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Chapter 4 

 

Applying the Lattice Model to the Design of Visualization Systems 

 

 In Chapter 2 we developed the following design components for the VisAD 

system for visualizing scientific computations: 

 

1. That it is integrated with a scientific programming language.  The system has an 

integrated user interface for programming, computation and display. 

 

2. That the data types of that programming language are constructed as tuples and 

arrays from a set of scalar types.  Data objects of these types represent 

mathematical variables, vectors and functions. 

 

3. That its displays are interactive, animated and three-dimensional.  These logical 

displays are mapped to physical displays by a variety of familiar rendering 

operations. 

 

 In this chapter we will continue that development, guided by the broad goals 

defined in Section 1.1, by the analysis of visualization repertoires in Chapter 3, and by 

the basic principles defined in Section 3.5.  To review, our goals are to develop 

visualization techniques that 

 

1. Can be applied to the data of a wide variety of scientific applications. 
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2. Can produce a wide variety of different visualizations of data appropriate for 

different needs. 

 

3. Enable users to interactively alter the ways data are viewed. 

 

4. Require minimal effort by scientists. 

 

5. Can be integrated with a scientific programming environment. 

 

The basic principles are 

 

1. Lattice-structured data models provide a natural way to integrate common forms of 

scientific metadata as part of data objects. 

 

2. Data objects of many different types can be unified into a single lattice-structured 

data model, so that visualization mappings (to a display model) are inherently 

polymorphic. 

 

3. Lattice-structured data models and display models may be defined in a very general 

set of scientific situations, and the lattice isomorphism result can be broadly 

applied to analyze the repertoire of visualization mappings between them. 

 

4. Mappings from data aggregates to display aggregates can be factored into 

mappings from data primitives to display primitives. 
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4.1 Integrating Metadata with a Scientific Data Model 

 Our first goal developed in Section 1.1 was that scientific visualization techniques 

"Can be applied to the data of a wide variety of scientific applications."  Thus in Section 

2.2 we developed a flexible way to define data types based on the assumption that data 

objects represent mathematical objects.  However, as we described in Section 1.2.2, 

scientific data includes metadata as well as data types.  The first principle of Chapter 3 

tells us that a lattice-structured data model provides a natural way to integrate common 

forms of scientific metadata as part of data objects, and thus handle a greater variety of 

data.  In this section we describe the ways that our visualization design integrates 

metadata. 

 The VisAD system allows data types to be defined as tuple and array aggregates 

of named scalar types.  Scalar types may be defined with any of the following primitive 

types: 

 

1. Integers. 

 

2. Text strings. 

 

3. Real numbers (these values are always taken from a specified finite sampling of 

real numbers, and intervals around these values are implicit in the spacing between 

samples). 

 

4. Pairs of real numbers (these values are always taken from a finite sampling of R2 

and rectangles around values are implicit in the spacing between samples). 
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5. Triples of real numbers (these values are always taken from a finite sampling of R3 

and rectangular solids around values are implicit in the spacing between samples). 

 

These types of primitive values do not precisely correspond to the scalar types defined in 

Chapter 3.  Integer and text string primitives do correspond to discrete scalars.  Real 

number primitives correspond to the continuous scalars of Chapter 3, except that the 

intervals around values are implicit.  They are included in our system as a compromise 

between the computational efficiency of real numbers and the explicit accuracy 

information of real intervals.  Primitives for pairs and triples of real numbers do not 

correspond to the scalars of Chapter 3.  They are included in our system because they 

occur commonly in scientific data and can be handled more efficiently as primitives.  

Furthermore, metadata are integrated at the level of primitive values, so handling two- 

and three-dimensional real values as primitives enables the system to integrate a wider 

variety of metadata.  Specifically, these primitives allow samplings of R2 and R3 that are 

not Cartesian products of samplings of R. 

 The system integrates the following forms of metadata: 

 

1. Sampling information: Every value in a data object is taken from a finite sampling 

of primitive values.  That is, the system includes internal structures that specify 

finite samplings of the five primitive types, and associates every primitive value 

with one of these structures.  For array index values, this finite sampling 

determines the way the array samples a function's domain, and thus determines the 

size of the array. 
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2. Accuracy information: This is implicit in the resolution of samplings, rather than 

the explicit intervals described in Chapter 3. 

 

3. Missing data indicators: Any value or sub-object in a data object may take the 

special value missing (indicating the lack of information). 

 

4. Names for values: Every primitive value occurring in a data object has a scalar 

type, and hence a name (that is, the name of the scalar type). 

 

 The integration of metadata into data objects has important consequences for 

computational semantics.  For example, consider the following data types appropriate for 

satellite images: 

 

type radiance = real; 

type earth_location = real2d; 

type image = array [earth_location] of radiance; 

 

and the following declarations of data objects: 

 

earth_location loc; 

image goes_east, goes_west, goes_diff; 

 

The scalar data object loc will take a pair of real numbers as a value - the latitude and 

longitude of a location on the Earth.  The array data object goes_east contains a finite set 

of samples of an Earth radiance field, indexed by {latitude, longitude} pairs.  The value 
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of the expression goes_east[loc] is an estimate of the value of this radiance field at the 

Earth location in loc.  There are a variety of interpolation methods for making this 

estimate - the VisAD implementation simply takes the value of the sample in goes_east 

nearest to loc.  If loc falls outside the range of samples of goes_east, the expression 

evaluates to missing. 

