries -extra}

\GlsXtrLoadResources[
src={no-interpret -preamble},
interpret -preamble=false

]

\GlsXtrLoadResources[
src={interpret -preamble ,bigmathsymbols ,mathsobjects},
sort-field={category},
identical -sort-action={description},
field-aliases={identifier=category ,format=user1},
replicate -fields={category=group},
set-widest,
save-locations=false

]

\renewcommand{\GlsXtrFmtDefaultOptions}{}

% requires glossaries -extra.sty v1.23+
\newcommand{\set}[2][]{\glsxtrfmt*[#1]{set}{#2}}
\newcommand{\nlset}[1]{\glsxtrentryfmt{set}{#1}}
\newcommand*{\setcontents}[2][]{\glsxtrfmt*[#1]{setcontents}{#2}}
\newcommand*{\setmembership}[2]{\glsxtrfmt*{setmembership}{{#1}{#2}}}
\newcommand*{\setcard}[2][]{\glsxtrfmt*[#1]{setcard}{#2}}
\newcommand*{\nlsetcard}[1]{\glsxtrentryfmt{setcard}{#1}}
\newcommand*{\transpose}[2][]{\glsxtrfmt*[#1]{transpose}{#2}}
\newcommand*{\nltranspose}[1]{\glsxtrentryfmt{transpose}{#1}}
\newcommand*{\inv}[2][]{\glsxtrfmt*[#1]{inverse}{#2}}
\newcommand*{\nlinv}[1]{\glsxtrentryfmt{inverse}{#1}}
\newcommand*{\Vtr}[2][]{\glsxtrfmt[#1]{vector}{#2}}
\newcommand*{\nlVtr}[1]{\glsxtrentryfmt{vector}{#1}}
\newcommand*{\Mtx}[2][]{\glsxtrfmt[#1]{matrix}{#2}}
\newcommand*{\nlMtx}[1]{\glsxtrentryfmt{matrix}{#1}}

\begin{document}

532

8 Examples: sample-maths.tex

\section{Sets}
The universal set ($\gls{universalset}$) contains everything.
The empty set ($\gls{emptyset}$) contains nothing.
Some assignments:
\[
\set{B}[_1] = \setcontents{1, 3, 5, 7},\quad
\set{B}[_2] = \setcontents{2, 4, 6, 8},\quad
\set{B}[_3] = \setcontents{9, 10}

\]
Define:
\[\set{A} = \gls{bigcup}[_{i=1}^3] \set{B}[_i]
= \setcontents{1, \ldots, 10} \]
The cardinality of a set \gls{set} is denoted \gls{setcard}
and is the number of elements in the set.
\[
\setcard{\nlset{B}_1} = 4,\quad
\setcard{\nlset{B}_2} = 4,\quad
\setcard{\nlset{B}_3} = 2,\quad
\setcard{\nlset{B}_1\cup\nlset{B}_2} = 8,\quad
\nlsetcard{\gls{emptyset}} = 0

\]

\section{Spaces}
A number space (denoted $\gls{numberspace}$) is characterised
by a set of entities with a set of axioms. For example:
\begin{align*}
\gls{naturalnumbers}
&= \setmembership{x}{x\text{ is positive integer}}\\

\gls{integernumbers}
&= \setmembership{x}{x\text{ is an integer}}\\

\gls{realnumbers}
&= \setmembership{x}{x\text{ is a real number}}

\end{align*}

\section{Vectors and Matrices}

A matrix (denoted \gls{matrix}) is a rectangular array of values.
A vector (denoted \gls{vector}) is a column or row of values (that
is a one-dimensional matrix).
\[

\gls{identitymatrix}\Vtr{x} = \Vtr{x},\quad
\Mtx{A}\inv{\nlMtx{A}} = \gls{identitymatrix},\quad
\inv{\nlVtr{x}}\gls{1vec} = \gls{sum}[_i] x_i

\]

\printunsrtglossaries

533

8 Examples: sample-textsymbols.tex

\end{document}

sample-textsymbols.tex
This example uses miscsymbols.bib. This requires both marvosym and (with the weather
option) ifsym. Unfortunately both define the commands \Sun and \Lightning, so these
commands need to be undefined after the first package is loaded and before the second.
Since I want the definitions provide by ifsym I have to first load marvosym, then undefine the
conflicting commands and then load ifsym:

\usepackage{etoolbox}
\usepackage{marvosym}
\undef\Sun
\undef\Lightning
\usepackage[weather]{ifsym}

The etoolbox package is also loaded as it provides \undef. (An alternative is to modify the
miscsymbols.bib file so that it uses ifsym’s more generic \textweathersymbol command
and omit the weather option when loading the package, but the method used here demon-
strates how to deal with such conflicts.)

The custom entry type @icon must be aliased for the entries to be recognised:

entry-type-aliases={icon=symbol}

Since none of the entries have a name or description field, the custom fields icon and
icondescription need to be aliased to them. The document uses the alttreegroup style
where the groups are obtained from the category, which again I obtain from the custom
identifier field using:

field-aliases={
identifier=category,
icon=name,
icondescription=description},

replicate-fields={category=group}

The group field is just a label and an appropriate title needs to be supplied for each group
label:

\glsxtrsetgrouptitle{information}{Information}
\glsxtrsetgrouptitle{mediacontrol}{Media Controls}
\glsxtrsetgrouptitle{weather}{Weather Symbols}

This also requires sorting first by category and then fallback on another field. The most
appropriate here is the description field, but instead of using identical-sort-action,
I’m using sort-suffix, which works better with the default locale sort when the fallback
field consists of words or phrases.

534

8 Examples: sample-textsymbols.tex

1 Sets
The universal set (U) contains everything. The empty set (∅) contains nothing.
Some assignments:

B1 = {1, 3, 5, 7}, B2 = {2, 4, 6, 8}, B3 = {9, 10}

Define:

A =

3⋃
i=1

Bi = {1, . . . , 10}

The cardinality of a set S is denoted |S| and is the number of elements in the
set.

|B1| = 4, |B2| = 4, |B3| = 2, |B1 ∪ B2| = 8, |∅| = 0

2 Spaces
A number space (denoted S) is characterised by a set of entities with a set of
axioms. For example:

N = {x : x is positive integer}
Z = {x : x is an integer}
R = {x : x is a real number}

3 Vectors and Matrices
A matrix (denoted M) is a rectangular array of values. A vector (denoted v)
is a column or row of values (that is a one-dimensional matrix).

Ix = x, AA−1 = I, x−11 =
∑
i

xi

Glossary

I the identity matrix.
M−1 the inverse of M .
M a matrix.
v a vector.
1 the vector of 1s.∑∑

n-ary summation.⋃⋃
n-ary union.

S a number space.

Z the set of integers.
N the set of natural numbers.
R the set of real numbers.

|S| the cardinality of S.
∅ the empty set.
S a set.
{. . .} set contents.
{x : . . .} set membership.
U the universal set.

1

Figure 8.14: sample-maths.pdf

535

8 Examples: sample-textsymbols.tex

sort-field={category},
sort-suffix={description},
sort-suffix-marker={|}

Since I’m using one of the alttree styles, I need to set the widest name:

set-widest

In this case, bib2gls won’t be able to determine the widest name since it doesn’t recognise
any of the commands, so it will have to use the fallback command, which will use one of the
commands provided by the glossaries-extra-stylemods package.

This is actually not the best method as bib2gls can’t see the group titles as they’re in the
document, so it’s only able to sort by the label. While this might work for English, it can
become a problem for other languages that use extended Latin or non-Latin characters in
their alphabet. Amuch bettermethod is to treat this as a hierarchical glossarywith topic titles
as the top-level entries. This is covered in the next example sample-textsymbols2.tex.

The complete document code is listed below. The document build is:

pdflatex sample-textsymbols
bib2gls sample-textsymbols
pdflatex sample-textsymbols

The resulting document is shown in figure 8.15.
\documentclass[a4paper]{article}

\usepackage[T1]{fontenc}

\usepackage{etoolbox}
\usepackage{marvosym}

% package conflict , need to undefine conflicting commands
\undef\Sun
\undef\Lightning

\usepackage[weather]{ifsym}

\usepackage[record,% using bib2gls
nostyles,% don't load default styles
postdot,% append a dot after descriptions
stylemods={tree},% load glossary-tree.sty and patch
style=alttreegroup]{glossaries -extra}

\GlsXtrLoadResources[
src={miscsymbols},

% make @icon behave like @symbol:
entry-type-aliases={icon=symbol},
field-aliases={

536

8 Examples: sample-textsymbols2.tex

identifier=category ,
icon=name,
icondescription=description

},
replicate -fields={category=group},
sort-field={category},
sort-suffix={description},
sort-suffix-marker={|},
set-widest,
selection=all

]

\glsxtrsetgrouptitle{information}{Information}
\glsxtrsetgrouptitle{mediacontrol}{Media Controls}
\glsxtrsetgrouptitle{weather}{Weather Symbols}

\begin{document}
\printunsrtglossaries
\end{document}

sample-textsymbols2.tex
This example is a better approach than the sample-textsymbols.tex example above. As
with the previous example, this requires both marvosym and ifsym so the same patch is ap-
plied to avoid conflict.

As before, the custom entry type @icon must be aliased for the entries to be recognised:

entry-type-aliases={icon=symbol}

The topics.bib file contains terms with labels that match the custom identifier fields
used in the miscsymbols.bib file. So both files are loaded and the identifier field is now
aliased to parent. These parent entries represent the topics and unlike the previous example
it’s now possible to sort by the topic title (obtained from the name field) instead of by the label.

src={topics,miscsymbols},
field-aliases={
identifier=parent,
icon=name,
icondescription=description},

There’s no sort-field option in this example. The default sort field is used. Since it’s
not set for any of the entries, the fallback value will be used. In the case of the topic titles
(@index and @indexplural), I want to sort by the name, which is the default fallback if the
sort field is missing for the index entry types.

The default fallback for the sort field for @symbol entries is the label, but in this case I
want to use the description field:

537

8 Examples: sample-textsymbols2.tex

Glossary

Information

® bicycle route.
K café.
o football stadium.
x Gents.
i information centre.
y Ladies.
Þ recycling centre.
w wheelchair access provided.

Media Controls

´ back to start of track.
¹ next track.
· play.
¶ rewind.

Weather Symbols

� cloudy.
� drizzle.
� foggy.
� hail.
� misty.
� overcast.
� rain.
� snow.
� sunny.
� thunderstorm.

1

Figure 8.15: sample-textsymbols.pdf

538

8 Examples: sample-textsymbols2.tex

symbol-sort-fallback={description}

The best styles for this kind of glossary are the topic styles provided by glossary-topic. This
package was only added to glossaries-extra v1.40, so you need to make sure you have at least
that version installed.

In this case I’ve decided to use the topic style. I can use it with or without the set-widest
option. As with the previous example, bib2gls won’t be able to determine the widest name
since it doesn’t recognise any of the commands contained in the name fields, so it will have
to use the fallback method, which will use one of the commands provided by the glossaries
-extra-stylemods package. The tree option is needed to enable the appropriate commands:

\usepackage[record,
nostyles,
postdot,
stylemods={tree,topic},
style={topic}]{glossaries-extra}

The complete document code is listed below. The document build is:

pdflatex sample-textsymbols2
bib2gls --group sample-textsymbols2
pdflatex sample-textsymbols2

The resulting document is shown in figure 8.16.
\documentclass[a4paper]{article}

\usepackage[T1]{fontenc}

\usepackage{etoolbox}
\usepackage{marvosym}

% package conflict , need to undefine conflicting commands
\undef\Sun
\undef\Lightning

\usepackage[weather]{ifsym}

\usepackage[record,% using bib2gls
nostyles,% don't load default styles
postdot,% append a dot after descriptions
stylemods={tree,topic},% load glossary-tree.sty and glossary -topic.sty
style=topic]{glossaries -extra}

\GlsXtrLoadResources[
src={topics,miscsymbols},

% make @icon behave like @symbol:
entry-type-aliases={icon=symbol},

539

8 Examples: sample-markuplanguages.tex

field-aliases={
identifier=parent,
icon=name,
icondescription=description

},
symbol-sort-fallback={description},
set-widest,
selection=all

]

\begin{document}
\printunsrtglossaries
\end{document}

sample-markuplanguages.tex
This example uses markuplanguages.bib. Since the file includes abbreviations, any com-
mands that must be used before abbreviations are defined need to go before \GlsXtrLoad-
Resources. This includes the abbreviation style, which I’ve set to long-short-desc:

\setabbreviationstyle[markuplanguage]{long-short-desc}

This style sets the name field using \glsxtrlongshortdescname, which defaults to the long
form followed by the short form in parentheses. I decided to switch this round so that
the short form is shown first, which conveniently matches the default abbreviation-sort
-fallback.

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\glsabbrvfont{\the\glsshorttok}\space
\glsxtrparen{\glslongfont{\the\glslongtok}}%

}

(The long form is still shown before the short form on the first use of \gls in the document.
The switch in the above code only affects how the term is displayed in the glossary.)

This redefinition must be done before the abbreviations are defined as it’s expanded when
the name field is set. (Note the need to protect commands that shouldn’t be expanded.) If I
decide not to change the name format in this way, I would then need to use abbreviation
-sort-fallback={long}.

I also decided to make use of the custom command \abbrvtag that marks up the letters
in the long field used to obtain the abbreviation. As with the abbreviation style, this must
be done before the abbreviations are defined:

\GlsXtrEnableInitialTagging{markuplanguage}{\abbrvtag}

If you accidentally place it after \GlsXtrLoadResources, you’ll encounter an error on the
second LATEX run (but not the first). This is because \GlsXtrEnableInitialTagging re-
quires that the supplied command (\abbrvtag in this case) be undefined. On the first LATEX

540

8 Examples: sample-markuplanguages.tex

Glossary

Information
® bicycle route.
K café.
o football stadium.
x Gents.
i information centre.
y Ladies.
Þ recycling centre.
w wheelchair access provided.

Media controls
´ back to start of track.
¹ next track.
· play.
¶ rewind.

Weather symbols
� cloudy.
� drizzle.
� foggy.
� hail.
� misty.
� overcast.
� rain.
� snow.
� sunny.
� thunderstorm.

1

Figure 8.16: sample-textsymbols2.pdf

541

8 Examples: sample-markuplanguages.tex

it’s undefined, but on the second it picks up the @preamble definition, which is now in the
resource file.

The tagging format is governed by \glsxtrtagfont which underlines its argument by
default. I’ve redefined it to also convert the letter to upper case:

\renewcommand*{\glsxtrtagfont}[1]{\underline{\glsuppercase{#1}}}

Note that in the mathml case, the first tag consists of more than one letter:

long={\abbrvtag{m\NoCaseChange{ath}}ematical }#markuplang

Here \NoCaseChange prevents \glsuppercase from applying the case change.
The default selection criteria includes entries that have been indexed and any cross-

references. Some of the description fields include \glsxtrshort, which bib2gls picks
up and the referenced entry is included in the dependency list. However, I don’t want any
indexing performed by commands occurring in the glossary. This can be dealt with in one of
two ways: either switch the format to glsignore or suppress the indexing by changing the
default options with \GlsXtrSetDefaultGlsOpts. In this case I decided to turn the records
into ignored records:

\GlsXtrSetDefaultNumberFormat{glsignore}

Thismeans that some of the entrieswon’t have location lists, so I’ve defined a post-description
hook that inserts a full stop after the description if there’s no location otherwise it inserts
a comma:

\newcommand{\glsxtrpostdescmarkuplanguage}{%
\glsxtrifhasfield{location}{\glscurrententrylabel}%
{,}%
{.}%

}

I’ve used loc-suffix to append a full stop after the location lists. This doesn’t affect the
entries that haven’t been indexed.

I decided to convert the first letter of the name field to upper case. Since the name is
implicitly set for abbreviations based on the style, I’ve decided to implement this through
the glossname attribute rather than using name-case-change:

\glssetcategoryattribute{markuplanguage}{glossname}{firstuc}

If this line causes an error when the glossary is displayed that goes away if it’s commented
out, make sure you have at least version 2.06 of mfirstuc. For most of the entries, this doesn’t
make a difference as they already start with a capital. It’s only the markdown entry that’s
actually affected.

The description case change is dealt with by bib2gls instead:

description-case-change={firstuc}

542

8 Examples: sample-markuplanguages.tex

Thisworks better than the glossdesc attribute as bib2gls can convert commands like \glstext
into \Glstext which \makefirstuc can’t do. (Although in this particular example, there’s
no difference as both instances of \glstext already produce upper case text.)

The complete document code is listed below. The document build is:

pdflatex sample-markuplanguages
bib2gls --group sample-markuplanguages
pdflatex sample-markuplanguages

The resulting document is shown in figure 8.17.

\documentclass[fontsize=12pt]{scrartcl}

\usepackage[T1]{fontenc}

\usepackage[colorlinks]{hyperref}
\usepackage[record,% use bib2gls
nostyles,% don't load default styles

% load glossary-tree.sty and patch styles:
stylemods={tree},
style=treegroup]{glossaries -extra}

% abbreviation style must be set before \GlsXtrLoadResources
\setabbreviationstyle[markuplanguage]{long-short-desc}

\GlsXtrEnableInitialTagging{markuplanguage}{\abbrvtag}

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\protect\glsabbrvfont{\the\glsshorttok}\space
\glsxtrparen{\glslongfont{\the\glslongtok}}%

}

\GlsXtrLoadResources[
src=markuplanguages ,% data in markuplanguages.bib
loc-suffix,
category=markuplanguage ,
description -case-change=firstuc

]

\newcommand{\glsxtrpostdescmarkuplanguage}{%
\glsxtrifhasfield{location}{\glscurrententrylabel}%
{,}%
{.}%

}

\glssetcategoryattribute{markuplanguage}{glossname}{firstuc}

543

8 Examples: sample-usergroups.tex

\renewcommand*{\glsxtrtagfont}[1]{\underline{\glsuppercase{#1}}}

\begin{document}

\section{First Use}

\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\section{Next Use}

\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\GlsXtrSetDefaultNumberFormat{glsignore}
\printunsrtglossary
\end{document}

sample-usergroups.tex
This example uses usergroups.bib. This requires XƎLATEX or LuaLATEX as the .bib file in-
cludes non-ASCII labels. The entries include fields in different languages, the main one being
English. If an entry has a non-English name or long field, it also includes the custom field
translation that provides an (approximate) translation. If this field is present, the language
is given by the first element of the custom language field.

In this case, I’m providing keys for the custom language and translation fields, and,
for a bit of variety from the other examples, I’m ignoring the custom identifier field. The
custom keys are provided with \glsaddstoragekey:

\glsaddstoragekey{language}{}{\glsentrylanguage}
\glsaddstoragekey{translation}{}{\glsentrytranslation}

The .bib file includes abbreviations. Remember that the abbreviation stylemust be set before
the resource file is loaded:

\setabbreviationstyle[tug]{long-short-user}

For this example, I’m explicitly setting the category field to tug:

category={tug}

Some of the fields end with a full stop. This isn’t a problem with the long field as the first
use follows the long form with the short form in parentheses, but it will be a problem on
subsequent use if the short field ends with a full stop. This means I need to check for end-
of-sentence punctuation for the short field. It’s also a good idea to do this for the name field
for the non-abbreviations.

check-end-punctuation={name,short}

544

8 Examples: sample-usergroups.tex

1 First Use

LATEX, markdown, extensible hypertext markup language (XHTML), mathematical markup
language (MathML), scalable vector graphics (SVG).

2 Next Use

LATEX, markdown, XHTML, MathML, SVG.

Glossary

H

HTML (HyperText Markup Language) The standard markup language for creat-
ing web pages.

L

LATEX A format of TEX designed to separate content from style, 1

M

Markdown A lightweight markup language with plain text formatting syntax, 1
MathML (Mathematical Markup Language) Markup language for describing math-
ematical notation, 1

S

SVG (Scalable Vector Graphics) XML-based vector image format, 1

T

TEX A format for describing complex type and page layout often used for mathematics,
technical, and academic publications.

X

XHTML (eXtensible HyperText Markup Language) XML version of HTML, 1
XML (eXtensible Markup Language) A markup language that defines a set of rules
for encoding documents.

1

Figure 8.17: sample-markuplanguages.pdf

545

8 Examples: sample-usergroups.tex

It’s now possible to discard a full stop that follows \gls:

\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%
\ifglshasshort{\glslabel}%
{%
\glsxtrifwasfirstuse{}%
{%

\GlsXtrIfFieldUndef{shortendpunc}{\glslabel}{#2}{#1}%
}%

}%
{%
\GlsXtrIfFieldUndef{nameendpunc}{\glslabel}{#2}{#1}%

}%
}

This first tests if the entry that’s just been referenced has a short field. If it has, then the
next test is to check if that was the first use for that entry. If it was, nothing is done. If it
wasn’t, then \GlsXtrIfFieldUndef is used to determine if shortendpunc has been set. If
it has been set then the period discard function is performed. If the entry doesn’t have a
short field, then the nameendpunc field needs checking instead.

Since the document requires XƎLATEX or LuaLATEX and has some non-ASCII characters, it
needs fontspec and an appropriate font. In this case I’ve chosen “Linux Libertine O”. If you
don’t have it installed, you’ll need to change it.

\usepackage{fontspec}
\setmainfont{Linux Libertine O}

Since it’s a multilingual document I also need polyglossia with the main language set to
english:

\usepackage{polyglossia}
\setmainlanguage[variant=uk]{english}

Now comes the difficult bit. The document needs to determine what other languages need
to be loaded. The tracklang package provides a convenient interface when dealing with lan-
guage tags. This is automatically loaded by glossaries but I’ve loaded it here explicitly as a
reminder:

\usepackage{tracklang}

Once the resource file has been loaded, I need to iterate over all the defined entries and check
if the translation field has been set. If it has, then the first language tag in the language
field will supply the language, but this needs to be converted from the ietf language tag to
a language name recognised by polyglossia.

Iterating over all entries can be done with \forglsentries but remember that no entries
will be defined before bib2gls has been run, so this does nothing on the first LATEX run.

546

8 Examples: sample-usergroups.tex

\forglsentries{\thislabel}{%
\glsxtrifhasfield{translation}{\thislabel}%
{%

% requires glossaries-extra v1.24
\glsxtrforcsvfield{\thislabel}{language}{\addfirstlang}%

}%
{}%

}

Within the outer (\forglsentries) loop, there’s a check for the translation field using
\glsxtrifhasfield. If it’s present, then the first element of the language field is required.
The simplest way to get this is to use \glsxtrforcsvfieldwhich iterates over all elements
of the given field (language in this case) and break out of the loop (with \glsxtrendfor)
once the language has been found.

The handler function (\addfirstlang) is defined so that it adds the given language tag
as a tracked language using \TrackLocale. This command sets \TrackLangLastTracked-
Dialect to the associated (tracklang) dialect label for convenience. This dialect label can
then be converted to the root language label using \TrackedLanguageFromDialect. If this
language is supported by polyglossia, then there should be a file called gloss-〈language〉
.ldf.

Some of the entries use the same language, so it’s necessary to check if the language has
already been defined before loading it. There’s also a problem in that the language file should
not be loaded in a scoped context, but both \glsxtrforcsvfield and the unstarred \gls-
xtrifhasfield add implicit grouping. To solve both problems, an internal etoolbox list is
defined:

\newcommand{\langlist}{}%

and \xifinlist is used to first check if the language label is already in the list before adding
it. Since this part of the code is scoped, the global \listxadd is used to add the language
label to the list.

Next the useri field is set to text〈language〉 which is the name of the control sequence
used with polyglossia to switch language for a short block of text. This means that \glsxtr-
entryfmt{〈text〉} can be used to format 〈text〉 in the relevant language. Finally, \glsxtr-
endfor is used to break out of the loop.

\newcommand*{\addfirstlang}[1]{%
\TrackLocale{#1}%
\edef\thislanguage{%

\TrackedLanguageFromDialect\TrackLangLastTrackedDialect}%
\IfFileExists{gloss-\thislanguage.ldf}%
{%

\xifinlist{\thislanguage}{\langlist}{}%
{\listxadd{\langlist}{\thislanguage}}%
\xGlsXtrSetField{\thislabel}{useri}{text\thislanguage}%

547

8 Examples: sample-usergroups.tex

\glsxtrendfor
}%
{}%

}

Once the \forglsentries loop has found the appropriate languages, it’s now necessary to
iterate over the internal list \langlist and set the language:

\forlistloop{\setotherlanguage}{\langlist}

The long-short-user style now needs to be adjusted to ensure that it picks up the appropriate
language change. By default this style checks the useri field, so this needs to be changed to
translation by redefining \glsxtruserfield:

\renewcommand*{\glsxtruserfield}{translation}

The command that governs the format of the parenthetical material (\glsxtruserparen)
also needs adjusting. I’ve changed the space before the parenthesis to \␣ because some of
the long fields end with a full stop and this corrects the spacing. The translation field is in
English, so this needs to be encapsulated with \textenglish in case the surrounding text
is in a different language.

\renewcommand*{\glsxtruserparen}[2]{%
\␣
\glsxtrparen{#1%
\ifglshasfield{\glsxtruserfield}{#2}{,
\textenglish{\glscurrentfieldvalue}}{}}%

}

Next I’ve defined a convenient command for use in the textformat attributes for the custom
tug category:

\newcommand*{\tugtextformat}[1]{%
\glsxtrentryfmt{\glslabel}{#1}%

}

This uses \glsxtrentryfmt to encapsulate the given text in the appropriate language com-
mand (if provided). When this is set as the textformat attribute, it will be used instead of
\glstextformat, which means that the entry label can be referenced with \glslabel.

There’s a similar command for use in the glossnamefont attribute. This is used in the
glossary, so the label is referenced with \glscurrententrylabel:

\newcommand*{\tugnameformat}[1]{%
\glsxtrentryfmt{\glscurrententrylabel}{#1}%

}

The attributes can now be set to the relevant control sequence name:

548

8 Examples: sample-usergroups.tex

\glssetcategoryattribute{tug}{textformat}{tugtextformat}
\glssetcategoryattribute{tug}{glossnamefont}{tugnameformat}

The document uses the bookindex style, which is set in the package options:

\usepackage[record,
nostyles,
stylemods={bookindex},
style={bookindex}

]{glossaries-extra}

The bookindex style ignores the description field, so I’ve provided a post-name hook to
append it in parentheses (with the translation, if provided):

\newcommand{\glsxtrpostnametug}{%
\ifglshasdesc{\glscurrententrylabel}%
{\␣(\glossentrydesc{\glscurrententrylabel}%

\glsxtrifhasfield{translation}{\glscurrententrylabel}%
{, \textenglish{\glscurrentfieldvalue}}%
{}%

)}%
{%
\glsxtrifhasfield{translation}{\glscurrententrylabel}%
{\␣(\textenglish{\glscurrentfieldvalue})}%
{}%

}%
}

Remember that this hook is included within the name font (provided by the glossnamefont
attribute in this case) so \textenglish is again used to switch the language to English for
the translation.

The complete document code is listed below. The document build is:

xelatex sample-usergroups
bib2gls --group sample-usergroups
xelatex sample-usergroups
xelatex sample-usergroups

The two pages of the document are shown in figure 8.18. Since the entries have all been
referenced on page 1, the location lists are all simply “1”.

\documentclass{scrreprt}

\usepackage{fontspec}
\setmainfont{Linux Libertine O}

\usepackage{polyglossia}

549

8 Examples: sample-usergroups.tex

\setmainlanguage[variant=uk]{english}
\usepackage{tracklang}
\usepackage{etoolbox}

\usepackage[record,% use bib2gls
nostyles,% don't load default styles
stylemods={bookindex},
style={bookindex}

]{glossaries -extra}

\glsaddstoragekey{language}{}{\glsentrylanguage}
\glsaddstoragekey{translation}{}{\glsentrytranslation}

\setabbreviationstyle[tug]{long-short-user}

\GlsXtrLoadResources[
src={usergroups}, % data in usergroups.bib
check-end-punctuation={name,short},
category=tug

]

\renewcommand*{\glsxtrifcustomdiscardperiod}[2]{%
\ifglshasshort{\glslabel}%
{%

\glsxtrifwasfirstuse{}%
{%

\GlsXtrIfFieldUndef{shortendpunc}{\glslabel}{#2}{#1}%
}%

}%
{%

\GlsXtrIfFieldUndef{nameendpunc}{\glslabel}{#2}{#1}%
}%

}

\newcommand{\langlist}{}%

\newcommand*{\addfirstlang}[1]{%
\TrackLocale{#1}%
\edef\thislanguage{%

\TrackedLanguageFromDialect\TrackLangLastTrackedDialect}%
\IfFileExists{gloss-\thislanguage.ldf}%
{%

\xifinlist{\thislanguage}{\langlist}{}%
{\listxadd{\langlist}{\thislanguage}}%
\xGlsXtrSetField{\thislabel}{useri}{text\thislanguage}%
\glsxtrendfor

550

8 Examples: sample-usergroups.tex

}%
{}%

}

\forglsentries{\thislabel}{%
\glsxtrifhasfield{translation}{\thislabel}%
{%

% requires glossaries -extra v1.24
\glsxtrforcsvfield{\thislabel}{language}{\addfirstlang}%

}%
{}%

}

\forlistloop{\setotherlanguage}{\langlist}

\renewcommand*{\glsxtruserfield}{translation}

\renewcommand*{\glsxtruserparen}[2]{%
\
\glsxtrparen{#1%
\ifglshasfield{\glsxtruserfield}{#2}{,
\textenglish{\glscurrentfieldvalue}}{}}%

}

\newcommand*{\tugtextformat}[1]{%
\glsxtrentryfmt{\glslabel}{#1}%

}

\newcommand*{\tugnameformat}[1]{%
\glsxtrentryfmt{\glscurrententrylabel}{#1}%

}

\glssetcategoryattribute{tug}{textformat}{tugtextformat}
\glssetcategoryattribute{tug}{glossnamefont}{tugnameformat}

\newcommand{\glsxtrpostnametug}{%
\ifglshasdesc{\glscurrententrylabel}%
{\ (\glossentrydesc{\glscurrententrylabel}%

\glsxtrifhasfield{translation}{\glscurrententrylabel}%
{, \textenglish{\glscurrentfieldvalue}}%
{}%

)}%
{%
\glsxtrifhasfield{translation}{\glscurrententrylabel}%
{\ (\textenglish{\glscurrentfieldvalue})}%
{}%

551

8 Examples: sample-multi1.tex

}%
}

\begin{document}
\chapter{Sample}
\section{First Use}
\gls{TUG}. \gls{bgTeX}. \gls{latex-br}. \gls{CTeX}.
\gls{CSTUG}. \gls{DANTE}. \gls{DKTUG}. \gls{EUG}.
\gls{CervanTeX}. \gls{TirantloTeX}. \gls{GUTenberg}.
\gls{UKTUG}. \gls{ɛϕτ}. \gls{MaTeX}. \gls{ITALIC}.
\gls{ÍsTeX}. \gls{GuIT}. \gls{KTS}. \gls{LTVG}.
\gls{mxTeX}. \gls{NTG}. \gls{NTUG}. \gls{GUST}. \gls{GUTpt}.
\gls{VietTUG}. \gls{LUGSA}.

\section{Next Use}

\gls{TUG}. \gls{bgTeX}. \gls{latex-br}. \gls{CTeX}.
\gls{CSTUG}. \gls{DANTE}. \gls{DKTUG}. \gls{EUG}.
\gls{CervanTeX}. \gls{TirantloTeX}. \gls{GUTenberg}.
\gls{UKTUG}. \gls{ɛϕτ}. \gls{MaTeX}. \gls{ITALIC}.
\gls{ÍsTeX}. \gls{GuIT}. \gls{KTS}. \gls{LTVG}.
\gls{mxTeX}. \gls{NTG}. \gls{NTUG}. \gls{GUST}. \gls{GUTpt}.
\gls{VietTUG}. \gls{LUGSA}.

\printunsrtglossaries
\end{document}

sample-multi1.tex
This example uses bacteria.bib, markuplanguages.bib, vegetables.bib, minerals.bib,
animals.bib, chemicalformula.bib, baseunits.bib and derivedunits.bib. Since there’s
one or more UTF-8 character, the document requires UTF-8 support:

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

The aim of this example document is to have a separate glossary (without number lists)
for each type of data (bacteria, markup languages, vegetables, minerals, animals, chemical
formula, base units and derived units) and also an index listing all referenced entries with
number lists aswell as aliased entries that haven’t explicitly been used but the cross-reference
term as been indexed. This requires:

selection={recorded and deps and see}

to ensure the aliased entries are selected.

552

8 Examples: sample-multi1.tex

1 Sample

1.1 First Use
TEX Users Group (TUG). Bulgarian LATEX Users Group (bgTeX). Grupo de Usuários (latex-br,
Brazilian TEX Users Group). Chinese TEX Society (CTeX). Československé sdružení uživatelů
TeXu, z. s. (CSTUG, Czech Republic TEX Users Group). Deutschsprachige Anwendervereini-
gung TEX e.V. (DANTE e.V., German Speaking TEX Users Group). Danish TEX Users Group
(DK-TUG). Estonian User Group. Grupo de Usuarios de TEX Hispanohablantes (CervanTeX,
Spanish Speaking TEX Users Group). Catalan TEX Users Group (Tirant lo TEX). Groupe franco-
phone des utilisateurs de TEX (GUTenberg, French Speaking TEX Users Group). UK TEX Users
Group (UK-TUG). Σύλλογος Ελλήνων Φίλων του TEX (ɛϕτ, Greek TEX Friends). Magyar TEX
Egyesület (MaTeX, Hungarian TEX Users Group). Irish TEX and LATEX In-print Community
(ITALIC). Vefur íslenskra TEX notenda (ÍsTeX, Icelandic TEX Users Group). Gruppo Utilizzato-
ri Italiani di TEX (GuIT, Italian TEX Users Group). Korean TEX Society (KTS). Lietuvos TEX’o
Vartotojų Grupė. TEX México. Nederlandstalige TEX Gebruikersgroep (NTG, Netherlands TEX
Users Group). Nordic TEX Users Group. Polska Grupa Użytkowników Systemu TEX (GUST,
Polish TEX Users Group). Grupo de Utilizadores de TEX (GUTpt, Portuguese TEX Users Group).
Vietnamese TEX Users Group (VietTUG). LATEX User Group— South Africa (LUGSA).

1.2 Next Use
TUG. bgTeX. latex-br. CTeX. CSTUG. DANTE e.V. DK-TUG. Estonian User Group. Cervan-
TeX. Tirant lo TEX. GUTenberg. UK-TUG. ɛϕτ. MaTeX. ITALIC. ÍsTeX. GuIT. KTS. Lietuvos
TEX’o Vartotojų Grupė. TEX México. NTG. Nordic TEX Users Group. GUST. GUTpt. VietTUG.
LUGSA.

1

Glossary

B

bgTeX (Bulgarian LATEX Users Group), 1

C

CervanTeX (Grupo de Usuarios de TEX
Hispanohablantes, Spanish Speaking
TEX Users Group), 1

CSTUG (Československé sdružení uživatelů
TeXu, z. s., Czech Republic TEX
Users Group), 1

CTeX (Chinese TEX Society), 1

D

DANTE e.V. (Deutschsprachige
Anwendervereinigung TEX e.V.,
German Speaking TEX Users Group),
1

DK-TUG (Danish TEX Users Group), 1

E

Estonian User Group, 1

G

GuIT (Gruppo Utilizzatori Italiani di TEX,
Italian TEX Users Group), 1

GUST (Polska Grupa Użytkowników Systemu
TEX, Polish TEX Users Group), 1

GUTenberg (Groupe francophone des
utilisateurs de TEX, French Speaking
TEX Users Group), 1

GUTpt (Grupo de Utilizadores de TEX,
Portuguese TEX Users Group), 1

I

ÍsTeX (Vefur íslenskra TEX notenda, Icelandic
TEX Users Group), 1

ITALIC (Irish TEX and LATEX In-print
Community), 1

K

KTS (Korean TEX Society), 1

L

latex-br (Grupo de Usuários, Brazilian TEX
Users Group), 1

Lietuvos TEX’o Vartotojų Grupė (Lithuanian
TEX Users Group), 1

LUGSA (LATEX User Group— South Africa), 1

M

MaTeX (Magyar TEX Egyesület, Hungarian
TEX Users Group), 1

N

Nordic TEX Users Group, 1
NTG (Nederlandstalige TEX Gebruikersgroep,

Netherlands TEX Users Group), 1

T

TEX México (Mexican TEX Users Group), 1
Tirant lo TEX (Catalan TEX Users Group), 1
TUG (TEX Users Group), 1

U

UK-TUG (UK TEX Users Group), 1

V

VietTUG (Vietnamese TEX Users Group), 1

Ɛ

ɛϕτ (Σύλλογος Ελλήνων Φίλων του TEX,
Greek TEX Friends), 1

2

Figure 8.18: sample-usergroups.pdf

Since I don’t need the default main glossary (I’m providing my own custom glossaries) I’ve
used the nomain option to suppress its automatic creation, but I do want the index glossary
so I’ve used the index package option. As with the other examples, I’ve used nostyles to
suppress the creation of the default styles and used stylemods to load the particular style
packages that I need and use glossaries-extra-stylemods to patch them. The index needs to
be in an unnumbered chapter, which is the default for book-like styles, but I want the other
glossaries in unnumbered sections so I’ve used the section option. I just need to remember
to switch this before displaying the index:

\usepackage[record,% use bib2gls
section,% use \section* for glossary headings
postdot,% insert dot after descriptions in glossaries
nomain,% don't create 'main' glossary
index,% create 'index' glossary
nostyles,% don't load default styles

% load and patch required style packages:
stylemods={list,mcols,tree,bookindex}

]{glossaries-extra}

The remaining glossaries need defining:

\newglossary*{bacteria}{Bacteria}

553

8 Examples: sample-multi1.tex

\newglossary*{markuplanguage}{Markup Languages}
\newglossary*{vegetable}{Vegetables}
\newglossary*{mineral}{Minerals}
\newglossary*{animal}{Animals}
\newglossary*{chemical}{Chemical Formula}
\newglossary*{baseunit}{SI Units}
\newglossary*{derivedunit}{Derived Units}

As with sample-bacteria.tex and sample-markuplanguages.tex I need to set the ab-
breviation styles before the abbreviations are defined:

\setabbreviationstyle[bacteria]{long-only-short-only}
\setabbreviationstyle[markuplanguage]{long-short-desc}

Unlike the sample-markuplanguages.tex example, I’m not interested in tagging the ini-
tials in this case, but I still want to change the way the name field is set with the long-short
-desc abbreviation style:

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\glsabbrvfont{\the\glsshorttok}\space
\glsxtrparen{\glslongfont{\the\glslongtok}}%

}

Remember that this also needs to be set before the abbreviations are defined. The textformat
and glossnamefont attributes may be set after definition:

\newcommand{\bacteriafont}[1]{\emph{#1}}
\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}

The description font also needs to be set since this will contain the long form:

\glssetcategoryattribute{bacteria}{glossdescfont}{bacteriafont}

The markuplanguage glossary contains descriptions and some long names, so it’s better
suited to the altlist style, in which case the descriptions would look better if they started with
a capital letter:

\glssetcategoryattribute{markuplanguage}{glossdesc}{firstuc}

Remember that the altlist style uses the description environment, which is governed by the
document class (and may be modified by list-related packages). In this case, one of the
KOMA-Script classes is used, so the list items are typeset in sans-serif.

There are various ways of dealing with the duplicated data in the index, such as using the
secondary option or having a separate resource set with a copy action. In this case, I’ve
decided to use a dual entry system. Since the entries aren’t defined using any dual types, I’ve
used entry-type-aliases to make bib2gls treat them as though they were, and I also
need to alias the custom @chemical, @unit and @measurement entry types:

554

8 Examples: sample-multi1.tex

entry-type-aliases={
abbreviation=dualindexabbreviation,
entry=dualindexentry,
symbol=dualindexsymbol,
unit=dualindexsymbol,
measurement=dualindexsymbol,
chemical=dualindexsymbol

}

Note that I haven’t aliased the @index types as I only want these in the index and not repli-
cated in a separate glossary.

The primary entries for the @dualindexabbreviation type ignore the short form. It
would be useful to store it. This could be done by copying the short field with replicate
-fields. For example, replicate-fields={short=symbol}. However, this will cause the
symbol field to be set for both the primary and dual entries, which will cause an unwanted
duplication if the dual entries are displayed using a glossary style that shows the symbol
field. Another field (such as user1) could be used instead or \bibglsnewdualindexabbre-
viation could be defined before \GlsXtrLoadResources:

\newcommand{\bibglsnewdualindexabbreviation}[7]{%
\longnewglossaryentry*{#1}{%
name={\protect\bibglsuselongfont{#4}{\glscategory{#2}}},%
symbol={\protect\bibglsuseabbrvfont{#5}{\glscategory{#2}}},%
category={index},#3}{}%

}

However, this will affect all @dualindexabbreviation entry types, but it’s not necessary
for the bacteria abbreviations. Instead it’s simpler to just keep a record of the dual label so
that the short form can be obtained from the dual entry:

dual-field

By default, the @dualindexabbreviation entry type falls back on the short field if the
name is omitted. In this case I want it to fall back on the long field instead.

abbreviation-name-fallback={long}

Remember that the sort fallback for abbreviations is still short (but can be changed with
abbreviation-sort-fallback), but I’ve changed the sort fallback for symbols:

symbol-sort-fallback={name}

I also need to alias the custom fields (especially for those in the chemicalformula.bib,
baseunits.bib and derivedunits.bib files):

field-aliases={
identifier=category,

555

8 Examples: sample-multi1.tex

formula=symbol,
chemicalname=name,
unitname=name,
unitsymbol=symbol,
measurement=description

}

There’s a slight problemhere. This ensures that the entries defined in chemicalformula.bib
have a name and symbol field, which are swapped round for the dual (according to the default
dual-indexsymbol-map) but these entries don’t have a description field. Since I’d like
to use the mcolalttreegroup style, this will end up with the odd appearance of the formula
(stored in the name field for the dual) followed by the chemical name (stored in the symbol
field for the dual) in parenthesis. This is the default 〈name〉 (〈symbol〉) 〈description〉 format
for the style. I’ve fixed this by locally redefining \glsxtralttreeSymbolDescLocation for
just that glossary:

\printunsrtglossary*[type={chemical},style={mcolalttreegroup}]
{%

\renewcommand\glsxtralttreeSymbolDescLocation[2]{%
\glossentrysymbol{#1}\glspostdescription\glsxtrAltTreePar

}%
\renewcommand*{\glstreenamefmt}[1]{#1}%
\renewcommand*{\glstreegroupheaderfmt}[1]{\textbf{#1}}%

}

I’ve also redefined \glstreenamefmt to prevent the names appearing in bold, which means
I also need to redefine \glstreegroupheaderfmt to keep the headers bold.

All the @dualindex〈type〉 entry types provide a primary entry that behaves like @index.
The secondary behaves like @〈type〉. This means that the primaries are conveniently gathered
together with all the unaliased @index entries, so the primary entry type needs to be set to
index:

type={index}

The dual entry type depends on the entry’s category. Since I’ve defined my custom glossaries
with a label that matches the custom identifier field, I can both alias this custom field to
the category field and also set dual-type so that it matches the category:

field-aliases={identifier=category},
dual-type={same as category}

The primary entries (in the index glossary) need to be sorted alphabetically, and since the
document is in English I’m sorting according to that language (identified by the language
code en), but I also want to make sure that all the primary entries are sorted by the name
field to avoid discrepancies in the fallback value for the sort field:

sort={en},
sort-field={name}

556

8 Examples: sample-multi1.tex

With abbreviation-name-fallback={long} now set, this means that Coxiella burnetii
comes after Clostridium tetani in the index. I haven’t changed the sort field for the dual
entries, so in that case the abbreviation-sort-fallback and symbol-sort-fallback
settings will be used with the duals. This means that C. burnetii is between C. botulinum and
C. perfringens rather than after C. tetani.

I’d like to sort the dual entries according to a letter-number rule (as for the above sample
-chemical.tex and sample-units3.tex examples) but this would order “bílinite” after
“biotite” in the minerals glossary, so instead I’m also using the English sort rule for the
duals, but with the numbers padded:

dual-sort={en},
dual-sort-number-pad={2},

Thismethod doesn’t work as well as the method used in sample-chemical.tex as it doesn’t
separate the capitals, digits and lower case characters in the way that can be achieved with
the letter-number methods. An improvement can be made by changing the break-points. I
could use dual-break-at={upper-upper} but this would put “seal” before “sea lion” in the
animal glossary, so instead I’ve used:

dual-break-at={upper-upper-word}

This now puts “sea lion” before “seal”. Unfortunately the word break points will cause a
break at the markers used to indicate positive and negative numbers that are inserted with
dual-sort-number-pad, so these need to be changed to something that won’t cause them
to be discarded:

dual-sort-pad-minus={0},
dual-sort-pad-plus={1}

The document loads hyperref which means that all the \gls references will create hyper-
links. Since the primaries are in the index, the default prefixes mean that, for example, \gls
{svg} links to the “scalable vector graphics” item in the index rather than to the abbreviation
“SVG” in the markuplanguage glossary. There are two alternatives: change \gls{svg} to
\gls{dual.svg} or change the default prefixes, which is the more convenient approach and
is the one used here:

label-prefix={idx.},
dual-prefix={}

Now \gls{svg} refers to the dual abbreviation “SVG” and \gls{idx.svg} refers to the
primary entry “scalable vector graphics”. Unfortunately this means that the records created
with \gls{svg} now refer to the dual abbreviation and will end up being displayed in the
glossary instead of the index. This can be fixed with:

combine-dual-locations={primary}

557

8 Examples: sample-multi1.tex

Which transfers the dual entry locations to the corresponding primary.
The other problem is the cross-references in the description fields. Since the labels don’t

start with “dual.” bib2gls will assume they refer to the primary entries, which means that
“idx.” (the value of label-prefix) will be inserted. This means that they’ll link to the
index rather than the glossary entry. It also means that the cross-references where the dual
is an abbreviation won’t behave like an abbreviation as the reference is to the primary (non-
abbreviation) entry. This can be fixed by setting cs-label-prefix to the same value as
dual-prefix:

cs-label-prefix={}

The index is displayed using the bookindex style. This doesn’t show the description or symbol
by default, but it would be useful to include the symbol in parentheses after the name. This
can be done by redefining \glsxtrbookindexname:

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}{\space(\glossentrysymbol{#1})}{}%

}

However the chemical forumlae look a little odd in parentheses (especially those that contain
parenthetical parts) but this can be fixed by adding a category check:

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%
{\space(\glossentrysymbol{#1})}%

}%
{}%

}

Unfortunately \glossentrysymbol doesn’t pick up the glossnamefont attribute, so if the
short form of the abbreviations is saved in the symbol field, using one of the methods dis-
cussed above, then the custom \bacteriafont won’t be applied. (As from glossaries-extra
version 1.42, there is now the glosssymbolfont attribute that’s used by \glossentrysymbol.)

A simple solution is to use \glossentrynameother instead:

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%

558

8 Examples: sample-multi1.tex

{\space(\glossentrynameother{#1}{symbol})}%
}%
{}%

}

However, since I decided not to store the short form in the symbol field and just saved the
dual entry label instead, I need to lookup the short form from the dual entry:

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%
{\space(\glossentrynameother{#1}{symbol})}%

}%
{%

\glsifcategory{#1}{markuplanguage}%
{%
\glsxtrifhasfield{short}{\glsxtrusefield{#1}{dual}}%
{\space(\glscurrentfieldvalue)}%
{}%

}%
{}%

}%
}

Not all of the markup languages are abbreviations so this uses \glsxtrifhasfield to check
if the short field is set. The dual entry’s label is easily obtained because dual-field has
provided the dual internal field and set it to the corresponding label.

It’s sometimes useful for the index to include a reference to the term’s definition. This
can be done by making use of \glsextrapostnamehook, which can be redefined before the
glossaries to automatically record each entry:

\renewcommand{\glsextrapostnamehook}[1]{\glsadd[format={hyperbf}]{#1}}

This needs to be redefined to ignore its argument before the index, to avoid the redundant
index record:

\renewcommand{\glsextrapostnamehook}[1]{}

Remember that if any records are added within a glossary, an extra LATEX and bib2gls call
are required to ensure that the location list is correct, so the document build is:

pdflatex sample-multi1
bib2gls --group sample-multi1
pdflatex sample-multi1
bib2gls --group sample-multi1
pdflatex sample-multi1

559

8 Examples: sample-multi1.tex

The complete document code is listed below. The resulting document is shown in figure 8.19
and figure 8.20.

\documentclass{scrreprt}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[version=4]{mhchem}
\usepackage{siunitx}
\usepackage[colorlinks]{hyperref}

\usepackage[record,% use bib2gls
section,% use \section* for glossary headings
postdot,% insert dot after descriptions in glossaries
nomain,% don't create 'main' glossary
index,% create 'index' glossary
nostyles,% don't load default styles

% load and patch required style packages:
stylemods={list,mcols,tree,bookindex}

]{glossaries -extra}

\newglossary*{bacteria}{Bacteria}
\newglossary*{markuplanguage}{Markup Languages}
\newglossary*{vegetable}{Vegetables}
\newglossary*{mineral}{Minerals}
\newglossary*{animal}{Animals}
\newglossary*{chemical}{Chemical Formula}
\newglossary*{baseunit}{SI Units}
\newglossary*{derivedunit}{Derived Units}

% abbreviation styles must be set before \GlsXtrLoadResources:
\setabbreviationstyle[bacteria]{long-only-short-only}
\setabbreviationstyle[markuplanguage]{long-short-desc}

% style-dependent name format must be set
% before \GlsXtrLoadResources:
\renewcommand*{\glsxtrlongshortdescname}{%

\protect\glsabbrvfont{\the\glsshorttok}\space
\glsxtrparen{\glslongfont{\the\glslongtok}}%

}

\GlsXtrLoadResources[
src={bacteria ,markuplanguages ,vegetables ,minerals ,
animals,chemicalformula ,baseunits ,derivedunits},

selection={recorded and deps and see},
set-widest,
type=index,

560

8 Examples: sample-multi1.tex

label-prefix={idx.},
dual-prefix={},
cs-label-prefix={},
combine-dual-locations={primary},
dual-field,
sort={en},
sort-field={name},
dual-type={same as category},
dual-sort={en},
dual-sort-number-pad={2},
dual-sort-pad-plus={1},
dual-sort-pad-minus={0},
dual-break-at=upper-upper-word,
entry-type-aliases={
abbreviation=dualindexabbreviation ,
entry=dualindexentry ,
symbol=dualindexsymbol ,
unit=dualindexsymbol ,
measurement=dualindexsymbol ,
chemical=dualindexsymbol

},
abbreviation -name-fallback={long},
symbol-sort-fallback={name},
field-aliases={

identifier=category ,
formula=symbol,
chemicalname=name,
unitname=name,
unitsymbol=symbol,
measurement=description

},
]

\newcommand{\bacteriafont}[1]{\emph{#1}}
\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossdescfont}{bacteriafont}

\glssetcategoryattribute{markuplanguage}{glossdesc}{firstuc}

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%

561

8 Examples: sample-multi1.tex

{\space(\glossentrynameother{#1}{symbol})}%
}%
{%

\glsifcategory{#1}{markuplanguage}%
{%

\glsxtrifhasfield{short}{\glsxtrusefield{#1}{dual}}%
{\space(\glscurrentfieldvalue)}%
{}%

}%
{}%

}%
}

\begin{document}
\chapter{Sample}
\section{Bacteria}
\subsection{First Use}
\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\subsection{Next Use}
\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\section{Markup Languages}
\subsection{First Use}
\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\subsection{Next Use}
\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\section{Vegetables}
\gls{cabbage}, \gls{brussels -sprout}, \gls{artichoke},
\gls{cauliflower}, \gls{courgette}, \gls{spinach}.

