
THE DEFINITIVE GUIDES TO THE
X WINDOW SYSTEM

VOLUME SIX A

Motif Programming Manual

for Motif 2.1

Open Source Edition

Antony Fountain, Jeremy Huxtable,

Paula Ferguson and Dan Heller

Motif Programming Manual, Open Source Edition

by Antony Fountain, Jeremy Huxtable, Paula Ferguson and Dan Heller

December 2001

Copyright  1991, 1994, 2000, 2001 O’Reilly & Associates, Inc., Antony Fountain and

Jeremy Huxtable. This material may be distributed only subject to the terms and

conditions set forth in the Open Publication License, v1.0 or later (the latest version

is presently available at http://www.opencontent.org/openpub/).

This is an updated version of the Motif Programming Manual, Second Edition,

published by O’Reilly & Associates in February 1994. The source files for the

Second Edition can be found at http://www.oreilly.com/openbook/motif/.

A description of the modifications is contained in the Preface to the Third Edition,

which has become the Open Source Edition.

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those designations appear in this

book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the

designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the

publisher assumes no responsibility for errors or omissions, or for damages

resulting from the use of the information contained herein.

Published by:

Imperial Software Technology Limited
Kings Court

185 Kings Road

Reading

Berkshire RG1 4EX

Tel: +44 118 958 7055

Fax: +44 118 958 9005

email: sales@ist.co.uk

URL: http://www.ist.co.uk

Contents

Preface . xi

1. Introduction to Motif. 1

Basic User Interface Concepts . 2

What Is Motif? . 3

Designing User Interfaces . 6

2. The Motif Programming Model. 11

Basic X Toolkit Terminology and Concepts 11

The Xm and Xt Libraries . 14

Programming With Xt and Motif . 16

Summary . 39

3. Overview of the Motif Toolkit . 41

The Motif Style . 41

Application Controls . 43

Application Layout . 53

Putting Together a Complete Application 66

Changes in Motif 2.1 . 86

Summary . 97

4. The Main Window . 99

Creating a MainWindow . 100
Motif Programming Manual iii

Contents
The MenuBar . 105

The Command and Message Areas 120

Using Resources . 125

Summary . 127

Exercises . 127

5. Introduction to Dialogs . 129

The Purpose of Dialogs . 130

The Anatomy of a Dialog . 133

Creating Motif Dialogs . 135

Dialog Resources . 145

Dialog Callback Routines . 150

Piercing the Dialog Abstraction . 153

Dialog Modality . 159

Summary . 170

6. Selection Dialogs . 171

Types of SelectionDialogs . 171

SelectionDialogs . 172

PromptDialogs . 179

The Command Widget . 182

FileSelectionDialogs . 183

Summary . 195

7. Custom Dialogs . 197

Modifying Motif Dialogs . 197

Designing New Dialogs . 205

Building a Dialog . 210

Generalizing the Action Area . 224

Using a TopLevelShell for a Dialog 230
iv Motif Programming Manual

Contents
Positioning Dialogs . 232

Summary . 234

8. Manager Widgets . 235

Types of Manager Widgets . 235

Creating Manager Widgets . 238

The BulletinBoard Widget . 240

The Form Widget . 245

The RowColumn Widget . 263

The Frame Widget . 273

The PanedWindow Widget . 277

Keyboard Traversal . 285

Summary . 295

9. Containers and IconGadgets . 297

Creating a Container . 301

Creating IconGadgets . 301

Container Resources . 301

IconGadget Resources . 306

Container Constraints . 307

Container Callbacks . 312

Container Functions . 318

Summary . 320

Exercises . 320

10. ScrolledWindows and ScrollBars . 321

The ScrolledWindow Design Model 321

Creating a ScrolledWindow . 325

Working With ScrollBars . 332

Implementing True Application-defined Scrolling 343
Motif Programming Manual v

Contents
Working With Keyboard Traversal in ScrolledWindows . 358

Summary . 360

Exercises . 360

11. The DrawingArea Widget . 363

Creating a DrawingArea Widget . 364

Using DrawingArea Callback Functions 365

Using Translations on a DrawingArea 374

Using Color in a DrawingArea . 381

Summary . 386

Exercises . 386

12. Labels and Buttons. 389

Labels . 390

PushButtons . 402

ToggleButtons . 408

ArrowButtons . 423

DrawnButtons . 429

Summary . 432

Exercise . 432

13. The List Widget . 435

Creating a List Widget . 436

Using ScrolledLists . 439

Manipulating Items . 441

Positioning the List . 454

Navigating the List . 456

List Callback Routines . 456

Summary . 462

Exercises . 463
vi Motif Programming Manual

Contents
14. The ComboBox Widget . 465

Creating a ComboBox . 466

ComboBox Resources . 469

ComboBox Functions . 471

ComboBox Callbacks . 473

Summary . 475

Exercises . 476

15. The SpinBox and SimpleSpinBox Widgets 477

Creating a SimpleSpinBox . 479

Creating a SpinBox . 487

SpinBox and SimpleSpinBox Resources 491

SpinBox and SimpleSpinBox Callbacks 492

Summary . 498

Exercises . 498

16. The Scale Widget . 501

Creating a Scale Widget . 502