 Now consider the program fragment: 

 

sample(goes_diff) = goes_east; 

foreach (loc in goes_east) { 

goes_diff[loc] = goes_east[loc] - goes_west[loc]; 

} 

 

The first line specifies that goes_diff will have the same sampling of array index values 

(that is, of pixel locations) that goes_east has.  The foreach statement provides a way to 

iterate over the elements of an array.  In this case it iterates loc over the pixel locations of 

the goes_east image.  The expression goes_east[loc] - goes_west[loc] is evaluated by 

estimating the value of (the radiance field represented by) goes_west at loc, and then 

subtracting this value from goes_east[loc].  Any arithmetic operation with a missing 

operand evaluates to missing, so goes_diff[loc] is set to missing if goes_west[loc] 

evaluates to missing.  (Note that missing data are natural values for undefined arithmetic 

operations such as division by zero.) 

 The VisAD implementation provides vector operations, so this computation may 

also be expressed as: 

 

goes_diff = goes_east - goes_west; 
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All the semantics of the previous program fragment are implicit in this statement. 

 Satellite images are finite arrays of pixels.  Pixel radiances are typically 

represented by coded 8-bit or 10-bit values.  The most important metadata accompanying 

satellite images are called navigation, which defines the Earth locations of pixels, and 

calibration, which defines the radiance values associated with coded pixel values.  

Missing data indicators are also important for satellite data since telemetry failures are 

common.  Our visualization design can integrate all of these forms of metadata.  Satellite 

navigation metadata can be integrated as the samplings associated with the real2d indices 

of image arrays, satellite calibration metadata can be integrated as the samplings 

associated with real radiance values in image arrays, and missing data are integrated with 

any data type.  These forms of metadata are implicit in the computational semantics of 

the VisAD programming language.  In Section 1.1 our fourth goal was that visualization 

techniques should "Require minimal effort by scientists."  The programming example 

above shows that the integration of metadata into data objects relieves scientific 

programmers of the need to: 

 

1. Keep track of missing data. 

 

2. Manage the mapping, including interpolation, from array index values to physical 

values (such as Earth latitude and longitude). 

 

3. Check bounds on array accesses. 
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 The integration of metadata into data objects also affects their display semantics.  

For example, Figures 4.1 shows satellite image data displayed in a Cartesian Earth 

coordinate system defined by latitude and longitude.  The system geographically registers 

this image data object using the integrated satellite navigation metadata, relieving the 

user of the need to manage the association between images and their navigation 

information when images are displayed.  Figure 4.2 shows an image generated by a polar 

orbiting satellite, displayed in an Earth-centered spherical coordinate system. 

 The integration of missing data also affects display semantics.  Figure 4.3 is a 

nearly edge-on view of a three-dimensional array of radar echoes.  It is traditional to treat 

the lack of echoes as missing rather than zero, since information about spectrum and 

polarity is not available where there are no echoes.  The missing values are simply 

invisible in Figure 4.3. 
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Figure 4.1. A satellite image displayed in a Cartesian Latitude / Longitude 

coordinate system.  (color original) 
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Figure 4.2. An image from a polar orbiting satellite displayed in a three-

dimensional Earth coordinate system.  (color original) 
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Figure 4.3. Three-dimensional radar data.  (color original) 



105 

 The VisAD system integrates accuracy information with its data objects only 

implicitly as the resolution of value samplings.  However, our system design could easily 

integrate this form of metadata explicitly by using real intervals as described in Section 

3.2.  Interval arithmetic could be used for the computational semantics of interval values 

(Moore, 1966), including the use of two and three-dimensional rectangles as values for 

two and three-dimensional real primitives. 

 The samplings associated with values can be exploited for a simple form of data 

compression.  If a variable takes a value from a set of 255 samples plus missing, then that 

variable can be stored in a single byte.  Thus programs can written as if satellite 

radiances are real numbers, but they may be stored as 8-bit codes in bytes. 

 

4.2 Interacting with Scientific Displays 

 In Section 3.3 we discussed how a lattice-structured display model V can be 

defined in terms of a set of display scalars (i.e., graphical primitives).  The graphical 

primitives of Bertin's display model were 2-D location, size, value, texture, color, 

orientation, and shape.  Shape and texture are different from Bertin's other primitives in 

the sense that they can be composed as graphical aggregates.  Thus we do not treat them 

as primitives in the VisAD display model.  The fourth principle of Section 3.5 tells us 

that mappings from data aggregates to display aggregates can be factored into mappings 

from data primitives to display primitives.  Thus shapes and textures in VisAD's displays 

represent shapes and textures in data according to this principle.  For example, in Figure 

4.4 an aggregate of primitive points form a complex shape.  Each point corresponds to an 

individual observation of an X-ray emanating from interstellar gas.  The overall shape of 

these points communicates a great deal about the functioning of the instrument that made 

these observations. 
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Figure 4.4. X-ray events from interstellar gas.  (color original) 
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 Bertin restricted his model to physical displays: static two-dimensional arrays of 

color.  As discussed in Section 2.3, our design uses logical displays that may are 

animated, three-dimensional and interactive.  We distinguish between a set V' of physical 

displays and a set of logical displays V.  We define a mapping RENDER : V → V' that 

implements the traditional graphics pipeline for iso-surface extraction, projection from 

three to two dimensions, clipping, animation, and so on.  The VisAD system's display 

model is defined in terms of the following display scalars: 

 

(4.1) DS = {color, contour1, ..., contourn, x, y, z, animation, selector1, ..., selectorm} 

 

 Using the terminology of Chapter 3, a maximal tuple in Y = X{Id | d ∈ DS} 

represents a graphical mark in a display.  Given a maximal tuple, its x, y and z values 

specify the corresponding graphical mark's location and size in a virtual three-

dimensional graphics space, its color value specifies the mark's color, and its animation 

value specifies the mark's place and duration in an animated sequence of images, as 

illustrated in Figure 3.14.  The contouri display scalars are similar to color in that they 

help determine how a mark appears, rather than where or when it appears.  For each i, the 

contouri values in tuples are resampled to a value field distributed over a three-

dimensional voxel array.  These fields are depicted by iso-level surfaces and curves 

rendered through the voxel array.  The selectori display scalars are similar to animation 

in that they help determine when a mark appears, rather than where or how it appears.  