\section{Minerals}
\Gls{beryl}, \gls{amethyst}, \gls{chalcedony}, \gls{aquamarine},
\gls{aragonite}, \gls{calcite}, \gls{bilinite},
\gls{cyanotrichite}, \gls{biotite}, \gls{dolomite},
\gls{quetzalcoatlite}, \gls{vulcanite}.

\section{Animals}

562

8 Examples: sample-multi2.tex

\Gls{duck}, \gls{parrot}, \gls{hedgehog}, \gls{sealion}.

\section{Chemicals}
\gls{Al2SO43}, \gls{H2O}, \gls{C6H12O6},
\gls{CH3CH2OH}, \gls{CH2O}, \gls{OF2}, \gls{O2F2}, \gls{SO42-},
\gls{H3O+}, \gls{OH-}, \gls{O2}, \gls{AlF3}, \gls{O},
\gls{Al2CoO4}, \gls{As4S4}, \gls{C10H10O4}, \gls{C5H4NCOOH},
\gls{C8H10N4O2}, \gls{SO2}, \gls{S2O72-}, \gls{SbBr3},
\gls{Sc2O3}, \gls{Zr3PO44}, \gls{ZnF2}.

\section{SI Units}
Base: \gls{ampere}, \gls{kilogram}, \gls{metre}, \gls{second},
\gls{kelvin}, \gls{mole}, \gls{candela}.
Derived: \gls{area}, \gls{volume}, \gls{velocity},
\gls{acceleration}, \gls{density}, \gls{luminance},
\gls{specificvolume}, \gls{concentration}, \gls{wavenumber}.

\chapter*{Glossaries}
\renewcommand{\glsextrapostnamehook}[1]{\glsadd[format=hyperbf]{#1}}
\printunsrtglossary[type=bacteria ,style=mcoltree]
\printunsrtglossary[type=markuplanguage ,style=altlist]
\printunsrtglossary[type=vegetable ,style=tree,nogroupskip]
\printunsrtglossary[type=mineral,style=treegroup]
\printunsrtglossary[type=animal,style=tree]
\printunsrtglossary*[type=chemical ,style=mcolalttreegroup]
{%

\renewcommand\glsxtralttreeSymbolDescLocation[2]{%
\glossentrysymbol{#1}\glspostdescription\glsxtrAltTreePar

}%
\renewcommand*{\glstreenamefmt}[1]{#1}%
\renewcommand*{\glstreegroupheaderfmt}[1]{\textbf{#1}}%

}
\printunsrtglossary[type=baseunit ,style=alttree]
\printunsrtglossary[type=derivedunit ,style=alttree]

\renewcommand{\glsextrapostnamehook}[1]{}
\setupglossaries{section=chapter}
\printunsrtglossary[type=index,style=bookindex]
\end{document}}

sample-multi2.tex
This example is an alternative approach to sample-multi1.tex. Instead of using dual entry
types to define entries that appear in both a glossary and the index, this example makes
use of record-label-prefix to reselect the recorded entries for the index. This is more

563

8 Examples: sample-multi2.tex

1 Sample

1.1 Bacteria

1.1.1 First Use

Clostridium botulinum, Pseudomonas putida, Clostridium perfringens, Bacillus subtilis,
Clostridium tetani , Planifilum composti , Planifilum fimeticola, Coxiella burnetii , Rick-
ettsia australis, Rickettsia rickettsii .

1.1.2 Next Use

C. botulinum, P. putida, C. perfringens, B. subtilis, C. tetani , P. composti , P. fimeticola,
C. burnetii , R. australis, R. rickettsii .

1.2 Markup Languages

1.2.1 First Use

LATEX, markdown, extensible hypertext markup language (XHTML), mathematical markup
language (MathML), scalable vector graphics (SVG).

1.2.2 Next Use

LATEX, markdown, XHTML, MathML, SVG.

1.3 Vegetables

cabbage, Brussels sprout, artichoke, cauliflower, courgette, spinach.

1.4 Minerals

Beryl, amethyst, chalcedony, aquamarine, aragonite, calcite, bílinite, cyanotrichite, bi-
otite, dolomite, quetzalcoatlite, vulcanite.

1.5 Animals

Duck, parrot, hedgehog, sea lion.

1

1.6 Chemicals

Al2(SO4)3, H2O, C6H12O6, CH3CH2OH, CH2O, OF2, O2F2, SO4
2– , H3O+, OH– , O2,

AlF3, O, Al2CoO4, As4S4, C10H10O4, C5H4NCOOH, C8H10N4O2, SO2, S2O7
2– , SbBr3,

Sc2O3, Zr3(PO4)4, ZnF2.

1.7 SI Units

Base: A, kg, m, s, K, mol, cd. Derived: m2, m3, ms−1, ms−2, Am−2, cdm−2, m3 kg−1,
molm−3, m−1.

2

Glossaries

Bacteria

B. subtilis Bacillus subtilis.

C. botulinum Clostridium botulinum.
C. burnetii Coxiella burnetii .
C. perfringens Clostridium perfringens.
C. tetani Clostridium tetani .

P. composti Planifilum composti .
P. fimeticola Planifilum fimeticola.
P. putida Pseudomonas putida.

R. australis Rickettsia australis.
R. rickettsii Rickettsia rickettsii .

Markup Languages

HTML (hypertext markup language)

The standard markup language for creating web pages.

LATEX

A format of TEX designed to separate content from style.

markdown

A lightweight markup language with plain text formatting syntax.

MathML (mathematical markup language)

Markup language for describing mathematical notation.

SVG (scalable vector graphics)

XML-based vector image format.

TEX

A format for describing complex type and page layout often used for mathematics,
technical, and academic publications.

XHTML (extensible hypertext markup language)

XML version of HTML.

3

XML (extensible markup language)

A markup language that defines a set of rules for encoding documents.

Vegetables

artichoke a variety of thistle cultivated as food.
Brussels sprout small leafy green vegetable buds.
cabbage vegetable with thick green or purple leaves.
cauliflower type of cabbage with edible white flower head.
courgette immature fruit of a vegetable marrow.
marrow long white-fleshed gourd with green skin.
spinach green, leafy vegetable.

Minerals

A

amethyst purple variety of quartz.
aquamarine light blue variety of beryl.
aragonite a crystal form of calcium carbonate.

B

beryl composed of beryllium aluminium cyclosilicate.
bílinite an iron sulfate mineral.
biotite a common phyllosilicate mineral.

C

calcite a crystal form of calcium carbonate.
chalcedony cryptocrystalline variety of quartz.
cyanotrichite a hydrous copper aluminium sulfate mineral.

D

dolomite an anhydrous carbonate mineral.

Q

quartz hard mineral consisting of silica.
quetzalcoatlite a rare tellurium oxysalt mineral.

V

vulcanite a rare copper telluride mineral.

4

Figure 8.19: sample-multi1.pdf (pages 1 to 4)

564

8 Examples: sample-multi2.tex

Animals

duck a waterbird with webbed feet.

hedgehog small nocturnal mammal with a spiny coat and short legs.

parrot mainly tropical bird with bright plumage.

sea lion a large type of seal.
seal sea-dwelling fish-eating mammal with flippers.

Chemical Formula

A

Al2(SO4)3 aluminium sulfate.
Al2CoO4 cobalt blue.
AlF3 aluminium trifluoride.
As4S4 tetraarsenic tetrasulfide.

C

CH2O formaldehyde.
CH3CH2OH ethanol.
C5H4NCOOH niacin.
C6H12O6 glucose.
C8H10N4O2 caffeine.
C10H10O4 ferulic acid.

H

H2O water.
H3O+ hydronium.

O

O oxygen.
OF2 oxygen difluoride.
OH– hydroxide ion.
O2 dioxygen.
O2F2 dioxygen difluoride.

S

SO2 sulfur dioxide.
SO4

2– sulfate.
S2O7

2– disulfate ion.
SbBr3 antimony(III) bromide.
Sc2O3 scandium oxide.

Z

ZnF2 zinc fluoride.
Zr3(PO4)4 zirconium phosphate.

SI Units

A (ampere) electric current.

cd (candela) luminous intensity.

K (kelvin) thermodynamic temperature.
kg (kilogram) mass.

m (metre) length.

5

mol (mole) amount of substance.

s (second) time.

Derived Units

Am−2 (ampere per square metre) density.

cdm−2 (candela per square metre) luminance.

ms−2 (metre per second squared) acceleration.
ms−1 (metre per second) velocity.
m−1 (per metre) wave number.
m2 (square metre) area.
m3 (cubic metre) volume.
m3 kg−1 (cubic metre per kilogram) specific volume.
molm−3 (mole per cubic metre) concentration.

6

Index

A

aluminium sulfate, Al2(SO4)3, 2, 5
aluminium trifluoride, AlF3, 2, 5
amethyst, 1, 4
ampere (A), 2, 5
ampere per square metre (Am−2), 2, 6
antimony(III) bromide, SbBr3, 2, 5
aquamarine, 1, 4
aragonite, 1, 4
artichoke, 1, 4

B

Bacillus subtilis, 1, 3
beryl, 1, 4
bílinite, 1, 4
biotite, 1, 4
Brussels sprout, 1, 4

C

cabbage, 1, 4
caffeine, C8H10N4O2, 2, 5
calcite, 1, 4
candela (cd), 2, 5
candela per square metre (cdm−2), 2, 6
cauliflower, 1, 4
chalcedony, 1, 4
Clostridium botulinum, 1, 3
Clostridium perfringens, 1, 3
Clostridium tetani , 1, 3
cobalt blue, Al2CoO4, 2, 5
courgette, 1, 4
Coxiella burnetii , 1, 3
cubic metre (m3), 2, 6
cubic metre per kilogram (m3 kg−1), 2, 6
cyanotrichite, 1, 4

D

dioxygen, O2, 2, 5
dioxygen difluoride, O2F2, 2, 5
disulfate ion, S2O7

2– , 2, 5
dolomite, 1, 4
duck, 1, 5

E

ethanol, CH3CH2OH, 2, 5
extensible hypertext markup language

(XHTML), 1, 3
extensible markup language (XML), 3, 4

F

ferulic acid, C10H10O4, 2, 5
formaldehyde, CH2O, 2, 5

G

glucose, C6H12O6, 2, 5

H

hedgehog, 1, 5
hydronium, H3O+, 2, 5
hydroxide ion, OH– , 2, 5
hypertext markup language (HTML), 3

K

kelvin (K), 2, 5
kilogram (kg), 2, 5

L

LATEX, 1, 3
lettsomite, see cyanotrichite

M

markdown, 1, 3

7

marrow, 4
mathematical markup language

(MathML), 1, 3
metre (m), 2, 5
metre per second (ms−1), 2, 6
metre per second squared (ms−2), 2, 6
mole (mol), 2, 6
mole per cubic metre (molm−3), 2, 6

N

niacin, C5H4NCOOH, 2, 5

O

oxygen, O, 2, 5
oxygen difluoride, OF2, 2, 5

P

parrot, 1, 5
per metre (m−1), 2, 6
Planifilum composti , 1, 3
Planifilum fimeticola, 1, 3
Pseudomonas putida, 1, 3

Q

quartz, 4
quetzalcoatlite, 1, 4

R

Rickettsia australis, 1, 3

Rickettsia rickettsii , 1, 3

S

scalable vector graphics (SVG), 1, 3
scandium oxide, Sc2O3, 2, 5
sea lion, 1, 5
seal, 5
second (s), 2, 6
spinach, 1, 4
square metre (m2), 2, 6
sulfate, SO4

2– , 2, 5
sulfur dioxide, SO2, 2, 5

T

tetraarsenic tetrasulfide, As4S4, 2, 5
TEX, 3

V

vulcanite, 1, 4

W

water, H2O, 2, 5

Z

zinc fluoride, ZnF2, 2, 5
zirconium phosphate, Zr3(PO4)4, 2, 5
zucchini, see courgette

8

Figure 8.20: sample-multi1.pdf (pages 5 to 8)

565

8 Examples: sample-multi2.tex

complicated but it allows the entries that have natural word ordering to use a locale sort
method while the entries that are symbolic can use one of the letter-number sort methods.

This document uses some additional .bib files to the previous example, so it has extra
glossaries, which all need to be defined:

\newglossary*{bacteria}{Bacteria}
\newglossary*{markuplanguage}{Markup Languages}
\newglossary*{vegetable}{Vegetables}
\newglossary*{mineral}{Minerals}
\newglossary*{animal}{Animals}
\newglossary*{chemical}{Chemical Formula}
\newglossary*{baseunit}{SI Units}
\newglossary*{measurement}{Measurements}
\newglossary*{film}{Films}
\newglossary*{book}{Books}
\newglossary*{person}{People}
\newglossary*{mediacontrol}{Media Control Symbols}
\newglossary*{information}{Information Symbols}
\newglossary*{weather}{Weather Symbols}

Note that this is a total of 15 glossaries (including the index). With the basic \makeglos-
saries method, this would require 16 write registers (including the write register used to
create the indexing style file), and a total of 15 × 3 + 1 = 46 associated files. (This doesn’t
include the standard .aux file or the .out file created by hyperref.) With bib2gls, no addi-
tional write registers are required and the number of associated bib2gls files is equal to the
number of resource commands plus the transcript file (in this example, 9 + 1 = 10).

Since this document requires people.bib, books.bib and films.bib it also requires the
files that supply the definitions of the custom commands (no-interpret-preamble.bib
and either interpret-preamble.bib or interpret-preamble2.bib) to ensure the cus-
tom commands are provided both for the document and for bib2gls’s interpreter.

The first resource set to be loaded simply reads no-interpret-preamble.bib with the
preamble interpreter switched off:

\GlsXtrLoadResources[
src={no-interpret-preamble},
interpret-preamble={false}

]

This ensures that LATEX can pick up the provided commands and prevents them from being
added to the interpreter.

The people.bib file is the next to be loaded with interpret-preamble.bib. This is
loaded separately from the other resources as this needs the name field to be copied to first
(if not already set), as in the sample-people.tex file. By having a separate resource set,
this setting doesn’t affect the other entries. I’ve also converted the date fields so that I can
customise the format in the document.

566

8 Examples: sample-multi2.tex

\GlsXtrLoadResources[
src={interpret-preamble,people},
field-aliases={
identifier=category,
born=user1,
died=user2,
othername=user3

},
replicate-fields={name={first}},
type={person},
save-locations={false}
date-fields={user1,user2},
date-field-format={d MMM y G}

]

As with the sample-people.tex document, I need to use the --break-space switch to
convert the ~ to a normal breakable space so that it matches the given format. I’ve loaded
the datetime2 package:2

\usepackage[en-GB]{datetime2}

so that I can use \DTMdisplaydate to adjust the formatting:

\newcommand*{\bibglsdate}[7]{\DTMdisplaydate{#1}{#2}{#3}{#4}}

This needs to go before the resource set is loaded. Note that the en-GB option identifies the
document locale as en-GB (since there are no language packages loaded).

Note that unlike sample-people.tex which had category={people}, this document
obtains the category field from the custom identifier field, which in this case has the
value person. This means that the category hooks from sample-people.tex need to be
renamed to reflect the different category label:

\newcommand*{\glsxtrpostlinkperson}%
\glsxtrifwasfirstuse
{%
\ifglshasfield{user3}{\glslabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}%
{}%

\newcommand*{\glsxtrpostnameperson}{%
\ifglshasfield{user3}{\glscurrententrylabel}%
{\space(\glscurrentfieldvalue)}%

2The en-GB option to datetime2 also requires that datetime2-english must be installed.

567

8 Examples: sample-multi2.tex

{}%
}

\newcommand*{\glsxtrpostdescperson}{%
\ifglshasfield{user1}{\glscurrententrylabel}
{% born
\space(\glscurrentfieldvalue\,--\,%

\ifglshasfield{user2}{\glscurrententrylabel}
{% died

\glscurrentfieldvalue
}%
{}%

)%
}%
{}%

}

The other .bib files that require locale sorting can now be loaded, but remember that the
abbreviation style settings must be set first since this resource set includes abbreviations:

\setabbreviationstyle[bacteria]{long-only-short-only}
\setabbreviationstyle[markuplanguage]{long-short-desc}

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\glsabbrvfont{\the\glsshorttok}\space
(TEX Users Group)}

Now the resource set can be loaded:

\GlsXtrLoadResources[
src={bacteria,markuplanguages,vegetables,
minerals,animals,books,films},

field-aliases={identifier=category},
type={same as category},
save-locations={false}

]

The semantic markup command and attributes are as for sample-multi1.tex:

\newcommand{\bacteriafont}[1]{\emph{#1}}
\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossdescfont}{bacteriafont}
\glssetcategoryattribute{markuplanguage}{glossdesc}{firstuc}

Similarly for the books:

568

8 Examples: sample-multi2.tex

\newcommand{\bookfont}[1]{\emph{#1}}
\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}

(as for sample-media.tex) and for films:

\newcommand{\filmfont}[1]{\emph{#1}}
\glssetcategoryattribute{film}{textformat}{filmfont}
\glssetcategoryattribute{film}{glossnamefont}{filmfont}

Next come the chemical formulae:

\GlsXtrLoadResources[
src={chemicalformula},
entry-type-aliases={chemical=symbol},
field-aliases={
identifier=category,
formula=name,
chemicalname=description

},
type={chemical},
set-widest,
sort={letternumber-case},
symbol-sort-fallback={name},
save-locations={false}

]

and the si units, which are now combined into a single glossary:

\GlsXtrLoadResources[
src={baseunits,derivedunits},
entry-type-aliases={measurement=symbol,unit=symbol},
field-aliases={
unitname=description,
unitsymbol=symbol,
measurement=name

},
category={measurement},
type={measurement},
set-widest,
symbol-sort-fallback={name},
save-locations={false}

]

Here the name field is obtained from the custom measurement field. Since this contains a
word, the default locale sort is appropriate. I’ve locally redefined \glsxtralttreeSymbol-
DescLocation to place the symbol in parentheses after the description:

569

8 Examples: sample-multi2.tex

\printunsrtglossary*[type={measurement},style={alttree},nogroupskip]
{%

\renewcommand{\glsxtralttreeSymbolDescLocation}[2]{%
\glossentrydesc{#1}%
\ifglshassymbol{#1}{\space(\glossentrysymbol{#1})}{}%
\glspostdescription
\glsxtrAltTreePar

}%
}

The base units are replicated in the baseunit glossary, this time with the name field ob-
tained from the custom unitsymbol field. This means that I need to find a way to prevent
duplicate labels. The simplest method is to use duplicate-label-suffix:

\GlsXtrLoadResources[
src={baseunits},
entry-type-aliases={unit=symbol},
field-aliases={
unitname=description,
unitsymbol=name

},
category={measurement},
type={baseunit},
duplicate-label-suffix={.copy},
symbol-sort-fallback={name},
save-locations={false}

]

I can’t use set-widest here as it won’t pick up the modified label and will instead use the
label from the original entry. Instead I’ve used \glsFindWidestTopLevelName to find it:

\printunsrtglossary*[type={baseunit},style={alttree},nogroupskip]
{%

\glsFindWidestTopLevelName[baseunit]%
}

The text symbols from miscsymbols.bib are all loaded in a single resource set, where the
type field can be obtained from the category, which in turns is obtained from the custom
identifier field. Since bib2gls doesn’t recognise any of the symbol commands, I’m sort-
ing according to the description field. (Even if bib2gls could determine a Unicode value
for each of the symbols, sorting by the description makes more sense in this case.)

\GlsXtrLoadResources[
src={miscsymbols},
field-aliases={
identifier=category,

570

8 Examples: sample-multi2.tex

icon=name,
icondescription=description

},
entry-type-aliases={icon=symbol},
type={same as category},
sort-field={description},
save-locations={false},
set-widest

]

Finally, all recorded and cross-referenced terms are needed for the index. This includes
entries that have already been defined in the earlier resource sets (so a guard against du-
plicates is necessary) but it also includes entries from the terms.bib file that haven’t yet
been dealt with. I’d like the index to start with a symbol group containing the icons from
miscsymbols.bib. This needs to be dealt with separately from the rest of the index to keep
them together in a single group:

\GlsXtrLoadResources[
src={miscsymbols},
selection={recorded no deps},
duplicate-label-suffix={.copy},
entry-type-aliases={icon=index},
field-aliases={
identifier=category,
icondescription=symbol,
icon=name

},
type={index},
sort-field={symbol},
group={glssymbols}

]

Since I know that there are no parents or cross-references in this set of entries I’ve used
selection={recorded no deps} to skip the dependency checks. In this resource set, the
name field has the symbol command (obtained from the custom icon field), and the symbol
field has the symbol description (obtained from the custom icondescription field), which
is used as the sort field. I’ve set the group label to glssymbols, which keeps all these entries
in a single group and the title will be obtained from \glssymbolsgroupname.

Before loading the final resource set \glsxtrlongshortdescname needs to be changed
so that the abbreviations using the long-short-desc style (that is, the abbreviations with the
category set to markuplanguage) have the name field set to 〈long〉 (〈short〉):

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\glslongfont{\the\glslongtok}\space
\glsxtrparen{\glsabbrvfont{\the\glsshorttok}}%

}

571

8 Examples: sample-multi2.tex

The long-only-short-only style has a similar command, but it was only introduced to glossaries-
extra version 1.25:

\renewcommand*{\glsxtronlyname}%
\protect\glsabbrvonlyfont{\the\glslongtok}%

The abbreviations all need to be sorted according to the long form:

abbreviation-sort-fallback={long}

The custom entry types and fields again need to be aliased

entry-type-aliases={
chemical=index,
measurement=entry,
unit=dualentry,
icon=index

},
field-aliases={

identifier=category,
formula=symbol,
chemicalname=name,
unitname=description,
unitsymbol=symbol,
measurement=name,
icon=symbol,
icondescription=name

}

The chemical formulae and icons are now defined using @index with the name field set to
a word form (chemical name and icon description). This means they’re appropriate for al-
phabetical sorting. (Both @entry and @symbol require the description field, which is why
I’ve aliased @chemical and @icon to @index here.) The custom @measurement entry type
has a description field (obtained from unitname), so that’s aliased to @entry as again the
name field is suitable for alphabetical sorting.

I’ve aliased @unit to @dualentry rather than @symbol as I want both the unit name and
the measurement in the index and I’ve combined their location lists:

combine-dual-locations={both}

Both primary and dual entries need to go in the index glossary:

type={index},
dual-type={index}

All .bib files used in the previous resource sets are needed as well as the terms.bib file:

572

8 Examples: sample-multi2.tex

src={terms,bacteria,markuplanguages,vegetables,minerals,
animals,chemicalformula,baseunits,derivedunits,people,
films,books,miscsymbols}

but this time I also want to select entries that haven’t been recorded but have a cross-
reference to a recorded entry:

selection[recorded and deps and see]

Again it’s necessary to provide a way to avoid duplicate entry labels, which can be done with

duplicate-label-suffix={.copy},

as above. However, this will cause the cross-references (from the alias fields) to link to the
glossary rather than the index. This may or may not confuse the reader. For consistency, it
may be more suitable to have the cross-reference in the index link to the aliased entry in the
index rather than in the glossary. I’ve therefore instead used:

label-prefix={idx.},
record-label-prefix={idx.},

This means that the entries defined in terms.bib need to be referenced with this prefix.
All instances of \gls will link to the original entry, so all entries except for those in the

terms.bib file will link to the relevant glossary. Those in the terms.bib file will link to
the index. It’s possible to disable the hyperlinks for those entries, but the reader may find it
useful to jump to the index to look up other locations for that entry in the document.

To deal with the identical book and film titles, I’m again using the category to resolve
identical sort values:

identical-sort-action={category}

For the people who have a first field, I’ve decided that this would be more appropriate for
the index as it’s more compact than the name, so here I’ve done the reverse to earlier and
copied the first field (if supplied) into the name field, but since the name field is already
provided the override setting needs to be on:

replicate-override,
replicate-fields={first=name}

As with sample-people.tex I’ve provided some custom commands to make it easier to
locally redefine \sortname and \sortvonname:

\newcommand*{\swaptwo}[2]{#2, #1}
\newcommand*{\swapthree}[3]{#2 #3, #1}

I’ve redefined \glsxtrbookindexname in a similar manner to sample-multi1.tex but it
has some modifications:

573

8 Examples: sample-multi2.tex

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%
{\space(\glossentrynameother{#1}{symbol})}%

}%
{%

\glsifcategory{#1}{film}%
{\␣(film)}%
{}%

}%
}

This appends “(film)” to film names. I’ve chosen this method rather than using the post-name
hook as I only want this in the index and not in the list of films.

For some of the entries that are referenced in the document, I’ve appended information in
parentheses:

\gls{Al2SO43} (\glsdesc{Al2SO43})

This is all right for odd instances, but if this always needs to be done on first use, then it’s
better to use the post-link hook, which is what I’ve done for the icons for comparison:

\newcommand*{\glsxtrpostlinkmediacontrol}{%
\glsxtrpostlinkAddDescOnFirstUse

}

\newcommand*{\glsxtrpostlinkinformation}{%
\glsxtrpostlinkAddDescOnFirstUse

}

\newcommand*{\glsxtrpostlinkweather}{%
\glsxtrpostlinkAddDescOnFirstUse

}

I’ve also provided some custom commands to make it easier to reference entries without
worrying about the prefixes:

\newcommand{\unit}{\glssymbol}
\newcommand{\measurement}{\gls}
\glsxtrnewgls{film.}{\film}

As with sample-multi1.tex, it would be useful to include the page where the entries
are defined in their corresponding lists. Again this can be done by redefining the general
purpose non-category post-name hook \glsextrapostnamehook:

574

8 Examples: sample-multi2.tex

\newcommand*{\glsextrapostnamehook}[1]{%
\glsadd[format={hyperbf}]{#1}%

}

This needs resetting before the index, since it’s redundant to record an entry in the index.
This will require an extra bib2gls+LATEX system call as this code can’t be performed until
the glossaries have been created.

The complete document code is listed below. The document build is:

pdflatex sample-multi2
bib2gls --group --break-space sample-multi2
pdflatex sample-multi2
bib2gls --group --break-space sample-multi2
pdflatex sample-multi2

The resulting document is shown in figure 8.21, figure 8.22 and figure 8.23.

\documentclass{scrreprt}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[version=4]{mhchem}
\usepackage{siunitx}
\usepackage{etoolbox}
\usepackage{marvosym}
% package conflict , need to undefine conflicting commands
\undef\Sun
\undef\Lightning
\usepackage[weather]{ifsym}

\usepackage[en-GB]{datetime2}
\usepackage[colorlinks]{hyperref}

\usepackage[record,% use bib2gls
section,% use \section* for glossary headings
postdot,% insert dot after descriptions in glossaries
nomain,% don't create 'main' glossary
index,% create 'index' glossary
nostyles,% don't load default styles

% load and patch required style packages:
stylemods={list,mcols,tree,bookindex}

]{glossaries -extra}

\newglossary*{bacteria}{Bacteria}
\newglossary*{markuplanguage}{Markup Languages}
\newglossary*{vegetable}{Vegetables}
\newglossary*{mineral}{Minerals}

575

8 Examples: sample-multi2.tex

\newglossary*{animal}{Animals}
\newglossary*{chemical}{Chemical Formula}
\newglossary*{baseunit}{SI Units}
\newglossary*{measurement}{Measurements}
\newglossary*{film}{Films}
\newglossary*{book}{Books}
\newglossary*{person}{People}
\newglossary*{mediacontrol}{Media Control Symbols}
\newglossary*{information}{Information Symbols}
\newglossary*{weather}{Weather Symbols}

\newcommand*{\bibglsdate}[7]{\DTMdisplaydate{#1}{#2}{#3}{#4}}

\GlsXtrLoadResources[
src={no-interpret -preamble},
interpret -preamble=false

]

\GlsXtrLoadResources[
src={interpret -preamble ,people},
field-aliases={

identifier=category ,
born=user1,
died=user2,
othername=user3

},
replicate -fields={name={first}},
type=person,
save-locations=false,
date-fields={user1,user2},
date-field-format={d MMM y G}

]

% Abbreviation styles must be set before the resource set
% that defines the abbreviations:
\setabbreviationstyle[bacteria]{long-only-short-only}
\setabbreviationstyle[markuplanguage]{long-short-desc}

% And also the style-dependent name format:
\renewcommand*{\glsxtrlongshortdescname}{%

\protect\glsabbrvfont{\the\glsshorttok}\space
\glsxtrparen{\glslongfont{\the\glslongtok}}%

}

\GlsXtrLoadResources[
src={bacteria ,markuplanguages ,vegetables ,

576

8 Examples: sample-multi2.tex

minerals,animals,books,films},
field-aliases={

identifier=category ,
year=user1,
cast=user2

},
type={same as category},
bibtex-contributor -fields={user2},
contributor -order={forenames},
save-locations=false

]

\GlsXtrLoadResources[
src={chemicalformula},
entry-type-aliases={chemical=symbol},
field-aliases={

identifier=category ,
formula=name,
chemicalname=description ,

},
type={chemical},
set-widest,
sort={letternumber -case},
symbol-sort-fallback={name},
save-locations=false

]

\GlsXtrLoadResources[
src={baseunits ,derivedunits},
entry-type-aliases={measurement=symbol,unit=symbol},
field-aliases={

unitname=description ,
unitsymbol=symbol,
measurement=name

},
category={measurement},
type={measurement},
set-widest,
symbol-sort-fallback={name},
save-locations=false

]

\GlsXtrLoadResources[
src={baseunits},
entry-type-aliases={unit=symbol},
field-aliases={

577

8 Examples: sample-multi2.tex

unitname=description ,
unitsymbol=name

},
category={measurement},
type={baseunit},
duplicate -label-suffix={.copy},
symbol-sort-fallback={name},
save-locations=false

]

\GlsXtrLoadResources[
src={miscsymbols},
field-aliases={

identifier=category ,
icon=name,
icondescription=description

},
entry-type-aliases={icon=symbol},
type={same as category},
sort-field={description},
save-locations=false,
set-widest

]

\renewcommand*{\glsxtrlongshortdescname}{%
\protect\protect\glslongfont{\the\glslongtok}\space
\glsxtrparen{\glsabbrvfont{\the\glsshorttok}}%

}

% requires glossaries -extra v1.25:
\renewcommand*{\glsxtronlyname}{%

\protect\glsabbrvonlyfont{\the\glslongtok}%
}

\GlsXtrLoadResources[
src={miscsymbols},
selection={recorded no deps},
duplicate -label-suffix={.copy},
entry-type-aliases={icon=index},
field-aliases={
identifier=category ,
icondescription=symbol,
icon=name

},
type=index,
sort-field={symbol},

578

8 Examples: sample-multi2.tex

group={glssymbols}
]

\GlsXtrLoadResources[
src={terms,bacteria ,markuplanguages ,vegetables ,minerals,
animals,chemicalformula ,baseunits ,derivedunits ,people,
films,books,miscsymbols},

selection={recorded and deps and see},
field-aliases={

identifier=category ,
formula=symbol,
chemicalname=name,
unitname=description ,
unitsymbol=symbol,
measurement=name,
icon=symbol,
icondescription=name

},
entry-type-aliases={
chemical=index,
measurement=entry,
unit=dualentry ,
icon=index

},
label-prefix={idx.},
record-label-prefix={idx.},
type=index,
dual-type=index,
combine-dual-locations=both,
abbreviation -sort-fallback={long},
replicate -override ,
replicate -fields={first=name},
identical -sort-action={category}

]

\newcommand*{\swaptwo}[2]{#2, #1}
\newcommand*{\swapthree}[3]{#2 #3, #1}

\newcommand{\bacteriafont}[1]{\emph{#1}}
\glssetcategoryattribute{bacteria}{textformat}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossnamefont}{bacteriafont}
\glssetcategoryattribute{bacteria}{glossdescfont}{bacteriafont}

\newcommand{\bookfont}[1]{\emph{#1}}
\glssetcategoryattribute{book}{textformat}{bookfont}
\glssetcategoryattribute{book}{glossnamefont}{bookfont}

579

8 Examples: sample-multi2.tex

\newcommand{\filmfont}[1]{\emph{#1}}
\glssetcategoryattribute{film}{textformat}{filmfont}
\glssetcategoryattribute{film}{glossnamefont}{filmfont}
\glssetcategoryattribute{film}{glossdesc}{firstuc}

\glssetcategoryattribute{markuplanguage}{glossdesc}{firstuc}

\newcommand*{\glsxtrpostlinkmediacontrol}{%
\glsxtrpostlinkAddDescOnFirstUse

}

\newcommand*{\glsxtrpostlinkinformation}{%
\glsxtrpostlinkAddDescOnFirstUse

}

\newcommand*{\glsxtrpostlinkweather}{%
\glsxtrpostlinkAddDescOnFirstUse

}

\newcommand*{\glsxtrpostlinkperson}{%
\glsxtrifwasfirstuse
{%

\ifglshasfield{user3}{\glslabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}%
{}%

}

\newcommand*{\glsxtrpostnameperson}{%
\ifglshasfield{user3}{\glscurrententrylabel}%
{\space(\glscurrentfieldvalue)}%
{}%

}

\newcommand*{\glsxtrpostdescperson}{%
\ifglshasfield{user1}{\glscurrententrylabel}
{% born

\space(\glscurrentfieldvalue\,--\,%
\ifglshasfield{user2}{\glscurrententrylabel}
{% died

\glscurrentfieldvalue
}%
{}%

)%

580

8 Examples: sample-multi2.tex

}%
{}%

}

\newcommand*{\glsxtrpostdescfilm}{%
\ifglshasfield{user1}{\glscurrententrylabel}%
{%

\glsxtrrestorepostpunc % requires glossaries -extra v1.23+
\ (released \glscurrentfieldvalue)}%

{}%
\ifglshasfield{user2}{\glscurrententrylabel}%
{%

\glsxtrrestorepostpunc
\ featuring \glscurrentfieldvalue

}%
{}%

}

\renewcommand*{\glsxtrbookindexname}[1]{%
\glossentryname{#1}%
\ifglshassymbol{#1}%
{%

\glsifcategory{#1}{chemical}%
{, \glossentrysymbol{#1}}%
{\space(\glossentrynameother{#1}{symbol})}%

}%
{%

\glsifcategory{#1}{film}%
{\ (film)}%
{}%

}%
}

% requires glossaries -extra v1.25+:
\renewcommand*{\glsextrapostnamehook}[1]{%

\glsadd[format=hyperbf]{#1}%
}

\newcommand{\Unit}{\glssymbol}
\newcommand{\measurement}{\gls}
\glsxtrnewgls{film.}{\film}
\glsxtrnewglslike{idx.}{\idx}{\idxpl}{\Idx}{\Idxpl}

\begin{document}
\chapter{Sample}
\section{Bacteria}

581

8 Examples: sample-multi2.tex

This section is about \idxpl{bacteria}.
\subsection{First Use}
\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\subsection{Next Use}
\gls{cbotulinum}, \gls{pputida}, \gls{cperfringens},
\gls{bsubtilis}, \gls{ctetani}, \gls{pcomposti},
\gls{pfimeticola}, \gls{cburnetii}, \gls{raustralis},
\gls{rrickettsii}.

\section{Markup Languages}
This section is about \idxpl{markuplanguage}.
\subsection{First Use}
\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\subsection{Next Use}
\gls{LaTeX}, \gls{markdown}, \gls{xhtml}, \gls{mathml}, \gls{svg}.

\section{Vegetables}
This section is about \idxpl{vegetable}.
\Gls{cabbage}, \gls{brussels -sprout}, \gls{artichoke},
\gls{cauliflower}, \gls{courgette}, \gls{spinach}.

\section{Minerals}
This section is about \idxpl{mineral}.
\Gls{beryl}, \gls{amethyst}, \gls{chalcedony}, \gls{aquamarine},
\gls{aragonite}, \gls{calcite}, \gls{bilinite},
\gls{cyanotrichite}, \gls{biotite}, \gls{dolomite},
\gls{quetzalcoatlite}, \gls{vulcanite}.

\section{Animals}
This section is about \idxpl{animal}.
\Gls{duck}, \gls{parrot}, \gls{hedgehog}, \gls{sealion},
\gls{zander}, \gls{aardvark}, \gls{zebra}, \gls{swan},
\gls{armadillo}.

\section{Chemicals}
This section is about \idxpl{chemical}.
\gls{Al2SO43} (\glsdesc{Al2SO43}), \gls{H2O} (\glsdesc{H2O}),
\gls{C6H12O6} (\glsdesc{C6H12O6}), \gls{CH3CH2OH}
(\glsdesc{CH3CH2OH}), \gls{CH2O} (\glsdesc{CH2O}), \gls{OF2}
(\glsdesc{OF2}), \gls{O2F2} (\glsdesc{O2F2}), \gls{SO42-}
(\glsdesc{SO42-}), \gls{H3O+} (\glsdesc{H3O+}), \gls{OH-}

582

8 Examples: sample-multi2.tex

(\glsdesc{OH-}), \gls{O2} (\glsdesc{O2}), \gls{AlF3}
(\glsdesc{AlF3}), \gls{O} (\glsdesc{O}), \gls{Al2CoO4}
(\glsdesc{Al2CoO4}), \gls{As4S4} (\glsdesc{As4S4}),
\gls{C10H10O4} (\glsdesc{C10H10O4}), \gls{C5H4NCOOH}
(\glsdesc{C5H4NCOOH}), \gls{C8H10N4O2} (\gls{C8H10N4O2}),
\gls{SO2} (\glsdesc{SO2}), \gls{S2O72-} (\gls{S2O72-}),
\gls{SbBr3} (\glsdesc{SbBr3}), \gls{Sc2O3} (\glsdesc{Sc2O3}),
\gls{Zr3PO44} (\glsdesc{Zr3PO44}), \gls{ZnF2} (\glsdesc{ZnF2}).

\section{SI Units}
\Idxpl{baseunit}: \Unit{ampere} (measures \measurement{ampere}),
\Unit{kilogram} (measures \measurement{kilogram}), \Unit{metre},
\Unit{second}, \Unit{kelvin}, \Unit{mole}, \Unit{candela}.

\Idxpl{derivedunit}: \Unit{area}, \Unit{volume},
\Unit{velocity},
\Unit{acceleration}, \Unit{density}, \Unit{luminance},
\Unit{specificvolume}, \Unit{concentration}, \Unit{wavenumber}.

\section{Books and Films}
\Idxpl{book}: \gls{ataleoftwocities} (by \gls{dickens}),
\gls{thebigsleep} (by \gls{chandler}, \idx{film} adaptation:
\film{thebigsleep}), \gls{icecoldinalex} (by
\gls{landon}, \idx{film} adaptation: \film{icecoldinalex}),
\gls{whydidnttheyaskevans} (by \gls{christie},
\idx{film} adaptation: \film{whydidnttheyaskevans}),
\gls{doandroidsdreamofelectricsheep} (by \gls{dick},
inspired the \idx{film} \film{bladerunner}).

\Idxpl{film}: \film{anunexpectedjourney}, \film{desolationofsmaug}
and \film{thebattleoffivearmies} (adapted from the
\idx{book} \gls{thehobbit} by \gls{tolkien}),
\film{thefellowshipofthering}, \film{thetwotowers}
and \film{thereturnoftheking} (adapted from the
\idx{book} \gls{thelordoftherings} also by \gls{tolkien}).

\section{Miscellaneous Symbols}

\subsection{First Use}

\Idxpl{mediacontrol}: \gls{forward}, \gls{forwardtoindex},
\gls{rewindtoindex}, \gls{rewind}.

\Idx{information}: \gls{bicycle}, \gls{coffeecup}, \gls{info},
\gls{gentsroom}, \gls{ladiesroom}, \gls{wheelchair}, \gls{football},
\gls{recycling}.

583

8 Examples: sample-multi2.tex

\Idx{weather}: \gls{cloud}, \gls{fog}, \gls{hail}, \gls{sun},
\gls{lightning}.

\subsection{Next Use}

\Idxpl{mediacontrol}: \gls{forward}, \gls{forwardtoindex},
\gls{rewindtoindex}, \gls{rewind}.

\Idx{information}: \gls{bicycle}, \gls{coffeecup}, \gls{info},
\gls{gentsroom}, \gls{ladiesroom}, \gls{wheelchair}, \gls{football}.

\Idx{weather}: \gls{cloud}, \gls{fog}, \gls{hail}, \gls{sun},
\gls{lightning}.

\section{Measurements}

\Idxpl{measurement}:
\measurement{ampere}, \measurement{area}, \measurement{metre}.

\chapter{Glossaries}
\printunsrtglossary[type=bacteria ,style=mcoltree]
\printunsrtglossary[type=markuplanguage ,style=altlist]
\printunsrtglossary[type=vegetable ,style=tree,nogroupskip]
\printunsrtglossary[type=mineral,style=treegroup]
\printunsrtglossary[type=animal,style=tree]
\printunsrtglossary[type=person,style=tree,nogroupskip]
\printunsrtglossary[type=book,style=tree,nogroupskip]
\printunsrtglossary[type=film,style=tree,nogroupskip]
\printunsrtglossary*[type=chemical ,style=mcolalttreegroup]
{%

\renewcommand*{\glstreenamefmt}[1]{#1}%
\renewcommand*{\glstreegroupheaderfmt}[1]{\textbf{#1}}%

}
\printunsrtglossary*[type=measurement ,style=alttree,nogroupskip]
{%

\renewcommand{\glsxtralttreeSymbolDescLocation}[2]{%
\glossentrydesc{#1}%
\ifglshassymbol{#1}{\space(\glossentrysymbol{#1})}{}%
\glspostdescription
\glsxtrAltTreePar

}%
}

\printunsrtglossary*[type=baseunit ,style=alttree,nogroupskip]
{%

584

8 Examples: sample-multi2.tex

\glsFindWidestTopLevelName[baseunit]%
}
\printunsrtglossary[type=information ,style=alttree,nogroupskip]
\printunsrtglossary[type=mediacontrol ,style=alttree,nogroupskip]
\printunsrtglossary[type=weather,style=alttree,nogroupskip]

\printunsrtglossary*[type=index,style=bookindex]
{%

\setupglossaries{section=chapter}%
\let\sortname\swaptwo
\let\sortvonname\swapthree
\renewcommand*{\glsextrapostnamehook}[1]{}%

}
\end{document}}

585

8 Examples: sample-multi2.tex

1 Sample

1.1 Bacteria

This section is about bacteria.

1.1.1 First Use

Clostridium botulinum, Pseudomonas putida, Clostridium perfringens, Bacillus subtilis,
Clostridium tetani , Planifilum composti , Planifilum fimeticola, Coxiella burnetii , Rick-
ettsia australis, Rickettsia rickettsii .

1.1.2 Next Use

C. botulinum, P. putida, C. perfringens, B. subtilis, C. tetani , P. composti , P. fimeticola,
C. burnetii , R. australis, R. rickettsii .

1.2 Markup Languages

This section is about markup languages.

1.2.1 First Use

LATEX, markdown, extensible hypertext markup language (XHTML), mathematical markup
language (MathML), scalable vector graphics (SVG).

1.2.2 Next Use

LATEX, markdown, XHTML, MathML, SVG.

1.3 Vegetables

This section is about vegetables. Cabbage, Brussels sprout, artichoke, cauliflower, cour-
gette, spinach.

1.4 Minerals

This section is about minerals. Beryl, amethyst, chalcedony, aquamarine, aragonite,
calcite, bílinite, cyanotrichite, biotite, dolomite, quetzalcoatlite, vulcanite.

1

1.5 Animals

This section is about animals. Duck, parrot, hedgehog, sea lion, zander, aardvark, zebra,
swan, armadillo.

1.6 Chemicals

This section is about chemical formulae. Al2(SO4)3 (aluminium sulfate), H2O (water),
C6H12O6 (glucose), CH3CH2OH (ethanol), CH2O (formaldehyde), OF2 (oxygen difluo-
ride), O2F2 (dioxygen difluoride), SO4

2– (sulfate), H3O+ (hydronium), OH– (hydrox-
ide ion), O2 (dioxygen), AlF3 (aluminium trifluoride), O (oxygen), Al2CoO4 (cobalt
blue), As4S4 (tetraarsenic tetrasulfide), C10H10O4 (ferulic acid), C5H4NCOOH (niacin),
C8H10N4O2 (C8H10N4O2), SO2 (sulfur dioxide), S2O7

2– (S2O7
2–), SbBr3 (antimony(III)

bromide), Sc2O3 (scandium oxide), Zr3(PO4)4 (zirconium phosphate), ZnF2 (zinc fluo-
ride).

1.7 SI Units

Base SI units: A (measures electric current), kg (measures mass), m, s, K, mol, cd.
Derived SI units: m2, m3, ms−1, ms−2, Am−2, cdm−2, m3 kg−1, molm−3, m−1.

1.8 Books and Films

Books: A Tale of Two Cities (by Charles Dickens), The Big Sleep (by Raymond Chan-
dler, film adaptation: The Big Sleep), Ice Cold in Alex (by Christopher Landon, film
adaptation: Ice Cold in Alex), Why Didn’t They Ask Evans? (by Agatha Christie (Lady
Mallowan), film adaptation: Why Didn’t They Ask Evans?), Do Androids Dream of
Electric Sheep? (by Philip K. Dick, inspired the film Blade Runner).

Films: The Hobbit: An Unexpected Journey , The Hobbit: The Desolation of Smaug
and The Hobbit: The Battle of Five Armies (adapted from the book The Hobbit by
J.R.R. Tolkien), The Lord of the Rings: The Fellowship of the Ring , The Lord of the
Rings: The Two Towers and The Lord of the Rings: The Return of the King (adapted
from the book The Lord of the Rings also by Tolkien).

1.9 Miscellaneous Symbols

1.9.1 First Use

Media controls: · (play), ¹ (next track), ´ (back to start of track), ¶ (rewind).
Information: ® (bicycle route),K (café), i (information centre), x (Gents), y (Ladies),

w (wheelchair access provided), o (football stadium), Þ (recycling centre).
Weather: � (cloudy), � (foggy), � (hail), � (sunny), � (thunderstorm).

2

1.9.2 Next Use

Media controls: ·, ¹, ´, ¶.
Information: ®, K, i, x, y, w, o.
Weather: �, �, �, �, �.

1.10 Measurements

Measurements: electric current, area, length.

3

2 Glossaries

Bacteria

B. subtilis Bacillus subtilis.

C. botulinum Clostridium botulinum.
C. burnetii Coxiella burnetii .
C. perfringens Clostridium perfringens.
C. tetani Clostridium tetani .

P. composti Planifilum composti .
P. fimeticola Planifilum fimeticola.
P. putida Pseudomonas putida.

R. australis Rickettsia australis.
R. rickettsii Rickettsia rickettsii .

Markup Languages

HTML (hypertext markup language)

The standard markup language for creating web pages.

LATEX

A format of TEX designed to separate content from style.

markdown

A lightweight markup language with plain text formatting syntax.

MathML (mathematical markup language)

Markup language for describing mathematical notation.

SVG (scalable vector graphics)

XML-based vector image format.

TEX

A format for describing complex type and page layout often used for mathematics,
technical, and academic publications.

XHTML (extensible hypertext markup language)

XML version of HTML.

4

Figure 8.21: sample-multi2.pdf (pages 1 to 4)

586

8 Examples: sample-multi2.tex

XML (extensible markup language)

A markup language that defines a set of rules for encoding documents.

Vegetables

artichoke a variety of thistle cultivated as food.
Brussels sprout small leafy green vegetable buds.
cabbage vegetable with thick green or purple leaves.
cauliflower type of cabbage with edible white flower head.
courgette immature fruit of a vegetable marrow.
marrow long white-fleshed gourd with green skin.
spinach green, leafy vegetable.

Minerals

A

amethyst purple variety of quartz.
aquamarine light blue variety of beryl.
aragonite a crystal form of calcium carbonate.

B

beryl composed of beryllium aluminium cyclosilicate.
bílinite an iron sulfate mineral.
biotite a common phyllosilicate mineral.

C

calcite a crystal form of calcium carbonate.
chalcedony cryptocrystalline variety of quartz.
cyanotrichite a hydrous copper aluminium sulfate mineral.

D

dolomite an anhydrous carbonate mineral.

Q

quartz hard mineral consisting of silica.
quetzalcoatlite a rare tellurium oxysalt mineral.

V

vulcanite a rare copper telluride mineral.

5

Animals

aardvark nocturnal African burrowing mammal.
armadillo nocturnal insectivore with large claws.

duck a waterbird with webbed feet.

hedgehog small nocturnal mammal with a spiny coat and short legs.

parrot mainly tropical bird with bright plumage.

sea lion a large type of seal.
seal sea-dwelling fish-eating mammal with flippers.
swan a large waterbird with a long flexible neck, short legs, webbed feet and a broad
bill.

zander large freshwater perch.
zebra wild African horse with black-and-white stripes.

People

Raymond Chandler American-British novelist and screenwriter (23rd July 1888 – 26th
March 1959).
Dame Agatha Mary Clarissa Christie (Lady Mallowan) English crime novelist
and playwright (15th September 1890 – 12th January 1976).
Philip K. Dick American science fiction writer (16th December 1928 – 2nd March 1982).
Charles Dickens English writer and social critic (7th February 1812 – 9th June 1870).
Christopher Guy Landon British novelist and screenwriter (29th March 1911 – 26th
April 1961).
John Ronald Reuel Tolkien English writer, poet, philologist, and university professor
(3rd January 1892 – 2nd September 1973).

Books

The Big Sleep novel by Raymond Chandler.
Do Androids Dream of Electric Sheep? novel by Philip K. Dick.
The Hobbit novel by J.R.R. Tolkien.
Ice Cold in Alex novel by Christopher Landon.
The Lord of the Rings novel by J.R.R. Tolkien.
A Tale of Two Cities novel by Charles Dickens.
Why Didn’t They Ask Evans? novel by Agatha Christie.

6

Films

The Big Sleep A film based on the novel The Big Sleep (released 1946) featuring
Humphrey Bogart & Lauren Bacall.
Blade Runner A film loosely based on the novel Do Androids Dream of Electric Sheep?
(released 1982) featuring Harrison Ford, Rutger Hauer & Sean Young.
The Hobbit: The Battle of Five Armies A film based on the novel The Hobbit
(released 2014) featuring Ian McKellen, Martin Freeman & Richard Armitage.
The Hobbit: The Desolation of Smaug A film based on the novel The Hobbit
(released 2013) featuring Ian McKellen, Martin Freeman & Richard Armitage.
The Hobbit: An Unexpected Journey A film based on the novel The Hobbit (released
2012) featuring Martin Freeman, Ian McKellen & Richard Armitage.
Ice Cold in Alex A film based on the novel Ice Cold in Alex (released 1958) featuring
John Mills, Anthony Quayle & Sylvia Sims.
The Lord of the Rings: The Fellowship of the Ring A film based on the novel
The Lord of the Rings (released 2001) featuring Elijah Wood, Ian McKellen & Orlando
Bloom.
The Lord of the Rings: The Return of the King A film based on the novel The Lord
of the Rings (released 2003) featuring Elijah Wood, Viggo Mortensen & Ian McKellen.
The Lord of the Rings: The Two Towers A film based on the novel The Lord of
the Rings (released 2002) featuring Elijah Wood, Ian McKellen & Viggo Mortensen.
Why Didn’t They Ask Evans? A film based on the novel Why Didn’t They Ask
Evans? (released 1980) featuring Francesca Annis, John Gielgud & Bernard Miles.

Chemical Formula

A

AlF3 aluminium trifluoride.
Al2(SO4)3 aluminium sulfate.
Al2CoO4 cobalt blue.
As4S4 tetraarsenic tetrasulfide.

C

CH2O formaldehyde.
CH3CH2OH ethanol.
C5H4NCOOH niacin.
C6H12O6 glucose.
C8H10N4O2 caffeine.
C10H10O4 ferulic acid.

H

H2O water.
H3O+ hydronium.

O

O oxygen.
OF2 oxygen difluoride.
OH– hydroxide ion.
O2 dioxygen.
O2F2 dioxygen difluoride.

S

SO2 sulfur dioxide.
SO4

2– sulfate.
S2O7

2– disulfate ion.
SbBr3 antimony(III) bromide.
Sc2O3 scandium oxide.

Z

ZnF2 zinc fluoride.
Zr3(PO4)4 zirconium phosphate.

7

Measurements

acceleration metre per second squared (ms−2).
amount of substance mole (mol).
area square metre (m2).
concentration mole per cubic metre (molm−3).
density ampere per square metre (Am−2).
electric current ampere (A).
length metre (m).
luminance candela per square metre (cdm−2).
luminous intensity candela (cd).
mass kilogram (kg).
specific volume cubic metre per kilogram (m3 kg−1).
thermodynamic temperature kelvin (K).
time second (s).
velocity metre per second (ms−1).
volume cubic metre (m3).
wave number per metre (m−1).

SI Units

A ampere.
cd candela.
K kelvin.
kg kilogram.
m metre.
mol mole.
s second.

Information Symbols

® bicycle route.
K café.
o football stadium.
x Gents.
i information centre.
y Ladies.
Þ recycling centre.
w wheelchair access provided.

8

Figure 8.22: sample-multi2.pdf (pages 5 to 8)

587

8 Examples: sample-multi2.tex

Media Control Symbols

´ back to start of track.
¹ next track.
· play.
¶ rewind.

Weather Symbols

� cloudy.
� foggy.
� hail.
� sunny.
� thunderstorm.

9

Index

Symbols

´ (back to start of track), 2, 3, 9
® (bicycle route), 2, 3, 8
K (café), 2, 3, 8
� (cloudy), 2, 3, 9
� (foggy), 2, 3, 9
o (football stadium), 2, 3, 8
x (Gents), 2, 3, 8
� (hail), 2, 3, 9
i (information centre), 2, 3, 8
y (Ladies), 2, 3, 8
¹ (next track), 2, 3, 9
· (play), 2, 3, 9
Þ (recycling centre), 2, 8
¶ (rewind), 2, 3, 9
� (sunny), 2, 3, 9
� (thunderstorm), 2, 3, 9
w (wheelchair access provided), 2, 3, 8

A

aardvark, 2, 6
acceleration (ms−2), 2, 8
aluminium sulfate, Al2(SO4)3, 2, 7
aluminium trifluoride, AlF3, 2, 7
amethyst, 1, 5
amount of substance (mol), 2, 8
ampere (A), 2, 3, 8
animal, 2
antimony(III) bromide, SbBr3, 2, 7
aquamarine, 1, 5
aragonite, 1, 5
area (m2), 2, 3, 8
armadillo, 2, 6
artichoke, 1, 5

B

Bacillus subtilis, 1, 4
back to start of track (´), 2, 3, 9
bacteria, 1
base SI unit, 2
beryl, 1, 5
bicycle route (®), 2, 3, 8
The Big Sleep, 2, 6, 7
The Big Sleep (film), 2, 7
bílinite, 1, 5
biotite, 1, 5
Blade Runner (film), 2, 7
book, 2
Brussels sprout, 1, 5

C

cabbage, 1, 5
café (K), 2, 3, 8
caffeine, C8H10N4O2, 2, 7
calcite, 1, 5
candela (cd), 2, 8
cauliflower, 1, 5
chalcedony, 1, 5
Chandler, Raymond, 2, 6
chemical formula, 2
Christie, Agatha, 2, 6
Clostridium botulinum, 1, 4
Clostridium perfringens, 1, 4
Clostridium tetani , 1, 4
cloudy (�), 2, 3, 9
cobalt blue, Al2CoO4, 2, 7
concentration (molm−3), 2, 8
courgette, 1, 5
Coxiella burnetii , 1, 4
cyanotrichite, 1, 5

10

D

density (Am−2), 2, 8
derived SI unit, 2
Dick, Philip K., 2, 6
Dickens, Charles, 2, 6
dioxygen, O2, 2, 7
dioxygen difluoride, O2F2, 2, 7
disulfate ion, S2O7

2– , 2, 7
Do Androids Dream of Electric Sheep? , 2,

6, 7
dolomite, 1, 5
duck, 2, 6

E

electric current (A), 2, 3, 8
ethanol, CH3CH2OH, 2, 7
extensible hypertext markup language

(XHTML), 1, 4
extensible markup language (XML), 4, 5

F

ferulic acid, C10H10O4, 2, 7
film, 2
foggy (�), 2, 3, 9
football stadium (o), 2, 3, 8
formaldehyde, CH2O, 2, 7

G

Gents (x), 2, 3, 8
glucose, C6H12O6, 2, 7

H

hail (�), 2, 3, 9
hedgehog, 2, 6
The Hobbit , 2, 6, 7
The Hobbit: The Battle of Five Armies

(film), 2, 7
The Hobbit: The Desolation of Smaug

(film), 2, 7
The Hobbit: An Unexpected Journey

(film), 2, 7

hydronium, H3O+, 2, 7
hydroxide ion, OH– , 2, 7
hypertext markup language (HTML), 4

I

Ice Cold in Alex , 2, 6, 7
Ice Cold in Alex (film), 2, 7
information, 2, 3
information centre (i), 2, 3, 8

K

kelvin (K), 2, 8
kilogram (kg), 2, 8

L

Ladies (y), 2, 3, 8
Landon, Christopher, 2, 6
LATEX, 1, 4
length (m), 2, 3, 8
lettsomite, see cyanotrichite
The Lord of the Rings, 2, 6, 7
The Lord of the Rings: The Fellowship of

the Ring (film), 2, 7
The Lord of the Rings: The Return of the

King (film), 2, 7
The Lord of the Rings: The Two Towers

(film), 2, 7
luminance (cdm−2), 2, 8
luminous intensity (cd), 2, 8

M

markdown, 1, 4
markup language, 1
marrow, 5
mass (kg), 2, 8
mathematical markup language

(MathML), 1, 4
measurement, 3
media control, 2, 3
metre (m), 2, 3, 8
mineral, 1
mole (mol), 2, 8

11

N

next track (¹), 2, 3, 9
niacin, C5H4NCOOH, 2, 7

O

oxygen, O, 2, 7
oxygen difluoride, OF2, 2, 7

P

parrot, 2, 6
Planifilum composti , 1, 4
Planifilum fimeticola, 1, 4
play (·), 2, 3, 9
Pseudomonas putida, 1, 4

Q

quartz, 5
quetzalcoatlite, 1, 5

R

recycling centre (Þ), 2, 8
rewind (¶), 2, 3, 9
Rickettsia australis, 1, 4
Rickettsia rickettsii , 1, 4

S

scalable vector graphics (SVG), 1, 4
scandium oxide, Sc2O3, 2, 7
sea lion, 2, 6
seal, 6
second (s), 2, 8
specific volume (m3 kg−1), 2, 8
spinach, 1, 5

sulfate, SO4
2– , 2, 7

sulfur dioxide, SO2, 2, 7
sunny (�), 2, 3, 9
swan, 2, 6

T

A Tale of Two Cities, 2, 6
tetraarsenic tetrasulfide, As4S4, 2, 7
TEX, 4
thermodynamic temperature (K), 2, 8
thunderstorm (�), 2, 3, 9
time (s), 2, 8
Tolkien, J.R.R., 2, 6

V

vegetable, 1
velocity (ms−1), 2, 8
volume (m3), 2, 8
vulcanite, 1, 5

W

water, H2O, 2, 7
wave number (m−1), 2, 8
weather, 2, 3
wheelchair access provided (w), 2, 3, 8
Why Didn’t They Ask Evans? , 2, 6, 7
Why Didn’t They Ask Evans? (film), 2, 7

Z

zander, 2, 6
zebra, 2, 6
zinc fluoride, ZnF2, 2, 7
zirconium phosphate, Zr3(PO4)4, 2, 7
zucchini, see courgette

12

Figure 8.23: sample-multi2.pdf (pages 9 and 12)

588

Package Option Summary
Most options are in the form 〈option〉=〈value〉 and may have a default if 〈value〉 is omitted,
but some options don’t have values and should not have one assigned. For boolean options,
if the value is omitted true is assumed. †Indicates a value that’s only provided by glossaries-
extra and not by the base glossaries package.

A

abbreviations
Creates the abbreviations glossary.

+Provided by glossaries-extra.

accsupp
Load the glossaries-accsupp package to

provide accessibility support.
+Provided by glossaries and modified by
glossaries-extra.

acronym=〈boolean〉
If true, creates a new glossary with the la-

bel acronym.
+Provided by glossaries.

acronymlists=〈list〉
Identifies the glossaries that are lists of

acronyms (don’t use with glossaries-extra).
+Provided by glossaries.

acronyms
Equivalent to acronym={true}.

+Provided by glossaries.

automake=〈boolean〉
If true, tries to use TEX’s shell escape to au-

tomatically run the required indexing appli-
cation (may not be permitted by TEX’s secu-
rity settings).
+Provided by glossaries.

autoseeindex=〈boolean〉
If true, the see and seealso keys automat-

ically indexes the cross-referenced term.
+Provided by glossaries-extra. Not relevant
with bib2gls.

C

counter=〈value〉
Sets the default location counter to 〈value〉

(which must be the name of a counter). May
be overridden on an individual basis using
the counter option in commands like \gls
and \glsadd.
+Provided by glossaries.
counterwithin=〈counter name〉
Automatically sets the option entrycounter

={true} and indicates the master counter for
glossaryentry.
+Provided by glossaries.

D

debug=〈value〉
Add debugging information; allowed val-

ues: false (default), true (info added
to transcript), showtargets (info added to
transcript and show target name in the
document for glossary-related hyperlinks),
showwrgloss† show mark in document
where indexing occurs and all† (implement
both showtargets and showwrgloss).
+Provided by glossaries and modified by
glossaries-extra.

589

Package Option Summary

docdef=〈value〉
Determines whether entries can be defined

in the document environment; the 〈value〉
may be one of: false (entries must be de-
fined in the preamble), true (entries may
be defined in the document environment),
restricted (entries may only be defined in
the document environment if the definition
comes before all glossaries and before any
reference to the entry).
+Provided by glossaries-extra. Not relevant
with bib2gls.

E

entrycounter=〈boolean〉
If true, creates the glossaryentry counter

and each main (level 0) glossary entry will
be numbered (which can be referenced with
\glsrefentry or \glsxtrpageref).
+Provided by glossaries.
esclocations=〈boolean〉
If true, glossaries tries to escape special

characters from the locations.
+Provided by glossaries. Not relevant with
bib2gls.

H

hyperfirst=〈boolean〉
If false, terms on first use don’t have hy-

perlinks unless explicitly set (with glossaries-
extra, the nohyperfirst category attribute can
selectively apply this).
+Provided by glossaries.

I

index
Defines the index glossary and \newterm.

+Provided by glossaries.
indexcounter
Creates the wrglossary counter, which is in-

cremented every time an entry is indexed

with that counter, and sets that as the default
location counter.
+Provided by glossaries-extra.

indexcrossrefs=〈boolean〉
If true, at the end of the document auto-

matically index cross-referenced entries that
haven’t been marked as used.
+Provided by glossaries-extra. Not relevant
with bib2gls.

indexonlyfirst=〈boolean〉
If true, only performs indexing on first use.

+Provided by glossaries.

M

makeindex
Write the indexing information using

makeindex’s format.
+Provided by glossaries. Not relevant with
bib2gls.

N

nogroupskip=〈boolean〉
If true, suppresses the visual separation be-

tween letter groups in glossary styles that
support this option.
+Provided by glossaries.

nohypertypes=〈list〉
Suppress hyperlinks for the listed glossary

types.
+Provided by glossaries.

nolangwarn
Suppresses warnings generated by missing

language modules.
+Provided by glossaries.

nolist
Prevents the glossary-list package (which

provides the list styles) from being automati-
cally loaded.
+Provided by glossaries.

590

Package Option Summary

nolong
Prevents the glossary-long package (which

provides the long styles) from being automat-
ically loaded.
+Provided by glossaries.
nomain
Suppresses the creation of the default main

glossary. If used an alternative glossary must
be created.
+Provided by glossaries.
nomissingglstext=〈boolean〉
If true, suppress the warning text that ap-

pears in the document with \printglos-
sary if the associated external file doesn’t ex-
ist.
+Provided by glossaries-extra. Not relevant
with bib2gls.
nonumberlist
Suppresses the location lists from being

displayed in the glossary lists (the pack-
age option isn’t boolean, but the option
of the same name for \printglossary,
\printunsrtglossary and \printnoidx-
glossary is boolean); with bib2gls you can
use save-locations={false} instead.
+Provided by glossaries.
nopostdot=〈boolean〉
If true, suppresses the automatic post-

description punctuation. With glossaries-
extra you can also use postpunc={none} in-
stead of nopostdot={true} and postdot
or postpunc={dot} instead of nopostdot=
{false}.
+Provided by glossaries and modified by
glossaries-extra.
noredefwarn
Suppresses warnings if overriding glos-

sary commands provided by another class or
package.
+Provided by glossaries.
nostyles
Prevents all the default styles from being

loaded. If this option is used a style must be
defined in the document or a package provid-
ing a style needs to be loaded (either through
stylemods or with \usepackage).
+Provided by glossaries.
nosuper
Prevents the glossary-super package

(which provides the super styles) from being
automatically loaded.
+Provided by glossaries.
notranslate
Equivalent to translate={false}.

+Provided by glossaries.
notree
Prevents the glossary-tree package (which

provides the tree styles) from being automat-
ically loaded.
+Provided by glossaries.
nowarn
Suppresses all glossaries-related warnings.

+Provided by glossaries.
numberedsection=〈value〉
Determines whether to use numbered or

unnumbered section units, and whether or
not to automatically add \label; the value
may be one of: false (default, no number-
ing and no label), nolabel (numbered but no
label), autolabel (numbered with automatic
label), nameref (unnumbered but labelled). If
no value is given nolabel is assumed.
+Provided by glossaries.
numberline=〈boolean〉
When used with toc={true}, this will add

\numberline{} to the start of the toc entry.
+Provided by glossaries.
numbers
Defines the numbers glossary; with

glossaries-extra additionally defines \gls-
xtrnewnumber.
+Provided by glossaries and modified by
glossaries-extra.

591

Package Option Summary

O

order=〈value〉
Sets whether to use word or letter ordering.

+Provided by glossaries. Not relevant with
bib2gls, use the break-at resource option
instead.

P

postdot
Equivalent to postpunc={dot}.

+Provided by glossaries-extra.

postpunc=〈value〉
Controls the automatic post-description

punctuation; the value may be one of: none
(not required, the description or glossary
style already supplies the terminating punc-
tuation), comma (use a comma), dot (use a full
stop with the space factor adjusted), 〈punctu-
ation〉 (use 〈punctuation〉).
+Provided by glossaries-extra.

R

record=〈value〉
Unless the value is off, this option sets up

glossaries-extra for use with bib2gls: only
(assumed if no 〈value〉 supplied) indexing is
performed by bib2gls; nameref (glossaries-
extra v1.37+) like only but includes extra in-
formation in the records; alsoindex (hybrid
method) bib2gls is used to provide the entry
definitions but makeindex or xindy is used
for the indexing.
+Provided by glossaries-extra.

S

sanitizesort=〈boolean〉
Determines whether or not to sanitize the

sort key (not relevant with bib2gls).
+Provided by glossaries. Not relevant with
bib2gls.

savenumberlist=〈boolean〉
If true, stores the number list for each en-

try (with bib2gls use the save-locations
resource option instead).
+Provided by glossaries.

savewrites=〈boolean〉
If true, indexing information is stored in to-

ken registers that are only written at the end
of the document to save creating a write reg-
ister per glossary indexing file.
+Provided by glossaries. Not relevant with
bib2gls.

section=〈value〉
Indicates the sectional unit to use for

the glossary heading (the value should be
the name of the section command with-
out the leading backslash, for example
section={subsection}). If no value is
supplied then section={section} is as-
sumed. If this option is omitted, then
the default is either section={chapter} or
section={section}, depending onwhether
or not \chapter has been defined. The
starred or unstarred version is determined by
numberedsection.
+Provided by glossaries.

seeautonumberlist
If nonumberlist is used, this allows the

see key to override the setting for the asso-
ciated entry.
+Provided by glossaries. Not relevant with
bib2gls.

seenoindex=〈value〉
Determines whether the see key automat-

ically indexes the entry using \glsadd; al-
lowed values: error (attempts indexing but
triggers an error if used before \makeglos-
saries); warn (attempts indexing but trig-
gers a warning if used before \makeglos-
saries); ignore (attempts indexing but does
nothing if used before \makeglossaries).
+Provided by glossaries. Not relevant with

592

Package Option Summary

bib2gls.

shortcuts=〈value〉
Sets up short cut commands; the value may

be one of false (default), true (assumed if
no value supplied, implements shortcuts
={ac}, shortcuts={abbreviations} and
shortcuts={other}), acronyms† (equiva-
lent to base shortcuts={true}, synonym
acro), ac† (provides \ac shortcuts that
use glossaries-extra’s new abbreviation com-
mands), abbreviations† (provides \ab
shortcuts), other† (provides other shortcut
commands), all† (synonym for shortcuts=
{true}) and none† (synonym for shortcuts
={false}).
+Provided by glossaries and modified by
glossaries-extra.

sort=〈value〉
Indicates how to assign the sort key if not

explicitly set, the value may be one of: none
(don’t automatically assign the sort field),
standard (obtain the sort value from the
name field), def (assign the sort field to a
numerical value that represents the order of
definition), user (assign the sort field to a
numerical value that represents the order of
first use).
+Provided by glossaries. Not relevant with
bib2gls, use the sort resource option in-
stead.

style=〈name〉
Sets the default glossary style to 〈name〉.

+Provided by glossaries.

stylemods=〈value〉
Load the glossaries-extra-stylemods pack-

age with the supplied options (which should
be a list of suffix parts identifying glossary
style packages glossary-〈suffix〉); there are
two keyword values: default (equivalent to
omitting 〈value〉) and all, which loads all
predefined styles.
+Provided by glossaries-extra.

subentrycounter=〈boolean〉
If true, creates the glossarysubentry counter

and each level 1 glossary entry will be num-
bered (which can be referenced with \gls-
refentry or \glsxtrpageref); this option
and associated counter are independent of
entrycounter and glossaryentry.
+Provided by glossaries.
symbols
Defines the symbols glossary; with

glossaries-extra additionally defines \gls-
xtrnewsymbol.
+Provided by glossaries and modified by
glossaries-extra.

T

toc=〈boolean〉
If true (default for glossaries-extra), auto-

matically add each glossary to the table of
contents.
+Provided by glossaries.
translate=〈value〉
Determines the multilingual support pro-

vided by glossaries; allowed values: true (de-
fault with just base glossaries; if babel has
been loaded and translator is installed, use
translator interface), false (don’t provide
translations), babel (default with glossaries-
extra; don’t load the translator package, just
load glossaries-babel).
+Provided by glossaries.

U

ucmark=〈boolean〉
If true, converts the glossary mark (used

in page headings) to upper case with \Make-
TextUppercase.
+Provided by glossaries.
undefaction=〈value〉
Indicates what to do if an undefined entry

is referenced: warn (generate a warning and

593

Package Option Summary

show ⁇ in the text, default with record),
error (generate an error).
+Provided by glossaries-extra.

X

xindy=〈settings〉
Write the indexing information using

xindy’s format where the optional 〈settings〉
may supply the language and code page and
whether or not to define the default number

group.
+Provided by glossaries. Not relevant with
bib2gls.

xindygloss
Equivalent to xindy={}.

+Provided by glossaries. Not relevant with
bib2gls.

xindynoglsnumbers
Equivalent to xindy={glsnumbers=false}.

+Provided by glossaries. Not relevant with
bib2gls.

594

General Command Summary
This is an alphabetical summary of commands referenced in this document. See the relevent
user guides for further details.

*Indicates command is recognised by bib2gls’s interpreter although it may have a
slightly different implementation.

\" bib2gls quark
A quark that identifies a literal double-quote ".

\"{〈character〉} kernel command*
Puts an umlaut accent over 〈character〉.

\# kernel command*
Produces the hash symbol #.

\# bib2gls quark
A quark that identifies a literal hash # in a regular expression.

\$ kernel command*
Produces the dollar symbol $.

\$ bib2gls quark
A quark that identifies a literal dollar $ in a regular expression.

\% kernel command*
Produces the percent symbol %.

\& kernel command*
Produces the ampersand symbol &.

\& bib2gls quark
A quark that identifies a literal ampersand & in a regular expression.

\'{〈character〉} kernel command*
Puts an acute accent over 〈character〉.

\(bib2gls quark
A quark that identifies a literal open parenthesis (in a regular expression.

\) bib2gls quark
A quark that identifies a literal close parenthesis) in a regular expression.

* bib2gls quark
A quark that identifies a literal star * in a regular expression.

595

General Command Summary

\+ bib2gls quark
A quark that identifies a literal plus + in a regular expression.

\, kernel command*
Thin space.

\- bib2gls quark
A quark that identifies a literal hyphen - in a regular expression.

\.{〈character〉} kernel command*
Puts a dot accent over 〈character〉.

\. bib2gls quark
A quark that identifies a literal dot (.) in a regular expression.

\/ bib2gls quark
A quark that identifies a literal slash / in a regular expression.

\: bib2gls quark
A quark that identifies a literal colon : in a regular expression.

\< bib2gls quark
A quark that identifies a literal less than < in a regular expression.

\> bib2gls quark
A quark that identifies a literal greater than > in a regular expression.

\? bib2gls quark
A quark that identifies a literal question mark ? in a regular expression.

\@ kernel command
Adjusts the space factor to indicate the following punctuation character marks the end of
the sentence.

\@currentHref hyperref
Used to store the current anchor for the next instance of \label.

\@currentlabelname hyperref
Used to store the current title information for the next instance of \label.

\@firstofone{〈code〉} kernel command*
Does 〈code〉.

\@for〈cs〉:=〈list〉\do{〈code〉} kernel command*
Iterates over each item in the comma-separated 〈list〉, and on each iteration sets 〈cs〉 to
the current element and performs 〈code〉.

\@gls@hypergroup{〈type〉}{〈group id〉} glossary-hypernav
Command written to the .aux file that identifies that the given group was used in the
glossary on the previous run.

\@gobble{〈code〉} kernel command*
Does nothing (the argument is discarded).

596

General Command Summary

\@istfilename{〈filename〉} glossaries
Identifies the style file in the .aux file for the benefit of external tools like
makeglossaries and makeglossaries-lite.

\[bib2gls quark
A quark that identifies a literal open square bracket [in a regular expression.

\\[〈len〉] kernel command*
Starts a new row in a tabular or array context with an extra vertical space of length 〈len〉
above it (starred form prohibits a page break).

\\ bib2gls quark
A quark that identifies a literal backslash \ in a regular expression.

\] bib2gls quark
A quark that identifies a literal close square bracket] in a regular expression.

\^{〈character〉} kernel command*
Puts a circumflex accent over 〈character〉.

\^ bib2gls quark
A quark that identifies a literal circumflex ^ in a regular expression.

_ kernel command*
Produces the underscore symbol _.

\{ kernel command*
Produces the open brace symbol {.

\| bib2gls quark
A quark that identifies a literal pipe character | in a regular expression.

\} kernel command*
Produces the close brace symbol }.

\~ bib2gls quark
A quark that identifies a literal tilde ~ in a regular expression.

\␣ kernel command*
Produces an inter-word space.

A

\AA kernel command*
Produces the upper case A-ring character Å.

\aa kernel command*
Produces the lower case a-ring character å.

\ab[〈options〉]{〈label〉}[〈insert〉] glossaries-extra shortcuts={abbreviations}
Equivalent to \gls.

597

General Command Summary

\abbreviationname glossaries-extra
Language-sensitive name used for the title of the glossary created with the
abbreviations package option.

\abbrvpluralsuffix glossaries-extra*
The style sensitive suffix used to construct the default plural for the short form of
abbreviations.

\ac[〈options〉]{〈label〉}[〈insert〉] glossaries-extra shortcuts
Equivalent to \gls.

\acronymfont{〈text〉} glossaries & datagidx
Used by the base glossaries package’s acronyms to encapsulate the short form. This
command should not be used with glossaries-extra.

\acronymname glossaries
Language-sensitive name used for the title of the glossary created with the acronym or
acronyms package option.

\acronymtype glossaries
Expands to the default acronym glossary type when using \newacronym.

\acrpluralsuffix glossaries*
The suffix used to construct the default plural for the short form of acronyms using the
base glossaries package’s acronym mechanism (not used with the glossaries-extra
enhanced abbreviation mechanism).

\AE kernel command*
Produces the upper case Æ-ligature.

\ae kernel command*
Produces the lower case æ-ligature.

\alph{〈counter〉} kernel command
Displays the given counter as an alphabetic character from “a” to “z”.

\Alpha glossaries-extra-bib2gls*
Greek letter alpha A.

\alpha kernel command* (maths mode)
Greek letter alpha α.

\alsoname language packages
Language sensitive “see also” text.

\approx kernel command* (maths mode)
Approximate symbol ≈.

\appto{〈cs〉}{〈code〉} etoolbox*
Appends 〈code〉 to the definition of the control sequence 〈cs〉.

\apptoglossarypreamble[〈type〉]{〈code〉} glossaries-extra
Appends 〈code〉 to the preamble for the given glossary (or the default of 〈type〉 is omitted).

598

General Command Summary

\AtEndDocument{〈code〉} kernel command
Perform 〈code〉 at the end of the document.

\autoref{〈id〉} hyperref
Cross-reference with textual tag inferred from the associated counter.

B

\backmatter book-like classes
Switches to back matter.

\bfseries kernel command
Switch to bold (until end of current scope).

\bibglsaliassep bib2gls
Separator between alias cross-reference and location list.

\bibglsampersandchar bib2gls*
Expands to a literal ampersand character.

\bibglsaposchar bib2gls*
Expands to a single-quote (') character.

\bibglscircumchar bib2gls*
Expands to a literal circumflex character.

\bibglscompact{〈pattern〉}{〈part1〉}{〈part2〉} bib2gls
Compaction used on the end range location.

\bibglscontributor{〈forenames〉}{〈von-part〉}{〈surname〉}{〈suffix〉} bib2gls*
Used to markup a contributor’s name that was converted from BIBTEX’s contributor
syntax.

\bibglscontributorlist{〈list〉}{〈number〉} bib2gls*
Used to markup a list of names from a field that was converted from BIBTEX’s contributor
syntax.

\bibglscopytoglossary{〈entry-label〉}{〈glossary-type〉} bib2gls
Copies the entry identified by 〈entry-label〉 to the glossary identified by 〈glossary-type〉
after the entry is defined (if the copy-to-glossary option is set).

\bibglsdate{〈year〉}{〈month〉}{〈day-of-month〉}{〈day-of-week〉}{〈day-of-year〉}{〈era〉}
{〈original〉} bib2gls
Used to markup a date converted from a field value.

\bibglsdategroup{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-id〉}{〈type〉} bib2gls
Expands to the date group label.

\bibglsdategrouphier{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-id〉}{〈type〉}{〈parent〉}
{〈level〉} bib2gls
Expands to the hierarchical date group label.

599

General Command Summary

\bibglsdategrouptitle{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-id〉}{〈type〉} bib2gls
Expands to the date group title.

\bibglsdategrouptitlehier{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-id〉}{〈type〉}
{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical date group title.

\bibglsdatetime{〈year〉}{〈month〉}{〈day-of-month〉}{〈day-of-week〉}{〈day-of-year〉}{〈era〉}
{〈hour〉}{〈minute〉}{〈second〉}{〈millisec〉}{〈dst〉}{〈zone〉}{〈original〉} bib2gls
Used to markup a date-time instance converted from a field value.

\bibglsdatetimegroup{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-
id〉}{〈type〉} bib2gls
Expands to the date-time group label.

\bibglsdatetimegrouphier{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}
{〈group-id〉}{〈type〉}{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical date-time group label.

\bibglsdatetimegrouphierfinalargs{〈type〉}{〈parent〉}{〈level〉} bib2gls
Used as a supporting command for \bibglsdatetimegrouphier to pick up the final
arguments.

\bibglsdatetimegrouptitle{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}
{〈group-id〉}{〈type〉} bib2gls
Expands to the date-time group title.

\bibglsdatetimegrouptitlehier{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}
{〈title〉}{〈group-id〉}{〈type〉}{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical date-time group title.

\bibglsdatetimegrouptitlehierfinalargs{date}{〈type〉}{〈parent〉}{〈level〉} bib2gls
Used as a supporting command for \bibglsdatetimegrouptitlehier to pick up the
final arguments.

\bibglsdatetimeremainder{〈millisec〉}{〈dst〉}{〈zone〉}{〈original〉} bib2gls
Used internally to pick up the final four arguments of \bibglsdatetime.

\bibglsdefcompoundset{〈options〉}{〈label〉}{〈main〉}{〈elements〉} bib2gls
Defines a compound entry provided with @compoundset.

\bibglsdefinitionindex{〈label〉} bib2gls*
Expands to the definition index of the entry identified 〈label〉 if
save-definition-index is set otherwise expands to empty.

\bibglsdelimN bib2gls
Separator for individual locations (except last).

\bibglsdollarchar bib2gls*
Expands to a literal dollar character.

\bibglsdoublequotechar bib2gls*
Expands to a double-quote (") character.

600

General Command Summary

\bibglsdualprefixlabel{〈prefix〉} bib2gls
Hook provided to pick up the dual prefix, if required.

\bibglsemptygroup{〈type〉} bib2gls
Expands to the empty group label.

\bibglsemptygrouphier{〈type〉}{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical empty group label.

\bibglsemptygrouptitle{〈type〉} bib2gls
Expands to the empty group title.

\bibglsemptygrouptitlehier{〈type〉}{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical empty group title.

\bibglsexternalprefixlabel{〈n〉}{〈prefix〉} bib2gls
Hook provided to pick up the 〈n〉th external prefix, if required.

\bibglsfirstuc{〈text〉} bib2gls
Converts the first letter of 〈text〉 to upper case.

\bibglsflattenedchildpostsort{〈parent name〉}{〈child name〉} bib2gls*
Expands to the post-sort flattened child entry’s new name.

\bibglsflattenedchildpresort{〈child name〉}{〈parent name〉} bib2gls*
Expands to the pre-sort flattened child entry’s new name.

\bibglsflattenedhomograph{〈name〉}{〈parent label〉} bib2gls
Expands to the flattened entry’s new name.

\bibglsgrouplevel{〈label〉}n bib2gls
Expands to the sub-group label for hierarchical level 〈n〉 where 〈label〉 is the label that
would normally be applied to level 0.

\bibglshashchar bib2gls*
Expands to a literal hash character #.

\bibglshexunicodechar{〈hex〉} bib2gls*
Produces the character with the given hexadecimal code.

\bibglshiersubgrouptitle{level}{parent}{title} bib2gls
Formats the title for a hierarchical group where the normal non-hierarchical title would
be 〈title〉.

\bibglshrefchar{〈hex〉}{〈char〉} bib2gls*
Expands to a literal percent character followed by 〈hex〉.

\bibglshrefunicode{〈hex〉}{〈char〉} bib2gls*
Expands to 〈char〉 by default.

\bibglshypergroup{〈type〉}{〈group-id〉} bib2gls
Creates group navigation information.

\bibglshyperlink{〈text〉}{〈label〉} bib2gls*
Displays 〈text〉 with a hyperlink to the entry given by 〈label〉, if supported.

601

General Command Summary

\bibglsinterloper{〈location〉} bib2gls
Interloper location format.

\bibglslastDelimN bib2gls
Separator before the last location (where there is more than one location).

\bibglslettergroup{〈title〉}{〈letter〉}{〈id〉}{〈type〉} bib2gls
Expands to the letter group label.

\bibglslettergrouphier{〈title〉}{〈letter〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical letter group label.

\bibglslettergrouptitle{〈title〉}{〈letter〉}{〈id〉}{〈type〉} bib2gls
Expands to the letter group title.

\bibglslettergrouptitlehier{〈title〉}{〈letter〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical letter group title.

\bibglslocationgroup{〈n〉}{〈counter〉}{〈list〉} bib2gls
Location group encapsulator.

\bibglslocationgroupsep bib2gls
Location group separator.

\bibglslocprefix{〈n〉} bib2gls
Location list prefix.

\bibglslocsuffix{〈n〉} bib2gls
Location list suffix.

\bibglslowercase{〈text〉} bib2gls*
Converts 〈text〉 to lower case.

\bibglsmergedgroup{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉} bib2gls
Expands to the merged group label.

\bibglsmergedgroupfmt{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉} bib2gls
Used by \bibglsmergedgrouptitle and \bibglsmergedgrouphierfmt to format the
title.

\bibglsmergedgrouphier{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}{〈parent〉}
{〈level〉} bib2gls
Expands to the merged hierarchical group label.

\bibglsmergedgrouphierfmt{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉} bib2gls
Used by \bibglsmergedgrouptitlehier to format the title.

\bibglsmergedgrouptitle{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉} bib2gls
Expands to the merged group title.

\bibglsmergedgrouptitlehier{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}{〈parent〉}
{〈level〉} bib2gls
Expands to the merged hierarchical group title.

602

General Command Summary

\bibglsnewabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉} bib2gls
Defines terms provided with @abbreviation.

\bibglsnewacronym{〈label〉}{〈options〉}{〈short〉}{〈long〉} bib2gls
Defines terms provided with @acronym.

\bibglsnewbibtexentry{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @bibtexentry.

\bibglsnewcontributor{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @contributor.

\bibglsnewdualabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉} bib2gls
Defines terms provided with @dualabbreviation.

\bibglsnewdualabbreviationentry{〈label〉}{〈options〉}{〈short〉}{〈long〉}
{〈description〉} bib2gls
Defines primary terms provided with @dualabbreviationentry.

\bibglsnewdualabbreviationentrysecondary{〈label〉}{〈options〉}{〈short〉}{〈long〉}
{〈description〉} bib2gls
Defines secondary terms provided with @dualabbreviationentry.

\bibglsnewdualacronym{〈label〉}{〈options〉}{〈short〉}{〈long〉} bib2gls
Defines terms provided with @dualacronym.

\bibglsnewdualentry{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @dualentry.

\bibglsnewdualentryabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉}
{〈description〉} bib2gls
Defines primary terms provided with (deprecated) @dualentryabbreviation.

\bibglsnewdualentryabbreviationsecondary{〈label〉}{〈options〉}{〈short〉}{〈long〉}
{〈description〉} bib2gls
Defines secondary terms provided with (deprecated) @dualentryabbreviation.

\bibglsnewdualindexabbreviation{〈label〉}{〈dual-label〉}{〈options〉}{〈name〉}{〈short〉}
{〈long〉}{〈description〉} bib2gls
Defines primary terms provided with @dualindexabbreviation.

\bibglsnewdualindexabbreviationsecondary{〈label〉}{〈options〉}{〈name〉}{〈short〉}
{〈long〉}{〈description〉} bib2gls
Defines secondary terms provided with @dualindexabbreviation.

\bibglsnewdualindexentry{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines primary terms provided with @dualindexentry.

\bibglsnewdualindexentrysecondary{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines secondary terms provided with @dualindexentry.

\bibglsnewdualindexnumber{〈label〉}{〈options〉}{〈name〉}{〈symbol〉}{〈description〉} bib2gls
Defines primary terms provided with @dualindexnumber.

603

General Command Summary

\bibglsnewdualindexnumbersecondary{〈label〉}{〈options〉}{〈name〉}{〈description〉}bib2gls
Defines secondary terms provided with @dualindexnumber.

\bibglsnewdualindexsymbol{〈label〉}{〈options〉}{〈name〉}{〈symbol〉}{〈description〉} bib2gls
Defines primary terms provided with @dualindexsymbol.

\bibglsnewdualindexsymbolsecondary{〈label〉}{〈options〉}{〈name〉}{〈description〉}bib2gls
Defines secondary terms provided with @dualindexsymbol.

\bibglsnewdualnumber{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @dualnumber.

\bibglsnewdualsymbol{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @dualsymbol.

\bibglsnewentry{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @entry.

\bibglsnewindex{〈label〉}{〈options〉} bib2gls
Defines terms provided with @index.

\bibglsnewindexplural{〈label〉}{〈options〉}{〈name〉} bib2gls
Defines terms provided with @index.

\bibglsnewnumber{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @number.

\bibglsnewprogenitor{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @progenitor.

\bibglsnewspawnabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉} bib2gls
Defines terms provided with @spawnabbreviation.

\bibglsnewspawnacronym{〈label〉}{〈options〉}{〈short〉}{〈long〉} bib2gls
Defines terms provided with @spawnacronym.

\bibglsnewspawndualindexentry{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @spawndualindexentry.

\bibglsnewspawndualindexentrysecondary{〈label〉}{〈options〉}{〈name〉}
{〈description〉} bib2gls
Defines secondary terms provided with @spawndualindexentry.

\bibglsnewspawnedabbreviation{〈label〉}{〈options〉}{〈short〉}{〈long〉} bib2gls
Defines terms spawned from @spawnabbreviation.

\bibglsnewspawnedacronym{〈label〉}{〈options〉}{〈short〉}{〈long〉} bib2gls
Defines terms spawned from @spawnacronym.

\bibglsnewspawnedentry{〈label〉}{〈options〉} bib2gls
Defines terms spawned from @spawnentry.

\bibglsnewspawnedindex{〈label〉}{〈options〉} bib2gls
Defines terms spawned from @progenitor or @spawnindex.

604

General Command Summary

\bibglsnewspawnedindexplural{〈label〉}{〈options〉}{〈name〉} bib2gls
Defines terms spawned from @spawnindexplural.

\bibglsnewspawnednumber{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms spawned from @spawnnumber.

\bibglsnewspawnedsymbol{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms spawned from @spawnsymbol.

\bibglsnewspawnentry{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @spawnentry.

\bibglsnewspawnindex{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @spawnindex.

\bibglsnewspawnindexplural{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @spawnindexplural.

\bibglsnewspawnnumber{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @spawnnumber.

\bibglsnewspawnsymbol{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @spawnsymbol.

\bibglsnewsymbol{〈label〉}{〈options〉}{〈name〉}{〈description〉} bib2gls
Defines terms provided with @symbol.

\bibglsnewtertiaryindexabbreviationentry{〈label〉}{〈dual-label〉}{〈options〉}{〈name〉}
{〈short〉}{〈long〉}{〈description〉} bib2gls
Defines primary terms provided with @tertiaryindexabbreviationentry.

\bibglsnewtertiaryindexabbreviationentrysecondary{〈label〉}{〈tertiary-label〉}
{〈options〉}{〈tertiary-opts〉}{〈primary-name〉}{〈short〉}{〈long〉}{〈description〉} bib2gls
Defines secondary and tertiary terms provided with
@tertiaryindexabbreviationentry.

\BibGlsNoCaseChange{〈text〉} bib2gls*
Behaves as \NoCaseChange within bib2gls, but the definition provided in the .glstex
file simply expands to 〈text〉 in the document without adding the command to the
case-changing exclusion list.

\bibglsnumbergroup{〈value〉}{〈id〉}{〈type〉} bib2gls
Expands to the number group label.

\bibglsnumbergrouphier{〈value〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical number group label.

\bibglsnumbergrouptitle{〈value〉}{〈id〉}{〈type〉} bib2gls
Expands to the number group title.

\bibglsnumbergrouptitlehier{〈value〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical number group title.

605

General Command Summary

\BibGlsOptions{〈options〉} glossaries-extra v1.54+
Simply writes global bib2gls 〈options〉 to the .aux file.

\bibglsothergroup{〈character〉}{〈id〉}{〈type〉} bib2gls
Expands to the non-letter group label.

\bibglsothergrouphier{〈character〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical non-letter group label.

\bibglsothergrouptitle{〈character〉}{〈id〉}{〈type〉} bib2gls
Expands to the non-letter group title.

\bibglsothergrouptitlehier{〈character〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical non-letter group title.

\bibglspaddigits{〈num digits〉}{〈number〉} bib2gls interpreter only
Expands to 〈number〉 zero-padded to ensure at least 〈num digits〉 digits.

\bibglspagename bib2gls
Name used for single page.

\bibglspagesname bib2gls
Name used for multiple pages.

\bibglspassim bib2gls
Passim range suffix.

\bibglspassimname bib2gls
Name used by passim range suffix.

\bibglspostlocprefix bib2gls
Location list post prefix.

\bibglsprimary{〈n〉}{〈locations〉} bib2gls
Location list encapsulator used in the primarylocations field.

\bibglsprimarylocationgroup{〈n〉}{〈counter〉}{〈list〉} bib2gls
Primary location group encapsulator.

\bibglsprimarylocationgroupsep bib2gls
Primary location group separator.

\bibglsprimaryprefixlabel{〈prefix〉} bib2gls
Hook provided to pick up the primary prefix, if required.

\bibglsrange{〈start〉\delimR 〈end〉} bib2gls
Explicit range format.

\bibglsseealsosep bib2gls
Separator between seealso cross-references and location list.

\bibglsseesep bib2gls
Separator between see cross-references and location list.

606

General Command Summary

\bibglssetdategrouptitle{{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-id〉}
{〈type〉}} bib2gls
Sets the date (no time) group title.

\bibglssetdategrouptitlehier{{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈G〉}{〈title〉}{〈group-id〉}{〈type〉}
{〈parent〉}{〈level〉}} bib2gls
Sets the hierarchical date (no time) group title.

\bibglssetdatetimegrouptitle{{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}
{〈title〉}{〈group-id〉}{〈type〉}} bib2gls
Sets the date-time group title.

\bibglssetdatetimegrouptitlehier{{〈YYYY 〉}{〈MM〉}{〈DD〉}{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}
{〈title〉}{〈group-id〉}{〈type〉}{〈parent〉}{〈level〉}} bib2gls
Sets the hierarchical date-time group title.

\bibglssetemptygrouptitle{{〈type〉}} bib2gls
Sets the empty group title.

\bibglssetemptygrouptitlehier{{〈type〉}{〈parent〉}{〈level〉}} bib2gls
Sets the hierarchical empty group title.

\bibglssetlastgrouptitle{〈cs〉}{〈specs〉} bib2gls
Sets the last group title.

\bibglssetlettergrouptitle{{〈title〉}{〈letter〉}{〈id〉}{〈type〉}} bib2gls
Sets the letter group title.

\bibglssetlettergrouptitlehier{{〈title〉}{〈letter〉}{〈id〉}{〈type〉}{〈parent〉}
{〈level〉}} bib2gls
Sets the hierarchical letter group title.

\bibglssetlocationrecordcount{〈entry-label〉}{〈counter〉}{〈location〉}{〈value〉} bib2gls
Sets the location record count for the given entry.

\bibglssetmergedgrouptitle{{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}} bib2gls
Sets the merged group title.

\bibglssetmergedgrouptitlehier{{〈id〉}{〈type〉}{〈n〉}{〈g1〉}{〈g2〉…{gn−1}}{〈gn〉}{〈parent〉}
{〈level〉}} bib2gls
Sets the merged hierarchicalgroup title.

\bibglssetnumbergrouptitle{{〈value〉}{〈id〉}{〈type〉}} bib2gls
Sets the number group title.

\bibglssetnumbergrouptitlehier{{〈value〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉}} bib2gls
Sets the hierarchical number group title.

\bibglssetothergrouptitle{{〈character〉}{〈id〉}{〈type〉}} bib2gls
Sets the non-letter group title.

\bibglssetothergrouptitlehier{{〈character〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉}} bib2gls
Sets the hierarchical non-letter group title.

607

General Command Summary

\bibglssetrecordcount{〈entry-label〉}{〈counter〉}{〈value〉} bib2gls
Sets the 〈counter〉 record count for the given entry.

\bibglssettimegrouptitle{{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}
{〈type〉}} bib2gls
Sets the time (no date) group title.

\bibglssettimegrouptitlehier{{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}{〈type〉}
{〈parent〉}{〈level〉}} bib2gls
Sets the hierarchical time (no date) group title.

\bibglssettotalrecordcount{〈entry-label〉}{〈value〉} bib2gls
Sets the total record count for the given entry.

\bibglssetunicodegrouptitle{{〈label〉}{〈character〉}{〈id〉}{〈type〉}} bib2gls
Sets the Unicode script, category or character code group title.

\bibglssetunicodegrouptitlehier{{〈label〉}{〈character〉}{〈id〉}{〈type〉}{〈parent〉}
{〈level〉}} bib2gls
Sets the Unicode script, category or character code hierarchical group title.

\bibglssetwidest{〈level〉}{〈name〉} bib2gls
Sets the widest name.

\bibglssetwidestfallback{〈glossary list〉} bib2gls
Fallback used instead of \bibglssetwidest in the event that bib2gls can’t determine
the widest name, where 〈glossary list〉 is a comma-separated list of glossary labels.

\bibglssetwidestfortype{〈type〉}{〈level〉}{〈name〉} bib2gls
Sets the widest name for the given glossary type.

\bibglssetwidestfortypefallback{〈type〉} bib2gls
Fallback used instead of \bibglssetwidestfortype in the event that bib2gls can’t
determine the widest name.

\bibglssetwidesttoplevelfallback{〈glossary list〉} bib2gls
Fallback used instead of \bibglssetwidest in the event that bib2gls can’t determine
the widest name where there are only top level entries, where 〈glossary list〉 is a
comma-separated list of glossary labels.

\bibglssetwidesttoplevelfortypefallback{〈type〉} bib2gls
Fallback used instead of \bibglssetwidestfortype in the event that bib2gls can’t
determine the widest name where there are only top-level entries.

\bibglssupplemental{〈n〉}{〈list〉} bib2gls
Supplemental list encapsulator.

\bibglssupplementalsep bib2gls
Separator between main and supplementary locations.

\bibglssupplementalsublist{〈n〉}{〈external document〉}{〈list〉} bib2gls
Supplemental sub-list encapsulator.

608

General Command Summary

\bibglssupplementalsubsep bib2gls
Separator between supplementary sub-lists.

\bibglstertiaryprefixlabel{〈prefix〉} bib2gls
Hook provided to pick up the tertiary prefix, if required.

\bibglstime{〈hour〉}{〈minute〉}{〈second〉}{〈millisec〉}{〈dst〉}{〈zone〉}{〈original〉} bib2gls
Used to markup a time converted from a field value.

\bibglstimegroup{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}{〈type〉} bib2gls
Expands to the time group label.

\bibglstimegrouphier{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}{〈type〉}{〈parent〉}
{〈level〉} bib2gls
Expands to the hierarchical time group label.

\bibglstimegrouptitle{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}{〈type〉} bib2gls
Expands to the time group title.

\bibglstimegrouptitlehier{〈hh〉}{〈mm〉}{〈ss〉}{〈zone〉}{〈title〉}{〈group-id〉}{〈type〉}
{〈parent〉}{〈level〉} bib2gls
Expands to the hierarchical time group title.

\bibglstitlecase{〈text〉} bib2gls*
Converts 〈text〉 to title case.

\bibglsunderscorechar bib2gls*
Expands to a literal underscore character.

\bibglsunicodegroup{〈label〉}{〈character〉}{〈id〉}{〈type〉} bib2gls
Expands to the Unicode script or category or character code group label.

\bibglsunicodegrouphier{〈label〉}{〈character〉}{〈id〉}{〈type〉}{〈parent〉}{〈level〉} bib2gls
Expands to the Unicode script or category or character code hierarchical group label.