The user selects a set of values for each selectori, and only those tuples whose selectori 

interval values overlap with this set are included in the display.  Note that just as the 

VisAD data model includes two- and three-dimensional real primitives, the display 

model includes the three-dimensional real primitive color, includes two- and three-
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dimensional real primitives for various combinations of graphical location (e.g., 

xy_plane), and allows selector scalars to take the dimensionality of the scalars mapped to 

them. 

 In Chapter 3 we developed a detailed analysis of the repertoire of visualization 

mappings from lattice-structured data models to lattice-structured display models.  The 

data and display models of the VisAD system do not precisely conform to the 

assumptions in Theorem H.8, so it cannot be applied to VisAD in exact form.  However, 

the VisAD system does implement the essential structure of scalar mapping functions.  

Visualization mappings of aggregate data objects are factored into continuous functions 

from scalar types to display scalar types.  VisAD deviates from the scalar mapping 

functions of Theorem H.8 by including continuous functions of two- and three-

dimensional real scalars.  Users control how data are displayed by defining a set of 

mappings from scalar types to display scalar types. 

 We can illustrate the way that mappings from scalar types to display scalar types 

control data displays by an example.  The following data types are defined for a time 

sequence of satellite images: 
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type earth_location = real2d; 

type ir_radiance = real; 

type vis_radiance = real; 

type variance = real; 

type texture = real; 

type time = real; 

type image_region = integer; 

type image = 

array [earth_location] of 

structure { 

ir_radiance; 

vis_radiance; 

variance; 

texture; 

} 

type image_partition = array [image_region] of image; 

type image_sequence = array [time] of image_partition; 

 

Each image pixel contains infrared and visible radiances, and variance and texture values 

derived from infrared radiances.  An image_sequence is a time sequence of images, each 

partitioned into rectangular regions (which are indexed by image_region).  These types 

include seven scalars, so users control the way that data objects are displayed by defining 

mappings from these seven scalars to seven display scalars.  In the VisAD system these 

mappings are defined using a simple text editor.  Figure 4.5 shows a data object of the 
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image_sequence type displayed as a colored terrain, after specifying the following 

mappings: 

 

map earth_location to xy_plane; 

map ir_radiance to z_axis; 

map vis_radiance to color; 

map variance to selector; 

map texture to selector; 

map image_region to selector; 

map time to animation; 

 

The user can use the same display scalar name selector in more than one mapping since 

the system differentiates multiple occurrences of selector into selector1, selector2, etc. 

 Note that the VisAD system supplies default continuous functions from scalars to 

display scalars when they are not included in the specification of scalar mappings (as 

they are not included in the above mappings).  The default functions are linear from the 

range of samplings of the scalar values to the range of display scalar values.  In practice 

these defaults almost always work well and make the user's task easier. 
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Figure 4.5. A goes_sequence object displayed as a terrain (i.e., a height 

function), with ir radiance mapped to terrain height (the y axis) and vis radiance 

mapped to color.  All sixteen image region values are selected for display.  The 

time sequence may be animated.  (color original) 
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 The second and fourth goals developed in Section 1.1 state that visualization 

techniques "Can produce a wide variety of different visualizations of data appropriate 

for different needs" and "Require minimal effort by scientists."  The scalar mapping 

functions used in VisAD are effective at realizing these goals, and this effectiveness can 

be explained in terms of the basic principles developed in Section 3.5.  The fourth 

principle tells us that mappings from data aggregates to display aggregates can be 

factored into mappings from data primitives to display primitives.  Thus any way of 

displaying data that satisfies the effectiveness conditions can be specified by a set of 

mappings from scalars to display scalars.  The second principle tells us that, because of 

the way that data objects of many different types are unified into a single lattice-

structured data model, visualization mappings are inherently polymorphic.  The fact that 

a single display mapping D : U → V applies to data objects of many types in U has a 

beneficial impact on the VisAD system's user interface: a single set of scalar mappings 

control how all data objects in a user's program are displayed.  Once a user defines a set 

of scalar mappings, he can select any data object for display merely by graphically 

picking its name.  Display controls are separate from a user's scientific programs, unlike 

previous visualization systems that require calls to visualization functions to be 

embedded in programs. 

 In Section 3.4 we noted that our lattice-structured display model was inconsistent 

with a functional view of display (i.e., the view that a display defines a functional 

relation from location and time to color).  We developed a set of constraints on scalar 

mapping functions (these constraints also depend on the type of the data object being 

displayed) that guarantee that they generate only displays that are consistent with a 

functional view of display.  However, we have chosen not to enforce these constraints in 



113 

the VisAD system.  We use the VisAD system for experimenting with visualization 

ideas, and have generally opted against restrictions on what users may do. 