\bibglsunicodegrouptitle{〈label〉}{〈character〉}{〈id〉}{〈type〉} bib2gls
Expands to the Unicode script or category or character code group label.

\bibglsunicodegrouptitlehier{〈label〉}{〈character〉}{〈id〉}{〈type〉}{〈parent〉}
{〈level〉} bib2gls
Expands to the Unicode script or category or character code hierarchical group label.

\bibglsuppercase{〈text〉} bib2gls*
Converts 〈text〉 to upper case.

\bibglsuseabbrvfont{〈text〉}{〈category〉} bib2gls
Ensures that the given text is formatted according to the given category’s short format.

\bibglsusealias{〈label〉} bib2gls
Display the alias cross-reference for given entry.

\bibglsuseindex{〈label〉} bib2gls*
Expands to the order of use index of the entry identified 〈label〉 if save-use-index is set
and the entry has records otherwise expands to empty.

609

General Command Summary

\bibglsuselongfont{〈text〉}{〈category〉} bib2gls
Ensures that the given text is formatted according to the given category’s long format.

\bibglsusesee{〈label〉} bib2gls
Display see cross-reference list for given entry.

\bibglsuseseealso{〈label〉} bib2gls
Display the seealso cross-reference list for given entry.

\bibliography{〈file list〉} kernel command*
Display bibliography created by BIBTEX.

\bigoperatornamefmt{〈text〉}
Example command.

\boldsymbol{〈symbol〉} amsmath
Renders given maths symbol in bold if supported by the current font.

\bottomrule booktabs
Horizontal rule for the bottom of a tabular-like environment.

C

\c{〈character〉} kernel command*
Puts a cedilla accent over 〈character〉.

\capitalisewords{〈text〉} mfirstuc* v1.06+
Converts the first letter of each word to upper case using \makefirstuc.

\caption[〈list title〉]{〈title〉} kernel command
Caption title.

\CAT{〈element-list〉} bib2gls quark
A quark to denote a string concatenation (see section 5.1) in the conditional parts of
assign-fields. This token needs to be protected from expansion in the argument of
\GlsXtrLoadResources.

\ce{〈formula〉} mhchem*
Displays the chemical formula.

\chapter[〈toc title〉]{〈title〉} book or report classes
Chapter heading.

\chapter*{〈title〉} book or report classes
Unnumbered chapter heading.

\char〈number〉 TEX primitive*
Accesses the character identified by 〈number〉 (use \char"〈hex〉 if the number is
hexadecimal).

\citation{〈label〉} kernel command
Written to the .aux file on each occurrence of \cite.

610

General Command Summary

\cite{〈label〉} kernel command*
Cross-reference a bibliographic citation.

\cjkname{〈CJK characters〉}
Example command.

\color[〈model〉]{〈spec〉} color
Switches the current font colour.

\CS{〈element-list〉} bib2gls quark
A quark to denote a control sequence element in assign-fields. This token needs to be
protected from expansion in the argument of \GlsXtrLoadResources.

\cs{〈csname〉}
Locally defined by \GlsXtrResourceInitEscSequences to expand to the literal string
\csname when the resource options are written to the .aux file. This technically isn’t a
bib2gls quark, although it’s included in that category, as it’s not looked for by bib2gls.

\csuse{〈cs-name〉} etoolbox*
Uses the control sequence whose name is given by 〈cs-name〉 or does nothing if the
command isn’t defined.

\currentglossary glossaries
Defined within the glossary to the current glossary type, this has no meaning outside of
the glossary list.

D

\datatoolasciiend datatool-base* v3.0+
Marker used with \DTLsortwordlist.

\datatoolasciistart datatool-base* v3.0+
Marker used with \DTLsortwordlist.

\datatoolctrlboundary datatool-base* v3.0+
Marker used with \DTLsortwordlist.

\datatoolparen{〈text〉} datatool-base* v3.0+
Marker used with \DTLsortwordlist for parenthetical content.

\datatoolparenstart datatool-base* v3.0+
Marker used with \DTLsortwordlist.

\datatoolpersoncomma datatool-base*
Marker used with \DTLsortwordlist.

\datatoolplacecomma datatool-base*
Marker used with \DTLsortwordlist.

\datatoolsubjectcomma datatool-base*
Marker used with \DTLsortwordlist.

611

General Command Summary

\DeclareOptions{〈name〉}{〈code〉} kernel command*
Declares an option with the given 〈name〉.

\DeclareOptions*{〈code〉} kernel command*
Indicates what to do with unknown options.

\def{〈cs〉}〈syntax〉{〈definition〉} TEX primitive*
Defines the control sequence 〈cs〉, without checking if the command already exists.

\delimN glossaries
Used to delimited individual locations.

\delimR glossaries
Used as a separator between the start and end locations of a range.

\descriptionname glossaries
Language-sensitive name used for the description header for some glossary styles.

\detokenize{〈general text〉} ε-TEX primitive*
Expands the argument to a list of character tokens.

\dGls[〈options〉]{〈label〉}[〈insert〉] glossaries-extra-bib2gls v1.37+
Intended for documents with a mixture of single and dual entries, this is like \Gls but
tries to determine the label prefix from the label prefix list.

\dgls[〈options〉]{〈label〉}[〈insert〉] glossaries-extra-bib2gls v1.37+
Intended for documents with a mixture of single and dual entries, this is like \gls but
tries to determine the label prefix from the label prefix list.

\dglsdisp[〈options〉]{〈label〉}{〈text〉} glossaries-extra-bib2gls v1.37+
Like \glsdisp but tries the prefixes identified with commands like
\glsxtraddlabelprefix.

\dglslink[〈options〉]{〈label〉}{〈text〉} glossaries-extra-bib2gls v1.37+
Like \glslink but tries the prefixes identified with commands like
\glsxtraddlabelprefix.

\dGlspl[〈options〉]{〈label〉}[〈insert〉] glossaries-extra-bib2gls v1.37+
Intended for documents with a mixture of single and dual entries, this is like \Glspl but
tries to determine the label prefix from the label prefix list.

\dglspl[〈options〉]{〈label〉}[〈insert〉] glossaries-extra-bib2gls v1.37+
Intended for documents with a mixture of single and dual entries, this is like \glspl but
tries to determine the label prefix from the label prefix list.

\DH kernel command*
Produces the upper case eth Ð.

\dh kernel command*
Produces the lower case eth ð.

\diamondsuit kernel command* (maths mode)
Diamond symbol (♦).

612

General Command Summary

\displaystyle kernel command (maths mode)
Switch to display maths style.

\DJ kernel command*
Produces the upper case d-stroke Đ.

\dj kernel command*
Produces the lower case d-stroke đ.

\DTLaction[〈options〉]{〈action〉} datatool* v3.0+
General purpose action command.

\DTLandname datatool-base* v2.28+
Used in the definition of \DTLlistformatlastsep.

\dtlexpandnewvalue datatool*
New values will be expanded before being added to the database.

\DTLformatlist{〈list〉} datatool-base* v2.28+
Formats a comma-separated list.

\DTLgidxIgnore{〈text〉} datagidx
Normally expands to its argument but is locally redefined to ignore its argument under
certain situations.

\DTLgidxParen{〈text〉} datagidx
Normally expands to (〈text〉) but is locally redefined under certain situations. Note that
datatool2bib discards the argument for sorting, which is different to the behaviour
with datagidx when constructing the sort value.

\DTLlistformatlastsep datatool-base* v2.28+
Used by \DTLformatlist to separate the last two items in the list.

\DTLlistformatoxford datatool-base* v2.28+
Insert before \DTLlistformatlastsep if the list has three or more items.

\DTLloaddb[〈options〉]{〈db-name〉}{〈filename〉} datatool*
Loads CSV data from the given file.

\DTLloaddbtex{〈cs〉}{〈filename〉} datatool* v2.20+
Loads .dbtex data from the given file.

\DTLnewcurrencysymbol{〈symbol〉} datatool*
Identifies 〈symbol〉 as a currency symbol.

\DTLnewdb{〈db-name〉} datatool*
Defines a new database.

\DTLnewdbentry{〈db-name〉}{〈col-key〉}{〈value〉} datatool*
Adds a new entry to the final row of the given database.

\DTLnewrow{〈db-name〉} datatool*
Creates a new row in the given database.

613

General Command Summary

\dtlnoexpandnewvalue datatool*
New values will not be expanded before being added to the database.

\dtlpadleadingzeros{〈num digits〉}{〈number〉} datatool-base* v3.0+
Expands to 〈number〉 zero-padded to ensure at least 〈num digits〉 digits.

\DTLread[〈options〉]{〈filename〉} datatool* v3.0+
Loads a database from the given file, where the format should be identified in 〈options〉.

\DTLsetnumberchars{〈number group char〉}{〈decimal char〉} datatool*
Sets the number group and decimal characters.

\DTLsetup{〈options〉} datatool-base*
Sets default datatool options.

\DTLsortwordlist{〈clist-var〉}{〈handler-cs〉} datatool-base v3.0+
Sorts the given comma-separated list variable, where the values are preprocessed by the
given sort handler function.

\dtltexorsort{〈normal〉}{〈sorting〉} datatool-base* v3.0+
Provided for use with \DTLsortwordlist, this normally expands to its first argument.
Within \DTLsortwordlist or when used by the interpreter with –datatool-sort-markers
this command will expand to its second argument instead.

\DTLwrite datatool* v3.0+

\DTMdisplaydate{〈year〉}{〈month〉}{〈day〉}{〈dow〉} datetime2
Formats the given date where all arguments are numeric.

E

\edef{〈cs〉}〈syntax〉{〈definition〉} TEX primitive*
Defines the control sequence 〈cs〉 to the full expansion of 〈definition〉, without checking if
the command already exists.

\eglsupdatewidest[〈level〉]{〈text〉} glossaries-extra-stylemods v1.23+
As \glsupdatewidest but expands 〈text〉.

\em kernel command
Switch to emphasized font (until end of current scope).

\emph{〈text〉} kernel command
Emphasizes the given text (italic or slanted if the surrounding font is upright, otherwise
upright font is used).

\endfoot longtable
Ends the footer section.

\endhead longtable
Ends the header section.

614

General Command Summary

\ensuremath{〈maths〉} kernel command*
Ensures the argument is in math mode. As a general rule this should only be used if you
know for certain that the argument just contains mathematical markup and doesn’t cause
a change in mode.

F

\FIRSTLC{〈element-list〉} bib2gls quark
A quark to denote a first-letter lower case change in assign-fields syntax. This token
needs to be protected from expansion in the argument of \GlsXtrLoadResources.

\FIRSTUC{〈element-list〉} bib2gls quark
A quark to denote a first-letter upper case change in assign-fields syntax. This token
needs to be protected from expansion in the argument of \GlsXtrLoadResources.

\footnote[〈number〉]{〈text〉} kernel command
Displays the given text as a footnote.

\forall kernel command* (maths mode)
For all symbol (∀).

\forallglossaries[〈glossary-list〉]{〈cs〉}{〈body〉} glossaries
Iterates over all glossaries identified in the comma-separated 〈glossary-list〉 (or all defined
non-ignored glossaries if the optional argument is omitted) and performs 〈body〉 where
you can use the control sequence 〈cs〉 to reference the current glossary label.

\forallglsentries[〈glossary-list〉]{〈cs〉}{〈body〉} glossaries
Iterates over all entries defined in the comma-separated 〈glossary-list〉 (or all defined
non-ignored glossaries if the optional argument is omitted) and perform 〈body〉 where
you can use the control sequence 〈cs〉 to reference the current entry label.

\forglsentries[〈type〉]{〈cs〉}{〈body〉} glossaries
Iterates over all entries defined in the glossary identified by 〈type〉 (or the default, if
〈type〉 is omitted) and perform 〈body〉 where you can use the control sequence 〈cs〉 to
reference the current entry label.

\forlistloop{〈handler cs〉}{〈list cs〉} etoolbox
Iterates over the internal list given by the command 〈list cs〉 and performs 〈handler
cs〉{〈element〉} for each element.

\frontmatter book-like classes
Switches to front matter.

G

\glolinkprefix glossaries
Target name prefix used in entry hyperlinks.

\glossariesextrasetup{〈key=value list〉} glossaries-extra
Applies the extension glossaries-extra options that are allowed to be changed after the
package has loaded.

615

General Command Summary

\glossaryheader glossaries
Implemented at the start of a glossary (modified by glossary styles).

\glossaryname glossaries or language packages
Language-sensitive name used for the title of the default main glossary.

\glossarypostamble glossaries
The postamble that’s placed after each glossary.

\glossarypreamble glossaries
The preamble for all glossaries except those that have the preamble explicitly set with
\apptoglossarypreamble.

\glossentry{〈label〉}{〈location list〉} glossaries v3.08a+
Used in the glossary to display a top-level entry.

\Glossentrydesc{〈label〉} glossaries
Like \glossentrydesc but converts the first letter to upper case.

\glossentrydesc{〈label〉} glossaries
Used by glossary styles to display the description.

\Glossentryname{〈label〉} glossaries
Like \glossentryname but converts the first letter to upper case.

\glossentryname{〈label〉} glossaries
Used by glossary styles to display the name.

\glossentrynameother{〈label〉}{〈field〉} glossaries-extra v1.22+
Acts like \glossentryname (obeys glossname and glossnamefont or \glsnamefont and
the post-name hook) but uses the given 〈field〉 instead of the name field.

\Glossentrysymbol{〈label〉} glossaries
Like \glossentrysymbol but converts the first letter to upper case.

\glossentrysymbol{〈label〉} glossaries
Used by glossary styles to display the symbol.

\glossxtrsetpopts glossaries-extra v1.07+
Glossary hook that uses \glsxtrsetpopts to enable hyperlinks by default for \glsxtrp.

\GLS[〈options〉]{〈label〉}[〈insert〉] glossaries
As \gls but converts the link text to upper case.

\Gls[〈options〉]{〈label〉}[〈insert〉] glossaries
As \gls but converts the first letter of the link text to upper case.

\gls[〈options〉]{〈label〉}[〈insert〉] glossaries
On first use displays the first use text (the value of the first field for general entries) and
on subsequent use displays the subsequent use text (the value of the text field for
general entries) where the text is optionally hyperlinked to the relevant place in the
glossary. The options are the same as for \glslink.

616

General Command Summary

\glsabbrvdefaultfont{〈text〉} glossaries-extra
Used by the abbreviation styles that don’t have a specific font to format the short form.
The default definition just does its argument without any formatting.

\glsabbrvemfont{〈text〉} glossaries-extra v1.04+
Used with “em” abbreviation styles to format the short form using \emph.

\glsabbrvfont{〈text〉} glossaries-extra
Generic abbreviation font command for the short form.

\glsabbrvhyphenfont{〈text〉} glossaries-extra v1.17+
Used by the “hyphen” abbreviation styles to format the short form.

\glsabbrvonlyfont{〈text〉} glossaries-extra v1.17+
Used with “only” abbreviation styles to format the short form. The default definition just
uses \glsabbrvdefaultfont.

\glsabbrvscfont{〈text〉} glossaries-extra v1.17+
Used with “sc” abbreviation styles to format the short form using \textsc.

\glsabbrvsmfont{〈text〉} glossaries-extra v1.17+
Used with “sm” abbreviation styles to format the short form using \textsmaller.

\glsabbrvuserfont{〈text〉} glossaries-extra v1.04+
Used with “user” abbreviation styles to format the short form. The default definition just
uses \glsabbrvdefaultfont.

\Glsaccessdesc{〈label〉} glossaries-extra*
Expands to the value of the description field with the first letter converted to upper
case and with the accessibility support for that field, if provided (otherwise behaves the
same as \Glsentrydesc).

\glsaccessdesc{〈label〉} glossaries-extra*
Expands to the value of the description field with the accessibility support for that
field, if provided (otherwise behaves the same as \glsentrydesc).

\Glsaccessdescplural{〈label〉} glossaries-extra*
Expands to the value of the descriptionplural field with the first letter converted to
upper case and with the accessibility support for that field, if provided (otherwise
behaves the same as \Glsentrydescplural).

\glsaccessdescplural{〈label〉} glossaries-extra*
Expands to the value of the descriptionplural field with the accessibility support for
that field, if provided (otherwise behaves the same as \glsentrydescplural).

\glsaccessdisplay{〈field〉}{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentry〈field〉access{〈label〉}.

\Glsaccessfirst{〈label〉} glossaries-extra*
Expands to the value of the first field with the first letter converted to upper case and
with the accessibility support for that field, if provided (otherwise behaves the same as
\Glsentryfirst).

617

General Command Summary

\glsaccessfirst{〈label〉} glossaries-extra*
Expands to the value of the first field with the accessibility support for that field, if
provided (otherwise behaves the same as \glsentryfirst).

\Glsaccessfirstplural{〈label〉} glossaries-extra*
Expands to the value of the firstplural field with the first letter converted to upper
case and with the accessibility support for that field, if provided (otherwise behaves the
same as \Glsentryfirstplural).

\glsaccessfirstplural{〈label〉} glossaries-extra*
Expands to the value of the firstplural field with the accessibility support for that
field, if provided (otherwise behaves the same as \glsentryfirstplural).

\Glsaccesslong{〈label〉} glossaries-extra*
Expands to the value of the long field with the first letter converted to upper case and
with the accessibility support for that field, if provided (otherwise behaves the same as
\Glsentrylong).

\glsaccesslong{〈label〉} glossaries-extra*
Expands to the value of the long field with the accessibility support for that field, if
provided (otherwise behaves the same as \glsentrylong).

\Glsaccesslongpl{〈label〉} glossaries-extra*
Expands to the value of the longplural field with the first letter converted to upper case
and with the accessibility support for that field, if provided (otherwise behaves the same
as \Glsentrylongpl).

\glsaccesslongpl{〈label〉} glossaries-extra*
Expands to the value of the longplural field with the accessibility support for that field,
if provided (otherwise behaves the same as \glsentrylongpl).

\Glsaccessname{〈label〉} glossaries-extra*
Expands to the value of the name field with the first letter converted to upper case and
with the accessibility support for that field, if provided (otherwise behaves the same as
\Glsentryname).

\glsaccessname{〈label〉} glossaries-extra*
Expands to the value of the name field with the accessibility support for that field, if
provided (otherwise behaves the same as \glsentryname).

\Glsaccessplural{〈label〉} glossaries-extra*
Expands to the value of the plural field with the first letter converted to upper case and
with the accessibility support for that field, if provided (otherwise behaves the same as
\Glsentryplural).

\glsaccessplural{〈label〉} glossaries-extra*
Expands to the value of the plural field with the accessibility support for that field, if
provided (otherwise behaves the same as \glsentryplural).

618

General Command Summary

\Glsaccessshort{〈label〉} glossaries-extra*
Expands to the value of the short field with the first letter converted to upper case and
with the accessibility support for that field, if provided (otherwise behaves the same as
\Glsentryshort).

\glsaccessshort{〈label〉} glossaries-extra*
Expands to the value of the short field with the accessibility support for that field, if
provided (otherwise behaves the same as \glsentryshort).

\Glsaccessshortpl{〈label〉} glossaries-extra*
Expands to the value of the shortplural field with the first letter converted to upper
case and with the accessibility support for that field, if provided (otherwise behaves the
same as \Glsentryshortpl).

\glsaccessshortpl{〈label〉} glossaries-extra*
Expands to the value of the shortplural field with the accessibility support for that
field, if provided (otherwise behaves the same as \glsentryshortpl).

\Glsaccesssymbol{〈label〉} glossaries-extra*
Expands to the value of the symbol field with the first letter converted to upper case and
with the accessibility support for that field, if provided (otherwise behaves the same as
\Glsentrysymbol).

\glsaccesssymbol{〈label〉} glossaries-extra*
Expands to the value of the symbol field with the accessibility support for that field, if
provided (otherwise behaves the same as \glsentrysymbol).

\Glsaccesssymbolplural{〈label〉} glossaries-extra*
Expands to the value of the symbolplural field with the first letter converted to upper
case and with the accessibility support for that field, if provided (otherwise behaves the
same as \Glsentrysymbolplural).

\glsaccesssymbolplural{〈label〉} glossaries-extra*
Expands to the value of the symbolplural field with the accessibility support for that
field, if provided (otherwise behaves the same as \glsentrysymbolplural).

\Glsaccesstext{〈label〉} glossaries-extra*
Expands to the value of the text field with the first letter converted to upper case and
with the accessibility support for that field, if provided (otherwise behaves the same as
\Glsentrytext).

\glsaccesstext{〈label〉} glossaries-extra*
Expands to the value of the text field with the accessibility support for that field, if
provided (otherwise behaves the same as \glsentrytext).

\glsaccsupp{〈accessible text〉}{〈text〉} glossaries-accsupp
Used by the accessibility support to interface with the accsupp package (use
\xglsaccsupp if 〈text〉 needs to be fully expanded first).

\glsadd[〈options〉]{〈label〉} glossaries
Indexes the entry without displaying any text.

619

General Command Summary

Options:
counter={〈counter-name〉} glossaries

Sets the counter to use for the record
format={〈encap〉} glossaries

Sets the encap for the record to 〈encap〉, optionally with the start or end range markers
theHvalue={〈value〉} glossaries-extra v1.14+

The hyperlink target corresponding to the value of thevalue, if appropriate
thevalue={〈value〉} glossaries-extra v1.14+

Overrides the record value so that it’s the given 〈value〉 not obtained from the
associated counter

\glsaddall[〈options〉] glossaries
Iterates over all entries defined for all glossaries (or for the sub-list provided by
types={〈list〉} in the options) and performs \glsadd[〈options〉] for each entry. This
command isn’t suitable for use with bib2gls. Use the selection option instead.

\glsaddallunused[〈list〉] glossaries
Iterates over all entries defined for all glossaries (or for the sub-list provided in the
options) and performs \glsadd for each entry that hasn’t been used with the format set
to glsignore. This command isn’t suitable for use with bib2gls. Use the selection
option instead.

\glsadd{[〈format〉]〈label〉} datagidx
Indexes the term identified by the given label.

\glsaddeach[〈options〉]{〈label list〉} glossaries-extra v1.31+
Indexes each entry identified in the comma-separated list of labels without displaying
any text.

\glsaddkey{〈key〉}{〈default value〉}{〈no link cs〉}{〈no link ucfirst cs〉}{〈link cs〉}{〈link ucfirst
cs〉}{〈link allcaps cs〉} glossaries
Adds a new key for use in \newglossaryentry and associated commands to access it.

\glsaddstoragekey{〈key〉}{〈default value〉}{〈no link cs〉} glossaries
Adds a new key for internal use that can be set in \newglossaryentry.

\glsautoprefix glossaries
Prefix used for the automatically labelling triggered by the
numberedsection={autolabel} option.

\glsbackslash glossaries*
Expands to a literal backslash \ character.

\glscapturedgroup glossaries-extra-bib2gls v1.31+
Expands to \string$.

\glscategory{〈label〉} glossaries-extra
Expands to the value of the category field for the entry identified by 〈label〉 or nothing
if the entry hasn’t been defined.

620

General Command Summary

\glsclosebrace glossaries*
Expands to a literal close brace } character.

\glscurrententrylabel glossaries
Only for use in the glossary, such as in the style or in the post-name or post-description
hooks, this expands to the label of the current entry.

\glscurrentfieldvalue glossaries
Only for use in the 〈true〉 part of \ifglshasfield or \glsxtrifhasfield, this expands
to the field value.

\gls{[〈format〉]〈label〉} datagidx
Indexes and displays the term identified by the given label with a hyperlink, if supported.

\glsdefaulttype glossaries
The default glossary type.

\glsdefpostdesc{〈category〉}{〈definition〉} glossaries-extra v1.31+
Define the post-description hook \glsxtrpostdesc〈category〉 for the given category.

\glsdefpostlink{〈category〉}{〈definition〉} glossaries-extra v1.31+
Define the post-link hook \glsxtrpostlink〈category〉 for the given category.

\glsdefpostname{〈category〉}{〈definition〉} glossaries-extra v1.31+
Define the post-name hook \glsxtrpostname〈category〉 for the given category.

\glsdesc[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the
description field without altering the first use flag.

\glsdescriptionaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentrydescaccess{〈label〉}.

\glsdescriptionpluralaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentrydescpluralaccess{〈label〉}.

\glsdescwidth glossary-long and glossary-super
Length register used by the tabular styles to specify the width of the description column.

\glsdisablehyper glossaries
Disables the creation of hyperlinks and targets for the glossary commands that support
them (automatically implemented if hyperref isn’t loaded before glossaries).

\glsdisp[〈options〉]{〈label〉}{〈text〉} glossaries
Links to the entry’s definition in the glossary with the given link text and marks the
entry as having been used. The options are the same as for \glslink.

\glsdoifexists{〈label〉}{〈code〉} glossaries
If the entry given by 〈label〉 exists, 〈code〉 is done, otherwise an error (or warning with
glossaries-extra’s undefaction={warn} option) is triggered.

621

General Command Summary

\glsdoifexistsordo{〈label〉}{〈code〉}{〈else code〉} glossaries
If the entry given by 〈label〉 exists, 〈code〉 is done, otherwise an error (or warning with
glossaries-extra’s undefaction={warn} option) is triggered and 〈else code〉 is done.

\glsdoifnoexists{〈label〉}{〈code〉} glossaries
If the entry given by 〈label〉 doesn’t exist, 〈code〉 is done, otherwise an error (or warning
with glossaries-extra’s undefaction={warn} option) is triggered.

\glsdoifnoexistsordo{〈label〉}{〈code〉}{〈else code〉} glossaries
If the entry given by 〈label〉 doesn’t exist, 〈code〉 is done, otherwise an error (or warning
with glossaries-extra’s undefaction={warn} option) is triggered and 〈else code〉 is done.

\glsenablehyper glossaries
Enables the creation of hyperlinks and targets for the glossary commands that support
them (automatically implemented if hyperref is loaded before glossaries).

\glsendrange[〈options〉]{〈label list〉} glossaries-extra v1.50+
Essentially like \glsaddeach[format={)},〈options〉]{〈label-list〉}. If format is used in
〈options〉, the close marker) will be inserted in front of the value.

\glsentryaccess{〈label〉} glossaries-access
Expands to the value of the access field.

\glsentrycounterlabel glossaries
Governs the way the glossaryentry counter is displayed by \glsentryitem.

\GlsEntryCounterLabelPrefix glossaries v4.38+
Used as a prefix in the \label command automatically implemented by the
entrycounter and subentrycounter options.

\Glsentrydesc{〈label〉} glossaries*
Displays the value of the description field with the first letter converted to upper case.

\glsentrydesc{〈label〉} glossaries*
Expands to the value of the description field.

\glsentrydescaccess{〈label〉} glossaries-access
Expands to the value of the descriptionaccess field.

\Glsentrydescplural{〈label〉} glossaries*
Displays the value of the descriptionplural field with the first letter converted to
upper case.

\glsentrydescplural{〈label〉} glossaries*
Expands to the value of the descriptionplural field.

\glsentrydescpluralaccess{〈label〉} glossaries-access
Expands to the value of the descriptionpluralaccess field.

\Glsentryfirst{〈label〉} glossaries*
Displays the value of the first field with the first letter converted to upper case.

622

General Command Summary

\glsentryfirst{〈label〉} glossaries*
Expands to the value of the first field.

\glsentryfirstaccess{〈label〉} glossaries-access
Expands to the value of the firstaccess field.

\Glsentryfirstplural{〈label〉} glossaries*
Displays the value of the firstplural field with the first letter converted to upper case.

\glsentryfirstplural{〈label〉} glossaries*
Expands to the value of the firstplural field.

\glsentryfirstpluralaccess{〈label〉} glossaries-access
Expands to the value of the firstpluralaccess field.

\glsentryitem{〈label〉} glossaries v3.0+
Increments and displays the glossaryentry counter, if appropriate.

\Glsentrylong{〈label〉} glossaries*
Displays the value of the long field without any formatting or indexing but with the first
letter converted to upper case.

\glsentrylong{〈label〉} glossaries*
Expands to the value of the long field without any formatting or indexing.

\glsentrylongaccess{〈label〉} glossaries-access
Expands to the value of the longaccess field.

\Glsentrylongpl{〈label〉} glossaries*
Displays the value of the longplural field without any formatting or indexing but with
the first letter converted to upper case.

\glsentrylongpl{〈label〉} glossaries*
Expands to the value of the longplural field without any formatting or indexing.

\glsentrylongpluralaccess{〈label〉} glossaries-access
Expands to the value of the longpluralaccess field.

\Glsentryname{〈label〉} glossaries*
Displays the value of the name field with the first character converted to upper case.

\glsentryname{〈label〉} glossaries*
Expands to the value of the name field.

\Glsentryplural{〈label〉} glossaries*
Displays the value of the plural field with the first letter converted to upper case.

\glsentryplural{〈label〉} glossaries*
Expands to the value of the plural field.

\glsentrypluralaccess{〈label〉} glossaries-access
Expands to the value of the pluralaccess field.

\Glsentryprefix{〈label〉} glossaries-prefix
Expands to the value of the prefix field with the first letter converted to upper case.

623

General Command Summary

\glsentryprefix{〈label〉} glossaries-prefix
Expands to the value of the prefix field.

\Glsentryprefixfirst{〈label〉} glossaries-prefix
Expands to the value of the prefixfirst field with the first letter converted to upper
case.

\glsentryprefixfirst{〈label〉} glossaries-prefix
Expands to the value of the prefixfirst field.

\Glsentryprefixfirstplural{〈label〉} glossaries-prefix
Expands to the value of the prefixfirstplural field with the first letter converted to
upper case.

\glsentryprefixfirstplural{〈label〉} glossaries-prefix
Expands to the value of the prefixfirstplural field.

\Glsentryprefixplural{〈label〉} glossaries-prefix
Expands to the value of the prefixplural field with the first letter converted to upper
case.

\glsentryprefixplural{〈label〉} glossaries-prefix
Expands to the value of the prefixplural field.

\Glsentryshort{〈label〉} glossaries*
Displays the value of the short field without any formatting or indexing but with the
first letter converted to upper case.

\glsentryshort{〈label〉} glossaries*
Expands to the value of the short field without any formatting or indexing.

\glsentryshortaccess{〈label〉} glossaries-access
Expands to the value of the shortaccess field.

\Glsentryshortpl{〈label〉} glossaries*
Displays the value of the shortplural field without any formatting or indexing but with
the first letter converted to upper case.

\glsentryshortpl{〈label〉} glossaries*
Expands to the value of the shortplural field without any formatting or indexing.

\glsentryshortpluralaccess{〈label〉} glossaries-access
Expands to the value of the shortpluralaccess field.

\Glsentrysymbol{〈label〉} glossaries*
Displays the value of the symbol field with the first letter converted to upper case.

\glsentrysymbol{〈label〉} glossaries*
Expands to the value of the symbol field.

\glsentrysymbolaccess{〈label〉} glossaries-access
Expands to the value of the symbolaccess field.

624

General Command Summary

\Glsentrysymbolplural{〈label〉} glossaries*
Displays the value of the symbolplural field with the first letter converted to upper case.

\glsentrysymbolplural{〈label〉} glossaries*
Expands to the value of the symbolplural field.

\glsentrysymbolpluralaccess{〈label〉} glossaries-access
Expands to the value of the symbolpluralaccess field.

\Glsentrytext{〈label〉} glossaries*
Displays the value of the text field with the first letter converted to upper case.

\glsentrytext{〈label〉} glossaries*
Expands to the value of the text field.

\glsentrytextaccess{〈label〉} glossaries-access
Expands to the value of the textaccess field.

\glsentrytitlecase{〈entry label〉}{〈field label〉} glossaries* v4.22+
Fetches the given field and applies \capitalisewords to it.

\Glsentryuseri{〈label〉} glossaries*
Displays the value of the user1 field with the first letter converted to upper case.

\glsentryuseri{〈label〉} glossaries*
Expands to the value of the user1 field.

\Glsentryuserii{〈label〉} glossaries*
Displays the value of the user2 field with the first letter converted to upper case.

\glsentryuserii{〈label〉} glossaries*
Expands to the value of the user2 field.

\Glsentryuseriii{〈label〉} glossaries*
Displays the value of the user3 field with the first letter converted to upper case.

\glsentryuseriii{〈label〉} glossaries*
Expands to the value of the user3 field.

\Glsentryuseriv{〈label〉} glossaries*
Displays the value of the user4 field with the first letter converted to upper case.

\glsentryuseriv{〈label〉} glossaries*
Expands to the value of the user4 field.

\Glsentryuserv{〈label〉} glossaries*
Displays the value of the user5 field with the first letter converted to upper case.

\glsentryuserv{〈label〉} glossaries*
Expands to the value of the user5 field.

\Glsentryuservi{〈label〉} glossaries*
Displays the value of the user6 field with the first letter converted to upper case.

625

General Command Summary

\glsentryuservi{〈label〉} glossaries*
Expands to the value of the user6 field.

\glsexpandfields glossaries
Switches on field expansion.

\glsextrapostnamehook{〈label〉} glossaries-extra v1.25+
Additional category-independent code for the post-name hook.

\glsfielddef{〈entry label〉}{〈field label〉}{〈definition〉} glossaries v4.16+
Changes the value of the given entry’s field to 〈definition〉 (localised by any scope).

\glsfieldedef{〈entry label〉}{〈field label〉}{〈definition〉} glossaries v4.16+
Changes the value of the given entry’s field to the full expansion of 〈definition〉 (localised
by any scope).

\glsfieldfetch{〈label〉}{〈field〉}{〈cs〉} glossaries v4.16+
Fetches the value of the given field for the given label and stores it in the command 〈cs〉.

\glsfieldgdef{〈entry label〉}{〈field label〉}{〈definition〉} glossaries v4.16+
Globally changes the value of the given entry’s field to 〈definition〉.

\glsfieldxdef{〈entry label〉}{〈field label〉}{〈definition〉} glossaries v4.16+
Globally changes the value of the given entry’s field to the full expansion of 〈definition〉.

\glsFindWidestLevelTwo[〈glossary list〉] glossaries-extra-stylemods
Finds the widest name in the given glossaries for the top level and first two sub-levels.

\glsFindWidestTopLevelName[〈glossary list〉] glossaries-extra-stylemods
CamelCase synonym for \glsfindwidesttoplevelname.

\glsfindwidesttoplevelname[〈glossary list〉] glossary-tree
Finds the widest top-level name in the given glossaries.

\Glsfirst[〈options〉]{〈label〉}[〈insert〉] glossaries
As \glsfirst but converts the first letter to upper case.

\glsfirst[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the first
field without altering the first use flag.

\glsfirstabbrvdefaultfont{〈text〉} glossaries-extra
Used by the abbreviation styles that don’t have a specific font to format the short form on
first use. The default definition uses \glsabbrvdefaultfont.

\glsfirstabbrvemfont{〈text〉} glossaries-extra v1.04+
Used with “em” abbreviation styles to format the short form on first use. This defaults to
\glsabbrvemfont.

\glsfirstabbrvhyphenfont{〈text〉} glossaries-extra v1.17+
Used by the “hyphen” abbreviation styles to format the short form on first use.

626

General Command Summary

\glsfirstabbrvonlyfont{〈text〉} glossaries-extra v1.17+
Used with “only” abbreviation styles to format the short form on first use. The default
definition just uses \glsabbrvonlyfont.

\glsfirstabbrvscfont{〈text〉} glossaries-extra v1.17+
Used with “sc” abbreviation styles to format the short form on first use. This defaults to
\glsabbrvscfont.

\glsfirstabbrvsmfont{〈text〉} glossaries-extra v1.17+
Used with “sm” abbreviation styles to format the short form on first use. This defaults to
\glsabbrvsmfont.

\glsfirstabbrvuserfont{〈text〉} glossaries-extra v1.04+
Used with “user” abbreviation styles to format the short form on first use. The default
definition just uses \glsabbrvuserfont.

\glsfirstaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentryfirstaccess{〈label〉}.

\glsfirstlongdefaultfont{〈text〉} glossaries-extra
Used by the abbreviation styles that don’t have a specific font to format the long form on
first use. The default definition uses \glslongdefaultfont.

\glsfirstlongemfont{〈text〉} glossaries-extra v1.04+
Used with “long-em” abbreviation styles to format the long form on first use. This
defaults to \glslongemfont.

\glsfirstlongfootnotefont{〈text〉} glossaries-extra v1.05+
Used with the “footnote” abbreviation styles to format the long form on first use.

\glsfirstlonghyphenfont{〈text〉} glossaries-extra v1.17+
Used by the “hyphen” abbreviation styles to format the long form on first use.

\glsfirstlongonlyfont{〈text〉} glossaries-extra v1.17+
Used with “only” abbreviation styles to format the long form on first use. The default
definition just uses \glslongonlyfont.

\glsfirstlonguserfont{〈text〉} glossaries-extra v1.04+
Used with “user” abbreviation styles to format the long form on first use. The default
definition just uses \glslonguserfont.

\glsfirstpluralaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentryfirstpluralaccess{〈label〉}.

\glsfmtfirst{〈label〉} glossaries-extra
Provided for use in section or caption titles, this displays the given entry’s first field.

\glsfmtfull{〈label〉} glossaries-extra
Provided for use in section or caption titles, this displays the full form of the given
abbreviation (using the inline style that matches \glsxtrfull).

627

General Command Summary

\glsfmtlong{〈label〉} glossaries-extra
Provided for use in section or caption titles, this displays the long form of the given
abbreviation.

\glsfmtname{〈label〉} glossaries-extra
Provided for use in section or caption titles, this displays the given entry’s name.

\glsfmtshort{〈label〉} glossaries-extra
Provided for use in section or caption titles, this displays the short form of the given
abbreviation.

\glsfmttext{〈label〉} glossaries-extra
Provided for use in section or caption titles, this displays the given entry’s text field.

\glsgroupheading{〈label〉} glossaries
Formats the heading for the group identified by the given label.

\glsgroupskip glossaries
Inserted between groups to create some vertical spacing (this command is modified by
glossary styles, and may be switched off with the nogroupskip option).

\glshashchar glossaries-extra-bib2gls* v1.49+
Expands to a literal hash character #.

\glshex glossaries-extra v1.21+ (moved to glossaries-extra-bib2gls in v1.27)
Expands to \string\u.

\glshyperlink[〈link text〉]{〈label〉} glossaries*
Creates a hyperlink to the entry information in the glossary.

\glshypernumber{〈text〉} glossaries
A location format that has a hyperlink (if enabled).

\glsifcategory{〈label〉}{〈category〉}{〈true〉}{〈false〉} glossaries-extra
Does 〈true〉 if the category field for the entry given by 〈label〉 is 〈category〉.

\glsignore{〈text〉} glossaries
Does nothing but when used as a location format bib2gls recognises it as an ignored
record.

\glsinlinedescformat{〈description〉}{〈symbol〉}{〈location list〉} glossary-inline v3.03+
Format’s the entry’s description, symbol and location list. This ignores the symbol and
location by default.

\glsinlinedopostchild glossary-inline v3.03+
Group headings aren’t supported by default, but if they are required, this command
should be added to start of the definition of \glsgroupheading in case a heading follows
a child entry.

\glsinlinenameformat{〈label〉}{〈name〉} glossary-inline v3.03+
Format’s the entry’s name including target, if supported.

628

General Command Summary

\glsinlineparentchildseparator glossary-inline v3.03+
Separator between parent and child entries.

\glsinlinepostchild glossary-inline v3.03+
Hook between child and next entry.

\glsinlineseparator glossary-inline v3.03+
Separator between entries.

\glsinlinesubseparator glossary-inline v3.03+
Separator between sub-entries.

\glslabel glossaries
Only for use in the post-link hooks, this expands to the label of the entry that was last
referenced.

\glslink[〈options〉]{〈label〉}{〈text〉} glossaries
Links to the entry’s definition in the glossary with the given link text without altering the
first use flag.

Options:
counter={〈counter-name〉} glossaries

Sets the counter to use for the record
format={〈encap〉} glossaries

Sets the encap for the record to 〈encap〉, optionally with the start or end range markers
hyper={〈boolean〉} glossaries

Indicates whether or not to make a hyperlink to the relevant glossary entry
hyperoutside={〈boolean〉} glossaries-extra v1.21+

Determines whether \hyperlink should be outside of \glstextformat (default
hyperoutside=true) or inside (hyperoutside=false)

local={〈boolean〉} glossaries
If true indicates to use \glslocalunset instead of the default global \glsunset to
unset the first use flag

noindex={〈boolean〉} glossaries-extra
Indicates whether or not to suppress indexing

prefix={〈label〉} glossaries-extra v1.31+
Locally changes \glolinkprefix to the given 〈label〉

textformat={〈cs-name〉} glossaries-extra v1.30+
If set, replaces \glstextformat with the command given by the control sequence
name 〈cs-name〉 to format the link text

theHvalue={〈value〉} glossaries-extra v1.19+
The hyperlink target corresponding to the value of thevalue, if appropriate

thevalue={〈value〉} glossaries-extra v1.19+
Overrides the record value so that it’s the given 〈value〉 not obtained from the
associated counter

629

General Command Summary

wrgloss={〈value〉} glossaries-extra v1.14+
Indicates whether to write the glossary information before (wrgloss=before) or after

(wrgloss=after) the link text (default: before)

\glslocalreset{〈label〉} glossaries
Locally resets the first use flag so that the entry is marked as not used.

\glslocalunset{〈label〉} glossaries
Locally unsets the first use flag so that the entry is marked as having been used.

\glslongaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentrylongaccess{〈label〉}.

\glslongdefaultfont{〈text〉} glossaries-extra v1.04+
Used by the abbreviation styles that don’t have a specific font to format the long form.
The default definition just does its argument without any formatting.

\glslongemfont{〈text〉} glossaries-extra v1.04+
Used with “long-em” abbreviation styles to format the long form using \emph.

\glslongextraSetWidest{〈text〉} glossary-longextra v1.37+
Used with the styles provided by the glossary-longextra package to set the widest entry
name.

\glslongextraUpdateWidest{〈text〉} glossary-longextra v1.37+
As \glslongextraSetWidest but only sets if 〈text〉 is wider than the current value.

\glslongfont{〈text〉} glossaries-extra v1.04+
Generic abbreviation font command for the long form.

\glslongfootnotefont{〈text〉} glossaries-extra v1.05+
Used with the “footnote” abbreviation styles to format the long form.

\glslonghyphenfont{〈text〉} glossaries-extra v1.17+
Used by the “hyphen” abbreviation styles to format the long form.

\glslongonlyfont{〈text〉} glossaries-extra v1.17+
Used with “only” abbreviation styles to format the long form. The default definition just
uses \glslongdefaultfont.

\glslongpluralaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentrylongpluralaccess{〈label〉}.

\glslongtok glossaries
Token register used in the construction of acronyms or abbreviations to allow the style
hooks to access the long form.

\glslonguserfont{〈text〉} glossaries-extra v1.04+
Used with “user” abbreviation styles to format the long form. The default definition just
uses \glslongdefaultfont.

630

General Command Summary

\glslowercase{〈text〉} glossaries v4.50+*
Converts 〈text〉 to lower case.

\glsname[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the name
field without altering the first use flag.

\glsnameaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by \glsentryaccess{〈label〉}.

\glsnamefont{〈text〉} glossaries
Used by \glossentryname to format the name.

\glsnavhypertarget[〈type〉]{〈label〉}{〈text〉} glossary-hypernav
Creates a hyper target for the group given by 〈label〉 for the given glossary type and uses
〈text〉 for the hyperlink text.

\glsnl{[〈format〉]〈label〉} datagidx
Indexes and displays the term identified by the given label without a hyperlink.

\glsnoexpandfields glossaries
Switches off field expansion.

\glsnoidxdisplayloc{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉} glossaries v4.04+
Used to display a regular location in the location field (with a hyperlink, if enabled).

\glsnoidxloclist{〈location list cs〉} glossaries
Iterates over the given internal location list using the \glsnoidxloclisthandler
handler.

\glsnoidxloclisthandler{〈location〉} glossaries
The handler used by the internal list loop function used in \glsnoidxloclist.

\glsnumberformat{〈text〉} glossaries
Default location format, uses \glshypernumber if hyperlinks enabled otherwise just
does 〈text〉.

\glsnumbersgroupname glossaries
Language-sensitive name used for the numbers group and also used for the title of the
glossary created with the numbers package option.

\glsopenbrace glossaries*
Expands to a literal open brace { character.

\glspatchtabularx glossaries
Preamble command that will patch the tabularx environment to deal with the problem of
unsetting the first use flag either explicitly with \glsunset or implicitly through
commands like \gls (does nothing if tabularx hasn’t been loaded).

\glspercentchar glossaries*
Expands to a literal percent character % character.

631

General Command Summary

\GLSpl[〈options〉]{〈label〉}[〈insert〉] glossaries
As \GLS but shows the plural form.

\Glspl[〈options〉]{〈label〉}[〈insert〉] glossaries
As \Gls but shows the plural form.

\glspl[〈options〉]{〈label〉}[〈insert〉] glossaries
As \gls but shows the plural form.

\glsplural[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the plural
field without altering the first use flag.

\glspluralaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentrypluralaccess{〈label〉}.

\glspluralsuffix glossaries*
The suffix used to construct the default plural.

\glspost-inline glossary-inline v3.03+
Glossary terminator.

\glspostdescription glossaries and modified by glossaries-extra
A hook added after the description in some glossary styles (all if the
glossaries-extra-stylemods package is loaded to patch them). This hook is used to reflect
the nopostdot package option for glossaries and the postpunc option for glossaries-extra.

\glsps{〈label〉} glossaries-extra v1.07+
Shortcut for \glsxtrp{short}{〈label〉}.

\glspt{〈label〉} glossaries-extra v1.07+
Shortcut for \glsxtrp{text}{〈label〉}.

\glsquote{〈text〉} glossaries
Encapsulates 〈text〉 with literal straight double-quotes "〈text〉".

\glsrefentry{〈label〉} glossaries v3.0+
When used with entrycounter or subentrycounter may be used to cross-reference
the entry’s number in the glossary list with \ref.

\glsrenewcommand{〈cs〉}[〈n〉][〈def 〉]{〈code〉} glossaries-extra-bib2gls* v1.37+
Behaves like \renewcommand but only generates a warning rather than an error if the
command isn’t already defined.

\glsreset{〈label〉} glossaries
Resets the first use flag so that the entry is marked as not used.

\glsresetentrycounter glossaries
Resets the glossaryentry counter if the entrycounter setting is on.

\glssee[〈tag〉]{〈label〉}{〈xr label list〉} glossaries
Indexes a “see” cross-reference.

632

General Command Summary

\glsseefirstitem{〈label〉} glossaries-extra v1.47+
As \glsseeitem but is used for the first label in the list. This just does \glsseeitem by
default.

\glsseeformat{〈tag〉}{〈labels〉}{〈location (ignored)〉} glossaries
Formats the entries identified in the comma separated list of labels as a set of
cross-references. This just does the tag (emphasized) followed by \glsseelist{〈labels〉}.

\glsseeitem{〈label〉} glossaries
Formats an element of the cross-reference list. The default behaviour is to create a
hyperlink (if enabled) to the referenced entry with the link text given by
\glsseeitemformat{〈label〉}.

\glsseeitemformat{〈label〉} glossaries v3.0+
Formats an element of the cross-reference list. With the base glossaries package this just
does \glsentrytext{〈label〉}. With glossaries-extra this uses either \glsentryshort or
\glsentryname depending on whether or not the short field has been set.

\glsseelastoxfordsep glossaries-extra v1.47+
Used instead of \glsseelastsep if the list contains three or more labels. This defaults to
\glsseelastsep.

\glsseelastsep glossaries
The separator used between the penultimate and ultimate entries of a cross-reference list.

\glsseelist{〈label list〉} glossaries
Iterates through the comma-separated list of entry labels to produce a formatted list,
where each item in the list is encapsulated with \glsseeitem and each element is
separated with \glsseesep or \glsseelastsep. This command was provided for the
use of \glsseeformat to format cross-reference lists but may be used for any list of
entry labels. This command is redefined by glossaries-extra (v1.47+) to additionally use
\glsseefirstitem and \glsseelastoxfordsep.

\glsseesep glossaries
The separator used between all but the last entries of a cross-reference list.

\glssetcategoryattribute{〈category〉}{〈attribute〉}{〈value〉} glossaries-extra
Sets the value of the attribute for the given category.

\glssetexpandfield{〈field〉} glossaries
Switches on field expansion for the given field, identified by its internal label.

\glssetnoexpandfield{〈field〉} glossaries
Switches off field expansion for the given field.

\glssetwidest[〈level〉]{〈text〉} glossary-tree
Used with the alttree style to set the widest entry name for the given level.

\glsshortaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentryshortaccess{〈label〉}.

633

General Command Summary

\glsshortpluralaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentryshortpluralaccess{〈label〉}.

\glsshorttok glossaries
Token register used in the construction of acronyms or abbreviations to allow the style
hooks to access the short form.

\glsshowtarget{〈label〉} glossaries v4.32+
Used to show the target name when the debug={showtargets} option is on.

\glsstartrange[〈options〉]{〈label list〉} glossaries-extra v1.50+
Essentially like \glsaddeach[format={(},〈options〉]{〈label-list〉}. If format is used in
〈options〉, the open marker (will be inserted in front of the value.

\glsstepentry{〈label〉} glossaries
Increments the glossaryentry counter, which is defined with the entrycounter option,
and automatically labels it with \label.

\glssubentrycounterlabel glossaries
Governs the way the glossarysubentry counter is displayed by \glssubentryitem.

\glssubentryitem{〈label〉} glossaries v3.0+
Increments and displays the glossarysubentry counter, if appropriate.

\glssubgroupheading{〈previous
level〉}{〈level〉}{〈parent-label〉}{〈group-label〉} glossaries-extra v1.49+
Formats the heading for the sub-group identified by the given label.

\glssymbol[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the symbol
field without altering the first use flag.

\glssymbolaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentrysymbolaccess{〈label〉}.

\glssymbolpluralaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentrysymbolpluralaccess{〈label〉}.

\glssymbolsgroupname glossaries
Language-sensitive name used for the symbols group and also used for the title of the
glossary created with the symbols package option.

\glstarget{〈label〉}{〈text〉} glossaries v1.18+
Creates a hypertarget for the entry given by 〈label〉 (the target for commands like \gls)
and displays 〈text〉.

\Glstext[〈options〉]{〈label〉}[〈insert〉] glossaries
As \glstext but converts the first letter to upper case.