 For example, we have even used VisAD to experiment with visualization 

mappings that do not satisfy the expressiveness conditions.  For example, we 

experimented with a way of mapping more than one scalar to a display scalar (display 

scalar values were calculated as the sum of values they would have from each scalar 

alone).  While this feature did produce some interesting images, we generally found that 

it was not used by scientists.  This experience tends to confirm the value of the 

expressiveness conditions. 

 The third goal developed in Section 1.1 states that visualization techniques 

"Enable users to interactively alter the ways data are viewed."  The VisAD design 

realizes this goals by making the specification of the mappings from data primitives to 

display primitives easily edited to change the way data are displayed.  Figure 4.6 shows 

the goes_sequence data object from Figure 4.5 displayed according to four different sets 

of mappings.  In the top-right window it is displayed according to the same seven 

mappings used in Figure 4.5, which are: 

 

map earth_location to xy_plane; 

map ir_radiance to z_axis; 

map vis_radiance to color; 

map variance to selector; 

map texture to selector; 

map image_region to selector; 

map time to animation; 
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The display in the top-left window of Figure 4.6 can be generated by the following two 

changes to the above mappings: 

 

map ir_radiance to color; /* red */ 

map vis_radiance to color; /* blue-green */ 

 

Notice that more than one data primitive can be mapped to color since it is a three-

dimensional primitive.  The user determines how color is factored into components using 

interactive color map icons like those shown in Figures 2.2 and 4.3. 

 Next, the display in the bottom-right window of Figure 4.6 can be generated by 

the following additional changes to the mappings: 

 

map ir_radiance to selector; 

map vis_radiance to color; 

map time to z_axis; 

 

Finally, the display in the bottom-left window of Figure 4.6 can be generated by the 

following changes to six of the seven mappings: 

 

map earth_location to selector; 

map ir_radiance to x_axis; 

map vis_radiance to y_axis; 

map variance to z_axis; 

map texture to color; 

map time to animation; 
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Actually, the VisAD system allows data objects to be displayed according to four 

different sets mappings simultaneously, and this was capability used to generate Figure 

4.6. 
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Figure 4.6. A goes_sequence object displayed according to four different sets of 

mappings.  The top-right is the same as Figure 4.5, the top-left maps ir (red) and 

vis (blue-green) to color, the bottom-right maps ir to selector and time to the y 

axis, and the bottom-left maps ir, vis and variance to the x, y and z axes, maps 

texture to color, and maps lat_lon to selector.  (color original) 
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 Flexibility in the ways that data are displayed can be useful for comparing data 

objects of different types, as illustrated by the following example.  In 1963 E. N. Lorenz 

developed a set of differential equations that exhibit turbulence in a very simple two-

dimensional atmosphere (Lorenz, 1963).  Roland Stull of the Atmospheric and Oceanic 

Sciences Department of the University of Wisconsin-Madison teaches an Atmospheric 

Turbulence course and has applied the VisAD system to an algorithm that integrates 

Lorenz's equations in order to illustrate turbulence to students in his course.  The data 

types defined for this algorithm are: 

 

type atmos_location = real2d; 

type temperature = real; 

type stream_function = real; 

type atmos = array [atmos_location] of 

structure { 

temperature; 

stream_function; 

} 

type phase_x = real; 

type phase_y = real; 

type phase_z = real; 

type time = real; 
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type phase_point = 

structure { 

phase_x; 

phase_y; 

phase_z; 

} 

type phase_history = array [time] of phase_point; 

 

 The Lorenz equations describe temperature and air flow in a rectangular cell of a 

two-dimensional atmosphere.  The algorithm integrates the Lorenz equations as a path 

through a three-dimensional phase space, recorded in a data object of type phase_history.  

This object is displayed in both the lower-left and upper-left windows in Figure 4.7.  The 

lower-left window is defined by the mappings: 

 

map atmos_location to selector; 

map temperature to selector; 

map stream_function to selector; 

map phase_x to x_axis; 

map phase_y to y_axis; 

map phase_z to z_axis; 

map time to selector; 

 

The lower-left window shows two data objects displayed in different colors: red and 

blue-green (the system automatically picks a different solid color for displays of data 

objects that don't include any scalar values mapped to color).  The phase_history object, 
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displayed as a path of red points, winds chaotically between two lobes (this three-

dimensional shape is called the Lorenz attractor).  A data object of type phase_point is 

also displayed in this window as a single blue-green point, marking the point on the 

phase space path corresponding to the rectangular cell of the two-dimensional 

atmosphere displayed in the right window in Figure 4.7.  That window shows a data 

object of type atmos displayed using the mappings: 

 

map atmos_location to xy_plane; 

map temperature to color; 

map stream_function to contour; 

map phase_x to selector; 

map phase_y to selector; 

map phase_z to selector; 

map time to selector; 

 

The color field indicates temperature, where warm areas are red and cool areas are blue.  

The contours of the stream_function are parallel to air motion, and their spacing indicates 

wind speed.  The direction of air flow can be inferred from the knowledge that warm air 

rises.  As the program executes, this window shows the changing dynamics of the cell of 

atmosphere, and the lower-left window shows the motion of the corresponding phase 

space point.  This animation makes it clear that the two lobes of the Lorenz attractor in 

phase space correspond to clockwise and counterclockwise rotation in the two-

dimensional atmosphere cell. 