634

General Command Summary

\glstext[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the text
field without altering the first use flag.

\glstextaccessdisplay{〈text〉}{〈label〉} glossaries-access
Displays 〈text〉 with the accessibility support provided by
\glsentrytextaccess{〈label〉}.

\glstextformat{〈text〉} glossaries
Used by commands like \gls to format the link text.

\glstextup{〈text〉} glossaries v3.09a+
Typesets 〈text〉 in an upright font (used to cancel the effect of \textsc in abbreviation
styles that use \glsabbrvscfont).

\glstildechar glossaries*
Expands to a literal tilde ~ character.

\glstreedefaultnamefmt{〈text〉} glossaries-extra-stylemods v1.31+
Used as the default format for \glstreenamefmt, \glstreegroupheaderfmt and
\glstreenavigationfmt.

\glstreegroupheaderfmt{〈text〉} glossary-tree v4.22+ and glossaries-extra-stylemods v1.31+
Used with the tree styles to format the group headings.

\glstreenamefmt{〈text〉} glossary-tree v4.08+ and glossaries-extra-stylemods v1.31+
Used with the tree styles to format the entry’s name.

\glstreenavigationfmt{〈text〉} glossary-tree v4.22+ and glossaries-extra-stylemods v1.31+
Used with the tree styles to format the navigation elements.

\glstreenonamedesc{〈label〉} glossaries-extra-stylemods v1.31+
Displays the pre-description separator, the description and the post-description hook for
the treenoname styles.

\glstreepredesc{〈label〉} glossary-tree v4.26+
Separator used before the description for the tree styles.

\glstreeprelocation glossaries-extra-stylemods v1.21+
Inserted before the location list for top-level entries in the tree-like styles.

\glstriggerrecordformat{〈text〉} glossaries-extra v1.21+
Does nothing but when used as a location format bib2gls recognises it as an ignored
record indexed by commands like \rgls.

\glsunset{〈label〉} glossaries
Unsets the first use flag so that the entry is marked as having been used.

\glsupdatewidest[〈level〉]{〈text〉} glossaries-extra-stylemods v1.23+
As \glssetwidest but only sets if 〈text〉 is wider than the current value.

\glsuppercase{〈text〉} glossaries v4.50+*
Converts 〈text〉 to upper case.

635

General Command Summary

\glsuseabbrvfont{〈text〉}{〈category〉} glossaries-extra v1.21+
Applies the formatting command used for the short form for the abbreviation style
associated with the given category.

\glsuselongfont{〈text〉}{〈category〉} glossaries-extra v1.21+
Applies the formatting command used for the long form for the abbreviation style
associated with the given category.

\glsuserdescription{〈description〉}{〈label〉} glossaries-extra v1.30+
Used with “user” abbreviation styles to encapsulate the description. Just does
\glslonguserfont{〈description〉} by default.

\glsuseri[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the user1
field without altering the first use flag.

\glsuserii[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the user2
field without altering the first use flag.

\glsuseriii[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the user3
field without altering the first use flag.

\glsuseriv[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the user4
field without altering the first use flag.

\glsuserv[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the user5
field without altering the first use flag.

\glsuservi[〈options〉]{〈label〉}[〈insert〉] glossaries
Links to the entry’s definition in the glossary with the link text obtained from the user6
field without altering the first use flag.

\glsxtr@record{〈label〉}{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉} glossaries-extra v1.08+
This command is written to the .aux file each time an entry is indexed to provide
bib2gls with the record information.

\glsxtr@record@nameref{〈label〉}{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}{〈title〉}
{〈href 〉}{〈hcounter〉} glossaries-extra v1.37+
Used instead of \glsxtr@record when the record={nameref} option is used.

\glsxtr@resource{〈options〉}{〈filename〉} glossaries-extra v1.08+
This internal command is written to the .aux file by \glsxtrresourcefile to provide
bib2gls with the resource information.

\glsxtr@wrglossarylocation{〈n〉}{〈page〉} glossaries-extra-bib2gls v1.29+
This command simply expands to 〈n〉, the value of the wrglossary counter for the given
page.

636

General Command Summary

\glsxtrabbreviationfont{〈text〉} glossaries-extra v1.30+
Used by commands like \gls to format the link text for (non-regular) abbreviations.

\glsxtrabbrvfootnote{〈label〉}{〈long form〉} glossaries-extra v1.07+
Used with the “footnote” abbreviation styles to do the footnote. The 〈label〉 is ignored by
default. The 〈long form〉 includes the font changing command. This just does
\footnote{〈long form〉}.

\glsxtrabbrvpluralsuffix glossaries-extra*
The default suffix used to construct the plural for the short form of abbreviations. This
just uses \glspluralsuffix. If you don’t want a plural suffix, you can use the
noshortplural attribute.

\glsxtrabbrvtype glossaries-extra
Expands to the default glossary type when using \newabbreviation.

\glsxtraddlabelprefix{〈prefix〉} glossaries-extra-bib2gls v1.37+
Appends 〈prefix〉 to the prefix label list.

\glsxtrAltTreePar glossaries-extra-stylemods v1.05+
Used by the alttree styles to indicate a paragraph break that retains the hanging indent.

\glsxtralttreeSymbolDescLocation{〈label〉}{〈location list〉} glossaries-extra-stylemods v1.05+
Used by the alttree styles to format the symbol, description and location.

\glsxtrapptocsvfield{〈entry label〉}{〈field label〉}{〈value〉} glossaries-extra v1.47+
Appends a comma followed by 〈value〉 to the given field for the given entry, it that field
has already been set, otherwise it sets the field to just 〈value〉 (there’s no check for the
existence of either the entry or the field).

\GlsXtrAutoAddOnFormat[〈label〉]{〈format list〉}{〈glsadd options〉} glossaries-extra v1.37+
Makes commands like \gls and \glslink (but not \glsadd) automatically insert
\glsadd[〈glsadd options〉]{〈label〉} if the format (supplied in the optional argument of the
invoking \gls, \glslink etc) matches any in the given comma-separated elements of
〈format list〉. The format isn’t automatically applied to the \glsadd options.

\glsxtrautoindexassignsort{〈cs〉}{〈label〉} glossaries-extra v1.16+
Assigns the sort value for \index when using auto-indexing.

\glsxtrautoindexentry{〈label〉} glossaries-extra v1.16+
Used for the actual value in \index when using auto-indexing.

\GlsXtrBibTeXEntryAliases glossaries-extra-bib2gls v1.29+
Expands to the set of common entry aliases for @bibtexentry.

\glsxtrbookindexname{〈label〉} glossary-bookindex
Used with the bookindex style to format the entry’s name.

\glsxtrbookindexprelocation{〈label〉} glossary-bookindex
Used with the bookindex style before the location list.

\glsxtrclearlabelprefixes{〈prefix〉} glossaries-extra-bib2gls v1.37+
Clears the prefix label list.

637

General Command Summary

\glsxtrcombiningdiacriticrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for combining diacritic characters.

\glsxtrcontrolIIrules glossaries-extra-bib2gls v1.54+
Expands to the ordered set of “information separator” control codes 0x1C, 0x1D, 0x1E,
and 0x1F.

\glsxtrcontrolIrules glossaries-extra-bib2gls v1.54+
As \glsxtrcontrolrules but omits control codes 0x0, 0x1C, 0x1D, 0x1E, 0x1F and 0x7F.

\glsxtrcontrolrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for control characters usually placed at the start of a rule in the
“ignored characters” section (although there typically won’t be any control codes in sort
fields).

\glsxtrcopytoglossary{〈label〉}{〈type〉} glossaries-extra v1.12+
Copies the entry given by 〈label〉 to the glossary given by 〈type〉.

\GlsXtrDefaultResourceOptions glossaries-extra v1.40+
Provides default options for \glsxtrresourcefile.

\glsxtrdetoklocation{〈location〉} glossaries-extra v1.21+
May be used to detokenize problematic locations, but just does its argument by default.

\glsxtrdigitrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for digits from the basic Latin set (0, …, 9) as well as their subscript and
superscript variants.

\glsxtrdisplaylocnameref{〈prefix〉}{〈counter〉}{〈format〉}{〈location〉}{〈title〉}{〈href 〉}
{〈hcounter〉}{〈file〉} glossaries-extra-bib2gls v1.37+
Used to display a nameref location in the location field (with a hyperlink, if enabled).

\glsxtrdisplaysupploc{〈prefix〉}{〈counter〉}{〈format〉}{〈src〉}
{〈location〉} glossaries-extra-bib2gls v1.36+
Used to display an external location in the supplementary list (with a hyperlink, if
enabled).

\GlsXtrDualBackLink{〈text〉}{〈label〉} glossaries-extra-bib2gls v1.30+
Creates a hyperlink to the dual entry whose label is obtained from the field given by
\GlsXtrDualField.

\GlsXtrDualField glossaries-extra-bib2gls v1.30+
The field used to store the dual label. This defaults to dual but will need to be redefined if
a different value is given by dual-field.

\glsxtremsuffix glossaries-extra
The suffix used to construct the plural for the short form of abbreviations with the “em”
styles. This defaults to \glsxtrabbrvpluralsuffix.

\GlsXtrEnableInitialTagging{〈category list〉}{〈cs〉} glossaries-extra*
Defines the control sequence 〈cs〉 to be used with abbreviation tagging with the given
categories.

638

General Command Summary

\glsxtrenablerecordcount glossaries-extra v1.21+
Redefines \gls etc to their \rgls counterpart.

\glsxtrendfor glossaries-extra v1.24+
May be used within the handler macro of \glsxtrforcsvfield to prematurely break
the loop.

\glsxtrentryfmt{〈label〉}{〈text〉} glossaries-extra v1.12+
Alternative to \glsxtrfmt for use in section headings.

\glsxtrentryparentname{〈label〉} glossaries-extra* v1.39+
Expands to the entry’s parent’s name.

\GlsXtrExpandedFmt{〈cs〉}{〈text〉} glossaries-extra v1.30+
Fully expands 〈text〉 and then does 〈cs〉{〈expanded text〉}.

\glsxtrfielddolistloop{〈label〉}{〈field〉} glossaries-extra v1.12+
Iterates over the items the given field, which contains an etoolbox internal list.

\glsxtrfieldforlistloop{〈label〉}{〈field〉}{〈handler〉} glossaries-extra v1.29+
Iterates over the items the given field, which contains an etoolbox internal list, using the
given handler.

\glsxtrfieldformatcsvlist{〈label〉}{〈field〉} glossaries-extra v1.42+
Formats the items in the given field, which contains a comma-separated list, using the
same handler as \DTLformatlist.

\glsxtrfieldformatlist{〈label〉}{〈field〉} glossaries-extra v1.42+
Formats the items in the given field, which contains an etoolbox internal list, using the
same handler as \DTLformatlist.

\glsxtrfieldifinlist{〈label〉}{〈field〉}{〈item〉}{〈true〉}{〈false〉} glossaries-extra v1.12+
Tests if the given item is in the given field that contains an etoolbox internal list.

\glsxtrfieldlistadd{〈label〉}{〈field〉}{〈item〉} glossaries-extra v1.12+
Adds the given item to the given field that contains an etoolbox internal list.

\glsxtrfieldxifinlist{〈label〉}{〈field〉}{〈item〉}{〈true〉}{〈false〉} glossaries-extra v1.12+
Tests if the expansion of the given item is in the given field that contains an etoolbox
internal list.

\glsxtrfmt[〈options〉]{〈label〉}{〈text〉} glossaries-extra v1.12+
Formats the given text according to the formatting command identified by the value of
the field obtained from \GlsXtrFmtField.

\glsxtrfmt*[〈options〉]{〈label〉}{〈text〉}[〈insert〉] glossaries-extra v1.23+
Like \glsxtrfmt but inserts extra material into the link text but outside of the
formatting command.

\GlsXtrFmtDefaultOptions glossaries-extra v1.12+
The default options used by \glsxtrfmt.

639

General Command Summary

\glsxtrfmtdisplay{〈cs-name〉}{〈text〉}{〈insert〉} glossaries-extra
Used by \glsxtrfmt to format the given 〈text〉 where 〈cs-name〉 is obtained from the
field identified by \GlsXtrFmtField and 〈insert〉 is empty for the unstarred \glsxtrfmt
and the final optional argument of the starred version \glsxtrfmt*.

\GlsXtrFmtField glossaries-extra v1.12+
Expands to the internal label of the field used to store the control sequence name for use
with \glsxtrfmt.

\glsxtrfootnotename glossaries-extra v1.25+
Hook for the “footnote” abbreviation styles that expands to the value that the name field
is assigned to when the abbreviation is defined with \newabbreviation (defaults to the
short form).

\glsxtrforcsvfield{〈label〉}{〈field〉}{〈handler〉} glossaries-extra v1.24+
Iterates over the comma-separated list in the given 〈field〉 for the entry identified by
〈label〉 and performs 〈handler〉{〈element〉} on each element of the list, where 〈handler〉 is
a control sequence which takes a single argument.

\GlsXtrForeignText{〈label〉}{〈text〉} glossaries-extra v1.32+
Encapsulates 〈text〉 in \foreignlanguage where the language label is obtained from the
locale tag given in the field identified by \GlsXtrForeignTextField.

\GlsXtrForeignTextField glossaries-extra v1.32+
Used by \GlsXtrForeignText to identify the field containing the locale tag.

\GlsXtrForUnsetBufferedList{〈cs〉} glossaries-extra v1.31+
Iterates over all the entry whose labels are stored in the buffer that was started with
\GlsXtrStartUnsetBuffering and implements 〈cs〉{〈label〉} at each iteration.

\glsxtrfractionrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for vulgar fraction characters.

\glsxtrfull[〈options〉]{〈label〉} glossaries-extra
Links to the entry’s definition in the glossary with the link text obtained from the long
and short fields (using the appropriate abbreviation style) without altering the first use
flag.

\glsxtrfullsep{〈label〉} glossaries-extra
The separator used in the full format for the parenthetical abbreviation styles or for inline
parenthetical styles. This just does a space by default.

\glsxtrGeneralLatinIIIrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for Latin characters (as \glsxtrGeneralLatinIrules but includes
Ð/ð between D/d and E/e and ß treated as “sz”).

\glsxtrGeneralLatinIIrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for Latin characters (as \glsxtrGeneralLatinIrules but includes
Ð/ð between D/d and E/e and ß treated as “ss”).

640

General Command Summary

\glsxtrGeneralLatinIrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for Latin characters (basic Latin set plus subscript and superscript
Latin characters).

\glsxtrGeneralLatinIVrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for Latin characters (as \glsxtrGeneralLatinIrules but includes
Ð/ð between D/d and E/e and Æ/æ treated as AE/ae, Œ/œ treated as OE/oe, Þ/þ treated as
TH/th and ß treated as “ss”).

\glsxtrGeneralLatinVIIIrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for Latin characters: as \glsxtrGeneralLatinIrules but includes
Æ/æ treated as A/a, Œ/œ treated as OE/oe, Þ/þ treated as TH/th, ß treated as “ss”, Ð/ð
treated as D/d, Ø/ø treated as O/o and Ł/ł treated as L/l.

\glsxtrGeneralLatinVIIrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for Latin characters: as \glsxtrGeneralLatinIrules but includes
Æ/æ between A/a and B/b, Ð/ð between D/d and E/e, Ᵹ/ᵹ (insular G) as G/g, Œ/œ between
O/o and P/p, ſ (long S) equivalent to S/s, Þ/þ between T/t and U/u and Ƿ/ƿ (wynn) as W/w.

\glsxtrGeneralLatinVIrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for Latin characters (as \glsxtrGeneralLatinIrules but includes
Ð/ð between D/d and E/e and Þ/þ treated as TH/th and ß treated as “sz”).

\glsxtrGeneralLatinVrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for Latin characters (as \glsxtrGeneralLatinIrules but includes
Ð/ð between D/d and E/e and Þ/þ treated as TH/th and ß treated as “ss”).

\glsxtrgeneralpuncrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for general punctuation characters.

\glsxtrglossentry{〈label〉} glossaries-extra v1.21
Displays the given entry name including a hypertarget (if hyperref has been loaded) as the
destination for commands like \gls.

\glsxtrglossentryother{〈header〉}{〈label〉}{〈field〉} glossaries-extra v1.22+
Like \glsxtrglossentry but uses the value given in the supplied internal 〈field〉 where
〈header〉 is the code to use in the header (leave empty for default).

\glsxtrgroupfield glossaries-extra v1.21+
Expands to the field label used to store the entry group labels.

\GLSXTRhiername{〈label〉} glossaries-extra* v1.37+
Displays the hierarchical name for the entry identified by 〈label〉 with each level
separated by \glsxtrhiernamesep where each name is converted to upper case.

\GLSxtrhiername{〈label〉} glossaries-extra* v1.37+
Displays the hierarchical name for the entry identified by 〈label〉 with each level
separated by \glsxtrhiernamesep where the top-most name is converted to upper case.

\GlsXtrhiername{〈label〉} glossaries-extra* v1.37+
Displays the hierarchical name for the entry identified by 〈label〉 with each level

641

General Command Summary

separated by \glsxtrhiernamesep where each name has the first letter converted to
upper case.

\Glsxtrhiername{〈label〉} glossaries-extra* v1.37+
Displays the hierarchical name for the entry identified by 〈label〉 with each level
separated by \glsxtrhiernamesep where the top-most name has the first letter
converted to upper case.

\glsxtrhiername{〈label〉} glossaries-extra* v1.37+
Displays the hierarchical name for the entry identified by 〈label〉 with each level
separated by \glsxtrhiernamesep.

\glsxtrhiernamesep glossaries-extra* v1.37+
Separator between hierarchical levels displayed with \glsxtrhiername (and
case-changing variants). This defaults to “ . ” with the glossaries-extra package, but the
bib2gls interpreter has a different definition to assist sorting.

\glsxtrhyphenrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for hyphen characters.

\glsxtrhyphensuffix glossaries-extra v1.17+
The suffix used to construct the plural for the short form of abbreviations with the
“hyphen” styles.

\glsxtrifcustomdiscardperiod{〈true〉}{〈false〉} glossaries-extra v1.23+
Should expand to 〈true〉 if the post-link hook should check for a following full stop (in
addition to attribute checks) otherwise should expand to 〈false〉.

\GlsXtrIfFieldCmpNum{〈field〉}{〈entry
label〉}{〈comparison〉}{〈number〉}{〈true〉}{〈false〉} glossaries-extra v1.31+
Compares the given (numerical) field value to the given integer 〈number〉. The
〈comparison〉 may be one of: =, < or >. If the field is undefined or empty, the value is
assumed to be 0. If the field is set, it must expand to an integer value. The value can be
referenced in 〈true〉 or 〈false〉 with \glscurrentfieldvalue. The unstarred form adds
implicit grouping. The starred form (new to v1.39) doesn’t.

\GlsXtrIfFieldEqNum{〈field〉}{〈entry label〉}{〈number〉}{〈true〉}{〈false〉} glossaries-extra v1.31+
Tests if the given field value expands to the given integer 〈number〉. If the field is
undefined or empty, the value is assumed to be 0. If the field is set, it must expand to an
integer value. The value can be referenced in 〈true〉 or 〈false〉 with
\glscurrentfieldvalue. The unstarred form adds implicit grouping. The starred form
(new to v1.39) doesn’t.

\GlsXtrIfFieldEqStr{〈field label〉}{〈entry
label〉}{〈text〉}{〈true〉}{〈false〉} glossaries-extra v1.21+*
Tests if the given field value is the same as 〈text〉 for the given entry, which may not
exist. The unstarred form adds implicit grouping. The starred form (new to v1.39) doesn’t.

\GlsXtrIfFieldEqXpStr{〈field label〉}{〈entry
label〉}{〈text〉}{〈true〉}{〈false〉} glossaries-extra v1.31+*
Like \GlsXtrIfFieldEqStr but first (protected) fully expands 〈text〉 (but not the field

642

General Command Summary

value). The unstarred form adds implicit grouping. The starred form (new to v1.39)
doesn’t.

\GlsXtrIfFieldNonZero{〈field〉}{〈entry label〉}{〈true〉}{〈false〉} glossaries-extra v1.31+
Tests if the given field value expands to a non-zero integer. If the field is undefined or
empty, the value is assumed to be 0. If the field is set, it must expand to an integer value.
The value can be referenced in 〈true〉 or 〈false〉 with \glscurrentfieldvalue. The
unstarred form adds implicit grouping. The starred form (new to v1.39) doesn’t.

\GlsXtrIfFieldUndef{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉} glossaries-extra v1.23+
Tests if the given field (identified by its internal field label) isn’t defined for the given
entry, which may also not exist.

\glsxtrifhasfield{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉} glossaries-extra v1.19+*
Tests if the given entry has the given internal field set (defined and not empty) without
testing if the entry exists and adds implicit scoping to 〈true〉 and 〈false〉.

\glsxtrifhasfield*{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉} glossaries-extra v1.19+*
Tests if the given entry has the given field set (defined and not empty) without testing if
the entry exists and without introducing an implicit scope.

\GlsXtrIfHasNonZeroChildCount{〈entry
label〉}{〈true〉}{〈false〉} glossaries-extra-bib2gls v1.31+*
For use with the save-child-count resource option, this uses
\GlsXtrIfFieldNonZero to test if the childcount field has a non-zero value. The value
can be referenced in 〈true〉 or 〈false〉 with \glscurrentfieldvalue. The TEX parser
library recognises this command regardless of whether or not the child count is saved.

\glsxtrifhyphenstart{〈text〉}{〈true〉}{〈false〉} glossaries-extra v1.17+
Used by the “hyphen” abbreviation styles, this checks if 〈text〉 starts with a hyphen.

\GlsXtrIfInGlossary{〈entry-label〉}{〈type〉}{〈true〉}{〈false〉} glossaries-extra
Tests if the entry given 〈entry-label〉 is in the glossary identified by 〈type〉.

\glsxtrifinmark{〈true〉}{〈true〉} glossaries-extra v1.07+
Used by commands like \glsfmtshort, this expands to 〈true〉 in page headings and the
table of contents, otherwise it expands to 〈false〉.

\glsxtriflabelinlist{〈label〉}{〈list〉}{〈true〉}{〈false〉} glossaries-extra v1.21+
Tests if the 〈label〉 is contained in the comma-separated 〈list〉, where both 〈label〉 and
〈list〉 are fully expanded before testing. This test is designed for labels that are fully
expandable.

\GlsXtrIfUnusedOrUndefined{〈label〉}{〈true〉}{〈false〉} glossaries-extra v1.34+
Does 〈true〉 if the entry given by 〈label〉 hasn’t been used or is undefined, otherwise it
does 〈false〉. This command is not for use in the post-link hooks.

\glsxtrifwasfirstuse{〈true〉}{〈false〉} glossaries-extra
Only for use in the post-link hooks this tests if the entry just referenced was used for the
first time.

643

General Command Summary

\GlsXtrIfXpFieldEqXpStr{〈field label〉}{〈entry
label〉}{〈text〉}{〈true〉}{〈false〉} glossaries-extra v1.31+*
Like \GlsXtrIfFieldEqStr but first (protected) fully expands both the field value and
〈text〉. The unstarred form adds implicit grouping. The starred form (new to v1.39)
doesn’t.

\GlsXtrIndexCounterLink{〈text〉}{〈label〉} glossaries-extra-bib2gls v1.29+
Creates a hyperlink to the wrglossary location obtained from the indexcounter field.

\glsxtrindexseealso{〈label〉}{〈xr list〉} glossaries-extra v1.16+
Indexes a “see also” cross-reference.

\glsxtrinsertinsidefalse glossaries-extra v1.02+
Sets the \ifglsxtrinsertinside switch to false.

\glsxtrinsertinsidetrue glossaries-extra v1.02+
Sets the \ifglsxtrinsertinside switch to true.

\glsxtrLatinAA glossaries-extra-bib2gls v1.27+
Collation sub-rule for Å/å.

\glsxtrLatinOslash glossaries-extra-bib2gls v1.27+
Collation sub-rule for Ø/ø.

\GlsXtrLoadResources[〈options〉] glossaries-extra v1.11+
A shortcut command that uses \glsxtrresourcefile.

\glsxtrlocalsetgrouptitle{〈group label〉}{〈group title〉} glossaries-extra v1.24+
Locally sets the title for the group identified by the given label.

\GlsXtrLocationField glossaries-extra v1.37+
Expands to the internal name of the field storing the location list, defaulting to location.

\glsxtrlocationhyperlink{〈counter〉}{〈prefix〉}{〈location〉} glossaries-extra v1.14+
Used to create the location hyperlink, this tests if an internal or external link is required
depending on the definition of \glsxtrsupplocationurl.

\glsxtrlong[〈options〉]{〈label〉} glossaries-extra
Links to the entry’s definition in the glossary with the link text obtained from the long
field (using the appropriate abbreviation style) without altering the first use flag.

\glsxtrlonghyphen{〈long〉}{〈label〉}{〈insert〉} glossaries-extra v1.17+
Used by the long-hyphen-postshort-hyphen abbreviation to format the long form and
check if the 〈insert〉 starts with a hyphen.

\glsxtrlonghyphennoshort{〈label〉}{〈long〉}{〈insert〉} glossaries-extra v1.17+
Used by the “long-hyphen-noshort” styles to format the first use form. This checks if the
inserted material starts with a hyphen and makes the appropriate modifications.

\glsxtrlonghyphenshort{〈label〉}{〈long〉}{〈short〉}{〈insert〉} glossaries-extra v1.17+
Used by the “long-hyphen-short-hyphen” abbreviation styles to format the full form.

644

General Command Summary

\glsxtrlongnoshortdescname glossaries-extra v1.25+
Hook for the long-noshort-desc abbreviation styles that expands to the value that the
name field is assigned to when the abbreviation is defined with \newabbreviation
(defaults to the long form).

\glsxtrlongnoshortname glossaries-extra v1.25+
Hook for the long-noshort abbreviation styles that expands to the value that the name
field is assigned to when the abbreviation is defined with \newabbreviation (defaults to
the short form).

\glsxtrlongshortdescname glossaries-extra v1.17+
Hook for the long-short-desc abbreviation styles that expands to the value that the name
field is assigned to when the abbreviation is defined with \newabbreviation (defaults to
the long form followed by the short form in parentheses).

\glsxtrlongshortname glossaries-extra v1.25+
Hook for the long-short abbreviation styles that expands to the value that the name field
is assigned to when the abbreviation is defined with \newabbreviation (defaults to the
short form).

\glsxtrlongshortuserdescname glossaries-extra v1.25+
Hook for the long-short-user-desc abbreviation styles that expands to the value that the
name field is assigned to when the abbreviation is defined with \newabbreviation
(defaults to the long form followed by the parenthetical material).

\glsxtrMathItalicGreekIrules glossaries-extra-bib2gls v1.27+
Collation sub-rule for math-Greek characters (includes upright digamma between epsilon
and zeta).

\GLSxtrmultientryadjustedname{〈sublist1〉}{〈name〉}{〈sublist2〉}
{〈label〉} glossaries-extra-bib2gls v1.48+
Upper case version of \glsxtrmultientryadjustedname.

\GlsXtrmultientryadjustedname{〈sublist1〉}{〈name〉}{〈sublist2〉}
{〈label〉} glossaries-extra-bib2gls v1.48+
Title case version of \glsxtrmultientryadjustedname.

\Glsxtrmultientryadjustedname{〈sublist1〉}{〈name〉}{〈sublist2〉}
{〈label〉} glossaries-extra-bib2gls v1.48+
First letter uppercase version of \glsxtrmultientryadjustedname.

\glsxtrmultientryadjustedname{〈sublist1〉}{〈name〉}{〈sublist2〉}
{〈label〉} glossaries-extra-bib2gls v1.48+
Used by compound-adjust-name to format the name using all the elements of the
compound entry set, where 〈sublist1〉 is the list of other labels before the main label,
〈sublist2〉 is the list of other labels that follow the main label, 〈name〉 is the
pre-adjustment name, and 〈label〉 identifies the compound entry.

\glsxtrmultisupplocation{〈location〉}{〈src〉}{〈format〉} glossaries-extra-bib2gls v1.36+
Used by \glsxtrdisplaysupploc to format the external location (with a hyperlink, if
enabled).

645

General Command Summary

\glsxtrnewgls[〈options〉]{〈prefix〉}{〈cs〉} glossaries-extra v1.21+
Defines the command 〈cs〉 to behave like \gls with the given label prefix.

\glsxtrnewglslike[〈options〉]{〈prefix〉}{〈gls-like cs〉}{〈glspl-like cs〉}{〈Gls-like
cs〉}{〈Glspl-like cs〉} glossaries-extra v1.21+
Defines commands to behave like \gls, \glspl, \Gls and \Glspl with the given label
prefix.

\glsxtrnewnumber[〈key=value list〉]{〈label〉} glossaries-extra numbers
Defines a new number.

\glsxtrnewsymbol[〈key=value list〉]{〈label〉}{〈symbol〉} glossaries-extra symbols
Defines a new symbol.

\glsxtrnonprintablerules glossaries-extra-bib2gls v1.27+
Collation sub-rule for non-printable characters.

\glsxtrnopostpunc glossaries-extra v1.22+
Suppresses the post-description punctuation without suppressing the post-description
hook.

\glsxtronlydescname glossaries-extra v1.17+
Hook for the long-only-short-only-desc style that expands to the value that the name
field is assigned to when the abbreviation is defined with \newabbreviation (defaults to
the long form).

\glsxtronlyname glossaries-extra v1.25+
Hook for the long-only-short-only style that expands to the value that the name field is
assigned to when the abbreviation is defined with \newabbreviation (defaults to the
short form).

\glsxtronlysuffix glossaries-extra v1.17+
The suffix used to construct the plural for the short form of abbreviations with the “only”
styles. The default definition just uses \glsxtrabbrvpluralsuffix.

\glsxtrp{〈field〉}{〈label〉} glossaries-extra v1.07+
Displays the given 〈field〉 value for the entry given by 〈label〉 (no hyperlinks, except in
the glossary, and no indexing by default, but includes formatting, if appropriate).

\glsxtrpageref{〈label〉} glossaries-extra v1.11
When used with entrycounter or subentrycounter may be used to cross-reference
the entry’s number in the glossary list with \pageref.

\glsxtrparen{〈text〉} glossaries-extra v1.17+
Used to markup parenthetical material, such as in
\glsxtrpostlinkAddDescOnFirstUse or in the long-short and short-long abbreviation
styles.

\glsxtrpostdescabbreviation glossaries-extra
Hook used after the description is displayed in the glossary for entries that have the
category set to abbreviation.

646

General Command Summary

\glsxtrpostdesc〈category〉 glossaries-extra
Hook used after the description is displayed in the glossary for entries that have the
category set to 〈category〉. Common category hooks such as
\glsxtrpostdescgeneral are provided by glossaries-extra. If required, this hook can be
defined with \glsdefpostdesc.

\glsxtrpostdescgeneral glossaries-extra
Hook used after the description is displayed in the glossary for entries that have the
category set to general.

\glsxtrpostdescsymbol glossaries-extra
Hook used after the description is displayed in the glossary for entries that have the
category set to symbol.

\glsxtrposthyphenlong{〈label〉}{〈insert〉} glossaries-extra v1.17+
Used by the “postlong-hyphen” styles in the post-link hook.

\glsxtrposthyphenshort{〈label〉}{〈insert〉} glossaries-extra v1.17+
Used by the long-hyphen-postshort-hyphen style in the post-link hook.

\glsxtrposthyphensubsequent{〈label〉}{〈insert〉} glossaries-extra v1.17+
Used by the long-hyphen-postshort-hyphen abbreviation in the post-link hook for
subsequent use.

\glsxtrpostlinkAddDescOnFirstUse glossaries-extra
Only for use in the post-link hooks, this appends a space and the value of the
description field in parentheses if the entry that was just referenced was used for the
first time.

\glsxtrpostlinkAddSymbolDescOnFirstUse glossaries-extra v1.31+
Only for use in the post-link hooks, if the entry that was just referenced was used for the
first time, this appends a space and, in parentheses, the value of the symbol field (if set)
followed by the value of the description field.

\glsxtrpostlinkAddSymbolOnFirstUse glossaries-extra
Only for use in the post-link hooks, this appends a space and the value of the symbol
field in parentheses if the entry that was just referenced was used for the first time and
has the symbol field set.

\glsxtrpostlink〈category〉 glossaries-extra
Hook used after commands like \gls for entries that have the category set to
〈category〉. If required, this hook can be defined with \glsdefpostlink.

\glsxtrpostname〈category〉 glossaries-extra
Hook used by \glossentryname for entries that have the category set to 〈category〉. If
required, this hook can be defined with \glsdefpostname.

\glsxtrprelocation glossary-bookindex v1.21+ and glossaries-extra-stylemods v1.21+
Used before the location list in the bookindex style and the styles patched by
glossaries-extra-stylemods.

647

General Command Summary

\glsxtrprependlabelprefix{〈prefix〉} glossaries-extra-bib2gls v1.37+
Prepends 〈prefix〉 to the prefix label list.

\GlsXtrProvideBibTeXFields glossaries-extra-bib2gls v1.29+
Defines the standard BIBTEX fields using \glsaddstoragekey.

\glsxtrprovidecommand{〈cs〉}[〈n〉][〈def 〉]{〈code〉} glossaries-extra-bib2gls* v1.27+
Behaves like \providecommand in the document but like \renewcommand in bib2gls.

\glsxtrprovidestoragekey{〈key〉}{〈default value〉}{〈no link cs〉} glossaries-extra v1.12+
Adds a new key, if not already defined, for use in \newglossaryentry and an associated
command to access it where (unlike \glsaddstoragekey) the 〈no link cs〉 part may be
empty if unrequired.

\glsxtrregularfont{〈text〉} glossaries-extra v1.04+
Used by commands like \gls to format the link text for regular terms.

\glsxtrresourcefile[〈options〉]{〈filename〉} glossaries-extra v1.08+
Input the .glstex file created by bib2gls and write resource instructions to the .aux
file.

\glsxtrresourceinit glossaries-extra v1.21+
Provides code that locally redefines commands during the protected write operation
performed by \glsxtrresourcefile.

\GlsXtrResourceInitEscSequences glossaries-extra-bib2gls v1.51+
Locally redefines quark commands, such as \u and \NULL, that shouldn’t expand in
resource options as they have special meanings for some options. May be added to the
definition of \glsxtrresourceinit if required.

\glsxtrrestorepostpunc glossaries-extra v1.23+
Used within post-description category hooks, this restores the post-description
punctuation if it’s been suppressed with \glsxtrnopostpunc.

\glsxtrRevertTocMarks glossaries-extra v1.07+
Restores original behaviour of \tableofcontents so that \glsxtrifinmark expands to
〈false〉 in the table of contents.

\glsxtrscsuffix glossaries-extra
The suffix used to construct the plural for the short form of abbreviations with the
small-cap “sc” styles. This counteracts the effect of \textsc using \glstextup.

\glsxtrseelist{〈xr label list〉} glossaries-extra v1.16+
Formats the list of cross-reference labels, without the initial “see” tag.

\glsxtrsetaliasnoindex glossaries-extra v1.12+
Hooks into the alias noindex setting.

\GlsXtrSetDefaultGlsOpts{〈options〉} glossaries-extra
Set the default options for commands like \gls.

\GlsXtrSetDefaultNumberFormat{〈format〉} glossaries-extra v1.19+
Set the default format to use if the format key isn’t set.

648

General Command Summary

\GlsXtrSetField{〈entry label〉}{〈field label〉}{〈value〉} glossaries-extra v1.12+
Assigns the given 〈value〉 to the field identified by 〈field label〉 for the entry identified by
〈entry label〉.

\glsxtrsetglossarylabel{〈label〉} glossaries-extra v1.39+
Sets the label for subsequent glossaries (should be scoped or updated per glossary to
prevent duplicate labels) and defines \@currentlabelname to the glossary’s toc title.
This is an alternative to the numberedsection={nameref} package option or label
\printunsrtglossary option.

\glsxtrsetgrouptitle{〈group label〉}{〈group title〉} glossaries-extra v1.14+
Globally sets the title for the group identified by the given label.

\glsxtrsetpopts{〈options〉} glossaries-extra v1.07+
Sets the default options for \glsxtrp.

\GlsXtrSetRecordCountAttribute{〈category list〉}{〈value〉} glossaries-extra v1.21+
Sets the recordcount attribute to 〈value〉 for the given categories.

\glsxtrSetWidest{〈type〉}{〈level〉}{〈text〉} glossaries-extra-bib2gls v1.37+
Used by \bibglssetwidest to set the widest entry name for the given level for the
alttree style and the styles provided by glossary-longextra.

\glsxtrSetWidestFallback{〈max depth〉}{〈list〉} glossaries-extra-bib2gls v1.37+
Used by \bibglssetwidesttoplevelfallback and \bibglssetwidestfallback to
set the widest entry name for the alttree style and the styles provided by
glossary-longextra using the commands provided by glossaries-extra-stylemods.

\glsxtrshort[〈options〉]{〈label〉} glossaries-extra
Links to the entry’s definition in the glossary with the link text obtained from the short
field (using the appropriate abbreviation style) without altering the first use flag.

\glsxtrshortdescname glossaries-extra v1.17+
Hook for the short-nolong-desc abbreviation styles that expands to the value that the
name field is assigned to when the abbreviation is defined with \newabbreviation
(defaults to the short form followed by long form in parentheses).

\glsxtrshorthyphen{〈short〉}{〈label〉}{〈insert〉} glossaries-extra v1.17+
Used by the “postlong-hyphen” styles to format the short form and check if 〈insert〉 starts
with a hyphen.

\glsxtrshorthyphenlong{〈label〉}{〈short〉}{〈long〉}{〈insert〉} glossaries-extra v1.17+
Used by the short-hyphen-long-hyphen style to format the full form.

\glsxtrshortlongdescname glossaries-extra v1.17+
Hook for the short-long-desc abbreviation styles that expands to the value that the name
field is assigned to when the abbreviation is defined with \newabbreviation (defaults to
the long form followed by the short form in parentheses).

\glsxtrshortlongname glossaries-extra v1.25+
Hook for the short-long abbreviation styles that expands to the value that the name field

649

General Command Summary

is assigned to when the abbreviation is defined with \newabbreviation (defaults to the
short form).

\glsxtrshortlonguserdescname glossaries-extra v1.25+
Hook for the short-long-user-desc abbreviation styles that expands to the value that the
name field is assigned to when the abbreviation is defined with \newabbreviation
(defaults to the short form followed by the parenthetical material).

\glsxtrshortnolongname glossaries-extra v1.25+
Hook for the short-nolong abbreviation styles that expands to the value that the name
field is assigned to when the abbreviation is defined with \newabbreviation (defaults to
the short form).

\glsxtrsmsuffix glossaries-extra
The suffix used to construct the plural for the short form of abbreviations with the “sm”
styles. This defaults to \glsxtrabbrvpluralsuffix.

\glsxtrspacerules glossaries-extra-bib2gls v1.27+
Collation sub-rule for space characters.

\GlsXtrStandaloneEntryName{〈label〉} glossaries-extra v1.37+
Used within \glsxtrglossentry to display the name (with a hypertarget, if supported).

\GlsXtrStandaloneEntryOther{〈label〉}{〈field〉} glossaries-extra v1.37+
Used within \glsxtrglossentryother to display the given field value (with a
hypertarget, if supported).

\GlsXtrStandaloneGlossaryType glossaries-extra v1.31+
Expands to the label for \currentglossary within \glsxtrglossentry and
\glsxtrglossentryother.

\GlsXtrStandaloneSubEntryItem{〈label〉} glossaries-extra v1.31+
Used within \glsxtrglossentry and \glsxtrglossentryother to display sub-item
labels.

\GlsXtrStartUnsetBuffering glossaries-extra v1.30+
Starts buffering calls to \glsunset (which is internally used by commands like \gls) for
use in code where the boolean switch causes a problem. The buffer can later be processed
and cleared with \GlsXtrStopUnsetBuffering. The starred form (added to v1.31)
avoids duplicate labels in the buffer’s internal list.

\GlsXtrStopUnsetBuffering glossaries-extra v1.30+
Unsets (locally with the starred form) the first use flag of all the entry whose labels are
stored in the buffer that was started with \GlsXtrStartUnsetBuffering and then
clears the buffer.

\glsxtrsupphypernumber{〈location〉} glossaries-extra v1.14+
Uses \glshypernumber to create a hyperlink to the given location (if hyperlinks are
supported) but first checks the externallocation attribute to determine if an external link
is required.

650

General Command Summary

\glsxtrsupplocationurl glossaries-extra v1.14+
Set by \glsxtrsupphypernumber and \glsxtrmultisupplocation to the URL of the
supplemental document for use by \glshypernumber.

\glsxtrtagfont{〈text〉} glossaries-extra
Font used by tagging command defined by \GlsXtrEnableInitialTagging.

\glsxtrunsrtdo{〈label〉} glossaries-extra v1.12+
Displays the entry given by 〈label〉 using \glossentry or \subglossentry depending
on the entry’s hierarchical level (taking leveloffset into account).

\GLSxtrusefield{〈entry label〉}{〈field label〉} glossaries-extra* v1.37+
As \glsxtrusefield but converts the value to upper case.

\Glsxtrusefield{〈entry label〉}{〈field label〉} glossaries-extra* v1.12+
Like \glsxtrusefield but converts the first letter to upper case.

\glsxtrusefield{〈entry label〉}{〈field label〉} glossaries-extra* v1.12+
Expands to the value of the given field for the given entry.

\glsxtruserfield glossaries-extra v1.04+
Used by the parenthetical abbreviation styles, this expands to the internal label of the
field used to store the additional parenthetical material. The default value is useri.

\glsxtruserparen{〈text〉}{〈label〉} glossaries-extra v1.04+
Used by the “user” abbreviation styles to format the parenthetical material where 〈text〉 is
the default parenthetical text and 〈label〉 is the entry’s label. This checks the field given
by \glsxtruserfield and, if set, the 〈text〉 is followed by a comma and the user value.

\glsxtrusersuffix glossaries-extra v1.04+
The suffix used to construct the plural for the short form of abbreviations with the “user”
styles. The default definition just uses \glsxtrabbrvpluralsuffix.

\glsxtrusesee{〈label〉} glossaries-extra v1.06+
Applies \glsseeformat to the entry’s see field if not empty.

\glsxtruseseealso{〈label〉} glossaries-extra v1.16+
Applies \glsseeformat to the entry’s seealso field if not empty.

\glsxtruseseealsoformat{〈xr list〉} glossaries-extra v1.16+
Used to format the entries whose labels are given in 〈xr list〉 as a list of “see also”
cross-references.

\glsxtruseseeformat{〈tag〉}{〈labels〉} glossaries
Formats the entries identified in the comma separated list of labels as a set of
cross-references.

\glsxtrword{〈text〉} glossaries-extra v1.17+
Used to encapsulate each word in the long form of an abbreviation by the markwords
attribute.

651

General Command Summary

\glsxtrwordsep glossaries-extra v1.17+
Used to mark spaces between each word in the long form of an abbreviation by the
markwords attribute.

H

\heartsuit kernel command* (maths mode)
Heart symbol (♥).

\hyperbf{〈text〉} glossaries
A location format that uses the bold font that also has a hyperlink (if enabled).

\hyperemph{〈text〉} glossaries
A location format that uses \emph to set the font and also has a hyperlink (if enabled).

\hyperit{〈text〉} glossaries
A location format that uses the italic font that also has a hyperlink (if enabled).

\hyperlink{〈target name〉}{〈text〉} hyperref*
Create a hyperlink to 〈target name〉 with the given 〈text〉.

\hyperref hyperref
This command has 2 forms:

\hyperref{〈URL〉}{〈category〉}{〈name〉}{〈text〉}
Create a hyperlink to an external location with the anchor formed from
〈category〉.〈name〉 and the displayed 〈text〉.

\hyperref[〈label〉]{〈text〉}
Create an internal hyperlink with the displayed 〈text〉 to the same place that
\ref{〈label〉} would be linked. Note that the 〈label〉 argument isn’t optional. The
square bracket notation disambiguates from the syntax for the external form of
\hyperref.

\hyperrm{〈text〉} glossaries
A location format that uses the serif (Roman) font that also has a hyperlink (if enabled).

\hypersf{〈text〉} glossaries
A location format that uses the sans-serif font that also has a hyperlink (if enabled).

I

\ifcase〈number〉 TEX primitive*
Case conditional.

\ifcsdef{〈cs-name〉}{〈true〉}{〈false〉} etoolbox
Tests if the control sequence given by 〈cs-name〉 is defined.

\ifcsstrequal{〈cs-name1〉}{〈cs-name2〉}{〈true〉}{〈false〉} etoolbox
Tests if the replacement text of the command given by the control sequence name
〈cs-name1〉 equals the replacement text of the command given by the control sequence
name 〈cs-name2〉.

652

General Command Summary

\ifcsstring{〈cs-name〉}{〈string〉}{〈true〉}{〈false〉} etoolbox
Tests if the replacement text of the command given by the control sequence name
〈cs-name〉 equals 〈string〉.

\ifdef{〈cs〉}{〈true〉}{〈false〉} etoolbox*
Tests if the control sequence 〈cs〉 is defined.

\ifdefstrequal{〈cs1〉}{〈cs2〉}{〈true〉}{〈false〉} etoolbox
Tests if the replacement text of the command 〈cs1〉 equals the replacement text of the
command 〈cs2〉.

\ifDTLlistskipempty datatool-base* v2.31+
Conditional that determines whether or not commands like \DTLformatlist should
skip empty elements.

\IfFileExists{〈file〉}{〈true〉}{〈false〉} kernel command*
If the given 〈file〉 exists does 〈true〉 otherwise does 〈false〉.

\ifglossaryexists{〈type〉}{〈true〉}{〈false〉} glossaries
Tests if the glossary identified by 〈type〉 exists and does 〈true〉 if it does exists, otherwise
does 〈false〉. The unstarred form treats ignored glossaries as non-existent.

\ifglossaryexists*{〈type〉}{〈true〉}{〈false〉} glossaries v4.46+ (or glossaries-extra v1.44+)
The starred form of \ifglossaryexists treats ignored glossaries as existing.

\ifglsentryexists{〈label〉}{〈true〉}{〈false〉} glossaries
Tests if the entry given by 〈label〉 exists.

\ifglsfieldcseq{〈entry label〉}{〈field label〉}{〈cs-name〉}{〈true〉}{〈false〉} glossaries v4.16+
Tests if the given entry has the given field value equal to the replacement text of the
command given by the control sequence name 〈cs-name〉, where 〈field label〉 is the
internal field label (not the key name). The test uses \ifcsstrequal.

\ifglsfielddefeq{〈entry label〉}{〈field label〉}{〈cs〉}{〈true〉}{〈false〉} glossaries v4.16+
Tests if the given entry has the given field value equal to the replacement text of the
command given by 〈cs〉, where 〈field label〉 is the internal field label (not the key name).
The test uses \ifdefstrequal.

\ifglsfieldeq{〈entry label〉}{〈field label〉}{〈string〉}{〈true〉}{〈false〉} glossaries v4.16+*
Tests if the given entry has the given field value equal to 〈string〉, where 〈field label〉 is
the internal field label (not the key name). No expansion is performed in the test (which
just uses \ifcsstring).

\ifglsfieldvoid{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉} glossaries v4.50+*
Expands to 〈true〉 if the given entry doesn’t exist, or exists but doesn’t have the field
(identified by its internal field label) defined or does have the field defined but the field is
empty. Otherwise expands to 〈false〉. This is essentially like \GlsXtrIfFieldUndef but
also tests for an empty value.

\ifglshaschildren{〈entry label〉}{〈true〉}{〈false〉} glossaries*
Tests if the given entry, which must be defined, has child entries. This method is
inefficient as it has to iterate over all defined entries to determine which ones have 〈entry

653

General Command Summary

label〉 as the value of the parent field. With bib2gls, a more efficient approach is to use
save-child-count and test the value of the childcount field. The TEX parser library
recognises this command and will simply use the child count (regardless of whether or
not the child count is saved).

\ifglshasdesc{〈entry label〉}{〈true〉}{〈false〉} glossaries*
Tests if the given entry, which must be defined, has the description field set.

\ifglshasfield{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉} glossaries*
Tests if the given entry, which must be defined, has the given field set to a non-empty
value. This is implemented in bib2gls in the same way as \glsxtrifhasfield*.

\ifglshaslong{〈entry label〉}{〈true〉}{〈false〉} glossaries*
Tests if the given entry, which must be defined, has the long field set.

\ifglshasparent{〈entry label〉}{〈true〉}{〈false〉} glossaries*
Tests if the given entry, which must be defined, has the parent field set.

\ifglshasprefix{〈entry label〉}{〈true〉}{〈false〉} glossaries-prefix
Tests if the given entry, which must be defined, has the prefix field set to value that’s
not empty.

\ifglshasprefixfirst{〈entry label〉}{〈true〉}{〈false〉} glossaries-prefix
Tests if the given entry, which must be defined, has the prefixfirst field set to value
that’s not empty.

\ifglshasprefixfirstplural{〈entry label〉}{〈true〉}{〈false〉} glossaries-prefix
Tests if the given entry, which must be defined, has the prefixfirstplural field set to
value that’s not empty.

\ifglshasprefixplural{〈entry label〉}{〈true〉}{〈false〉} glossaries-prefix
Tests if the given entry, which must be defined, has the prefixplural field set to value
that’s not empty.

\ifglshasshort{〈entry label〉}{〈true〉}{〈false〉} glossaries*
Tests if the given entry, which must be defined, has the short field set.

\ifglshassuppressedesc{〈entry label〉}{〈true〉}{〈false〉} glossaries
Tests if the given entry, which must be defined, has the description field set to
\nopostdesc.

\ifglshassymbol{〈entry label〉}{〈true〉}{〈false〉} glossaries*
Tests if the given entry, which must be defined, has the symbol field set to value that’s
not empty and not \relax.

\ifglsused{〈label〉}{〈true〉}{〈false〉} glossaries
Does 〈true〉 if the entry given by 〈label〉 has been used, 〈false〉 if the entry hasn’t been
used and neither if the entry doesn’t exist (an error or warning message will occur and ⁇
will appear in the document). This command is not for use in the post-link hooks.

654

General Command Summary

\ifglsxtrinsertinside glossaries-extra v1.02+
Switch that determines whether or not inserted text (provided in the final optional
argument of commands like \gls) is inside or outside of the font changing commands in
the predefined abbreviation styles. The default is false.

\ifignoredglossary{〈type〉}{〈true〉}{〈false〉} glossaries v4.08+
Tests if the glossary given by 〈type〉 was defined as an ignored glossary.

\IfNotBibGls{〈not bib2gls〉}{〈bib2gls〉} glossaries-extra-bib2gls*
Defined by the bib2gls interpreter to expand to 〈bib2gls〉 and by glossaries-extra-bib2gls
to expand to 〈not bib2gls〉. The command either won’t be recognised by other
applications that use the TEX Parser Library or it will expand to its first argument.

\ifnum〈number1〉〈comparison〉〈number2〉 TEX primitive*
Integer conditional.

\ifstrempty{〈string〉}{〈true〉}{〈false〉} etoolbox
Tests if 〈string〉 is empty.

\IfTeXParserLib{〈parser code〉}{〈TEX code〉} glossaries-extra-bib2gls*
Defined by the TEX parser library to expand to 〈parser code〉 and by
glossaries-extra-bib2gls to expand to 〈TEX code〉.

\immediate〈file operation〉 TEX primitive
Perform the file operation immediately instead of the usual delay.

\IN bib2gls quark
A quark to denote “is a substring” conditional in assign-fields conditionals. This
token needs to be protected from expansion in the argument of \GlsXtrLoadResources.

\include{〈file〉} kernel command*
Clears the page, creates a supplementary .aux file, and selectively inputs the given file.

\index{〈text〉} kernel command
Indexes the given term by writing the relevant information to an associated file that can
then be processed by makeindex or xindy.

\indexname glossaries or language packages
Language-sensitive name used for the title of the glossary created with the index
package option.

\input{〈file〉} kernel command*
Input the given file.

\INTERPRET{〈element-list〉} bib2gls quark
A quark to denote an interpreted element in assign-fields. This token needs to be
protected from expansion in the argument of \GlsXtrLoadResources.

\INTERPRETNOREPL{〈element-list〉} bib2gls quark
As \INTERPRET but doesn’t replace TEX special characters.

\invfmt{〈maths〉}
Example command.

655

General Command Summary

J

\jobname primitive
The current job name, which is usually the name of the main .tex file without the
extension.

L

\L kernel command*
Produces the upper case L-slash character Ł.

\l kernel command*
Produces the lower case l-slash character ł.

\label{〈id〉} kernel command*
Creates a label that can be referenced with \ref or \pageref.

\LABELIFY{〈element-list〉} bib2gls quark
A quark to denote a label element in assign-fields. This token needs to be protected
from expansion in the argument of \GlsXtrLoadResources.

\LABELIFYLIST{〈element-list〉} bib2gls quark
A quark to denote a label-list element in assign-fields. This token needs to be
protected from expansion in the argument of \GlsXtrLoadResources.

\LC{〈element-list〉} bib2gls quark
A quark to denote a lower case change in assign-fields syntax. This token needs to be
protected from expansion in the argument of \GlsXtrLoadResources.

\LEN{〈element-list〉} bib2gls quark
A quark to denote the number of (detokenized) characters in a value in assign-fields.
This token needs to be protected from expansion in the argument of
\GlsXtrLoadResources.

\let〈token1〉〈token2〉 TEX primitive*
Assigns 〈token1〉 to 〈token2〉.

\listbreak etoolbox
May be used within the handler macro of etoolbox’s internal list loop commands to
prematurely break the loop.

\listxadd{〈list cs〉}{〈element〉} etoolbox
Globally adds (expanded) 〈element〉 to the list stored in the control sequence 〈list cs〉.

\loadglsentries[〈type〉]{〈file〉} glossaries
Locally redefines \glsdefaulttype to 〈type〉 and inputs 〈file〉.

\longnewglossaryentry{〈label〉}{〈key=value list〉}{〈description〉} glossaries
Defines a new glossary entry and appends \leavemode\unskip\nopostdesc at the end
of 〈description〉.

656

General Command Summary

\longnewglossaryentry*{〈label〉}{〈key=value list〉}{〈description〉} glossaries-extra v1.12+
Defines a new glossary entry without appending any extra code to the end of
〈description〉.

\longprovideglossaryentry{〈label〉}{〈key=value list〉}{〈description〉} glossaries
Defines a new glossary entry if one doesn’t already exist with the given label.

M

\mainmatter book-like classes
Switches to main matter.

\makefirstuc{〈text〉} mfirstuc*
Converts the first letter of 〈text〉 to upper case.

\makeglossaries glossaries
Opens associated glossary files to be processed by makeindex or xindy.

\MakeLowercase{〈text〉} kernel command*
Converts 〈text〉 to lower case.

\makenoidxglossaries glossaries v4.04+
Indicates that TEX should be used to sort and collate the glossary information instead of
using an external application; this command should not be used with bib2gls.

\MakeTextLowercase{〈text〉} textcase*
Converts 〈text〉 to lower case.

\MakeTextUppercase{〈text〉} textcase*
Converts 〈text〉 to upper case.

\MakeUppercase{〈text〉} kernel command*
Converts 〈text〉 to upper case.

\mathcal{〈character〉} kernel command (maths mode)
Renders the given (upper case) maths character in a calligraphic font.

\mathord{〈maths〉} TEX primitive
Assigns the character or sub-formula in the argument to class 0, ordinary.

\MFUblocker{〈cs〉} mfirstuc v2.08+*
Identifies 〈cs〉 as a command that, if it occurs at the start of the argument of
\makefirstuc, it should prevent any case-change.

\MFUexcl{〈cs〉} mfirstuc v2.08+*
Identifies 〈cs〉 as a command whose argument should not have its case changed.

\MFUnocap{〈word〉} mfirstuc* v1.09+
Identifies 〈word〉 as one that should not have its case-changed by \capitalisewords
unless it occurs at the start.

657

General Command Summary

\MFUskippunc{〈punctuation〉} mfirstuc v2.07+*
If \makefirstuc starts with a punctuation character it should be encapsulated with this
command to skip 〈punctuation〉 and apply the case-change to the following character.

\MFUwordbreak{〈punctuation〉} mfirstuc v2.07+*
If \capitalisewords contains punctuation that should be treated as a word break then
〈punctuation〉 should be encapsulated with this command to apply the case-change to the
following character.

\mgls[〈options〉]{〈label〉}[〈insert〉] glossaries-extra v1.48+
Applies \gls to each element in the set defined by \multiglossaryentry.

\MGP{〈group-ref 〉} bib2gls quark
A quark to denote a reference to a group from a regular expression match. This token
needs to be protected from expansion in the argument of \GlsXtrLoadResources. The
〈group-ref 〉 may be either an integer index or a textual name.

\midrule booktabs
Horizontal rule for divider between header and main content of a tabular-like
environment.

\mtxfmt{〈symbol〉}
Example command.

\multiglossaryentry[〈options〉]{〈multilabel〉}[〈main label〉]{〈list〉} glossaries-extra v1.48+
Defines a set of labels (which must correspond to entries that have already been defined)
that can be collectively referred to by commands like \mgls. The 〈main label〉 must be
included in the comma-separated 〈list〉 and indicates which element is considered the
main entry in the set. If omitted, the last element in 〈list〉 is assumed to be the main
element.

\multiglossaryentrysetup{〈options〉} glossaries-extra v1.48+
Setup the general options for compound entries.

N

\n
Indicates a newline character in regular expressions.

\nary{〈text〉}
Example command.

\newabbreviation[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉} glossaries-extra
Defines a new abbreviation.

\newacro[〈key=value list〉]{〈short〉}{〈long〉} datagidx
Defines a new abbreviation.

\newacronym[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉} glossaries
Defines a new abbreviation. The glossaries-extra package redefines this to use
\newabbreviation with the category set to acronym.

658

General Command Summary

\newcommand{〈cs〉}[〈n〉][〈def 〉]{〈code〉} kernel command*
Defines a new command.

\newdualentry[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}{〈description〉}
Example given in glossaries user manual.

\newentry{〈label〉}{〈key=value list〉} glossaries-extra shortcuts
Equivalent to \newglossaryentry.

\newgidx[〈key=value list〉]{〈db-name〉}{〈title〉} datagidx
Defines a new database customised for datagidx.

\newglossary[〈log〉]{〈type〉}{〈gls〉}{〈glo〉}{〈title〉} glossaries
Defines a new glossary identified by 〈type〉 with the given title and associated file
extensions used by makeindex or xindy.

\newglossary*{〈type〉}{〈title〉} glossaries
Defines a new glossary identified by 〈type〉 with the given title.

\newglossaryentry{〈label〉}{〈key=value list〉} glossaries
Defines a new glossary entry.

\newglossarystyle{〈name〉}{〈definition〉} glossaries
Defines a new glossary style called 〈name〉.

\newignoredglossary{〈type〉} glossaries v4.08+
Defines a new ignored glossary (with hyperlinks suppressed) identified by 〈type〉 that’s
not included in the list used by commands, such as \printunsrtglossaries, that
iterate over defined glossaries.

\newignoredglossary*{〈type〉} glossaries-extra v1.11+
Defines a new ignored glossary (without suppressing hyperlinks) identified by 〈type〉
that’s not included in the list used by commands, such as \printunsrtglossaries, that
iterate over defined glossaries.

\newnum{〈label〉}{〈key=value list〉} glossaries-extra shortcuts
Equivalent to \glsxtrnewnumber.

\newrobustcmd{〈cs〉}[〈n〉][〈def 〉]{〈code〉} etoolbox
Behaves like \newcommand but the newly defined command will be robust.

\newsym{〈label〉}{〈key=value list〉}{〈symbol〉} glossaries-extra shortcuts
Equivalent to \glsxtrnewsymbol.

\newterm[〈key=value list〉]{〈label〉} glossaries’s index package option
Defines a new glossary entry where the description field defaults to empty.

\newterm[〈key=value list〉]{〈name〉} datagidx
Defines a new term.

\NG kernel command*
Produces the upper case eng Ŋ.

659

General Command Summary

\ng kernel command*
Produces the lower case eng ŋ.

\NIN bib2gls quark
A quark to denote “is not a substring” conditional in assign-fields conditionals. This
token needs to be protected from expansion in the argument of \GlsXtrLoadResources.

\nobreakspace kernel command*
Produces a non-breakable space.

\NoCaseChange{〈text〉} textcase*
Prevents \MakeTextUppercase and \MakeTextLowercase from converting 〈text〉.

\NOCHANGE{〈element-list〉} bib2gls quark
A quark to denote no case-change in assign-fields syntax. This token needs to be
protected from expansion in the argument of \GlsXtrLoadResources. It’s not defined
by \GlsXtrResourceInitEscSequences.

\nopostdesc glossaries
Suppresses the post-description hook.

\NOTPREFIXOF bib2gls quark
A quark to denote “is not a prefix of” conditional in assign-fields conditionals. This
token needs to be protected from expansion in the argument of \GlsXtrLoadResources.

\NOTSUFFIXOF bib2gls quark
A quark to denote “is not a suffix of” conditional in assign-fields conditionals. This
token needs to be protected from expansion in the argument of \GlsXtrLoadResources.

\NULL bib2gls quark
A quark to denote a null value in assign-fields conditionals. This token needs to be
protected from expansion in the argument of \GlsXtrLoadResources.

\number〈value〉 TEX primitive*
Expands the given numerical 〈value〉 to a base 10 integer number stripping any leading
zeros (use \char"〈hex〉 if the value is hexadecimal).

\numspacefmt{〈symbol〉}
Example command.

O

\O kernel command*
Produces the upper case O-slash character Ø.

\o kernel command*
Produces the lower case o-slash character ø.

\OE kernel command*
Produces the upper case Œ-ligature.

660

General Command Summary

\oe kernel command*
Produces the lower case œ-ligature.

\oldacronym[〈label〉]{〈short〉}{〈long〉}{〈options〉} glossaries
Emulates the way the old glossary package defined acronyms.

\omicron glossaries-extra-bib2gls*
Greek letter omicron o.

P

\PackageError{〈name〉}{〈code〉}{〈help〉} kernel command*
Generates an error message for the package identified by 〈name〉.

\pagelistname glossaries
Language-sensitive name used for the location list header for some glossary styles.

\pageref{〈id〉} kernel command*
Cross-reference the page where \label{〈id〉} occurred.

\par kernel command*
Paragraph break.

\parenswap{〈text1〉}{〈text2〉}
Example command.

\PGLS[〈options〉]{〈label〉}[〈insert〉] glossaries-prefix
Does 〈prefix〉\GLS[〈options〉]{〈label〉}[〈insert〉], where the 〈prefix〉 is obtained from the
appropriate prefix field with the text converted to upper case.

\Pgls[〈options〉]{〈label〉}[〈insert〉] glossaries-prefix
Does 〈prefix〉\gls[〈options〉]{〈label〉}[〈insert〉], where the 〈prefix〉 is obtained from the
appropriate prefix field with the first letter converted to upper case.

\pgls[〈options〉]{〈label〉}[〈insert〉] glossaries-prefix
Does 〈prefix〉\gls[〈options〉]{〈label〉}[〈insert〉], where the 〈prefix〉 is obtained from the
appropriate prefix field.

\PGLSpl[〈options〉]{〈label〉}[〈insert〉] glossaries-prefix
Does 〈prefix〉\GLSpl[〈options〉]{〈label〉}[〈insert〉], where the 〈prefix〉 is obtained from the
appropriate prefix field with the text converted to upper case.

\Pglspl[〈options〉]{〈label〉}[〈insert〉] glossaries-prefix
Does 〈prefix〉\glspl[〈options〉]{〈label〉}[〈insert〉], where the 〈prefix〉 is obtained from the
appropriate prefix field with the first letter converted to upper case.

\pglspl[〈options〉]{〈label〉}[〈insert〉] glossaries-prefix
Does 〈prefix〉\glspl[〈options〉]{〈label〉}[〈insert〉], where the 〈prefix〉 is obtained from the
appropriate prefix field.

\pi kernel command* (maths mode)
Greek letter pi π.

661

General Command Summary

\PREFIXOF bib2gls quark
A quark to denote “is a prefix of” conditional in assign-fields conditionals. This token
needs to be protected from expansion in the argument of \GlsXtrLoadResources.

\printglossaries glossaries
Iterates over all non-ignored defined glossaries and performs \printglossary for each
one.

\printglossary[〈options〉] glossaries
Inputs file created by makeindex or xindy.

\printnoidxglossaries glossaries v4.04+
Iterates over all non-ignored defined glossaries and performs \printnoidxglossary for
each one.

\printnoidxglossary[〈options〉] glossaries v4.04+
Uses TEX to sort, collate and list the glossary.

\printunsrtglossaries glossaries-extra v1.08+
Iterates over all non-ignored defined glossaries and performs \printunsrtglossary for
each one.

\printunsrtglossary[〈options〉] glossaries-extra v1.08+
Display a glossary by iterating over all entries associated with that glossary in the order
in which they were defined (which, with bib2gls, should correspond to the order
obtained from the sort settings given in the resource set options).

Options:
entrycounter={〈boolean〉}

Locally enable or disable top-level enumeration (overrides entrycounter package
option)

groups={〈boolean〉}
Controls whether or not \printunsrtglossary (or \printunsrtinnerglossary)
should insert letter group markup. There’s no visible difference for glossary styles that
don’t support letter groups (and nogroupskip is in effect) or if there’s no group
information (for example, --no-group has been used)

label={〈label〉}
Creates a label for this glossary by locally using \glsxtrsetglossarylabel{〈label〉}

leveloffset={〈n〉}
Makes the glossary style act as though each entry’s hierarchical level is 〈offset〉 more
than it actually is where 〈offset〉 is either 〈n〉 or is locally incremented by 〈n〉 if 〈n〉
starts with ++

nogroupskip={〈boolean〉}
Locally change whether or not to separate groups with a vertical space if the glossary
style that support this option (overrides nogroupskip package option)

nonumberlist={〈boolean〉}
Locally change whether or not to display the location lists (overrides nonumberlist
package option)

662

General Command Summary

nopostdot={〈boolean〉}
Locally omit the post-description punctuation (overrides nopostdot and related
package options)

numberedsection={〈value〉}
Locally change whether or not to use a numbered sectioning command (overrides
numberedsection package option)

prefix={〈label〉}
Locally redefine \glolinkprefix for the item hypertargets and for any entry
reference or cross-reference hyperlinks

style={〈style-name〉}
Use the glossary style identified by 〈style-name〉 (overrides current style setting)

subentrycounter={〈boolean〉}
Locally enable or disable level 1 enumeration (overrides subentrycounter package
option)

target={〈boolean〉}
Locally enables or disables the hypertargets for each item

targetnameprefix={〈label〉}
Locally assign a prefix for the hypertargets assigned to each item (if target={true})
to avoid duplicate target names

title={〈text〉}
Locally sets the title for this glossary

toctitle={〈text〉}
Locally sets the toc title for this glossary

type={〈glossary-label〉}
Identifies the glossary list (\glsdefaulttype, if omitted)

\printunsrtglossary*[〈options〉]{〈code〉} glossaries-extra v1.12+
As \printunsrtglossary but performs 〈code〉 first (scoped to localise any assignments
within 〈code〉).

\printunsrtglossaryentryprocesshook{〈label〉} glossaries-extra v1.21+
Performed at each iteration of the internal loop used by \printunsrtglossary.

\printunsrtglossaryhandler{〈label〉} glossaries-extra v1.12+
Used by \printunsrtglossary and \printunsrtinnerglossary to handler each
entry within the loop. By default this simply does \glsxtrunsrtdo.

\printunsrtglossarypredoglossary glossaries-extra v1.21+
Hook performed by \printunsrtglossary.

\printunsrtglossaryskipentry glossaries-extra v1.21+
Only allowed within \printunsrtglossaryentryprocesshook this command indicates
that the current entry should be skipped.

\printunsrtinnerglossary[〈options〉]{〈pre code〉}{〈post code〉} glossaries-extra v1.44+
Similar to \printunsrtglossary but only contains the code that would typically be
placed inside the theglossary environment. This command should either be placed inside

663

General Command Summary

the printunsrtglossarywrap environment or inside the handler macro used by
\printunsrtglossary. This command is unsuitable for certain glossary styles,
particularly tabular-like styles.

\ProcessOptions kernel command*
Processes supplied options.

\protect〈token〉 kernel command*
Protects 〈token〉 from expansion.

\providecommand{〈cs〉}[〈n〉][〈def 〉]{〈code〉} kernel command*
Defines a command if it’s not already defined.

\provideglossaryentry{〈label〉}{〈key=value list〉} glossaries
Defines a new glossary entry if one doesn’t already exist with the given label.

\provideignoredglossary{〈type〉} glossaries-extra v1.12+
As \newignoredglossary but does nothing if a glossary identified by 〈type〉 already
exists.

\provideignoredglossary*{〈type〉} glossaries-extra v1.12+
As \provideignoredglossary but doesn’t suppress hyperlinks.

\providemultiglossaryentry[〈options〉]{〈multilabel〉}[〈main
label〉]{〈list〉} glossaries-extra v1.48+
As \multiglossaryentry but does nothing if the label has already been defined as a
compound entry.

\ProvidesPackage{〈name〉}[〈version〉] kernel command*
Identifies a package.

R

\ref{〈id〉} kernel command*
Cross-reference the location where \label{〈id〉} occurred.

\refstepcounter{〈counter name〉} kernel command*
Increments the given counter in a manner compatible with the \label cross-referencing
mechanism.

\renewcommand{〈cs〉}[〈n〉][〈def 〉]{〈code〉} kernel command*
Redefines an existing command.

\REPLACESPCHARS{〈element-list〉} bib2gls quark
A quark that replaces TEX special characters with commands like \glsbackslash which
expand to the literal character.

\RequirePackage[〈options〉]{〈name〉}[〈min version〉] kernel command*
Loads the package identified by 〈name〉 from within another package.

\rgls[〈options〉]{〈label〉}[〈insert〉] glossaries-extra v1.21+
Like \gls but checks for the record count trigger setting (the formatting is governed by
\rglsformat).

664

General Command Summary

\rglsformat{〈label〉}[〈insert〉] glossaries-extra v1.21+
Used by \rgls if the record count switch is triggered.

S

\section[〈toc title〉]{〈title〉} most classes that have a concept of document sections
Section heading.

\section*{〈title〉} most classes that have a concept of document sections
Unnumbered section heading.

\seealsoname glossaries-extra
Language sensitive “see also” text (as from v1.42 this will be defined to \alsoname if that
command exists).

\selectlanguage{〈language name〉} babel and polyglossia
Switch to the rules of the given language.

\setabbreviationstyle[〈category〉]{〈style-name〉} glossaries-extra
Sets the abbreviation style to 〈style-name〉 for the given 〈category〉, must be used before
the abbreviation is defined.

\setcardfmt{〈maths〉}
Example command.

\setcontentsfmt{〈contents〉}
Example command.

\setentrycounter[〈prefix〉]{〈counter〉} glossaries
Sets up the entry’s associated counter and prefix required by \glshypernumber.

\setfmt{〈symbol〉}
Example command.

\setglossarypreamble[〈type〉]{〈code〉} glossaries
Sets 〈code〉 as the preamble for the given glossary (or the default of 〈type〉 is omitted).

\setglossarystyle{〈name〉} glossaries
Sets the glossary style identified by 〈name〉.

\setmainlanguage[〈options〉]{〈language name〉} polyglossia
Load the main document language.

\setmembershipfmt{〈variable(s)〉}{〈condition〉}
Example command.

\setmembershiponeargfmt{{〈variable(s)〉}{〈condition〉}}
Example command.

\setotherlanguage[〈options〉]{〈language name〉} polyglossia
Load a secondary document language.

665

General Command Summary

\setupglossaries{〈key=value list〉} glossaries
Applies the base glossaries options that are allowed to be changed after the package has
loaded.

\showglocounter{〈label〉} glossaries
Interrupts the document build and shows the value of the counter field in the transcript.

\showglodesc{〈label〉} glossaries
Interrupts the document build and shows the value of the description field in the
transcript.

\showglodescplural{〈label〉} glossaries
Interrupts the document build and shows the value of the descriptionplural field in
the transcript.

\showglofield{〈entry label〉}{〈internal field〉} glossaries
Interrupts the document build and shows the value of the given field in the transcript.

\showglofirst{〈label〉} glossaries
Interrupts the document build and shows the value of the first field in the transcript.

\showglofirstpl{〈label〉} glossaries
Interrupts the document build and shows the value of the firstplural field in the
transcript.

\showgloflag{〈label〉} glossaries
Interrupts the document build and shows the value of the first use flag in the transcript.

\showgloglossaries glossaries
Interrupts the document build and shows the list of all non-ignored glossary types in the
transcript.

\showglolevel{〈label〉} glossaries
Interrupts the document build and shows the entry’s hierarchical level in the transcript.

\showgloloclist{〈label〉} glossaries
Interrupts the document build and shows the value of the loclist field in the transcript.

\showglolong{〈label〉} glossaries
Interrupts the document build and shows the value of the long field in the transcript.

\showgloname{〈label〉} glossaries
Interrupts the document build and shows the value of the name field in the transcript.

\showgloparent{〈label〉} glossaries
Interrupts the document build and shows the value of the parent field in the transcript.

\showgloplural{〈label〉} glossaries
Interrupts the document build and shows the value of the plural field in the transcript.

\showgloshort{〈label〉} glossaries
Interrupts the document build and shows the value of the short field in the transcript.

666

General Command Summary

\showglosort{〈label〉} glossaries
Interrupts the document build and shows the value of the sort field in the transcript.

\showglossarycounter{〈type〉} glossaries
Interrupts the document build and shows the default counter for the given glossary in the
transcript.

\showglossaryentries{〈type〉} glossaries
Interrupts the document build and shows the list of entry labels for the given glossary in
the transcript.

\showglossarytitle{〈type〉} glossaries
Interrupts the document build and shows the title of the given glossary in the transcript.

\showglosymbol{〈label〉} glossaries
Interrupts the document build and shows the value of the symbol field in the transcript.

\showglosymbolplural{〈label〉} glossaries
Interrupts the document build and shows the value of the symbolplural field in the
transcript.

\showglotext{〈label〉} glossaries
Interrupts the document build and shows the value of the text field in the transcript.

\showglotype{〈label〉} glossaries
Interrupts the document build and shows the value of the type field in the transcript.

\showglouseri{〈label〉} glossaries
Interrupts the document build and shows the value of the user1 field in the transcript.

\showglouserii{〈label〉} glossaries
Interrupts the document build and shows the value of the user2 field in the transcript.

\showglouseriii{〈label〉} glossaries
Interrupts the document build and shows the value of the user3 field in the transcript.

\showglouseriv{〈label〉} glossaries
Interrupts the document build and shows the value of the user4 field in the transcript.

\showglouserv{〈label〉} glossaries
Interrupts the document build and shows the value of the user5 field in the transcript.

\showglouservi{〈label〉} glossaries
Interrupts the document build and shows the value of the user6 field in the transcript.

\si{〈unit〉} siunitx*
Displays the unit with intelligent formatting.

\sigma kernel command* (maths mode)
Greek letter sigma σ.

\sortart{〈article〉}{〈text〉}
Example command.

667

General Command Summary

\sortmediacreator{〈first name(s)〉}{〈surname〉}
Example command.

\sortname{〈first name(s)〉}{〈surname〉}
Example command.

\sortop{〈text1〉}{〈text2〉}
Example command.

\sortvonname{〈first name(s)〉}{〈von〉}{〈surname〉}
Example command.

\space kernel command*
Produces a space.

\SS kernel command*
Produces the upper case eszett ẞ.

\ss kernel command*
Produces the lower case eszett ß.

\string〈token〉 TEX primitive*
If 〈token〉 is a control sequence it expands to the escape character followed by the control
sequence name.

\strong{〈text〉}
Example command.

\subglossentry{〈level〉}{〈label〉}{〈location list〉} glossaries v3.08a+
Used in the glossary to display a sub-entry.

\SUFFIXOF bib2gls quark
A quark to denote “is a suffix of” conditional in assign-fields conditionals. This token
needs to be protected from expansion in the argument of \GlsXtrLoadResources.

\surd kernel command* (maths mode)
Surd symbol

√
.

\symbol{〈number〉} kernel command*
Accesses the character identified by 〈number〉 (use \symbol{"〈hex〉} if the number is
hexadecimal).

T

\tableofcontents kernel command*
Displays the table of contents (by reading in the .toc file) and then opens .toc file to
allow the sectioning commands to write to it.

\tabularnewline[〈len〉] kernel command
Tabular version of \\ (avoids conflict with forced line breaks in paragraph column
formats).

668

General Command Summary

\texorpdfstring{〈TEX code〉}{〈PDF text〉} hyperref
Does 〈PDF text〉 if used in a PDF bookmark, otherwise does 〈TEX code〉.

\textbf{〈text〉} kernel command
Displays the given text in bold.

\textcolor[〈model〉]{〈spec〉}{〈text〉} color
Typesets 〈text〉 in the given colour.

\text〈language〉[〈options〉]{〈text〉} polyglossia
Typeset 〈text〉 according to 〈language〉.

\textsc{〈text〉} kernel command
Applies small-caps font to 〈text〉.

\textsf{〈text〉} kernel command
Displays the given text in sans-serif.

\textsmaller{〈text〉} relsize
Typesets 〈text〉 in a font size that’s smaller than the surrounding text.

\textstyle kernel command (maths mode)
Switch to in-line maths style (vertically compact).

\textsubscript{〈text〉} kernel command* as from 2015/01/01
Displays 〈text〉 as a subscript.

〈text〉 kernel command*
Displays 〈text〉 as a superscript.

\texttt{〈text〉} kernel command
Displays the given text in monospaced font.

\textweathersymbol{〈number〉} ifsym
Displays weather symbol identified by 〈number〉.

\TH kernel command*
Produces the upper case thorn Þ.

\th kernel command*
Produces the lower case thorn þ.

\the〈register〉 TEX primitive*
Expands 〈register〉 to the current value of the register.

\theglossaryentry glossaries
Textual representation of the glossaryentry counter, which is defined with the
entrycounter option.

\theHentrycounter glossaries
When indexing, this is set to the \theH〈counter〉 command corresponding to the current
indexing counter (or, if undefined, \the〈counter〉).

669

General Command Summary

\theHglossaryentry glossaries
Hypertarget associated with the glossaryentry counter, which is defined with the
entrycounter option.

\TITLE{〈element-list〉} bib2gls quark
A quark to denote a title case change in assign-fields syntax. This token needs to be
protected from expansion in the argument of \GlsXtrLoadResources.

\toprule booktabs
Horizontal rule for the top of a tabular-like environment.

\TrackedLanguageFromDialect{〈dialect〉} tracklang
Expands to the root language associated with the given (tracklang) dialect label.

\TrackLangLastTrackedDialect tracklang
Set by commands like \TrackLocale.

\TrackLocale{〈language tag〉} tracklang v1.3+
Tracks the given language tag.

\transposefmt{〈maths〉}
Example command.

\TRIM{〈element-list〉} bib2gls quark
A quark to denote a trimmed element in assign-fields. This token needs to be
protected from expansion in the argument of \GlsXtrLoadResources.

U

\u{〈character〉} kernel command*
Puts a breve accent over 〈character〉.

\u〈hex〉 bib2gls quark
A quark that identifies a character by its hexadecimal code in the values of some (but not
all) resource options.

\UC{〈element-list〉} bib2gls quark
A quark to denote an upper case change in assign-fields syntax. This token needs to
be protected from expansion in the argument of \GlsXtrLoadResources.

\undef〈cs〉 etoolbox*
Undefines the control sequence 〈cs〉.

\underline{〈text〉} kernel command
Underlines the given text.

\unexpanded{〈general text〉} ε-TEX primitive*
Expands to the argument.

\unit[〈options〉]{〈unit〉} siunitx*
Displays the unit with intelligent formatting.

670

General Command Summary

\usepackage[〈options〉]{〈name〉}[〈min version〉] kernel command*
Loads the package identified by 〈name〉.

V

\vec{〈character〉} kernel command* (maths mode)
Puts right arrow accent over 〈character〉.

\vecfmt{〈symbol〉}
Example command.

\vert kernel command* (maths mode)
Vertical bar delimiter |.

W

\write18{〈system call〉} kernel command
Perform shell escape if permitted.

X

\xglsaccsupp{〈accessible text〉}{〈text〉} glossaries-accsupp
Used by the accessibility support to interface with the accsupp package, where 〈text〉 is
fully expanded.

\xGlsXtrSetField{〈entry label〉}{〈field label〉}{〈value〉} glossaries-extra v1.12+
Globally assigns the (protected) full expansion of the given 〈value〉 to the field identified
by 〈field label〉 for the entry identified by 〈entry label〉.

\xifinlist{〈element〉}{〈list cs〉}{〈true〉}{〈false〉} etoolbox
Tests if the expansion of 〈element〉 is in the list stored in the control sequence 〈list cs〉.

\xmakefirstuc{〈text〉} mfirstuc* v1.01+
Applies \makefirstuc with one level expansion of the first token of 〈text〉.

671

Bibliography
[1] David Carlisle. The textcase package, 2004. https://ctan.org/pkg/textcase.

[2] Oracle. Java API: CollationKey class, 2017. http://docs.oracle.com/javase/8/
docs/api/java/text/CollationKey.html.

[3] Oracle. Java API: Collator class, 2017. http://docs.oracle.com/javase/8/docs/
api/java/text/Collator.html.

[4] Oracle. Java API: DecimalFormat class, 2017. http://docs.oracle.com/javase/8/
docs/api/java/text/DecimalFormat.html.

[5] Oracle. Java API: Pattern class, 2017. http://docs.oracle.com/javase/8/docs/
api/java/util/regex/Pattern.html.

[6] Oracle. Java API: RuleBasedCollator class, 2017. http://docs.oracle.com/
javase/8/docs/api/java/text/RuleBasedCollator.html.

[7] Oracle. Java API: SimpleDateFormat class, 2017. http://docs.oracle.com/
javase/8/docs/api/java/text/SimpleDateFormat.html.

[8] Oracle. Adoption of unicode cldr data and the java.locale.providers system prop-
erty, 2018. https://docs.oracle.com/javase/8/docs/technotes/guides/intl/
enhancements.8.html#cldr.

[9] Oracle. The java_tool_options environment variable, 2018. https://docs.oracle.
com/javase/8/docs/technotes/guides/troubleshoot/envvars002.html.

[10] Nicola Talbot. texparserlib: Java code for parsing (La)TeX files, 2017. https://
github.com/nlct/texparser.

[11] Nicola Talbot. The mfirstuc package, 2017. https://ctan.org/pkg/mfirstuc.

[12] Nicola Talbot. Incorporating makeglossaries or makeglossaries-lite or bib2gls
into the document build, 2018. https://www.dickimaw-books.com/latex/
buildglossaries.

[13] Nicola Talbot. The glossaries-extra package, 2018. https://ctan.org/pkg/
glossaries-extra.

[14] Nicola Talbot. The glossaries package, 2018. https://ctan.org/pkg/glossaries.

672

https://ctan.org/pkg/textcase
http://docs.oracle.com/javase/8/docs/api/java/text/CollationKey.html
http://docs.oracle.com/javase/8/docs/api/java/text/CollationKey.html
http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/8/docs/api/java/text/RuleBasedCollator.html
http://docs.oracle.com/javase/8/docs/api/java/text/RuleBasedCollator.html
http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/enhancements.8.html#cldr
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/enhancements.8.html#cldr
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/envvars002.html
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/envvars002.html
https://github.com/nlct/texparser
https://github.com/nlct/texparser
https://ctan.org/pkg/mfirstuc
https://www.dickimaw-books.com/latex/buildglossaries
https://www.dickimaw-books.com/latex/buildglossaries
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/glossaries

Bibliography

[15] Nicola Talbot. Gallery (all styles provided by glossaries), 2019. https://www.
dickimaw-books.com/gallery/glossaries-styles/.

[16] Nicola L. C. Talbot. LATEX for Administrative Work, volume 3 of Dickimaw LATEX Series,
chapter 2.7.5. Dickimaw Books, Norfolk, UK, 2015. http://www.dickimaw-books.
com/latex/admin/html/foreachtips.shtml.

[17] What controls the encoding of the LaTeX log file – and how to change it?, 2013. https:
//tex.stackexchange.com/questions/131238.

[18] Is there a program for managing glossary tags?, 2016. https://tex.stackexchange.
com/questions/342544.

[19] TEX Users Group. TEX user groups around the world, 2017. http://tug.org/
usergroups.html.

673

https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-styles/
http://www.dickimaw-books.com/latex/admin/html/foreachtips.shtml
http://www.dickimaw-books.com/latex/admin/html/foreachtips.shtml
https://tex.stackexchange.com/questions/131238
https://tex.stackexchange.com/questions/131238
https://tex.stackexchange.com/questions/342544
https://tex.stackexchange.com/questions/342544
http://tug.org/usergroups.html
http://tug.org/usergroups.html

Index

Symbols

! (boolean NOT) . 131
" (delimiter) . 58, 69, 124, 129–134, 143, 191, 195
" (hexadecimal identifier) 219, 295, 358
" (literal) 18, 57, 124, 386
(.bib string concatenation) . . . 68, 123, 463
(literal) 18, 308, 309, 385
(parameter) 293, 304, 371
$ (literal) . 18, 125, 386
$ (maths shift) 24, 54, 70, 170, 219, 225, 451
$ (regular expression) 18
% (comment) 24, 136, 293, 515
% (literal) . 216, 308, 309
& (alignment) . 293
& (boolean AND) 131, 161
& (literal) 18, 308, 309, 386
' (apostrophe) see apostrophe (')
((literal open parenthesis) 18, 131
((start range) . 245, 352
) (end range) . 245, 352
) (literal close parenthesis) 18, 131
* (literal) . 18, 595
* (regular expression, zero or more) 149
+ (literal) . 18, 596
+ (resource option concatenation) . . . 60, 123,

129–131, 161, 195
, (separator) . 60, 130
--〈switch〉

see command line options (bib2gls),
command line options (conversion tools),
command line options (convertgls2bib)

& command line options (datatool2bib)
-> (field ref) 131, 161, 197
- (literal) . 18, 596
. (end of sentence) see full stop (.)
. (regular expression, match any) . . 149, 222

/ . 18, 133
: (literal) . 18, 596
<= (comparison) 133–135
<> (comparison) 132–134
< (comparison) 130, 133–135, 161
< (literal) . 18, 596
< (regular expression) 125
= (assignment) 60, 130, 195
= (comparison) 132–134
>= (comparison) 133–135
> (comparison) 130, 133–135
> (literal) . 18, 596
> (regular expression) 125
? (literal) . 18, 596
? (regular expression, zero or one) 125
@ (bib entry identifier) 58, 183
[(literal open square bracket) 18, 597
[(optional) . 130, 131
\" (quark) . 18, 124
\" . 31, 124, 170, 595
\# 216, 293, 304, 308, 309, 595
\# (regexp quark) . 18
\$. 216, 595
\$ (regexp quark) . 18
\% 126, 216, 293, 308, 309, 595
\& . 216, 293, 308, 309, 595
\& (regexp quark) . 18
\' . 304, 595
\((regexp quark) . 18
\) (regexp quark) . 18
* (regexp quark) . 18
\+ (regexp quark) . 18
\, . 513, 596
\- (regexp quark) . 18
\. 149, 172
\. (regexp quark) . 18

674

Index

\/ (regexp quark) . 18
\: (regexp quark) . 18
\< (regexp quark) . 18
\> (regexp quark) . 18
\? (regexp quark) . 18
\@ . 264, 354, 596
\@currentHref 45, 596
\@currentlabelname 45, 596
\@firstofone 366, 596
\@for . 383, 596
\@gls@hypergroup . 51
\@gobble . 367, 596
\@istfilename 21, 597
\[(regexp quark) . 18
\\ . 216, 597
\\ (regexp quark) . 18
\] (regexp quark) . 18
\^ . 77, 597
\^ (regexp quark) . 18
_ . 216, 293, 308, 309, 597
\{ . 216, 293, 308, 309, 597
\| (regexp quark) . 18
\} . 216, 293, 308, 309, 597
\~ (regexp quark) . 18
\␣ . 231, 548, 597
\ (escape) 24, 70, 170, 219, 301, 302, 520
\ (literal) . 18, 110, 293
] (literal close square bracket) 18, 597
] (optional) . 130
^ (literal) . 18, 386
^ (regular expression) 18
^ (superscript) . 24, 42
_ (literal) . 308, 309, 385
_ (subscript) . 24, 42, 293
{ (begin group) 24, 70, 110, 170, 197, 219,

293, 520
{ (literal) . 308, 309
| . 18, 597
| (boolean OR) . 131
| (regular expression or) 17
} (end group) 24, 70, 110, 170, 197, 219, 293, 520
} (literal) . 308, 309
~ (literal) . 18, 293

~ (non-breakable space) 24, 38, 56, 170,
219–222, 231, 351, 426, 567

A

\AA . 31, 170, 225, 597
\aa . 225, 597
\ab . 597
abbreviation styles

long-em-short-em 79
long-hyphen-postshort-hyphen 644
long-noshort . 645
long-noshort-desc 78
long-only-short-only 491, 493, 572
long-only-short-only-desc 646
long-postshort-user-desc 104
long-short . 228
long-short-desc 102, 103, 540, 554, 571
long-short-sc 78, 228, 242
long-short-sm . 78
long-short-user 102, 548
long-short-user-desc 104
short-hyphen-long-hyphen 649
short-long . 189
short-long-desc . 649
short-long-user-desc 650
short-nolong . 650
short-nolong-desc 649

\abbreviationname 598
\abbrvpluralsuffix 242, 243, 598

see also \glsxtrabbrvpluralsuffix
\ac . 55, 598
\acronymfont 407, 598
\acronymname . 598
\acronymtype 338, 343, 392, 598
\acrpluralsuffix 242, 598
\AE . 225, 229, 598
\ae . 225, 229, 598
\alph . 259, 598
\Alpha . 598
\alpha . 136, 294, 598
\alsoname . 394, 598
animals.bib 470, 477, 480, 552
apostrophe (') 57, 243, 386

675

Index

applications
arara . 21
bibtex . 1
convertgls2bib 388–391, 394, 395,

398, 399
datatool2bib . 388, 390, 401–405, 408–411
kpsewhich 19, 23, 35, 36, 145, 391, 401
makeglossaries 1, 21
makeglossaries-lite 21
makeindex 19, 37, 277, 301
xindy . 6, 37, 277, 301

\approx . 293, 598
\appto . 304, 598
\apptoglossarypreamble 264, 265, 304, 598

see also \glossarypreamble
ascii . 304
\AtEndDocument 1, 599
attributes

see category attributes
\autoref 226, 599, see also \label

B

\backmatter . 246, 599
bacteria.bib 116, 421, 491, 552
baseunits.bib 423, 425, 495, 497, 501,

552, 555
\bfseries . 503, 599
bib2gls-en.xml 20, 203, 351, 354, 360
bib2gls.bat . 22
bib2gls.jar . 22, 32
bib2gls.sh . 22
\bibglsaliassep . 350
\bibglsampersandchar 26, 386
\bibglsaposchar . 386
\bibglscircumchar 26, 386
\bibglscompact 261, 351
\bibglscontributor 26, 214, 215, 384
\bibglscontributorlist 26, 213, 383
\bibglscopytoglossary 143, 380
\bibglsdate 26, 219, 384
\bibglsdategroup 367, 375, 513
\bibglsdategrouphier 375
\bibglsdategrouptitle 367, 375, 513
\bibglsdategrouptitlehier 375

\bibglsdatetime 26, 219, 384
\bibglsdatetimegroup 366, 374
\bibglsdatetimegrouphier 374, 600
\bibglsdatetimegrouphierfinalargs

374
\bibglsdatetimegrouptitle 367, 374
\bibglsdatetimegrouptitlehier . . . 374,

375, 600
\bibglsdatetimegrouptitlehierfinal-
args . 374, 375

\bibglsdatetimeremainder 384
\bibglsdefcompoundset 116, 334, 349
\bibglsdefinitionindex 181, 387
\bibglsdelimN . 350

see also \bibglslastDelimN
\bibglsdollarchar 26, 216, 386
\bibglsdoublequotechar 386
\bibglsdualprefixlabel 385
\bibglsemptygroup 365, 373
\bibglsemptygrouphier 373
\bibglsemptygrouptitle 365, 373
\bibglsemptygrouptitlehier 373
\bibglsexternalprefixlabel 385
\bibglsfirstuc 26, 223, 387
\bibglsflattenedchildpostsort . . . 380
\bibglsflattenedchildpresort . 160, 379
\bibglsflattenedhomograph 160, 378
\bibglsgrouplevel 371
\bibglshashchar 26, 385
\bibglshexunicodechar 218, 358
\bibglshiersubgrouptitle . . 164, 371, 378
\bibglshrefchar 272, 358
\bibglshrefunicode 272, 273, 358
\bibglshypergroup 361
\bibglshyperlink 26, 328, 381
\bibglsinterloper 257, 352
\bibglslastDelimN 351

see also \bibglsdelimN
\bibglslettergroup 361, 362, 372
\bibglslettergrouphier 372
\bibglslettergrouptitle . . . 363, 364, 372
\bibglslettergrouptitlehier 372
\bibglslocationgroup 354, 356
\bibglslocationgroupsep 355, 356

676

Index

\bibglslocprefix 262, 264, 353, 354
\bibglslocsuffix 354
\bibglslowercase 26, 222, 386
\bibglsmergedgroup 370, 377
\bibglsmergedgroupfmt 370, 377
\bibglsmergedgrouphier 377
\bibglsmergedgrouphierfmt 370, 377, 602
\bibglsmergedgrouptitle 165, 370,

377, 602
\bibglsmergedgrouptitlehier . . 377, 602
\bibglsnewabbreviation 337, 338
\bibglsnewacronym 338
\bibglsnewbibtexentry 107, 344, 522
\bibglsnewcontributor 107, 344
\bibglsnewdualabbreviation 343
\bibglsnewdualabbreviationentry . 341
\bibglsnewdualabbreviationentrysec-
ondary . 341

\bibglsnewdualacronym 343
\bibglsnewdualentry 186, 326, 338
\bibglsnewdualentryabbreviation . 341
\bibglsnewdualentryabbreviationsec-
ondary . 342

\bibglsnewdualindexabbreviation
340, 555

\bibglsnewdualindexabbreviationsec-
ondary . 340

\bibglsnewdualindexentry 338
\bibglsnewdualindexentrysecondary

338
\bibglsnewdualindexnumber 339
\bibglsnewdualindexnumbersecondary

339
\bibglsnewdualindexsymbol 339
\bibglsnewdualindexsymbolsecondary

339
\bibglsnewdualnumber 342
\bibglsnewdualsymbol 342
\bibglsnewentry 326, 335
\bibglsnewindex 234, 337
\bibglsnewindexplural 234, 337
\bibglsnewnumber 336
\bibglsnewprogenitor 111, 345
\bibglsnewspawnabbreviation . . 113, 346

\bibglsnewspawnacronym 114, 347
\bibglsnewspawndualindexentry 114, 348
\bibglsnewspawndualindexentry-
secondary . 114, 349

\bibglsnewspawnedabbreviation 113, 347
\bibglsnewspawnedacronym 114, 347
\bibglsnewspawnedentry 113, 346
\bibglsnewspawnedindex 111–114, 345
\bibglsnewspawnedindexplural . 113, 346
\bibglsnewspawnednumber 114, 348
\bibglsnewspawnedsymbol 114, 348
\bibglsnewspawnentry 113, 346
\bibglsnewspawnindex 113, 345
\bibglsnewspawnindexplural . . . 113, 345
\bibglsnewspawnnumber 114, 348
\bibglsnewspawnsymbol 114, 347
\bibglsnewsymbol 336
\bibglsnewtertiaryindexabbrevia-
tionentry . 343

\bibglsnewtertiaryindexabbrevia-
tionentrysecondary 344

\BibGlsNoCaseChange 222
\bibglsnumbergroup 366, 373
\bibglsnumbergrouphier 373
\bibglsnumbergrouptitle 366, 373
\bibglsnumbergrouptitlehier 373
\BibGlsOptions 33–43, 46–49, 53–57
\bibglsothergroup 365, 372
\bibglsothergrouphier 372
\bibglsothergrouptitle 365, 372
\bibglsothergrouptitlehier 372
\bibglspaddigits 27, 285, 606

see also \dtlpadleadingzeros
\bibglspagename 263, 354
\bibglspagesname 263, 354
\bibglspassim . 351
\bibglspassimname 351
\bibglspostlocprefix 264, 352
\bibglsprimary 254, 255, 356
\bibglsprimarylocationgroup . . 255, 356
\bibglsprimarylocationgroupsep

255, 356
\bibglsprimaryprefixlabel 385
\bibglsrange 245, 257, 352

677

Index

\bibglsseealsosep 350
\bibglsseesep 349, 350
\bibglssetdategrouptitle 367, 375
\bibglssetdategrouptitlehier 375
\bibglssetdatetimegrouptitle . 366, 374
\bibglssetdatetimegrouptitlehier 374
\bibglssetemptygrouptitle 365, 373
\bibglssetemptygrouptitlehier . . . 373
\bibglssetlastgrouptitle 360, 361
\bibglssetlettergrouptitle 164,

362, 371
\bibglssetlettergrouptitlehier

164, 371
\bibglssetlocationrecordcount . . . 381
\bibglssetmergedgrouptitle . . . 370, 377
\bibglssetmergedgrouptitlehier . . 377
\bibglssetnumbergrouptitle . . . 365, 373
\bibglssetnumbergrouptitlehier . . 373
\bibglssetothergrouptitle 364, 372
\bibglssetothergrouptitlehier . . . 372
\bibglssetrecordcount 381
\bibglssettimegrouptitle 368, 375
\bibglssettimegrouptitlehier 375
\bibglssettotalrecordcount 380
\bibglssetunicodegrouptitle . . 368, 376
\bibglssetunicodegrouptitlehier . 376
\bibglssetwidest 138, 381–383
\bibglssetwidestfallback 138, 382
\bibglssetwidestfortype . . . 138, 382, 383
\bibglssetwidestfortypefallback

138, 382
\bibglssetwidesttoplevelfallback

138, 383
\bibglssetwidesttoplevelfortype-
fallback . 138, 383

\bibglssupplemental 273, 357
\bibglssupplementalsep 357
\bibglssupplementalsublist . . . 273, 357
\bibglssupplementalsubsep 273, 358
\bibglstertiaryprefixlabel 385
\bibglstime 26, 219, 384
\bibglstimegroup 368, 376
\bibglstimegrouphier 376
\bibglstimegrouptitle 368, 376

\bibglstimegrouptitlehier 376
\bibglstitlecase 26, 223, 387
\bibglsunderscorechar 26, 385
\bibglsunicodegroup 311, 360, 368, 370, 376
\bibglsunicodegrouphier 376
\bibglsunicodegrouptitle 360,

368–370, 376
\bibglsunicodegrouptitlehier 376
\bibglsuppercase 26, 223, 386
\bibglsuseabbrvfont 92, 340
\bibglsusealias 262, 350
\bibglsuseindex 182, 387
\bibglsuselongfont 92, 340, 344
\bibglsusesee 261, 350
\bibglsuseseealso 262, 350
\bibliography 109, 610
bigmathsymbols.bib 447, 527, 529
\bigoperatornamefmt 447
binaryoperators.bib 453, 527
\boldsymbol . 29, 610
books.bib 432, 435, 506, 507, 518
boolean values

see conditionals and boolean values
\bottomrule . 503, 610

C

\c . 76, 610
\capitalisewords . . . 222, 225, 226, 387, 610
\caption . 45, 610
case-change 222–226, 231

see also upper case,
lower case,
title case

& sentence case
case-changing commands 407
\CAT (quark) . 18, 132
category attributes . 491

aposplural . 242
externallocation 270–273
glossdesc . 222, 543
glossdescfont . 493
glossname 28, 222, 463, 494, 542
glossnamefont 493, 494, 520, 548, 549,

554, 558

678

Index

glosssymbolfont . 558
markwords . 651
nohyperfirst . 590
noshortplural . 243
recordcount . 46, 47
targetname . 165, 168
targeturl . 165, 168
textformat 493, 520, 548, 554