 The upper-left window in Figure 4.7 shows the phase_history object displayed 

using the mappings: 
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map atmos_location to selector; 

map temperature to selector; 

map stream_function to selector; 

map phase_x to x_axis; 

map phase_y to y_axis; 

map phase_z to selector; 

map time to z_axis; 

 

In the upper-left window two dimensions of the winding path in phase space are plotted 

against time, illustrating the apparently random (that is, chaotic) temporal distribution of 

alternations between the two phase space lobes. 
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Figure 4.7. Three views of chaos.  The right window shows temperatures and 

wind stream lines in a cell of a two-dimensional atmosphere.  The bottom-left 

window shows the trajectory of atmospheric dynamics through a three-

dimensional phase space.  The top-left window shows this trajectory in two 

phase space dimensions versus time.  (color original) 
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 The third goal developed in Section 1.1 states that visualization techniques 

"Enable users to interactively alter the ways data are viewed."  Achieving this goal 

depends not only on the ease with which users can control displays, but also on how 

quickly the system can generate displays.  The transformation of data objects into 

physical displays is factored into the two mappings D : U → V and RENDER : V → V', 

where V is a logical display model and V' is a physical display model.  Logical displays 

in V are sets of tuples of display scalar values, and physical displays in V' are two-

dimensional arrays of colored pixels.  The RENDER function can be computed quickly 

since it is essentially the traditional graphics pipeline whose operations are commonly 

implemented in hardware.  Thus we have focused our optimizations on the function D. 

 The function D is specified by a set of mappings from scalars to display scalars.  

Based on the embedding of data objects in the lattice U described in Section 3.2, a data 

object u is interpreted as a set of tuples of scalar values.  Each tuple in u is transformed to 

a tuple in D(u) according to the mappings from scalars to display scalars.  The VisAD 

implementation of D exploits both parallel and vector techniques in order to achieve 

interactive response times.  First, the tuples belonging to a data object can be processed 

independently and thus are partitioned among M processes which execute in parallel.  

(These execute in a shared memory model, which is common on modern workstations 

and relatively easy to port.)  Second, the important branches in the algorithm for 

processing tuples depend on data types rather than data values.  Thus large sets of tuples 

take the same path through the algorithm and can be processed in groups of N, allowing 

computations to be optimized in tight loops over vectors of values for entire groups.  

Typical values are M = 4 and N = 256.  While such parallelization and vectorization 

techniques are not novel, they are quite effective in producing a fast implementation of 

the function D. 
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 As discussed in Section 1.2.3, display objects in V are inherently interactive.  

Users have the following interactive controls over the mapping RENDER : V → V': 

 

1. Control over the projection from a three-dimensional space to a two-dimensional 

display screen (i.e., rotate, pan and zoom in three dimensions). 

 

2. Control over time sequencing for scalars mapped to animation. 

 

3. Control over color maps for scalars mapped to color. 

 

4. Control over the iso-levels of scalars mapped to the contouri scalars. 

 

5. Control over the selected sets of values for scalars mapped to the selectori scalars. 

 

 Users also have the following interactive controls over the mapping D : U → V 

and the selection of data objects: 

 

1. Control over the way that data are displayed, by selecting, for each scalar, which 

display scalar it is mapped to. 

 

2. Control over the mathematical mapping from scalar values to display scalar values.  

This is particularly useful for scalars mapped to spatial coordinates (i.e., x, y and z) 

and to color. 
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3. Control over which data objects are displayed.  (Note that multiple data objects can 

be displayed simultaneously.  Ultimately, display objects in V are transformed into 

lists of three-dimensional vectors and triangles for rendering, and multiple data 

objects are combined merely by merging their sets of vectors and triangles.) 

 

 A key to design of the VisAD system is that it treats the definition of scalar 

mappings (items 1 and 2 above) and the selection of data objects for display (item 3 

above) like any other interactive display control.  This is in contrast to the automated 

techniques of Mackinlay (Mackinlay, 1986), Robertson (Robertson, 1991), and Senay 

and Ignatius (Senay and Ignatius, 1991; Senay and Ignatius, 1994).  They each solicited a 

set of visualization goals from the user, and then searched for a display design that 

satisfied these goals.  The automated approach is motivated by the desire to minimize the 

user's effort to generate data displays.  However, a set of scalar mappings is no more 

complex than a set of visualization goals.  Furthermore, the scalar mappings control how 

data are displayed in a direct and intuitive way, whereas the way that a display-design 

algorithm interprets the user's visualization goals may not be intuitively obvious.  By 

making control over scalar mappings interactive, we enable users to explore a variety of 

different ways of displaying the data objects in their algorithms.  We believe that this 

interactive exploration is likely to be more useful than displays generated by intelligent 

display generation algorithms. 

 

4.3 Visualizing Scientific Computations 

 In this chapter and in Chapter 2 we have developed a visualization system 

approach based on the five goals listed in Section 1.1.  Our visualization approach can be 

directly applied to visualize executing programs because it is interactive and integrated 
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with a scientific programming language.  This enables scientists to perform visual 

experiments with their computations.  Any data object defined in a scientific computation 

can be visualized, and can be visualized in a wide variety of different ways.  This enables 

scientists to find high-level problems with their algorithms in the same way that 

interactive debuggers enable them to find low-level bugs.  Just as with a debugger, 

scientists can control execution and set breakpoints.  However, VisAD enables scientists 

to visualize large and complex data objects and thus to understand high-level problems in 

their algorithms.  This visualization does not interfere with scientific algorithms, since 

there is no need to embed calls to display functions in programs, and it does not distract 

scientists, since they do not need to write display programs.  Thus the VisAD system is 

easy to use. 