\ce . 417, 610
\chapter . 610
chapter counter 252–256
\chapter* . 500, 610
\char 24, 25, 295, 394, 610
chemicalformula.bib 417, 488, 552, 555, 556
\citation 42, 43, 107, 441, 522, 610
citations.bib 441, 522
\cite . 109, 522, 524, 611
cjk . 363, 364
CJK environment 363, 364
\cjkname . 364
cldr (Unicode Common Locale Data
Repository) 31, 32, 289, 427, 513

\color . 121, 611
command line options (bib2gls)

--break-space 38, 219, 426, 567
--cite-as-record 42, 107, 441, 522
--collapse-same-location-range

43, 245
--custom-packages . . 25, 39, 41, 223, 276,

296, 300
--datatool-sort-markers 39
--date-in-header 38
--default-encoding 2, 38
--dir . 36, 37, 145
--expand-fields 53, 358
--force-cross-resource-refs . 16, 57
--group . . 4–7, 30, 31, 49, 52, 142, 163, 184,

201, 280, 311, 358–361, 412, 478, 490, 493,
497, 500, 504, 508, 510, 518

--ignore-packages 40, 41
--interpret 24, 40, 110
--list-known-packages 25, 40
--log-encoding 2, 37, 38
--log-file 19, 37, 391

--map-format 43, 44, 247, 266
--merge-nameref-on . 6, 45, 244, 247, 272
--merge-wrglossary-records . 46, 267
--mfirstuc-math-protection 14,

28, 54
--mfirstuc-protection . . 14, 28, 53, 54
--nested-link-check 14, 55
--no-break-space 38
--no-cite-as-record 43
--no-collapse-same-location-range

43
--no-datatool-sort-markers 40
--no-date-in-header 38
--no-expand-fields 53
--no-force-cross-resource-refs 57
--no-group 53, 164, 184, 311
--no-interpret 16, 24, 40
--no-merge-wrglossary-records . . 46
--no-mfirstuc-math-protection

54, 55
--no-mfirstuc-protection 53, 54
--no-nested-link-check 55
--no-obey-aux-catcode 42
--no-provide-glossaries . 12, 57, 168,

188, 312
--no-record-count 47
--no-record-count-unit 47
--no-replace-quotes 57
--no-retain-formats 48
--no-support-unicode-script 42
--no-trim-fields 56
--no-warn-non-bib-fields 49
--no-warn-unknown-entry-types . . 49
--obey-aux-catcode 42
--packages 40, 41, 223
--provide-glossaries 12, 57, 480
--record-count 46–48, 278–281, 380, 381
--record-count-rule 46–48
--record-count-unit 47, 381
--replace-quotes 57, 386
--retain-formats 48, 249
--shortcuts . 55
--support-unicode-script 41
--tex-encoding 3, 37, 136

679

Index

--trim-except-fields 56
--trim-fields 55, 56
--trim-only-fields 56
--warn-non-bib-fields . 10, 49, 60, 528
--warn-unknown-entry-types 49

command line options (common)
--debug 19, 27, 35, 209, 247, 297
--debug-mode 35, 391
--help . 34
--locale 20, 34, 277
--no-debug 27, 35, 36
--no-verbose . 34
--quiet . 34
--silent . 34
--verbose 30, 31, 34, 209, 237, 290, 300
--version . 34

command line options (conversion tools)
--bibenc . 389
--field-case 388, 390, 406
--field-map 389, 390, 393
--ignore-fields 390–392
--index-conversion . . 390, 406, 409–411
--log-file . 391
--no-field-map 390
--no-ignore-fields 390
--no-index-conversion 390
--no-overwrite 389, 392, 393
--no-preamble-only 389
--overwrite 389, 391, 401
--preamble-only 388, 389, 401
--space-sub 389, 397, 403
--texenc . 389

command line options (convertgls2bib)
--absorb-see . 393
--ignore-category 392, 393
--ignore-sort 391
--ignore-type 392
--internal-field-map 393, 395
--no-absorb-see 393
--no-ignore-category 392
--no-ignore-sort 391
--no-ignore-type 392
--no-split-on-category 393
--no-split-on-type 392

--split-on-category 392, 393
--split-on-type 391–393

command line options (datatool2bib)
--adjust-gls . 406
--auto-label 401, 403
--auto-label-prefix 403
--dependency-field 406
--detect-symbols 405, 406
--label . 401, 403
--no-adjust-gls 406
--no-auto-label 403
--no-dependency-field 406
--no-detect-symbols 406
--no-save-currency 405
--no-save-datum 405
--no-save-value 405
--no-split . 405
--no-strip . 407
--no-strip-acronym-font 407
--no-strip-case-change 407
--no-strip-glsadd 406, 407
--numeric-locale 406
--read . 402, 403
--save-currency 405
--save-datum . 404
--save-value . 405
--setup . 402, 403
--split . 405
--strip . 407
--strip-acronym-font 407
--strip-case-change 407
--strip-glsadd 406, 407

concatenation
see string concatenation

conditionals and boolean values 436
constants.bib 414, 483
convertgls2bib.jar 22
convertgls2bib.sh 22
cross-resource reference . xxii, 16, 57, 58, 120,

169, 170, 175, 176, 331
\CS (quark) . 18, 124
\cs . 18, 124, 125
\csuse . 272, 611
\currentglossary 611

680

Index

custom group . 7, 51

D

datatool2bib.sh . 22
\datatoolasciiend 39, 611
\datatoolasciistart 39, 611
\datatoolctrlboundary 39, 611
\datatoolparen 39, 611
\datatoolparenstart 39, 611
\datatoolpersoncomma 39, 611
\datatoolplacecomma 39, 611
\datatoolsubjectcomma 39, 611
date-time group 50, 366, 367, 374
date group . 50, 367
\DeclareOptions 39, 612
\DeclareOptions* 39, 612
\def . 383, 612
\delimN . 246, 350, 612
\delimR . 257, 261, 612
derivedunits.bib 425, 495, 497, 501, 552, 555
description environment 554
\descriptionname 612
\detokenize . 145, 612
\dGls . 91, 96, 612

see also \glsxtraddlabelprefix
& \glsxtrprependlabelprefix

\dgls . 91, 96, 612
see also \glsxtraddlabelprefix
& \glsxtrprependlabelprefix

\dglsdisp 226, 612, see also \dglsdisp
\dglslink 226, 612, see also \dglsdisp
\dGlspl . 96, 612

see also \glsxtraddlabelprefix
& \glsxtrprependlabelprefix

\dglspl . 96, 612
see also \glsxtraddlabelprefix
& \glsxtrprependlabelprefix

\DH . 225, 612
\dh . 225, 612
\diamondsuit . 9, 612
digraph . 51
\displaystyle 447, 613
\DJ . 225, 613
\dj . 225, 613
document environment 389

\DTLaction
\DTLandname . 508, 613

see also \DTLformatlist
\dtlexpandnewvalue 402
\DTLformatlist 213, 383, 508, 613

see also \ifDTLlistskipempty
\DTLgidxIgnore 405, 613
\DTLgidxParen 405, 613
\DTLlistformatlastsep 613

see also \DTLformatlist
\DTLlistformatoxford 508, 613

see also \DTLformatlist
\DTLloaddb 401, 402, 613
\DTLloaddbtex 401, 613
\DTLnewcurrencysymbol 404, 613
\DTLnewdb
\DTLnewdbentry
\DTLnewrow
\dtlnoexpandnewvalue
\dtlpadleadingzeros 27, 614
\DTLread . 401, 402, 408
\DTLsetnumberchars 404, 614
\DTLsetup . 403
\DTLsortwordlist 39, 614
\dtltexorsort 39, 40, 614
\DTLwrite . 408, 614
\DTMdisplaydate 427, 567, 614
dual . xxiii, 80

E

\edef . 547, 614
\eglsupdatewidest 614

see also \glssetwidest
& \glsupdatewidest

\em . 507, 614
\emph . 43, 44, 614
empty group (unknown commands) . 50, 365
encap (encapsulating command) . . . 117, 244,

249, 272
encoding xxiii, 2, 3, 37, 38, 58, 136, 389
\endfoot . 503, 614
\endhead . 503, 614
\ensuremath 226, 451, 454, 615

681

Index

entry types
@abbreviation . 78, 79, 113, 192, 232–235,

240, 291, 292, 337, 411, 421, 463, 465
@acronym 79, 113, 232–235, 240, 291,

338, 398
@bibtexentry . . 13, 43, 64, 79, 80, 106, 107,

238, 291, 292, 344, 432, 441, 524, 525
@comment . 59
@compoundset . . . 66, 67, 116, 118, 331–334
@contributor 64, 79, 80, 107, 291, 292,

344, 524
@dualabbreviation 63, 99, 100, 104,

326–329, 343
@dualabbreviationentry . 78, 82, 84, 87,

96, 97, 327–330, 341
@dualacronym 104, 343
@dualentry 58, 87, 96–99, 186, 236,

319–321, 325–330, 338, 572
@dualentryabbreviation . . 96, 97, 330,

341, 342
@dualindexabbreviation . . . 81–84, 91,

105, 328, 330, 340, 555
@dualindexentry . 18, 81, 89–92, 106, 114,

327, 330, 338
@dualindexnumber 96, 327, 330, 339
@dualindexsymbol 81, 92, 95, 96, 327,

330, 339
@dualnumber 98, 342
@dualsymbol 80, 98, 327, 329, 342, 501
@entry 28, 74–76, 87–89, 113, 186, 224,

233–237, 291, 292, 335, 390, 406, 409–411,
418, 426, 463, 470–474, 490, 497, 510,
512, 572

@index 18, 76–81, 89, 107, 113, 114, 157, 162,
186, 191, 197, 210, 211, 228, 232–237, 275,
291, 292, 297, 333, 334, 337, 390, 406,
409–411, 427, 465, 474–477, 510, 537, 555,
556, 572

@indexplural . . 77, 113, 210, 211, 234, 236,
291, 297, 337, 537

@number 75, 114, 238, 239, 336, 405, 406, 483
@preamble 13, 16, 25, 28, 30, 69, 70,

120–123, 126, 127, 137, 160, 208, 223, 276,
300, 379, 413, 415, 441, 443, 463, 465, 542

@progenitor . 13, 63, 65, 110–114, 189, 345
@spawnabbreviation 113, 346, 347
@spawnacronym 113, 347
@spawndualindexentry . . . 106, 113, 114,

348, 349
@spawnentry 113, 346
@spawnindex 113, 345
@spawnindexplural 113, 345, 346
@spawnnumber 114, 348
@spawnsymbol 114, 347, 348
@string 14, 68, 463, 465
@symbol . . 28, 75, 80, 114, 238, 239, 275, 292,

298, 336, 405, 418, 423, 442, 447, 454, 460,
490, 497, 537, 572

@tertiaryindexabbreviationentry
87, 105, 328, 330, 343, 344

equation counter 266, 269

F

fields
access . 63, 622
adoptparents 63, 110, 111, 114, 189
alias . . . 15, 16, 24, 60, 62, 81, 110, 146, 169,

176, 183, 184, 201, 210, 212, 244, 248, 262,
325–327, 350, 389, 427, 474, 573

category . 15, 24, 62, 88–100, 105, 106, 149,
162, 163, 169, 185–187, 203, 243, 274, 299,
313, 320, 321, 331–340, 343, 392, 393, 486,
493, 506, 507, 512, 520, 524, 528, 531, 534,
544, 556, 567, 570–573

description . . 14, 16, 53, 56, 62–66, 74, 75,
78, 79, 87, 96, 97, 102, 105, 113, 114, 175,
176, 190–192, 201, 202, 211, 222, 228, 232,
233, 237, 275, 328, 329, 337, 341, 390, 406,
409–411, 423, 427, 432, 436, 448, 456, 460,
485, 490, 493, 508, 514, 524, 528, 534, 537,
542, 549, 556, 558, 570, 572

descriptionaccess 64, 622
descriptionplural 62–66, 87, 326
descriptionpluralaccess 64, 622
dualdescription 63, 80, 88
duallong 63, 99–104, 232, 321, 327, 343
duallongplural 63, 99, 100

682

Index

dualprefix 63, 80, 87–93, 96–100, 220, 221
dualprefixfirst . . 63, 80, 87–93, 96–100,

220, 221
dualprefixfirstplural . . 63, 80, 87–93,

96–100, 220, 221
dualprefixplural 63, 80, 87–93, 96–100,

220, 221
dualshort . . . 63, 99, 100, 231, 321, 327, 343
dualshortplural 63, 99, 100, 243
elements 66, 67, 118
first 55, 62–64, 193, 194, 198, 203, 234, 242,

427, 512, 520, 566, 573
firstaccess 64, 623
firstplural 55, 62–66, 193, 234, 242
firstpluralaccess 64, 623
long . . 55, 56, 62, 64, 78, 79, 92, 96–100, 105,

113, 232, 233, 240–242, 327, 343, 411, 421,
463, 493, 494, 540, 544, 555

longaccess . 64, 623
longplural 55, 62–66, 96, 99, 100, 242
longpluralaccess 64, 623
main . 67, 118
name 14, 15, 24, 25, 28, 53–55, 62, 63, 70,

74–79, 84, 87–93, 96–98, 107, 108, 113, 114,
125–131, 137, 138, 156–163, 171, 191–198,
203, 213, 218, 222, 224, 228–239, 242, 268,
275, 290–292, 327, 329, 332, 333, 337, 340,
344, 378–383, 397, 399, 405, 409, 412, 418,
423, 426, 427, 442, 443, 447, 448, 451, 454,
460, 485, 490, 493, 494, 497, 503, 512, 515,
520, 524, 528, 534, 537–544, 549, 554–556,
566, 569–573

nonumberlist 15, 62, 66, 248
option . 67, 118
parent 6–11, 14, 24, 50, 62, 74–76, 110–114,

131, 146, 151, 153, 157, 161–163, 167, 169,
176, 189, 190, 196, 203, 233, 234, 275, 331,
332, 477–481, 518, 520, 537

plural 55, 62–64, 77, 87, 92, 96, 98, 113, 193,
233, 234, 241, 242, 291, 326

pluralaccess 64, 623
prefix 63, 87–93, 96–100, 220, 221
prefixfirst . . 63, 87–93, 96–100, 220, 221
prefixfirstplural . . 63, 87–93, 96–100,

220, 221
prefixplural . 63, 87–93, 96–100, 220, 221
see 15, 16, 24, 60–62, 146, 147, 154, 160, 167,

169, 176–179, 182–184, 201, 206, 210–212,
244, 247, 248, 261, 262, 275, 326, 349, 350,
389, 394, 406

seealso . . 16, 24, 60–62, 146, 154, 160, 167,
169, 176, 179, 182–184, 206, 207, 210–212,
244, 247, 248, 262, 275, 350, 389, 394

short . 55, 56, 62, 64, 78, 84, 92, 96–100, 105,
113, 229–235, 240–243, 327, 343, 411, 421,
494, 544, 546, 555, 559

shortaccess 64, 624
shortplural . . . 55, 62–66, 96, 99, 242, 243
shortpluralaccess 64, 624
symbol . . . 53, 55, 62, 64, 92, 93, 98, 195, 291,

327, 418, 423, 497, 503, 555–559, 571
symbolaccess 64, 624
symbolplural 62, 64, 92, 98
symbolpluralaccess 64, 625
text . . . 55, 62–64, 77, 96, 157, 160, 193–199,

203, 228, 232–235, 242, 333, 427, 451, 454,
512, 520

textaccess . 64, 625
user1 . . . 62, 66, 70, 71, 76, 99, 102, 125, 126,

134, 171, 179, 192, 208, 239, 309, 485, 486,
507, 510, 513, 531, 555

user2 62, 66, 192, 486, 507–510
user3 62, 66, 192, 486, 510, 512
user4 . 62, 66
user5 . 62, 66
user6 . 62, 66

fields, internal . 393
bib2gls@sort 60, 66
bib2gls@sortfallback 66
bibtexcontributor 64
bibtexentry 64, 80, 107, 525
bibtexentry@〈entry-type〉 . . . 64, 80, 107
bibtextype . 64, 107
childcount . 64, 151
childlist 64, 151, 153
counter . 15, 64
currcount . 66
currcount@〈value〉 66

683

Index

definitionindex 64, 181, 216
desc . 66
descplural . 66
dual . 64, 321, 329
〈field〉endpunc 65, 203, 520, 546
firstpl . 66
flag . 66
group . . . 6–10, 14, 24, 49, 50, 53, 64, 65, 105,

141, 142, 157, 161, 169, 184, 201, 275,
310–312, 359–362, 369, 478, 495, 497, 500,
524, 528, 531, 534, 571

index . 66
indexcounter 65, 266–269
indexed . 47, 66, 267
level . 66
location . . 65, 111, 243, 246–249, 252, 255,

256, 261, 262, 528
loclist 65, 243–250
longpl . 66
originalentrytype 65, 139, 184
originalid . 65, 181
prenumberlist . 66
prevcount . 66
prevcount@〈value〉 66
prevunitmax . 66
prevunittotal . 66
primarylocations 65, 249, 250,

253–256, 356
progenitor . 65, 111
progeny . 65, 111
recordcount 46, 47, 65, 280, 380
recordcount.〈counter〉 46, 65, 381
recordcount.〈counter〉.〈location〉 . . 47,

65, 381
rootancestor 65, 153
secondarygroup 65, 201, 312
secondarysort 65, 312
shortpl . 66
siblingcount 65, 153
siblinglist 65, 153
sort 19, 28–30, 49, 58–60, 64–66, 69, 70,

75–78, 92, 97, 100, 106, 119, 125, 216,
233–240, 275, 283, 289–292, 297–300, 306,
312, 335, 336, 360, 363, 391, 418, 423, 442,

490, 494, 503, 537, 556
sortvalue . 66
type . . . 6–9, 12, 15, 24, 49, 52, 57, 64, 65, 88,

105–107, 110, 138, 141, 143, 149, 162, 169,
185–189, 203, 263, 319–321, 330, 333, 334,
337, 338, 343, 360, 369, 381, 392, 394,
478–481, 522, 570

unitlist . 66
useindex 65, 182, 216
useri 66, 486, 547, 548
userii . 66, 486
useriii . 66
useriv . 66
userv . 66
uservi . 66

file formats
.aux . . 1, 3, 20, 21, 24, 36, 37, 46, 51, 55, 119,

146, 167, 243, 246, 247, 267, 273, 277,
280, 293

.bat . 22

.bbl . 441

.bib 1, 3, 13, 21, 24, 36, 53, 58, 121, 122, 136,
145, 167, 176, 322, 388

.csv . 402

.dbtex

.dtltex . 410

.glg . 2, 29, 37

.gls . 359

.glstex . . 3, 12, 15, 21, 37, 38, 46, 52, 53, 56,
60, 64, 65, 70, 83, 100, 105, 119, 123, 137,
140, 145, 146, 168, 169, 276, 321, 322, 335,
359, 441

.jar . 23

.log . 2, 38, 40, 361

.out . 566

.sh . 22

.tex . 1, 388

.toc

.tsv . 402
films.bib 413, 435, 506, 507
first use . 626
first use flag . 629
\FIRSTLC (quark) 18, 129
\FIRSTUC (quark) 18, 129

684

Index

\footnote . 615
\forall . 454, 615
\forallglossaries 615
\forallglsentries 615

see also \forglsentries
& \forallglossaries

\forglsentries 546, 548, 615
see also \forallglsentries

\forlistloop 548, 615
\frontmatter 246, 615
full stop (.) 18, 172, 201, 203, 207, 264, 354, 436,

485, 514, 522, 542–548

G

\glolinkprefix 515, 615
\glossariesextrasetup 615
glossary styles . 8

altlist . 485, 522, 554
altlistgroup . 514
alttree 137, 460, 485, 528, 536
alttreegroup 490, 534
bookindex 249, 493, 514, 515, 549, 558
index . 50, 493
indexgroup 4, 49, 53, 522
indexhypergroup 51, 359, 361
list . 480, 485, 503
long . 480
long3col-booktabs 503
mcolalttree . 527
mcolalttreegroup 490, 556
mcolindexgroup . 497
super . 591
topic . 11, 539
tree . 251, 591
treegroup 11, 478, 481
treenoname . 635

glossaryentry counter 589
\glossaryheader 503, 616
\glossaryname . 616
\glossarypostamble 616

see also \apptoglossarypreamble
\glossarypreamble 304, 616

see also \apptoglossarypreamble
glossarysubentry counter 593

\glossentry 246, 503, 616
\Glossentrydesc 217, 616
\glossentrydesc 222, 616
\Glossentryname . 616
\glossentryname 222, 494, 616
\glossentrynameother . . 494, 558, 559, 616
\Glossentrysymbol 616
\glossentrysymbol 556–559, 616
\glossxtrsetpopts 616
\GLS . 226, 616
\Gls . 54, 226, 616
\gls 46, 47, 55, 60, 81, 95, 114, 146, 160, 167, 174,

175, 226, 233, 241, 244, 245, 260, 265, 267, 319,
352, 389, 406, 512, 546, 616

\glsabbrvdefaultfont 617
\glsabbrvemfont . 617
\glsabbrvfont 540, 617
\glsabbrvhyphenfont 617
\glsabbrvonlyfont 491, 617
\glsabbrvscfont . 617
\glsabbrvsmfont . 617
\glsabbrvuserfont 617
\Glsaccessdesc . 617
\glsaccessdesc . 617
\Glsaccessdescplural 617
\glsaccessdescplural 617
\glsaccessdisplay 617
\Glsaccessfirst . 617
\glsaccessfirst . 618
\Glsaccessfirstplural 618
\glsaccessfirstplural 618
\Glsaccesslong . 618
\glsaccesslong . 618
\Glsaccesslongpl 618
\glsaccesslongpl 618
\Glsaccessname . 618
\glsaccessname . 618
\Glsaccessplural 618
\glsaccessplural 618
\Glsaccessshort . 619
\glsaccessshort . 619
\Glsaccessshortpl 619
\glsaccessshortpl 619
\Glsaccesssymbol 619

685

Index

\glsaccesssymbol 619
\Glsaccesssymbolplural 619
\glsaccesssymbolplural 619
\Glsaccesstext . 619
\glsaccesstext . 619
\glsaccsupp . 619

see also \xglsaccsupp
\glsadd 1, 94, 244–246, 251–255, 269, 270,

352, 619
counter . 252, 620
format 245, 252, 270, 271, 352
theHvalue . 270
thevalue . 269, 270

\glsaddall . 1, 146, 620
\glsaddallunused 245, 620
\glsadd (datagidx) 406, 407, 620
\glsaddeach . 620
\glsaddkey 60, 150, 192, 620
\glsaddstoragekey . . . 60, 107, 150, 544, 620

see also \glsxtrprovidestoragekey
\glsautoprefix . 620
\glsbackslash 26, 126, 128, 216, 293, 620
\glscapturedgroup 125, 172, 620
\glscategory 106, 620
\glsclosebrace 26, 621
\glscurrententrylabel 512, 621
\glscurrentfieldvalue 151, 621
\gls (datagidx) 406, 621
\glsdefaulttype 392–395, 621
\glsdefpostdesc 76, 487, 621
\glsdefpostlink . 621
\glsdefpostname 507, 621
\glsdesc . 574, 621
\glsdescriptionaccessdisplay 621
\glsdescriptionpluralaccessdisplay

621
\glsdescwidth 503, 621
\glsdisablehyper 621
\glsdisp 226, 621, see also \glslink
\glsdoifexists . 621
\glsdoifexistsordo 622
\glsdoifnoexists 622
\glsdoifnoexistsordo 622
\glsenablehyper . 622

\glsendrange 245, 622
\glsentryaccess . 622
\glsentrycounterlabel 622
\GlsEntryCounterLabelPrefix 622
\Glsentrydesc 222, 622
\glsentrydesc . 622
\glsentrydescaccess 622
\Glsentrydescplural 622
\glsentrydescplural 622
\glsentrydescpluralaccess 622
\Glsentryfirst 26, 622
\glsentryfirst 26, 623
\glsentryfirstaccess 623
\Glsentryfirstplural 26, 623
\glsentryfirstplural 26, 623
\glsentryfirstpluralaccess 623
\glsentryitem 503, 623
\Glsentrylong 26, 623
\glsentrylong 26, 494, 623
\glsentrylongaccess 623
\Glsentrylongpl 26, 623
\glsentrylongpl 26, 623
\glsentrylongpluralaccess 623
\Glsentryname 26, 222, 623
\glsentryname 19, 26, 109, 180, 206–209, 328,

525, 623
\Glsentryplural 26, 623
\glsentryplural 26, 623
\glsentrypluralaccess 623
\Glsentryprefix . 623
\glsentryprefix . 624
\Glsentryprefixfirst 624
\glsentryprefixfirst 624
\Glsentryprefixfirstplural 624
\glsentryprefixfirstplural 624
\Glsentryprefixplural 624
\glsentryprefixplural 624
\Glsentryshort 26, 624
\glsentryshort 26, 624
\glsentryshortaccess 624
\Glsentryshortpl 26, 624
\glsentryshortpl 26, 624
\glsentryshortpluralaccess 624
\Glsentrysymbol 26, 624

686

Index

\glsentrysymbol 26, 624
\glsentrysymbolaccess 624
\Glsentrysymbolplural 26, 625
\glsentrysymbolplural 26, 625
\glsentrysymbolpluralaccess 625
\Glsentrytext 26, 226, 625
\glsentrytext 26, 100, 226, 625
\glsentrytextaccess 625
\glsentrytitlecase 26, 226, 625
\Glsentryuseri 26, 625
\glsentryuseri 26, 625
\Glsentryuserii 26, 625
\glsentryuserii 26, 625
\Glsentryuseriii 26, 625
\glsentryuseriii 26, 625
\Glsentryuseriv 26, 625
\glsentryuseriv 26, 625
\Glsentryuserv 26, 625
\glsentryuserv 26, 625
\Glsentryuservi 26, 625
\glsentryuservi 26, 626
\glsexpandfields 394, 395
\glsextrapostnamehook . 251, 253, 559, 574
\glsfielddef . 626
\glsfieldedef . 626
\glsfieldfetch 244, 626
\glsfieldgdef . 626
\glsfieldxdef . 626
\glsFindWidestLevelTwo 382, 626

see also \glsfindwidesttoplevelname
\glsFindWidestTopLevelName 137,

383, 626
see also \glsfindwidesttoplevelname

\glsfindwidesttoplevelname 626
\Glsfirst . 626
\glsfirst . 626
\glsfirstabbrvdefaultfont 626
\glsfirstabbrvemfont 626
\glsfirstabbrvhyphenfont 626
\glsfirstabbrvonlyfont 627
\glsfirstabbrvscfont 627
\glsfirstabbrvsmfont 627
\glsfirstabbrvuserfont 627
\glsfirstaccessdisplay 627

\glsfirstlongdefaultfont 627
\glsfirstlongemfont 627
\glsfirstlongfootnotefont 627
\glsfirstlonghyphenfont 627
\glsfirstlongonlyfont 627
\glsfirstlonguserfont 627
\glsfirstpluralaccessdisplay 627
\glsfmtfirst . 627
\glsfmtfull . 627
\glsfmtlong . 628
\glsfmtname . 628
\glsfmtshort . 628
\glsfmttext . 628
\glsgroupheading 358, 359
\glsgroupskip . 628
\glshashchar . 628
\glshex . 173, 293, 628

see also \GlsXtrResourceInitEscSequences
\glshyperlink 26, 226, 328, 381, 628
\glshypernumber 267, 272, 628
\glsifcategory 494, 628
\glsignore 43, 44, 117, 245–247, 304, 478,

542, 628
\glsinlinedescformat 628
\glsinlinedopostchild 628
\glsinlinenameformat 628
\glsinlineparentchildseparator . . 629
\glsinlinepostchild 629
\glsinlineseparator 629
\glsinlinesubseparator 629
\glslabel . 512, 629
\glslink 71, 226, 629, see also \glsdisp

counter 200, 265, 269
format . 46, 244–247, 252–256, 266–269, 352
hyper . 95
hyperoutside . 629
local . 629
noindex . 304, 629
prefix . 629
textformat . 629
theHvalue . 629
thevalue . 620
wrgloss . 630

\glslocalreset . 630

687

Index

\glslocalunset 629, 630
\glslongaccessdisplay 630
\glslongdefaultfont 630
\glslongemfont . 630
\glslongextraSetWidest 137, 630

see also \glslongextraUpdateWidest
\glslongextraUpdateWidest 630
\glslongfont 540, 630
\glslongfootnotefont 630
\glslonghyphenfont 630
\glslongonlyfont 491, 630
\glslongpluralaccessdisplay 630
\glslongtok . 540, 630
\glslonguserfont 329, 630
\glslowercase 386, 631
\glsname . 631
\glsnameaccessdisplay 631
\glsnamefont 268, 494, 631
\glsnavhypertarget 631
\glsnl (datagidx) 406, 631
\glsnoexpandfields 53, 395
\glsnoidxdisplayloc 244, 245
\glsnoidxloclist 246, 631
\glsnoidxloclisthandler 246, 631
\glsnumberformat 44, 175, 246–249, 259, 267,

273, 631
\glsnumbersgroupname 366, 631
\glsopenbrace 26, 631
\glspatchtabularx 631
\glspercentchar 26, 631
\GLSpl . 632
\Glspl . 632
\glspl . 233, 241, 632
\glsplural . 233, 632
\glspluralaccessdisplay 632
\glspluralsuffix 234, 242, 632
\glspost-inline . 632
\glspostdescription 504, 632
\glsps . 54, 632
\glspt . 632
\glsquote . 632
\glsrefentry 632, see also \ref
\glsrenewcommand 335, 632
\glsreset . 632

\glsresetentrycounter 632
\glssee 60, 277, 393, 632
\glsseefirstitem 633

see also \glsseeformat
& \glsseeitemformat

\glsseeformat 244, 350, 633
see also \glsseeitem,
\glsseeitemformat,
\glsseesep

& \glsseelastsep
\glsseeitem . 633

see also \glsseeformat
& \glsseeitemformat

\glsseeitemformat 207, 633
see also \glsseeformat
& \glsseeitem

\glsseelastoxfordsep 633
see also \glsseeformat
& \glsseesep

\glsseelastsep . 633
see also \glsseeformat
& \glsseesep

\glsseelist . 182, 633
\glsseesep . 633

see also \glsseeformat
& \glsseelastsep

\glssetcategoryattribute . . 18, 166, 633
\glssetexpandfield 53, 393, 395
\glssetnoexpandfield 393–395
\glssetwidest 137, 381, 382, 633
\glsshortaccessdisplay 633
\glsshortpluralaccessdisplay 634
\glsshorttok 540, 634
\glsshowtarget . 634
\glsstartrange 245, 634
\glsstepentry . 634
\glssubentrycounterlabel 634
\glssubentryitem 634
\glssubgroupheading 164
\glssymbol . 574, 634
\glssymbolaccessdisplay 634
\glssymbolpluralaccessdisplay . . . 634
\glssymbolsgroupname . . 359, 365, 571, 634
\glstarget . 503, 634
\Glstext . 543, 634
\glstext 175, 233, 543, 635

688

Index

\glstextaccessdisplay 635
\glstextformat 548, 635
\glstextup . 635
\glstildechar 26, 293, 635
\glstreedefaultnamefmt 635
\glstreegroupheaderfmt 490, 635
\glstreenamefmt 490, 635

see also \glstreegroupheaderfmt,
\glstreenavigationfmt

& \glstreedefaultnamefmt
\glstreenavigationfmt 635
\glstreenonamedesc 635
\glstreepredesc . 635
\glstreeprelocation 635
\glstriggerrecordformat . . . 46, 188, 246,

247, 635
\glsunset . 635
\glsupdatewidest 137, 381, 382, 635

see also \glssetwidest
& \eglsupdatewidest

\glsuppercase 386, 542, 635
\glsuseabbrvfont 340, 636
\glsuselongfont 344, 636
\glsuserdescription 329, 636
\glsuseri . 636
\glsuserii . 636
\glsuseriii . 636
\glsuseriv . 636
\glsuserv . 636
\glsuservi . 636
\glsxtr@record . 247
\glsxtr@record@nameref 45
\glsxtr@resource 20, 21
\glsxtr@wrglossarylocation . . . 267, 268
\glsxtrabbreviationfont 637
\glsxtrabbrvfootnote 637
\glsxtrabbrvpluralsuffix 242, 637
\glsxtrabbrvtype 337, 392, 637
\glsxtraddlabelprefix 91, 96, 637

see also \dgls,
\glsxtrprependlabelprefix

& \glsxtrclearlabelprefixes
\glsxtrAltTreePar 556, 637
\glsxtralttreeSymbolDescLocation

556, 569, 637

\glsxtrapptocsvfield 182, 637
\GlsXtrAutoAddOnFormat 252–255, 637
\glsxtrautoindexassignsort 19, 637
\glsxtrautoindexentry 19, 637
\GlsXtrBibTeXEntryAliases . . 17, 80, 106,

108, 441, 524, 637
\glsxtrbookindexname . . 493, 558, 573, 637
\glsxtrbookindexprelocation . . 249, 637
\glsxtrclearlabelprefixes 637

see also \glsxtraddlabelprefix
& \glsxtrprependlabelprefix

\glsxtrcombiningdiacriticrules
294, 638

\glsxtrcontrolIIrules 40, 638
\glsxtrcontrolIrules 39, 638
\glsxtrcontrolrules 294, 638
\glsxtrcopytoglossary 141, 380
\GlsXtrDefaultResourceOptions . . . 120
\glsxtrdetoklocation 381, 638
\glsxtrdigitrules 294, 638
\glsxtrdisplaylocnameref 45
\glsxtrdisplaysupploc 271
\GlsXtrDualBackLink 329
\GlsXtrDualField 321, 329
\glsxtremsuffix . 638
\GlsXtrEnableInitialTagging . . 26, 463,

540, 638
\glsxtrenablerecordcount 47, 639
\glsxtrendfor 547, 548, 639

see also \glsxtrforcsvfield
& \listbreak

\glsxtrentryfmt 71, 547, 548
\glsxtrentryparentname 639
\GlsXtrExpandedFmt 639
\glsxtrfielddolistloop 107, 244, 639

see also \glsxtrfieldforlistloop,
\glsxtrfieldifinlist,
\glsxtrfieldlistadd

& \listbreak
\glsxtrfieldforlistloop . . 107, 109, 151,

244, 639
see also \glsxtrfielddolistloop,
\glsxtrfieldifinlist,
\glsxtrfieldlistadd

& \listbreak
\glsxtrfieldformatcsvlist 639

689

Index

see also \glsxtrfieldforlistloop,
\glsxtrfielddolistloop,
\DTLformatlist

& \glsxtrfieldformatlist
\glsxtrfieldformatlist 639

see also \glsxtrfieldforlistloop,
\glsxtrfielddolistloop,
\DTLformatlist

& \glsxtrfieldformatcsvlist
\glsxtrfieldifinlist 639

see also \glsxtrfieldxifinlist,
\glsxtrfieldlistadd,
\glsxtrfieldforlistloop

& \glsxtrfielddolistloop
\glsxtrfieldlistadd 335

see also \glsxtrfieldifinlist,
\glsxtrfieldforlistloop

& \glsxtrfielddolistloop
\glsxtrfieldxifinlist 639

see also \glsxtrfieldifinlist
\glsxtrfmt . 70–72, 455

see also \glsxtrfmtdisplay
\glsxtrfmt* . 71

see also \glsxtrfmtdisplay
\GlsXtrFmtDefaultOptions . . 71, 531, 639
\glsxtrfmtdisplay 640
\GlsXtrFmtField 70, 531, 640
\glsxtrfootnotename 640
\glsxtrforcsvfield 547, 640

see also \glsxtrendfor
\GlsXtrForeignText 640
\GlsXtrForeignTextField 640
\GlsXtrForUnsetBufferedList 640
\glsxtrfractionrules 294, 640
\glsxtrfull . 640
\glsxtrfullsep . 640
\glsxtrGeneralLatinIIIrules 640
\glsxtrGeneralLatinIIrules 640
\glsxtrGeneralLatinIrules . 40, 295, 641

see also \glsxtrGeneralLatinIIrules,
\glsxtrGeneralLatinIIIrules,
\glsxtrGeneralLatinIVrules,
\glsxtrGeneralLatinVrules,
\glsxtrGeneralLatinVIrules,
\glsxtrGeneralLatinVIIrules

& \glsxtrGeneralLatinVIIIrules
\glsxtrGeneralLatinIVrules . . . 294, 641
\glsxtrGeneralLatinVIIIrules 641

\glsxtrGeneralLatinVIIrules 641
\glsxtrGeneralLatinVIrules 641
\glsxtrGeneralLatinVrules 641
\glsxtrgeneralpuncrules 294, 641
\glsxtrglossentry 12, 217, 641
\glsxtrglossentryother 641
\glsxtrgroupfield . . 109, 142, 201, 312, 514,

524, 641
\GLSXTRhiername 26, 641

see also \glsxtrhiername
& \glsxtrhiernamesep

\GLSxtrhiername 26, 641
see also \glsxtrhiername
& \glsxtrhiernamesep

\GlsXtrhiername 26, 641
see also \glsxtrhiername
& \glsxtrhiernamesep

\Glsxtrhiername 26, 642
see also \glsxtrhiername
& \glsxtrhiernamesep

\glsxtrhiername 26, 207, 642
see also \glsxtrhiernamesep

\glsxtrhiernamesep 26, 207, 642
see also \glsxtrhiername

\glsxtrhyphenrules 17, 294, 642
\glsxtrhyphensuffix 642
\glsxtrifcustomdiscardperiod 204
\GlsXtrIfFieldCmpNum 281, 642

see also \GlsXtrIfFieldNonZero
\GlsXtrIfFieldEqNum 153, 642

see also \GlsXtrIfFieldNonZero
& \GlsXtrIfFieldCmpNum

\GlsXtrIfFieldEqStr 642
\GlsXtrIfFieldEqXpStr 642
\GlsXtrIfFieldNonZero 153, 643

see also \GlsXtrIfFieldEqNum
\GlsXtrIfFieldUndef 204, 643

see also \ifglsfieldvoid
\glsxtrifhasfield . . 153, 204, 486, 525, 547,

559, 643
see also \GlsXtrIfFieldUndef

\glsxtrifhasfield* 204, 643
see also \GlsXtrIfFieldUndef

\GlsXtrIfHasNonZeroChildCount . . . 151
see also \GlsXtrIfFieldNonZero

\glsxtrifhyphenstart 643
\GlsXtrIfInGlossary 380, 643

690

Index

\glsxtrifinmark . 643
\glsxtriflabelinlist 643
\GlsXtrIfUnusedOrUndefined 643

see also \ifglsused
& \glsxtrifwasfirstuse

\glsxtrifwasfirstuse 512, 643
\GlsXtrIfXpFieldEqXpStr 644
\GlsXtrIndexCounterLink 268
\glsxtrindexseealso 60, 393, 644
\glsxtrinsertinsidefalse 644
\glsxtrinsertinsidetrue 644
\glsxtrLatinAA 294, 644
\glsxtrLatinOslash 294, 644
\GlsXtrLoadResources . . 4–7, 10, 13, 17, 19,

58, 60, 116, 119, 120, 123, 127, 143, 145, 150,
167, 169, 172, 185, 228, 312, 364, 380, 463, 540,
555, 610
see also resource options
& \glsxtrresourcefile

\glsxtrlocalsetgrouptitle 644
\GlsXtrLocationField 249, 253, 644
\glsxtrlocationhyperlink 644

see also \glsxtrsupphypernumber
& \glsxtrsupplocationurl

\glsxtrlong . 644
\glsxtrlonghyphen 644
\glsxtrlonghyphennoshort 644
\glsxtrlonghyphenshort 644
\glsxtrlongnoshortdescname 645
\glsxtrlongnoshortname 645
\glsxtrlongshortdescname . . 540, 571, 645
\glsxtrlongshortname 645
\glsxtrlongshortuserdescname 645
\glsxtrMathItalicGreekIrules . 294, 645
\GLSxtrmultientryadjustedname . . . 645
\GlsXtrmultientryadjustedname 333, 645
\Glsxtrmultientryadjustedname 333, 645
\glsxtrmultientryadjustedname 333, 645
\glsxtrmultisupplocation 272
\glsxtrnewgls 95, 435, see also \gls
\glsxtrnewglslike 95, 173, 252

see also \glsxtrnewgls
\glsxtrnewnumber 392, 393, 399
\glsxtrnewsymbol . . . 233, 392, 393, 398, 399
\glsxtrnonprintablerules 294, 646

\glsxtrnopostpunc . . 202, 390, 436, 508, 646
\glsxtronlydescname 646
\glsxtronlyname 572, 646
\glsxtronlysuffix 646
\glsxtrp . 60, 646
\glsxtrpageref 646, see also \pageref
\glsxtrparen 540, 646
\glsxtrpostdescabbreviation . . 100, 646
\glsxtrpostdesc〈category〉 486, 508
\glsxtrpostdescgeneral 95, 647
\glsxtrpostdescsymbol 95, 647
\glsxtrposthyphenlong 647
\glsxtrposthyphenshort 647
\glsxtrposthyphensubsequent 647
\glsxtrpostlinkAddDescOnFirstUse

574, 647
\glsxtrpostlinkAddSymbolDescOn-
FirstUse . 647

\glsxtrpostlinkAddSymbolOnFirstUse
647

\glsxtrpostlink〈category〉 512, 647
\glsxtrpostname〈category〉 512, 647
\glsxtrprelocation 249, 251, 647
\glsxtrprependlabelprefix 96, 648

see also \dgls,
\glsxtraddlabelprefix

& \glsxtrclearlabelprefixes
\GlsXtrProvideBibTeXFields . . . 107, 648
\glsxtrprovidecommand . . . 26, 69, 295, 648
\glsxtrprovidestoragekey . . 100, 321, 648
\glsxtrregularfont 648
\glsxtrresourcefile 5, 13, 19, 21, 119–121,

145, 169
see also resource options
& \GlsXtrLoadResources

\glsxtrresourceinit 17, 124, 293, 648
see also \GlsXtrResourceInitEscSequences

\GlsXtrResourceInitEscSequences . . 17,
123, 124, 130, 197, 294, 611

\glsxtrrestorepostpunc 436, 508, 648
\glsxtrRevertTocMarks 648
\glsxtrscsuffix 242, 648
\glsxtrseelist 209, 648
\glsxtrsetaliasnoindex 262, 648
\GlsXtrSetDefaultGlsOpts . . 304, 542, 648

691

Index

see also \GlsXtrSetDefaultNumberFormat
\GlsXtrSetDefaultNumberFormat . . . 244,

246, 304, 478, 542, 648
\GlsXtrSetField 151, 181, 184, 267, 335, 649
\glsxtrsetglossarylabel 649
\glsxtrsetgrouptitle 7, 10, 51, 185,

359, 362
\glsxtrsetpopts . 649
\GlsXtrSetRecordCountAttribute . . . 46
\glsxtrSetWidest 137, 381, 382, 649

see also \glssetwidest
& \glslongextraSetWidest

\glsxtrSetWidestFallback . . 382, 383, 649
see also \glsFindWidestTopLevelName
& \glsFindWidestLevelTwo

\glsxtrshort 542, 649
\glsxtrshortdescname 649
\glsxtrshorthyphen 649
\glsxtrshorthyphenlong 649
\glsxtrshortlongdescname 649
\glsxtrshortlongname 649
\glsxtrshortlonguserdescname 650
\glsxtrshortnolongname 650
\glsxtrsmsuffix . 650
\glsxtrspacerules 294, 650
\GlsXtrStandaloneEntryName 650
\GlsXtrStandaloneEntryOther 650
\GlsXtrStandaloneGlossaryType . . . 650
\GlsXtrStandaloneSubEntryItem . . . 650
\GlsXtrStartUnsetBuffering 650

see also \GlsXtrForUnsetBufferedList
\GlsXtrStopUnsetBuffering 650

see also \GlsXtrForUnsetBufferedList
\glsxtrsupphypernumber 270–272, 650

see also \glsxtrlocationhyperlink
& \glsxtrsupplocationurl

\glsxtrsupplocationurl 272, 651
see also \glshypernumber,
\glsxtrsupphypernumber,
\glsxtrmultisupplocation

& \glsxtrlocationhyperlink
\glsxtrtagfont 542, 651

see also \GlsXtrEnableInitialTagging
\glsxtrunsrtdo . 651
\GLSxtrusefield 26, 226, 651
\Glsxtrusefield 26, 226, 651

\glsxtrusefield 26, 100, 226, 651
\glsxtruserfield 102, 548, 651
\glsxtruserparen 548, 651
\glsxtrusersuffix 651
\glsxtrusesee 261, 350, 651
\glsxtruseseealso 350, 651
\glsxtruseseealsoformat 60, 244, 651
\glsxtruseseeformat 651
\glsxtrword . 651
\glsxtrwordsep . 652
groups . 6, 49, 163

custom see custom group
date . see date group
datetime
see date-time group
empty
see empty group (unknown commands)
hierarchical see sub-group
letter . see letter group
non-letter
see non-letter group
number see number group
small . see small group
symbol see symbol group
time . see time group

H

handlers 246, 250, 525, 547, see also loops
\heartsuit . 9, 652
hierarchical entry xxii–xxviii
hierarchical group see sub-group
homograph xxiv, 160, 236, 379
\hyperbf 43, 44, 94, 244, 247, 251, 252, 352, 559,

575, 652
\hyperemph 251–253, 652
\hyperit . 44, 652
\hyperlink . 267, 652
\hyperref . 652

{〈URL〉}{〈category〉}{〈name〉}{〈text〉} . . 652
[〈label〉]{〈text〉} 268, 652

\hyperrm . 252–254, 652
\hypersf . 43, 44, 652

692

Index

I

ietf (Internet Engineering Task Force) . . 20,
34, 282, 546

\ifcase . 262, 652
\ifcsdef . 355, 652
\ifcsstrequal . 652
\ifcsstring . 653
\ifdef . 383, 653
\ifdefstrequal . 653
\ifDTLlistskipempty 653
\IfFileExists 547, 653
\ifglossaryexists 13, 480, 653
\ifglossaryexists* 13, 380, 480, 653
\ifglsentryexists 141, 379, 653
\ifglsfieldcseq . 653
\ifglsfielddefeq 653
\ifglsfieldeq . 653
\ifglsfieldvoid . 653

see also \GlsXtrIfFieldUndef
\ifglshaschildren 151, 653
\ifglshasdesc 549, 654

see also \ifglshassymbol
& \ifglshassuppressedesc

\ifglshasfield 153, 204, 486, 654
see also \glsxtrifhasfield
& \GlsXtrIfFieldUndef

\ifglshaslong . 654
\ifglshasparent 151, 654
\ifglshasprefix . 654

see also \ifglshasdesc,
\glsxtrifhasfield

& \GlsXtrIfFieldUndef
\ifglshasprefixfirst 654

see also \ifglshasdesc,
\glsxtrifhasfield

& \GlsXtrIfFieldUndef
\ifglshasprefixfirstplural 654

see also \ifglshasdesc,
\glsxtrifhasfield

& \GlsXtrIfFieldUndef
\ifglshasprefixplural 654

see also \ifglshasdesc,
\glsxtrifhasfield

& \GlsXtrIfFieldUndef
\ifglshasshort 546, 654
\ifglshassuppressedesc 654

see also \ifglshasdesc
\ifglshassymbol . 654

see also \ifglshasdesc,
\glsxtrifhasfield

& \GlsXtrIfFieldUndef
\ifglsused . 654

see also \GlsXtrIfUnusedOrUndefined
& \glsxtrifwasfirstuse

\ifglsxtrinsertinside 655
\ifignoredglossary 655
\IfNotBibGls 27, 40, 136, 285, 388, 655

see also \IfTeXParserLib
\ifnum . 355, 655
\ifstrempty . 214, 655
\IfTeXParserLib 25, 40, 285, 388, 655

see also \IfNotBibGls
ignored glossary xxiv, 11, 12, 188
ignored record . . . xxiv, 42, 46, 48, 60, 107, 188,

244–247, 304
\immediate . 1, 655
\IN (quark) . 18, 135
\include . 388, 655
\index . 18, 655
\indexname . 655
\input 1, 60, 388, 395, 655
\INTERPRET (quark) 18, 126–128, 655
interpret-preamble.bib 412, 413, 426, 432,

435, 456, 506, 510, 529, 566
interpret-preamble2.bib . . 412, 413, 432,

518, 520
\INTERPRETNOREPL (quark) 17, 18, 128
\invfmt . 455
iteration . see loops

J

\jobname 119, 145, 169, 656
jre (Java Runtime Environment) . 31, 32, 289,

426, 427, 513
jvm (Java Virtual Machine) . 2, 3, 38, 283, 289,

389, 406

L

\L . 225, 656
\l . 225, 656

693

Index

\label . 267, 656
see also \ref
& \pageref

label prefixes
dual. 58, 88, 173–176, 317, 558
ext〈n〉. 58, 173–177, 435
tertiary. 105, 173, 175, 330

\LABELIFY (quark) . 129
\LABELIFYLIST (quark) 129
language resource file (.xml)

grouptitle.case.〈lc〉 51, 360
sentence.terminators 203
tag.page . 263, 354
tag.pages . 263, 354

\LC (quark) . 18, 129
\LEN (quark) 18, 129, 132–134, 161
\let . 515, 656
letter group 4, 7, 50, 51, 362, 363
link text . 629
\listbreak . 656

see also \forlistloop,
\glsxtrfieldforlistloop,
\glsxtrfielddolistloop

& \glsxtrendfor
\listxadd . 547, 656
\loadglsentries 1, 60, 394, 395
locale

document . xxiii
Java . xxiv
resource . xxvii

locale provider 31, 282, 289, 426, 513
location list xxiv, 15, 45, 146–148, 160, 211, 243,

249, 317, 349, 477, 662
ranges . see range

\longnewglossaryentry . . 97, 233, 326, 396
\longnewglossaryentry* 336, 657
\longprovideglossaryentry 396
longtable environment 503
loops 16, 24, 107, 151, 244, 547, 548
lower case . . 30, 31, 129, 222–225, 283, 284, 296,

306, 310, 311, 320, 369, 386–390

M

\mainmatter . 246, 657

\makefirstuc . 14, 54, 224–226, 328, 387, 543,
610, 657

\makeglossaries 6, 301, 566, 657
\MakeLowercase 310, 407, 657
\makenoidxglossaries 6, 657
\MakeTextLowercase 386, 407, 657
\MakeTextUppercase 386, 407, 657
\MakeUppercase 24, 394, 407, 657
markuplanguages.bib 463, 540, 552
\mathcal . 27, 657
mathgreek.bib 442, 447, 527
\mathord . 454, 657
mathsobjects.bib 455, 529
mathsrelations.bib 451, 453, 527
\MFUblocker 128, 129, 657
\MFUexcl . 128, 129, 657
\MFUnocap . 223, 657
\MFUskippunc 224, 225, 230, 658
\MFUwordbreak 224, 225, 231, 658
\mgls . 114–116, 332, 658
\MGP (quark) 18, 125, 172
\midrule . 503, 658
minerals.bib 472, 477, 552
miscsymbols.bib 459, 534, 537, 570, 571
\mtxfmt . 455
\multiglossaryentry 66, 114–116, 331, 334,

349, 658
\multiglossaryentrysetup . . 115, 117, 658

N

\n (newline) . 18, 658
\nary . 448
\newabbreviation . . 62, 83, 97, 121, 233, 337,

338, 343, 392, 393, 398
\newacro (datagidx) 402, 403, 411
\newacronym . 121, 233, 338, 343, 392, 393, 398
\newcommand 95, 335, 394, 399, 400, 659
\newdualentry 96, 392, 393, 399, 400
\newentry . 396, 659
\newgidx (datagidx)
\newglossary . 11, 659
\newglossary* 11, 281, 498, 659
\newglossaryentry 53, 59, 119, 190, 193, 233,

234, 248, 299, 388–396

694

Index

\newglossarystyle 503, 659
\newignoredglossary 11, 659
\newignoredglossary* 11, 12, 659
\newnum . 399, 659
\newrobustcmd 363, 659
\newsym . 399, 659
\newterm 392, 393, 397, 411
\newterm (datagidx) 402, 403, 411
\NG . 225, 659
\ng . 225, 660
\NIN (quark) . 18, 135
no-interpret-preamble.bib 214, 276, 412,

415, 426, 432, 435, 456, 506, 510, 518, 529, 566
\nobreakspace 38, 221, 660
\NoCaseChange 222–225, 230, 542, 660
\NOCHANGE (quark) . 130
non-ASCII 28, 272, 305, 465, 544, 546
non-letter group 50, 51, 364, 365, 571
\nopostdesc . 202, 336, 337, 390, 396, 436, 660
\NOTPREFIXOF (quark) 18, 135
\NOTSUFFIXOF (quark) 18, 135
\NULL (quark) 18, 132, 648
\number . 310, 660
number group 50, 280, 365, 366
\numspacefmt . 455

O

\O . 170, 225, 660
\o . 225, 660
\OE . 225, 229, 660
\oe . 225, 229, 661
\oldacronym 392, 393, 398, 661

see also \newacronym
\omicron . 442, 443, 661
openin_any 19, 391, 401
openout_any 19, 391, 401

P

package options
abbreviations 10, 83, 97, 589
accsupp . 63, 589
acronym . 589
acronymlists . 589

acronyms . 589, 598
automake . 1, 589
autoseeindex . 589
counter . 267, 589
counterwithin 589
debug . 589, 634
docdef . 590
entrycounter 589, 590
esclocations . 590
hyperfirst . 590
index 397, 411, 514, 553, 590
indexcounter 46, 266, 267, 590
indexcrossrefs 590
indexonlyfirst 590
makeindex . 590
nogroupskip 4, 50, 590
nohypertypes . 590
nolangwarn . 590
nolist . 590
nolong . 591
nomain 188, 500, 522, 553, 591
nomissingglstext 591
nonumberlist 247, 248, 488, 591
nopostdot 201, 396, 591
noredefwarn . 591
nostyles 485, 490, 493, 497, 503, 522,

553, 591
nosuper . 591
notranslate . 591
notree . 591
nowarn . 591
numberedsection 591, 592
numberline . 591
numbers . 399, 591
order . 592
postdot . . . 201, 202, 436, 485, 514, 522, 592
postpunc . 591, 592
record . . . 6, 12, 17, 21, 45, 49, 119, 123, 140,

146, 243, 253, 254, 269, 277, 294, 335, 485,
514, 592

sanitizesort . 592
savenumberlist 592
savewrites . 592
section 500, 553, 592

695

Index

seeautonumberlist 592
seenoindex . 592
shortcuts . 55, 593
sort . 119, 593
style . 485, 503, 593
stylemods 485, 490, 493, 497, 503, 514, 522,

527, 553, 593
subentrycounter 379, 593, 622
symbols 10, 95, 187, 398, 593
toc . 591, 593
translate . 591, 593
ucmark . 593
undefaction 140, 146, 593
xindy . 301, 594
xindygloss . 594
xindynoglsnumbers 594

\PackageError 39, 661
packages

accsupp . 63
amsmath . 41
amssymb . 41
babel . 170
booktabs . 41
bpchem . 41
CJKutf8 . 363
color . 41
datagidx . 408
datatool . 41, 401, 408
datatool-base . 41
datetime2 . 427
etoolbox . 41, 244
fontenc . 41
fontspec . 41
fourier . 41
glossaries 1, 41, 52–54, 66, 119, 358, 361
glossaries-accsupp 63, 64
glossaries-extra . . . 1, 41, 52–54, 66, 119, 242,

266, 269, 361
glossaries-extra-bib2gls 106, 119, 269, 271,

293, 294, 442
glossaries-extra-stylemods 137
glossaries-prefix 63, 80, 179, 220
glossary-bookindex 493
glossary-list . 514

glossary-long . 503
glossary-longbooktabs 503
glossary-longextra 137
glossary-mcols . 497
glossary-super . 591
glossary-topic . 539
glossary-tree . 137
graphics . 41
graphicx . 41
hyperref 41, 45, 52, 72, 165, 272, 361
ifsym . 459, 534, 537
ifthen . 41
inputenc . 3, 359
jmlrutils . 41
lipsum . 41
longtable . 503
marvosym 459, 534, 537
mfirstuc . 53, 54, 224
mfirstuc-english 41, 223
mhchem . 41
MnSymbol . 41
natbib . 41
pifont . 41
polyglossia . 546, 547
probsoln . 41
shortvrb . 41
siunitx 25, 41, 423, 503
stix . 41, 447, 527
tabularx . 631
textcase . 41, 224
textcomp . 41
tipa . 41
tracklang . 282, 283
upgreek . 41, 415
wasysym . 41
xkeyval . 56
xspace . 41

page counter 253–256, 266
\pagelistname 263, 661
\pageref 226, 267, 656, 661
\par . 525, 661
\parenswap . 121, 122
people.bib 426, 510, 512, 518, 566
period . see full stop (.)

696

Index

\PGLS . 661
\Pgls . 661
\pgls . 220, 661
\PGLSpl . 661
\Pglspl . 661
\pglspl . 661
\pi . 75, 93, 217, 661
post-description hook . 100, 104, 201, 202, 337,

436, 486, 508, 512, 514, 524, 525, 542
post-link hook 203, 512, 520, 574
post-name hook . . . 494, 507, 512, 514, 549, 574
\PREFIXOF (quark) 18, 135
primary . xxvi, 80
\printglossaries 6, 301, 662
\printglossary 6, 662
\printnoidxglossaries 662
\printnoidxglossary 662
\printunsrtglossaries 5, 6, 662
\printunsrtglossary . . . 5, 49, 82, 121, 141,

247, 312, 313, 359, 649, 662
entrycounter . 662
groups . 481
label . 649
leveloffset . 481
nogroupskip 91, 662
nonumberlist 515, 662
nopostdot . 663
numberedsection 663
prefix . 663
style . 515, 663
subentrycounter 663
target . 141, 313, 515
targetnameprefix 663
title . 6, 12, 313, 515
toctitle . 663
type . 12, 515

\printunsrtglossary* . . 142, 201, 251, 253,
515, 663

\printunsrtglossaryentryprocesshook
281, 663

\printunsrtglossaryhandler 663
\printunsrtglossarypredoglossary 663
\printunsrtglossaryskipentry . 281, 663
printunsrtglossarywrap environment 664

\printunsrtinnerglossary . . 12, 480, 663
\ProcessOptions 39, 664
progenitor xxvi, 110, 187
progeny . xxvi, 110
\protect 17, 124, 293, 664
\providecommand . . 25, 69, 295, 335, 400, 664
\provideglossaryentry 396
\provideignoredglossary . 12, 57, 188, 664
\provideignoredglossary* . . . 12, 57, 168,

188, 312, 664
\providemultiglossaryentry . . . 114, 116,

334, 664
\ProvidesPackage 39, 664

Q

quarks (bib2gls) 17, 123, 124, 129, 132

R

range . . 43, 48, 244–247, 252, 254, 257, 260, 261,
266, 267, 351, 352
explicit 43, 48, 244–249, 257, 260, 352
implicit 245, 257, 260, 266, 351, 352
interloper 245, 257, 352

\ref 226, 656, 664, see also \label
\refstepcounter 45, 266, 664
regexp (or regex)

see regular expressions
regular expressions xxvii, 18, 674, 675
\renewcommand 25, 69, 335, 399, 664
\REPLACESPCHARS (quark) 17, 18, 128
\RequirePackage 39, 664
resource options

abbreviation-name-fallback . . 78, 92,
235, 340, 557

abbreviation-sort-fallback . . 78, 92,
97, 100, 103, 235, 236, 240, 291, 292, 494,
540, 555, 557

abbreviation-text-fallback 235
action 140–143, 147, 167, 201, 311, 312, 380,

514, 554
adopted-parent-field 110, 111, 114, 189
alias . 146, 262
alias-loc . 13, 262

697

Index

append-prefix-field 220, 221
append-prefix-field-cs 221
append-prefix-field-cs-exceptions

221
append-prefix-field-exceptions

221
append-prefix-field-nbsp-match

221, 222
assign-fields . . 14, 18, 60, 125, 131, 193,

195, 198, 200, 215, 224, 233–235, 409
assign-missing-field-action . . 132,

197, 200
assign-override 195, 198, 200
bibtex-contributor-fields . . 14, 213,

215, 383, 384, 413, 427, 432
bibtexentry-sort-fallback . 106, 238,

291, 292
break-at 204, 207, 213, 241, 282, 283,

296–298, 315, 323
break-at-match 297, 298, 315, 324
break-at-match-op 297, 315, 324
break-at-not-match . . 297, 298, 315, 324
break-marker 296, 297, 315, 324
category 15, 76, 90, 106, 113, 141, 168, 169,

185–187, 274, 320, 331, 336, 337, 506, 512,
524, 567

charset . 2, 3, 59, 136
check-end-punctuation 14, 65, 203, 520
combine-dual-locations . . 15, 91, 105,

317, 319
compact-ranges 261, 351
compound-add-hierarchy 15, 331
compound-adjust-name 15, 332
compound-dependent 15, 331
compound-has-records 332
compound-main-type 333, 334
compound-options-global 331
compound-other-type 333, 334
compound-type-override 333, 334
compound-write-def 116, 331, 334
contributor-order 213, 214, 384
copy-action-group-field . . . 141, 142,

201, 514
copy-alias-to-see 15, 201

copy-to-glossary 16, 124, 142–144,
188, 380

copy-to-glossary-missing-field
-action . 143, 144

counter 15, 64, 200, 321
cs-label-prefix 175, 176, 558
custom-sort-fallbacks 76, 77, 234–240,

291, 292
date-field-format 219, 220, 322
date-field-locale 219, 220, 322
date-fields 15, 219, 220, 384
date-sort-format 219, 220, 289, 290, 309,

316, 325, 427
date-sort-locale 220, 289, 290, 308, 309,

316, 325
date-time-field-format 219, 322
date-time-field-locale . 219, 220, 322
date-time-field-locale . 219, 220, 322
date-time-fields 15, 219, 220, 384
decomposition 305, 316, 324
dependency-fields 14, 16, 61, 146,

178, 406
description-case-change 79, 232
dual-abbrv-backlink 100, 329, 330
dual-abbrv-map 102, 326
dual-abbrventry-backlink . . . 329, 330
dual-abbrventry-map 327
dual-backlink 330
dual-break-at 204, 296, 323, 557
dual-break-at-match 297, 324
dual-break-at-match-op 297, 324
dual-break-at-not-match 298, 324
dual-break-marker 297, 324
dual-category 15, 88, 186, 320, 331
dual-counter 15, 321
dual-date-field-format . 219, 220, 322
dual-date-field-locale . 219, 220, 322
dual-date-sort-format 325
dual-date-sort-locale 308, 325
dual-date-time-field-format

219, 322
dual-date-time-field-locale . . 219,

220, 322
dual-decomposition 305, 324

698

Index

dual-entry-backlink 328–330
dual-entry-map 325–329
dual-entryabbrv-backlink 330
dual-field 64, 321, 329, 559
dual-group-formation . . . 311, 325, 369
dual-identical-sort-action 298, 324
dual-indexabbrv-backlink 330
dual-indexabbrv-map 328
dual-indexentry-backlink 89, 330
dual-indexentry-map 327
dual-indexsymbol-backlink 330
dual-indexsymbol-map 327, 556
dual-letter-number-punc-rule

306, 325
dual-letter-number-rule 305, 325
dual-long-case-change 232, 321
dual-missing-sort-fallback 292, 323
dual-numeric-locale 308, 325
dual-numeric-sort-pattern . 308, 325
dual-prefix 58, 81, 88, 173–176, 317,

385, 558
dual-short-case-change 231, 321
dual-short-plural-suffix 243
dual-sort . . 81, 82, 106, 151, 204, 205, 308,

317, 322, 323
dual-sort-field 81, 291, 323
dual-sort-number-pad . . . 298, 324, 557
dual-sort-pad-minus 298, 324
dual-sort-pad-plus 298, 324
dual-sort-replace 293, 323
dual-sort-rule 323
dual-sort-suffix 299, 324
dual-sort-suffix-marker 304, 324
dual-strength 304, 324
dual-symbol-backlink 329, 330
dual-symbol-map 327
dual-time-field-format . 219, 220, 322
dual-trim-sort 292, 323
dual-type . 15, 52, 88, 95, 97, 138, 141, 187,

188, 263–265, 319, 321, 330, 556
duplicate-label-suffix 174, 570
encapsulate-fields 14, 215
encapsulate-fields* 14, 215
encapsulate-sort 304

entry-sort-fallback . . 75–77, 234–237,
241, 291, 292, 481

entry-type-aliases . . 13, 131, 138–140,
149, 185, 187, 238, 291, 319, 320, 333, 334,
418, 423, 554

ext-prefixes 58, 173–176, 385
field-aliases . 14, 51, 108, 110, 189, 192,

406, 421–427, 432, 435, 510, 518, 528
field-case-change 14, 15, 216, 232
field-concat-sep 18, 236–241
flatten . . . 141, 153, 156, 162, 190, 277, 290
flatten-lonely 153–161, 378–380
flatten-lonely-condition . . . 160, 161
flatten-lonely-missing-field

-action . 161
flatten-lonely-rule 153, 154, 157,

160, 161
format-decimal-fields 216
format-integer-fields . . 181, 182, 216
gather-parsed-dependencies 184, 191
group 7, 14, 49–53, 60, 65, 141, 163, 184, 185,

311, 495, 497
group-formation . 163, 184, 311, 317, 325,

360, 368, 369
group-level . . . 50, 163–165, 184, 361, 371
hex-unicode-fields 15, 218, 358
identical-sort-action . . 181, 182, 280,

298–303, 316, 324, 481, 485, 506, 534
ignore-fields . 14, 78, 153, 162, 181, 184,

189–194, 427
ignored-type 12, 57, 188
interpret-fields 15, 216, 218, 232
interpret-fields-action 218
interpret-label-fields . . 14, 24, 137,

169, 170, 520
interpret-preamble . 16, 29, 30, 69, 120,

123, 137, 302, 310, 412
label-prefix 14, 58, 102, 131, 168,

173–177, 312, 385, 435, 506, 558
labelify 14, 24, 41, 107, 129, 137, 162,

169–172
labelify-list 14, 24, 41, 129, 137,

170–172, 178
labelify-replace 107, 125, 170–172, 292

699

Index

letter-number-punc-rule . . . 286, 306,
316, 325

letter-number-rule . 286, 287, 305, 308,
316, 325

limit . 15, 150, 151
loc-counters . 254, 256, 265, 266, 354, 355
loc-prefix 20, 249, 262–264, 352–354
loc-prefix-def 263, 264, 353
loc-suffix 264, 354, 542
loc-suffix-def 264, 265, 354
locale 35, 136, 277, 283, 308, 309
long-case-change 232, 321
master 12, 15, 57, 141, 167, 168
master-resources 169
match . . . 15, 131, 149, 150, 210, 297, 314, 510
match-action 150, 314
match-op 149, 150, 314
max-loc-diff 260, 351
merge-ranges . . . 43, 48, 245, 257, 260, 352
merge-small-groups . . . 50, 164, 165, 370
min-loc-range 245, 257
missing-parent-category 162, 163
missing-parents 162, 163
missing-sort-fallback . . 233, 236, 238,

241, 291, 292, 314, 323
name-case-change . 15, 141, 224, 228, 229,

232, 333, 542
no-case-change-cs 226, 231
not-match . 150, 314
numeric-locale 288, 308, 316, 325
numeric-sort-pattern 288, 308, 316, 325
omit-fields 14, 16, 189–192
omit-fields-missing-field-action

192
post-description-dot 201, 202
prefix-fields 220, 221
prefix-only-existing 178
primary-dual-dependency 317
primary-loc-counters 254, 256
primary-location-formats 250
principal-loc-counters 249, 254
principal-location-formats 248–252
progenitor-type 110, 189
progeny-type 110, 189

prune-iterations 212, 213
prune-see-match 210, 212
prune-see-op 210, 212
prune-seealso-match 210–213
prune-seealso-op 212, 213
prune-xr . 210, 212
record-label-prefix 175, 563
replicate-fields . . 14, 79, 110, 171, 189,

193–196, 234, 427, 493, 512, 520, 528, 555
replicate-missing-field-action

193, 194
replicate-override 193, 194, 427
save-child-count 151, 153
save-crossref-tail 183
save-definition-index . . 181, 216, 387
save-from-alias 183
save-from-see 182, 183
save-from-seealso 182
save-index-counter 46, 266–269
save-locations 6, 141, 243, 244, 247, 248,

266, 508, 531
save-loclist 248, 250, 335
save-original-entrytype 14, 139,

183–187
save-original-entrytype-action

184–187
save-original-id 14, 181
save-original-id-action 181
save-primary-locations 248
save-principal-locations 48,

248–252, 356
save-root-ancestor 153
save-sibling-count 153
save-use-index 182, 216, 387
secondary 12, 57, 65, 74, 141, 142, 147, 188,

201, 292, 308, 311, 312, 513, 554
secondary-break-at 296, 315
secondary-break-at-match . . . 297, 315
secondary-break-at-match-op

297, 315
secondary-break-at-not-match

298, 315
secondary-break-marker 297, 315
secondary-date-sort-format 316

700

Index

secondary-date-sort-locale 308, 316
secondary-decomposition 305, 316
secondary-group-formation 311,

317, 369
secondary-identical-sort-action

298, 316
secondary-letter-number-punc-rule

306, 316
secondary-letter-number-rule

305, 316
secondary-match 314
secondary-match-action 314
secondary-match-op 314
secondary-missing-sort-fallback

292, 314
secondary-not-match 314
secondary-numeric-locale . . . 308, 316
secondary-numeric-sort-pattern

308, 316
secondary-sort-number-pad . 298, 315
secondary-sort-pad-minus . . . 298, 315
secondary-sort-pad-plus 298, 315
secondary-sort-replace 293, 315
secondary-sort-rule 312, 315
secondary-sort-suffix 299, 316
secondary-sort-suffix-marker

304, 316
secondary-strength 304, 316
secondary-trim-sort 292, 315
see . 261, 262, 349
seealso . 60, 262
selection . . . 1, 15, 16, 43, 60, 81, 107, 141,

146–148, 153, 182, 189, 211, 212, 245, 312,
407, 477, 497, 508, 510, 514, 531, 542, 571

set-widest 24, 137, 138, 174, 381–383, 448,
460, 485, 490, 528, 539, 570

short-case-change 14, 78, 167, 229–231,
321, 387

short-plural-suffix 14, 243
shuffle 151, 277, 290
sort . 6, 24, 25, 28–31, 34, 35, 49, 51, 83, 119,

141, 150, 181, 182, 204, 205, 208, 277,
280–285, 289, 290, 293, 296, 297, 302, 308,
309, 312, 317, 322, 363, 364, 426, 427, 448,

481, 513, 524
sort-field 7, 28, 30, 78, 233–240, 275, 277,

290–292, 312, 313, 323, 442, 485, 503, 537
sort-label-list 204, 209, 275
sort-number-pad . . 27, 285, 293, 298, 304,

315, 324
sort-pad-minus 298, 315, 324
sort-pad-plus 298, 315, 324
sort-replace 172, 292, 297, 315, 323
sort-rule . . . 24, 25, 278, 282, 293, 315, 323
sort-suffix . . 299, 300, 304, 316, 324, 507,

528, 534
sort-suffix-marker . . 301, 304, 316, 324
src 16, 21, 120, 131, 145, 147, 177, 269,

273, 274
strength 304, 305, 316, 324
strip-missing-parents 161, 162
strip-trailing-nopost . . . 14, 202, 436
suffixF . 257, 260
suffixFF . 257, 260
supplemental-category 272–274
supplemental-locations 271, 357
supplemental-selection 273
symbol-sort-fallback 75, 238, 239, 275,

291, 292, 418, 481, 485, 503, 557
tertiary-category 105, 331
tertiary-prefix 105, 175, 330, 385
tertiary-type 105, 141, 188, 330
time-field-format 219, 220, 322
time-field-locale 219, 220, 322
time-fields 15, 219, 220, 384
trigger-type 12, 46, 57, 188
trim-sort 292, 315, 323
type . . . 15, 52, 60, 65, 97, 106, 138, 141, 168,

185–189, 201, 263–265, 319, 330, 337, 353,
360, 381, 394, 497

unknown-entry-alias 106, 140
word-boundaries 223, 231
wordify-math-greek 136
wordify-math-symbol 136
write-preamble 25, 137, 276, 413, 520

resource set xxvii, 7, 13, 16, 25, 35, 107,
119–123, 140, 141, 147, 161, 174, 178, 205, 208,
209, 215, 232, 243, 255, 276, 283, 335, 361, 369,

701

Index

385, 415, 495, 500, 522, 567, 570–572
\rgls . 46, 47, 188, 246
\rglsformat . 46

S

sample-authors.tex 163, 518
sample-bacteria.tex 491, 507, 554
sample-chemical.tex 488, 557
sample-citations.tex 522
sample-constants.tex 483
sample-dual.tex . 399
sample-hierarchical.tex 477–481
sample-markuplanguages.tex . . . 540, 554
sample-maths.tex 456, 529
sample-media.tex . . . 412, 436, 506, 520, 569
sample-msymbols.tex 527–531
sample-multi1.tex 18, 552, 563, 568,

573, 574
sample-multi2.tex 18, 563
sample-nested.tex 12, 147, 478
sample-people.tex . . 510, 520, 566, 567, 573
sample-textsymbols.tex . . 7, 50, 459, 528,

534, 537
sample-textsymbols2.tex 7, 50, 528,

536, 537
sample-units1.tex 495, 498
sample-units2.tex 498
sample-units3.tex 501, 557
sample-usergroups.tex 544
secondary xxvii, 104, see also dual
section counter . 270
\section . 45, 665
\section* 500, 553, 665
\seealsoname 60, 394, 665
\selectlanguage 209, 665
sentence case 53, 54, 127, 129, 224, 390
\setabbreviationstyle 78, 121, 665
\setcardfmt . 455
\setcontentsfmt . 455
\setentrycounter 273, 665
\setfmt . 455
\setglossarypreamble 665

see also \glossarypreamble
\setglossarystyle 503, 665

\setmainlanguage 546, 665
\setmembershipfmt 455
\setmembershiponeargfmt 455
\setotherlanguage 548, 665
\setupglossaries 666
\showglocounter . 666
\showglodesc . 666
\showglodescplural 666
\showglofield . 666
\showglofirst . 666
\showglofirstpl . 666
\showgloflag . 666
\showgloglossaries 666
\showglolevel . 666
\showgloloclist . 666
\showglolong . 666
\showgloname . 666
\showgloparent . 666
\showgloplural . 666
\showgloshort . 666
\showglosort . 667
\showglossarycounter 667
\showglossaryentries 667
\showglossarytitle 667
\showglosymbol . 667
\showglosymbolplural 667
\showglotext . 667
\showglotype . 667
\showglouseri . 667
\showglouserii . 667
\showglouseriii . 667
\showglouseriv . 667
\showglouserv . 667
\showglouservi . 667
\si 25, 226, 423, 503, 667
si unit . 423, 503, 569
\sigma . 217, 667
small group . 50, 164
\sortart . 412, 413
\sortmediacreator 413, 520
\sortname 412, 413, 513, 573
\sortop . 276, 412
\sortvonname 412, 413, 427, 513, 573
\space 220–222, 231, 668

702

Index

\SS . 225, 668
\ss . 225, 668
StackOverflowError 24
\string . . . 17, 124, 172, 221, 241, 293, 294, 304,

308, 309
string concatenation xxii
\strong . 121–123
sub-group . 50, 163, 164
\subglossentry 246, 504, 668
\SUFFIXOF (quark) 18, 135
\surd . 414, 668
switches

see command line options (bib2gls),
command line options (conversion tools),
command line options (convertgls2bib)

& command line options (datatool2bib)
\symbol . 358, 668
symbol group

see non-letter group

T

\tableofcontents 217, 668
\tabularnewline 503, 668
tabularx environment 631
terms.bib 476, 477, 480, 571–573
tertiary . xxviii, 104
\texorpdfstring 218, 378, 669
texparserlib.jar 22–28, 34, 41
\textbf 244, 245, 259, 524, 669
\textcolor . 230, 669
\text〈language〉 548, 669
\textsc . 91, 228, 669
\textsf . 507, 669
\textsmaller 617, 669
\textstyle . 447, 669
\textsubscript 41, 307, 669
\textsuperscript 41, 307, 669
\texttt . 300, 669
\textweathersymbol 460, 669
\TH . 225, 669
\th . 225, 669
\the . 540, 669
theglossary environment 663
\theglossaryentry 669

\theHentrycounter 45, 669
\theHglossaryentry 670
time group . 50, 368
\TITLE (quark) . 18, 129
title case 129, 223–225, 231, 232, 387, 390
toc (table of contents) 21
topics.bib . 477, 537
\toprule . 503, 670
\TrackedLanguageFromDialect . . 547, 670
\TrackLangLastTrackedDialect . 547, 670
\TrackLocale 547, 670
\transposefmt . 455
trigraph . 51
\TRIM (quark) . 18, 126
tug (TEX Users Group) 465

U

\u (accent) . 293, 670
\u (hex code quark) 18, 221, 240, 241, 293, 294,

304, 308, 309
\UC (quark) . 18, 129, 197
unaryoperators.bib 454, 527
\undef . 534, 670
\underline . 542, 670
\unexpanded 363, 364, 670
Unicode categories

Letter, Lowercase 286
Letter, Modifier . 286
Letter, Other . 286
Letter, Titlecase 286
Letter, Uppercase 286
Number, Decimal Digit 257, 284, 307
Punctuation, Close 202, 203
Punctuation, Dash 231
Punctuation, Final quote 202, 203
Punctuation, Other 202, 203
Separator, Space 286

\unit . 25, 670
upper case . 28, 31, 51, 54, 78, 129, 197, 223, 225,

229, 283, 284, 296, 306, 386, 387, 390, 542, 543
\usepackage 63, 388, 591, 671
usergroups.bib 465, 544

703

Index

V

\vec . 29, 671
\vecfmt . 455
vegetables.bib 474, 477, 552
\vert . 30, 70, 455, 671

W

wrglossary counter 46, 65, 266–268
\write18 . 1, 671

X

xampl.bib . 108
\xglsaccsupp . 671

see also \glsaccsupp
\xGlsXtrSetField 547, 671
\xifinlist . 547, 671
\xmakefirstuc 180, 671
XML resource file

see language resource file (.xml)

704

	Glossary
	Introduction
	Default Encoding
	Example Use
	Logical Divisions: type vs group vs parent
	Defining a New Glossary
	Resource Sets
	bib2gls Quarks
	Indexing
	Security
	Localisation
	Conditional Document Build
	Manual Installation

	TeX Parser Library
	Command Line Options
	Common Options
	–help (or -h)
	–version (or -v)
	–verbose
	–no-verbose (or –noverbose)
	–quiet (or -q)
	–silent
	–locale lang (or -l lang)
	–debug [n]
	–debug-mode setting
	–no-debug (or –nodebug)

	File Options
	–dir dirname (or -d dirname)
	–log-file filename (or -t filename)
	–tex-encoding name
	–log-encoding name
	–default-encoding name
	–date-in-header (or -D)
	–no-date-in-header

	Interpreter Options
	–break-space
	–no-break-space
	–custom-packages list
	–datatool-sort-markers
	–no-datatool-sort-markers
	–ignore-packages list (or -k list)
	–interpret
	–no-interpret
	–list-known-packages
	–packages list (or -p list)
	–support-unicode-script
	–no-support-unicode-script
	–obey-aux-catcode
	–no-obey-aux-catcode

	Record Options
	–cite-as-record
	–no-cite-as-record
	–collapse-same-location-range
	–no-collapse-same-location-range
	–map-format map:value list (or -m map:value list)
	–merge-nameref-on rule
	–merge-wrglossary-records
	–no-merge-wrglossary-records
	–record-count (or -c)
	–no-record-count
	–record-count-unit (or -n)
	–no-record-count-unit
	–record-count-rule {rule} (or -r {rule})
	–retain-formats list
	–no-retain-formats

	Bib File Options
	–warn-non-bib-fields
	–no-warn-non-bib-fields
	–warn-unknown-entry-types
	–no-warn-unknown-entry-types

	Field Options
	–group (or -g)
	–no-group
	–no-expand-fields
	–expand-fields
	–mfirstuc-protection list|all (or -u list|all)
	–no-mfirstuc-protection
	–mfirstuc-math-protection
	–no-mfirstuc-math-protection
	–nested-link-check list|none
	–no-nested-link-check
	–shortcuts value
	–trim-fields
	–trim-only-fields list
	–trim-except-fields list
	–no-trim-fields

	Other Options
	–force-cross-resource-refs (or -x)
	–no-force-cross-resource-refs
	–provide-glossaries
	–no-provide-glossaries
	–replace-quotes
	–no-replace-quotes

	.bib Format
	Encoding
	Comments
	Fields
	String Concatenation
	Standard Entry Types
	@string
	@preamble

	Single Entry Types
	@entry
	@symbol
	@number
	@index
	@indexplural
	@abbreviation
	@acronym
	@contributor

	Dual Entry Types
	@dualentry
	@dualindexentry
	@dualindexabbreviation
	@dualindexsymbol
	@dualindexnumber
	@dualabbreviationentry
	@dualentryabbreviation
	@dualsymbol
	@dualnumber
	@dualabbreviation
	@dualacronym

	Tertiary Entry Types
	@tertiaryindexabbreviationentry

	Multi-Entry Types
	@bibtexentry
	@progenitor
	@spawnindex
	@spawnindexplural
	@spawnentry
	@spawnabbreviation
	@spawnacronym
	@spawnsymbol
	@spawnnumber
	@spawndualindexentry

	Compound Entry Sets
	@compoundset

	Resource File Options
	String Concatenation
	Complex Conditionals
	General Options
	charset=encoding-name
	locale=lang tag
	wordify-math-greek=boolean
	wordify-math-symbol=boolean
	interpret-preamble=boolean
	write-preamble=boolean
	set-widest=boolean
	entry-type-aliases=key=value list
	unknown-entry-alias=value
	action=value
	copy-to-glossary=list
	copy-to-glossary-missing-field-action=value

	Selection Options
	src=list
	selection=value
	match=key=value list
	match-op=value
	not-match=key=value list
	match-action=value
	limit=number

	Hierarchical Options
	save-child-count=boolean
	save-sibling-count=boolean
	save-root-ancestor=boolean
	flatten=boolean
	flatten-lonely=value
	flatten-lonely-rule=value
	flatten-lonely-condition=value
	flatten-lonely-missing-field-action=value
	strip-missing-parents=boolean
	missing-parents=value
	missing-parent-category=value
	group-level=value
	merge-small-groups=n

	Master Documents
	master=name
	master-resources=list

	Field and Label Options
	Entry Labels
	interpret-label-fields=boolean
	labelify=list
	labelify-list=list
	labelify-replace=list
	label-prefix=tag
	duplicate-label-suffix=value
	record-label-prefix=tag
	cs-label-prefix=tag
	ext-prefixes=list
	prefix-only-existing=boolean
	dependency-fields=list

	Special Fields
	save-original-id=value
	save-original-id-action=value
	save-definition-index=boolean
	save-use-index=boolean
	save-from-see=value
	save-from-seealso=value
	save-from-alias=value
	save-crossref-tail=value
	save-original-entrytype=value
	save-original-entrytype-action=value
	gather-parsed-dependencies=value

	Assignments
	group=label
	category=value
	type=value
	ignored-type=type
	trigger-type=type
	progenitor-type=type
	progeny-type=type
	adopted-parent-field=type
	ignore-fields=list
	omit-fields=list

	omit-fields-missing-field-action={value}
	field-aliases=key=value list
	replicate-fields=key=value list
	replicate-override={boolean}
	replicate-missing-field-action={value}
	assign-fields=key=value list
	assign-override={boolean}
	assign-missing-field-action={value}
	counter=value
	copy-action-group-field=value
	copy-alias-to-see=boolean

	Field Adjustments
	post-description-dot=value
	strip-trailing-nopost=boolean
	check-end-punctuation=list
	sort-label-list=list
	prune-xr=boolean
	prune-see-match=key=value list
	prune-see-op=value
	prune-seealso-match=key=value list
	prune-seealso-op=value
	prune-iterations=number
	bibtex-contributor-fields=list
	contributor-order=value
	encapsulate-fields={key=value list}
	encapsulate-fields*={key=value list}
	format-integer-fields={key=value list}
	format-decimal-fields={key=value list}
	interpret-fields={list}
	interpret-fields-action={value}
	hex-unicode-fields={list}
	date-time-fields=list
	date-fields=list
	time-fields=list
	date-time-field-format=value
	date-field-format=value
	time-field-format=value
	date-time-field-locale=value
	date-field-locale=value
	time-field-locale=value

	Prefix Fields
	prefix-fields=list
	append-prefix-field=value
	append-prefix-field-cs=cs
	append-prefix-field-exceptions=sequence
	append-prefix-field-cs-exceptions=sequence
	append-prefix-field-nbsp-match=pattern

	Case-Changing
	no-case-change-cs=list
	word-boundaries=list
	short-case-change=value
	long-case-change=value
	name-case-change=value
	description-case-change=value
	field-case-change={key=value list}

	Field Fallbacks
	abbreviation-name-fallback=field
	abbreviation-text-fallback=field
	abbreviation-sort-fallback=field
	entry-sort-fallback=field
	symbol-sort-fallback=field
	bibtexentry-sort-fallback=field
	custom-sort-fallbacks={key=value list}
	field-concat-sep=value

	Plurals
	short-plural-suffix=value
	dual-short-plural-suffix=value

	Location List Options
	save-locations=value
	save-loclist=boolean
	save-primary-locations=value
	save-principal-locations=value
	primary-location-formats=list
	principal-location-formats=list
	primary-loc-counters=value
	principal-loc-counters=value
	merge-ranges=boolean
	min-loc-range=value
	max-loc-diff=value
	suffixF=value
	suffixFF=value
	compact-ranges=value
	see=value
	seealso=value
	alias=value
	alias-loc=value
	loc-prefix=value
	loc-prefix-def=value
	loc-suffix=value
	loc-suffix-def=value
	loc-counters=list
	save-index-counter=value

	Supplemental Locations
	supplemental-locations=basename
	supplemental-selection=value
	supplemental-category=value

	Sorting
	sort=value
	No Sort Field
	Alphabet
	Letter (Non Locale)
	Letter-Number
	Numerical
	Date-Time

	shuffle=seed
	sort-field=field
	missing-sort-fallback=field
	trim-sort=boolean
	sort-replace=list
	sort-rule=value
	break-at=option
	break-marker=marker
	break-at-match=key=value list
	break-at-match-op=value
	break-at-not-match=key=value list
	sort-number-pad=number
	sort-pad-plus=marker
	sort-pad-minus=marker
	identical-sort-action=value
	sort-suffix=value
	sort-suffix-marker=value
	encapsulate-sort={csname}
	strength=value
	decomposition=value
	letter-number-rule=value
	letter-number-punc-rule=value
	numeric-sort-pattern=value
	numeric-locale=value
	date-sort-locale=value
	date-sort-format=value
	group-formation=value

	Secondary Glossary
	secondary=value
	secondary-match=key=value list
	secondary-not-match=key=value list
	secondary-match-op=value
	secondary-match-action=value
	secondary-missing-sort-fallback=field
	secondary-trim-sort=boolean
	secondary-sort-replace=list
	secondary-sort-rule=value
	secondary-break-at=value
	secondary-break-marker=marker
	secondary-break-at-match=key=value list
	secondary-break-at-match-op=value
	secondary-break-at-not-match=key=value list

	secondary-sort-number-pad=number
	secondary-sort-pad-plus=marker
	secondary-sort-pad-minus=marker
	secondary-identical-sort-action=value
	secondary-sort-suffix=value
	secondary-sort-suffix-marker=value
	secondary-strength=value
	secondary-decomposition=value
	secondary-letter-number-rule=value
	secondary-letter-number-punc-rule=value
	secondary-numeric-sort-pattern=value
	secondary-numeric-locale=value
	secondary-date-sort-locale=value
	secondary-date-sort-format=value
	secondary-group-formation=value

	Dual Entries
	General Dual Settings
	dual-prefix=value
	primary-dual-dependency=boolean
	combine-dual-locations=value

	Dual Fields
	dual-type=value
	dual-category=value
	dual-counter=value
	dual-short-case-change=value
	dual-long-case-change=value
	dual-field=value
	dual-date-time-field-format=value
	dual-date-field-format=value
	dual-time-field-format=value
	dual-date-time-field-locale=value
	dual-date-field-locale=value
	date-time-field-locale=value

	Dual Sorting
	dual-sort=value
	dual-sort-field=field
	dual-missing-sort-fallback=field
	dual-trim-sort=boolean
	dual-sort-replace=list
	dual-sort-rule=value
	dual-break-at=value
	dual-break-marker=marker
	dual-break-at-match=key=value list
	dual-break-at-match-op=value
	dual-break-at-not-match=key=value list
	dual-sort-number-pad=number
	dual-sort-pad-plus=marker
	dual-sort-pad-minus=marker
	dual-identical-sort-action=value
	dual-sort-suffix=value
	dual-sort-suffix-marker=value
	dual-strength=value
	dual-decomposition=value
	dual-letter-number-rule=value
	dual-letter-number-punc-rule=value
	dual-numeric-sort-pattern=value
	dual-numeric-locale=value
	dual-date-sort-locale=value
	dual-date-sort-format=value
	dual-group-formation=value

	Dual Mappings
	dual-entry-map={{list1},{list2}}
	dual-abbrv-map={{list1},{list2}}
	dual-abbrventry-map={{list1},{list2}}
	dual-symbol-map={{list1},{list2}}
	dual-indexentry-map={{list1},{list2}}
	dual-indexsymbol-map={{list1},{list2}}
	dual-indexabbrv-map={{list1},{list2}}

	Dual Back-Links
	dual-entry-backlink={boolean}
	dual-abbrv-backlink={boolean}
	dual-symbol-backlink={boolean}
	dual-abbrventry-backlink={boolean}
	dual-entryabbrv-backlink={boolean}
	dual-indexentry-backlink={boolean}
	dual-indexsymbol-backlink={boolean}
	dual-indexabbrv-backlink={boolean}
	dual-backlink={boolean}

	Tertiary Entries
	tertiary-prefix={value}
	tertiary-type={value}
	tertiary-category={value}

	Compound (Combined or Multi) Entries
	compound-options-global={boolean}
	compound-dependent={boolean}
	compound-add-hierarchy={boolean}
	compound-has-records={boolean}
	compound-adjust-name={value}
	compound-main-type={value}
	compound-other-type={value}
	compound-type-override={boolean}
	compound-write-def={value}

	Provided Commands
	Entry Definitions
	\bibglsnewentry
	\bibglsnewsymbol
	\bibglsnewnumber
	\bibglsnewindex
	\bibglsnewindexplural
	\bibglsnewabbreviation
	\bibglsnewacronym
	\bibglsnewdualentry
	\bibglsnewdualindexentry
	\bibglsnewdualindexentrysecondary
	\bibglsnewdualindexsymbol
	\bibglsnewdualindexsymbolsecondary
	\bibglsnewdualindexnumber
	\bibglsnewdualindexnumbersecondary
	\bibglsnewdualindexabbreviation
	\bibglsnewdualindexabbreviationsecondary
	\bibglsnewdualabbreviationentry
	\bibglsnewdualabbreviationentrysecondary
	\bibglsnewdualentryabbreviation
	\bibglsnewdualentryabbreviationsecondary
	\bibglsnewdualsymbol
	\bibglsnewdualnumber
	\bibglsnewdualabbreviation
	\bibglsnewdualacronym
	\bibglsnewtertiaryindexabbreviationentry
	\bibglsnewtertiaryindexabbreviationentrysecondary
	\bibglsnewbibtexentry
	\bibglsnewcontributor
	\bibglsnewprogenitor
	\bibglsnewspawnindex
	\bibglsnewspawnedindex
	\bibglsnewspawnindexplural
	\bibglsnewspawnedindexplural
	\bibglsnewspawnentry
	\bibglsnewspawnedentry
	\bibglsnewspawnabbreviation
	\bibglsnewspawnedabbreviation
	\bibglsnewspawnacronym
	\bibglsnewspawnedacronym
	\bibglsnewspawnsymbol
	\bibglsnewspawnedsymbol
	\bibglsnewspawnnumber
	\bibglsnewspawnednumber
	\bibglsnewspawndualindexentry
	\bibglsnewspawndualindexentrysecondary

	Compound Entry Sets
	\bibglsdefcompoundset

	Location Lists and Cross-References
	\bibglsseesep
	\bibglsseealsosep
	\bibglsaliassep
	\bibglsusesee
	\bibglsuseseealso
	\bibglsusealias
	\bibglsdelimN
	\bibglslastDelimN
	\bibglscompact
	\bibglspassim
	\bibglspassimname
	\bibglsrange
	\bibglsinterloper
	\bibglspostlocprefix
	\bibglslocprefix
	\bibglspagename
	\bibglspagesname
	\bibglslocsuffix
	\bibglslocationgroup
	\bibglslocationgroupsep
	\bibglsprimary
	\bibglsprimarylocationgroup
	\bibglsprimarylocationgroupsep
	\bibglssupplemental
	\bibglssupplementalsublist
	\bibglssupplementalsep
	\bibglssupplementalsubsep
	\bibglshrefchar
	\bibglshrefunicode
	\bibglshexunicodechar

	Letter Groups
	\bibglssetlastgrouptitle
	\bibglshypergroup
	Top-Level Groups Only
	\bibglssetlettergrouptitle
	\bibglslettergroup
	\bibglslettergrouptitle
	\bibglssetothergrouptitle
	\bibglsothergroup
	\bibglsothergrouptitle
	\bibglssetemptygrouptitle
	\bibglsemptygroup
	\bibglsemptygrouptitle
	\bibglssetnumbergrouptitle
	\bibglsnumbergroup
	\bibglsnumbergrouptitle
	\bibglssetdatetimegrouptitle
	\bibglsdatetimegroup
	\bibglsdatetimegrouptitle
	\bibglssetdategrouptitle
	\bibglsdategroup
	\bibglsdategrouptitle
	\bibglssettimegrouptitle
	\bibglstimegroup
	\bibglstimegrouptitle
	\bibglssetunicodegrouptitle
	\bibglsunicodegroup
	\bibglsunicodegrouptitle
	\bibglssetmergedgrouptitle
	\bibglsmergedgroup
	\bibglsmergedgrouptitle
	\bibglsmergedgroupfmt

	Hierarchical Groups
	\bibglsgrouplevel
	\bibglshiersubgrouptitle
	\bibglssetlettergrouptitlehier
	\bibglslettergrouphier
	\bibglslettergrouptitlehier
	\bibglssetothergrouptitlehier
	\bibglsothergrouphier
	\bibglsothergrouptitlehier
	\bibglssetemptygrouptitlehier
	\bibglsemptygrouphier
	\bibglsemptygrouptitlehier
	\bibglssetnumbergrouptitlehier
	\bibglsnumbergrouphier
	\bibglsnumbergrouptitlehier
	\bibglssetdatetimegrouptitlehier
	\bibglsdatetimegrouphier
	\bibglsdatetimegrouphierfinalargs
	\bibglsdatetimegrouptitlehier
	\bibglsdatetimegrouptitlehierfinalargs
	\bibglssetdategrouptitlehier
	\bibglsdategrouphier
	\bibglsdategrouptitlehier
	\bibglssettimegrouptitlehier
	\bibglstimegrouphier
	\bibglstimegrouptitlehier
	\bibglssetunicodegrouptitlehier
	\bibglsunicodegrouphier
	\bibglsunicodegrouptitlehier
	\bibglssetmergedgrouptitlehier
	\bibglsmergedgrouphier
	\bibglsmergedgrouptitlehier
	\bibglsmergedgrouphierfmt

	Flattened Entries
	\bibglsflattenedhomograph
	\bibglsflattenedchildpresort
	\bibglsflattenedchildpostsort

	Other
	\bibglscopytoglossary
	\bibglssettotalrecordcount
	\bibglssetrecordcount
	\bibglssetlocationrecordcount
	\bibglshyperlink
	\bibglssetwidest
	\bibglssetwidestfortype
	\bibglssetwidestfallback
	\bibglssetwidestfortypefallback
	\bibglssetwidesttoplevelfallback
	\bibglssetwidesttoplevelfortypefallback
	\bibglscontributorlist
	\bibglscontributor
	\bibglsdatetime
	\bibglsdate
	\bibglstime
	\bibglsprimaryprefixlabel
	\bibglsdualprefixlabel
	\bibglstertiaryprefixlabel
	\bibglsexternalprefixlabel
	\bibglshashchar
	\bibglsunderscorechar
	\bibglsdollarchar
	\bibglsampersandchar
	\bibglscircumchar
	\bibglsaposchar
	\bibglsdoublequotechar
	\bibglsuppercase
	\bibglslowercase
	\bibglstitlecase
	\bibglsfirstuc
	\BibGlsNoCaseChange
	\bibglsdefinitionindex
	\bibglsuseindex

	Converting Existing .tex to .bib
	Shared Conversion Tool Switches
	–texenc encoding
	–bibenc encoding
	–space-sub replacement (or -s replacement)
	–preamble-only (or -p)
	–no-preamble-only
	–overwrite
	–no-overwrite
	–ignore-fields list (or -f list)
	–no-ignore-fields
	–field-map src=dest list (or -m src=dest list)
	–no-field-map
	–field-case setting
	–index-conversion (or -i)
	–no-index-conversion
	–log-file filename (or -t filename)

	convertgls2bib: Conversion from glossaries or glossaries-extra
	Command Line Arguments
	–ignore-sort
	–no-ignore-sort
	–ignore-type
	–no-ignore-type
	–ignore-category
	–no-ignore-category
	–split-on-type (or -t)
	–no-split-on-type
	–split-on-category (or -c)
	–no-split-on-category
	–absorb-see
	–no-absorb-see
	–internal-field-map src=dest list

	Recognised Commands
	\glsexpandfields
	\glsnoexpandfields
	\glssetexpandfield
	\glssetnoexpandfield
	\loadglsentries
	\newglossaryentry
	\provideglossaryentry
	\longnewglossaryentry
	\longprovideglossaryentry
	\newterm
	\newabbreviation
	\newacronym
	\glsxtrnewsymbol
	\glsxtrnewnumber
	\newdualentry

	datatool2bib: Conversion from datatool
	Command Line Arguments
	–label column-key (or -L column-key)
	–auto-label (or -a)
	–no-auto-label
	–auto-label-prefix prefix
	–read options (or -r options)
	–setup options
	–save-datum
	–no-save-datum
	–save-value suffix
	–no-save-value
	–save-currency suffix
	–no-save-currency
	–split
	–no-split
	–detect-symbols
	–no-detect-symbols
	–numeric-locale lang-tag
	–adjust-gls
	–no-adjust-gls
	–dependency-field field
	–no-dependency-field
	–strip
	–no-strip
	–strip-glsadd
	–no-strip-glsadd
	–strip-acronym-font
	–no-strip-acronym-font
	–strip-case-change
	–no-strip-case-change

	Recognised Commands
	\DTLsetup
	\DTLread
	\dtlexpandnewvalue
	\dtlnoexpandnewvalue
	\DTLnewdb
	\DTLnewrow
	\DTLnewdbentry
	\DTLaction
	\newgidx
	\newterm
	\newacro

	Examples
	no-interpret-preamble.bib
	interpret-preamble.bib
	interpret-preamble2.bib
	constants.bib
	chemicalformula.bib
	bacteria.bib
	baseunits.bib
	derivedunits.bib
	people.bib
	books.bib
	films.bib
	citations.bib
	mathgreek.bib
	bigmathsymbols.bib
	mathsrelations.bib
	binaryoperators.bib
	unaryoperators.bib
	mathsobjects.bib
	miscsymbols.bib
	markuplanguages.bib
	usergroups.bib
	animals.bib
	minerals.bib
	vegetables.bib
	terms.bib
	topics.bib
	sample-hierarchical.tex
	sample-nested.tex
	sample-constants.tex
	sample-chemical.tex
	sample-bacteria.tex
	sample-units1.tex
	sample-units2.tex
	sample-units3.tex
	sample-media.tex
	sample-people.tex
	sample-authors.tex
	sample-citations.tex
	sample-msymbols.tex
	sample-maths.tex
	sample-textsymbols.tex
	sample-textsymbols2.tex
	sample-markuplanguages.tex
	sample-usergroups.tex
	sample-multi1.tex
	sample-multi2.tex

	Package Option Summary
	A
	C
	D
	E
	H
	I
	M
	N
	O
	P
	R
	S
	T
	U
	X

	General Command Summary
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