 At the simplest level, visualization serves to make data objects visible.  We can 

think of visualization like a microscope - making an invisible world visible.  Further, the 

visualization of data objects provides understanding of computational processes 

involving those data objects.  For example, consider a bubble sort algorithm written in 

the VisAD programming language: 

 

type time = real; 

type temperature = real; 

type temperature_series = array [time] of temperature; 

 

sort(temperature_series temperatures; time n;) 

{ 

time outer, inner; 

temperature swap; 
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/* A bubble sort is organized as two nested loops */ 

for (outer=n; outer>1; outer=outer-1) { 

for (inner=1; inner<outer; inner=inner+1) { 

/* compare adjacent elements */ 

if (temperatures[inner-1] > temperatures[inner]) { 

/* adjacent elements are out of order, so exchange them */ 

swap = temperatures[inner]; 

temperatures[inner] = temperatures[inner-1]; 

temperatures[inner-1] = swap; 

} 

} 

} 

} 

 

Five data objects are declared in this program.  The array being sorted is named 

temperatures and has type temperature_series.  It is an array of temperatures indexed by 

time.  The inner and outer loop indices into this array have type time, as does the size n 

of the array.  The swap variable of type temperature is used to exchange elements of the 

array.  Figure 4.8 shows this program running under VisAD, and four of these data 

objects are displayed in the window on the right (the size n is not displayed since it does 

not change as the program runs).  They are displayed using the mappings: 

 

map time to x_axis; 

map temperature to y_axis; 
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Figure 4.8. Visualizing the computations of a bubble sort algorithm.  (color 

original) 
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The text that defines these mappings can be seen in the small window at the top of the 

screen.  The temperatures array is displayed as a graph (the set of white points) of 

temperature versus time.  The outer index is displayed as a small green sphere on the 

lower horizontal axis.  Note that the white points to the right of the green sphere are 

sorted.  The inner index is displayed as a small red sphere.  It marks the horizontal 

position of the current maximum value bubbling up through the temperatures array.  The 

small blue sphere on the left hand vertical axis depicts the swap variable.  This display 

changes as the algorithm runs, providing a clear depiction of how the bubble sort works.  

This is sometimes called algorithm animation (Brown and Sedgewick, 1984).  VisAD's 

displays are generally asynchronous with computations, but may be synchronized with 

calls to the built-in function sync. 

 

Run Computation

Visualize Results

Change Algorithm or
Computational Parameters

 

 

Figure 4.9. Visually experimenting with algorithms  (this is a copy of Figure 1.3). 
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 The ability to make computations visible can be used to find problems with 

algorithms, to experiment with different algorithms, and to tune algorithm parameters.  

Each of these places a slightly different emphasis on the system-user feedback loop 

shown in Figure 4.9.  The time around the feedback loop in Figure 4.9 may be less than a 

second when the user is tuning an algorithm, whereas minutes may be required for the 

user to edit a program to experiment with algorithm structure.  Figure 4.10 illustrates the 

system-user feedback loop for finding the causes of problems with algorithms. 

 

Run Computation and Save
Intermediate Data Objects

Use Visualization to Search
For Incorrect Final Results

Visually Compare Incorrect Data Objects to
Preceding Data Objects in the Computation

Stop When the Comparison of Consecutive
Data Reveals an Incorrect Computational Step

Step Back Through
Computation

 

 

Figure 4.10. Visually tracing back to the causes of computational errors. 
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 An algorithm for detecting clouds in GOES images provides a good example of 

using VisAD for finding high-level problems with algorithms.  Some of the data types 

defined for this algorithm are: 

 

type earth_location = real2d; 

type ir_radiance = real; 

type vis_radiance = real; 

type ir_image = array [earth_location] of ir_radiance; 

type image = 

array [earth_location] of 

structure { 

ir_radiance; 

vis_radiance; 

} 

 

type image_region = integer; 

type ir_image_partition = array [image_region] of ir_image; 

type image_partition = array [image_region] of image; 

 

type count = integer; 

type histogram = array [ir_radiance] of count; 

 

The input to the algorithm is a data object of type image_partition; Figure 4.11 shows an 

input data object displayed using the mappings: 
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map earth_location to xy_plane; 

map ir_radiance to z_axis; 

map vis_radiance to color; 

map image_region to selector; 

map count to selector; 

 

The algorithm partitions images into rectangular regions and processes each region 

independently.  Two regions are selected in Figure 4.11.  The small bump straddling the 

two image regions on the left is a cloud.  The output of the algorithm is another data 

object of type image_partition where the values of non-cloud pixels are set to missing.  

Figure 4.12 shows the output generated from Figure 4.11 with the same two image 

regions selected.  The small cloud in Figure 4.11 is not seen, so its pixels have been 

marked as non-cloud.  This is clearly an error. 

 We can find the cause of this error by visually comparing data objects at different 

stages of the algorithm's computations.  Figure 4.13 shows three data objects of type 

ir_image_partition.  Each data object is displayed in a different color: white, red and 

green.  The white ir_image_partition data object includes all pixels but is overlaid by the 

red and green data objects.  The algorithm selects cloud pixels as subsets of the non-

missing pixels in the red and green ir_image_partition data objects.  Since the bump on 

the left is white rather than red or green, the error in the computation must have been 

made before the calculation of the ir_image_partition data objects colored red and green.  

Pixels are selected for these two data objects according to whether their ir_radiance 

values lie in clusters of certain histograms.  Three data objects of type histogram are 

shown in Figure 4.14 displayed using the mappings: 
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map earth_location to selector; 

map ir_radiance to x_axis; 

map vis_radiance to selector; 

map image_region to selector; 

map count to y_axis; 

 

The white histogram data object includes all ir_radiance values but again these are 

overlaid by the red and green histogram data objects.  The red and green histogram 

objects include only those ir_radiance values lying in clusters.  The ranges of 

ir_radiance defined by these red and green histogram objects are used to select pixels for 

the red and green ir_image_partition objects seen in Figure 4.13.  The white histogram 

object is generated from the population of pixels within one image region pictured in 

Figure 4.11.  Thus Figure 4.14 makes it clear that the little bump cloud on the left in 

Figure 4.11 is not large enough to generate a detectable cluster in the histogram object in 

Figure 4.14, possibly because this population is evenly divided between two image 

regions.  Thus we have found the ultimate cause of the error in this computation. 
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Figure 4.11. A close-up view of two regions of a goes_sequence object displayed 

as a terrain.  Note the small bump, undoubtedly a cloud, straddling the regions 

on the left.  (color original) 
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Figure 4.12. A close-up view restricted to the "cloudy" pixels in two regions of a 

goes_sequence object displayed as a terrain.  The small cloud seen on the left in  

Figure 4.11 is not detected as a cloud in this figure.  (color original) 
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Figure 4.13. Three goes_sequence objects displayed as terrains, with ir radiance 

mapped to terrain height (the y axis) but without vis radiance mapped to color.  

(color original) 
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Figure 4.14. Three histogram objects displayed as graphs.  The algorithm judges 

red and green points to lie in clusters - these define ranges of ir_radiance values 

that define the red and green pixels seen in Figure 4.13.  (color original) 
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 An algorithm for detecting valid observations of interstellar X-rays provides a 

good example of using the VisAD system for experimenting with algorithms.  The 

Diffuse X-ray Spectrometer sensed several million distinct events during its January 

1993 flight on the Space Shuttle (Sanders et al., 1993), each potentially an observation of 

an X-ray emanating from interstellar gas.  However, most of these events were not valid, 

so Wilton Sanders and Richard Edgar of the University of Wisconsin-Madison needed to 

develop an algorithm for detecting valid events.  Some of the data types defined for this 

algorithm are: 

 

type time = real; 

type wavelength = real; 

type longitude = real; 

type pulse_height = real; 

type position_bin = real; 

type goodness_of_fit = real; 

type occulted flag = int; 

type xray_event = 

structure { 

time; 

wavelength; 

longitude; 

pulse_height; 

position_bin; 

goodness_of_fit; 

occulted flag; 



139 

} 

type event_number = int; 

type count = int; 

type count2 = int; 

type event_list = array [event_number] of xray_event; 

type histogram_2d = array [longitude] of 

array [wavelength] of 

structure { 

count; 

count2; 

} 

 

 Figure 4.4 shows a data object of type event_list displayed using the following 

scalar mappings: 

 

map longitude to x_axis; 

map wavelength to y_axis; 

map time to z_axis; 

map pulse_height to color; 

map position_bin to selector; 

map goodness_of_fit to selector; 

map occulted_flag to selector; 

map event_number to selector; 

map count to selector; 

map count2 to selector; 
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 In Figure 4.4 each X-ray event is displayed as a colored dot.  Slider icons in the 

upper-right corner were used to select a range of values for each event field mapped to 

selector, and only those events whose field values fall in the selected ranges are 

displayed.  This provides an easy way to experiment with event selection criteria.  During 

the development of the event selection algorithm, a large number of different sets of 

mappings were defined in order to experiment with selections based on different 

combinations of event fields and thus to help Sanders and Edgar to understand the 

mechanisms that produced invalid events. 

 Figure 4.15 shows a data object of type histogram_2d in a frame of reference 

defined by: 

 

map longitude to y_axis; 

map wavelength to x_axis; 

map count to z_axis; 

map count2 to color; 

map time to selector; 

map pulse_height to selector; 

map position_bin to selector; 

map goodness_of_fit to selector; 

map occulted_flag to selector; 

map event_number to selector; 

 

This histogram_2d object contains frequency counts of X-ray events in bins of 

wavelength and longitude.  The count2 values are redundant with the count values.  Both 
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are included so that one may be mapped to the x_axis and the other mapped to color.  

The display of this object is seen from an oblique angle so that it appears as a series of 

short colored graphs, one for each longitude bin.  Each colored graph shows count as a 

function of wavelength, and thus provides a spectrum of X-rays in a longitude bin.  Some 

types of spurious events showed up as spikes in one-dimensional and two-dimensional 

histograms (i.e., these spurious events had similar values in one or two event fields) and 

this provided insight into how to remove these events.  Displays of histograms of 

populations of events selected by various algorithms provided insight into what further 

selection criteria were needed. 



142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. A two-dimensional histogram of X-ray events, with 10 degree 

longitude bins along the vertical axis and small wavelength bins along the 

horizontal axis.  Viewed from an oblique angle, this object appears as a series of 

short graphs showing the X-ray spectrum in each longitude bin.  (color original) 
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 An algorithm for detecting cumulus clouds in GOES images provides a good 

example of using VisAD for tuning parameters of algorithms.  Robert Rabin (Rabin et. 

al., 1990) of the National Severe Storms Laboratory, working at the University of 

Wisconsin-Madison, developed an algorithm for detecting cumulus clouds based on 

infrared radiance, visible radiance, and contrast (a quantity derived from visible 

radiance).  Some of the data types defined for this algorithm are: 

 

type earth_location = real2d; 

type ir_radiance = real; 

type vis_radiance = real; 

type contrast = real; 

type ir_image = array [earth_location] of ir_radiance; 

type vis_image = array [earth_location] of vis_radiance; 

type contrast_image = array [earth_location] of contrast; 

 

 Separate selection criteria were defined for each of ir_radiance, vis_radiance and 

contrast, and Figure 4.16 shows data objects of types ir_image, vis_image and 

contrast_image displayed according to the mappings: 

 

map earth_location to xy_plane; 

map ir_radiance to color; 

map vis_radiance to color; 

map contrast to color; 
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The visualization in Figure 4.16 was used to tune the cumulus cloud selection algorithm.  

In the displayed data objects, ir_radiance, vis_radiance and contrast values that do not 

satisfy the selection criteria have been set to missing and are invisible.  The color maps 

have been adjusted so that any non-missing ir_radiance is displayed as red, any non-

missing vis_radiance is displayed as blue, and any non-missing contrast is displayed as 

green.  Thus each pixel in the image takes one of eight colors, indicating the two × two × 

two combinations of selections by these three criteria.  Only those pixels colored white 

are selected by all three criteria as cumulus cloud pixels (because white = red + blue + 

green).  We were able to interactively adjust these selection criteria using slider icons 

(similar to those seen in Figure 2.2), to see how the selection of cumulus cloud pixels 

changed in response to those adjustments, and to understand from their colors which 

criteria cause pixels to fail to be selected. 
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Figure 4.16. Visualizing the three criteria used to select cumulus clouds.  Pixels 

satisfying the infrared criterion are colored red, pixels satisfying the visible 

criterion are colored blue, and pixels satisfying the contrast criterion are colored 

green.  Combinations of these colors indicate pixels satisfying more than one of 

the criteria.  Pixels selected as cumulus clouds are colored white.  (color original) 
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4.4 System Organization 

 We have described our system design in stages, explaining how it is motivated by 

the goals of Section 1.1 and the principles of Chapter 3.  In this section we present on 

overview of the way the system integrates scientific data, computation and display. 

 Figure 4.17 illustrates the overall organization of the VisAD system.  The 

system's computing components occupy the left side of this diagram and its display 

components occupy the right side, linked only through the data component.  Furthermore, 

information from the system's display component does not flow into its data or 

computation components, emphasizing that the system's display functions do not intrude 

on a user's science programs. 

 Figure 4.17 also shows how the user interface is divided into five different 

components, two relating to computation and three relating to display.  The 

computational user interface divides into 

 

1. An editor for defining and editing programs.  This editor is also used for defining 

data types, since they are part of the text of programs. 

 

2. Controls over program execution.  These include controls for starting and stopping 

execution, for executing single program statements, and for setting values on slider 

icons that are read by calls to the intrinsic function slider (as illustrated in Figure 

2.2).  Execution breakpoints are set (and cleared) by graphically picking program 

statements in the program text editor, and are indicated by highlighting statements 

in the program text. 

 

The display user interface divides into 
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1. An editor for defining mappings from data scalar types to display scalar types.  

These mappings control the transformation of data into logical displays.  Data 

objects are selected (and de-selected) for display by graphically picking their 

names in the program text editor, and are indicated by highlighting their names in 

the program text. 

 

2. Controls over the rendering transformation from logical to physical displays (i.e., 

the RENDER function).  These include controls over animation, over color maps, 

over selecting ranges of values (for scalars mapped to selector), over contour 

levels, and over the projection from three to two dimensions (i.e., rotate, pan and 

zoom). 

 

3. Physical displays visible to the user. 

 

 Note that there are two deviations from the clean separation of user interface 

functions and that both involve graphically picking and highlighting text segments in the 

program text editor.  Specifically, program statements are selected as breakpoints and 

data objects are selected for display in this way.  While we have not used a graphical user 

interface for designing the data and control flow of programs in our system, we have 

adopted these two graphical picking functions because they can be naturally integrated 

with a text based programming interface. 

 The overall system organization shown in Figure 4.17 is consistent with a variety 

of possible future system extensions.  In particular, the display model could be extended 

by adding more display scalars, and a module could be added to design default scalar 
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mappings appropriate for various aggregate data types.  These would require changes to 

the system source code but would not be particularly difficult.  However, based on the 

goals developed in Section 1.1, the system is designed to make it easy for users to define 

their own data types, displays and programs.  By building such generality into our 

system's user interface we seek to reduce the need for changes to the system itself. 

 The system diagram shows the connection to external functions through a socket 

interface.  This allows VisAD programs to link to functions written in C or Fortran and 

possibly running remotely (i.e., on another computer connected via a network).  The 

ability to define such links to compiled functions is important for the robustness of 

scientific computing environments.  Mature scientific programming environments 

typically include hundreds of user-defined functions. 

 The ways that scalar values can sample one-, two- and three-dimensional real 

values is also extensible.  The system supports a variety of built-in samplings for two-

dimensional map projections and for geographically registering common meteorological 

satellites.  While it is easy to define new built-in sampling functions, the system also 

provides a way for users to define one-, two- and three-dimensional samplings within the 

programming language. 

 Our system design defines a few simple capabilities that users can flexibly 

combine to produce complex applications.  Users can define complex data types as 

hierarchies of scalars, tuples and arrays, they can express complex metadata by 

samplings and missing data, they can define complex algorithms in a general scientific 

programming language, and they can define a complete set of data displays by mappings 

from data primitives to display primitives. 
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Figure 4.17. VisAD system organization. 