Scale Values . 504

Scale Orientation and Movement . 505

Scale Resources . 506

Scale Callbacks . 507

Scale Tick Marks . 510

Summary . 512

17. The Notebook Widget . 513

Creating a Notebook . 515

Notebook Resources . 520

Notebook Constraints . 523

Notebook Callbacks . 524
Motif Programming Manual vii

Contents
Notebook Functions . 525

Summary . 527

18. Text Widgets . 529

Interacting With Text Widgets . 531

Text Widget Basics . 534

Text Clipboard Functions . 555

A Text Editor . 560

Text Callbacks . 569

Text Widget Internationalization . 584

Summary . 591

Exercises . 591

19. Menus. 593

Menu Types . 593

Creating Simple Menus . 596

Designing Menu Systems . 607

General Menu Creation Techniques 619

Summary . 640

Exercises . 641

20. Interacting With the Window Manager 643

Interclient Communication . 644

Shell Resources . 645

VendorShell Resources . 653

Handling Window Manager Messages 657

Session Management . 661

Customized Protocols . 673

Summary . 677

Exercises . 677
viii Motif Programming Manual

Contents
21. The Clipboard. 679

Simple Clipboard Copy and Retrieval 681

Copy by Name . 690

Clipboard Data Formats . 695

The Primary Selection and the Clipboard 698

Implementation Issues . 700

Summary . 702

22. Drag and Drop . 703

Using Drag and Drop . 703

The Drag and Drop Model . 705

Customizing Built-in Drag and Drop 718

Working With Drag Sources . 725

Working With Drop Sites . 742

Summary . 761

23. The Uniform Transfer Model . 763

Overview . 764

Exporting the Data . 765

Requesting the Data Format . 769

Importing the Data . 772

Batched Data Transfer . 775

An Example . 775

Summary . 781

24. Render Tables . 783

Renditions . 784

Render Tables . 787

Tab Lists . 792

An Example . 798
Motif Programming Manual ix

Contents
Render Tables and Resource Files . 803

Missing Fonts and Renditions . 805

Summary . 808

25. Compound Strings . 809

Internationalized Text Output . 809

Creating Compound Strings . 811

Manipulating Compound Strings . 825

Parse Tables . 830

Rendering Compound Strings . 845

Summary . 847

26. Signal Handling . 849

Handling Signals in X11R5 . 850

Handling Signals in Xt . 852

Handling Signals in X11R6 . 861

Summary . 865

27. Advanced Dialog Programming . 867

Help Systems . 867

Working Dialogs . 877

Dynamic Message Symbols . 893

Summary . 898

A. Additional Example Programs . 901

A Bitmap Display Utility . 901

A Memo Calendar . 913

Index. 921
x Motif Programming Manual

the
ok is

en
t),
ow

ws,
an be
ation.

rface
es

ed in

SF/
s.
that
rder
ntary
lib,

leave
you

2.
otif
ality.
ces
Preface
By convention, a preface describes the book itself, while the introduction describes
subject matter. You should read through the preface to get an idea of how the bo
organized, the conventions it follows, and so on.

This book describes how to write applications using the Motif toolkit from the Op
Software Foundation (OSF). The Motif toolkit is based on the X Toolkit Intrinsics (X
which is the standard mechanism on which many of the toolkits written for the X Wind
System are based. Xt provides a library of user-interface objects calledwidgets and
gadgets, which provide a convenient interface for creating and manipulating X windo
colormaps, events, and other cosmetic attributes of the display. In short, widgets c
thought of as building blocks that the programmer uses to construct a complete applic

However, the widgets that Xt provides are generic in nature and impose no user-inte
policy whatsoever. That is the job of a user-interface toolkit such as Motif. Motif provid
a complete set of widgets designed to implement the application look and feel specifi
theMotif Style Guide and theMotif Application Environment Specification.

The book provides a complete programmer’s guide to the Motif toolkit. While the O
Motif toolkit is based on Xt, the focus of the book is on Motif itself, not on the Intrinsic
Detailed information about Xt is provided by Volume 4, and references are made to
volume throughout the course of this book. You are not required to have Volume 4 in o
to use this book effectively, as the books are not companion volumes, but compleme
ones. However, truly robust applications require a depth of knowledge about Xt and X
the layer on which Xt itself is based, that is not addressed in this book alone. We never
you completely in the dark about Xt or Xlib functions that we use or reference, but
won’t learn everything there is to know about them through this particular volume.

This book covers Motif 2.1, which is the latest major release of the Motif toolkit. Motif
1 is based on Release 6 of the Xlib and Xt specifications (X11R6). This release of M
provides many new features, as well as a number of enhancements to existing function
All of the changes in Motif 2.1 are summarized in Section 3.5, which provides referen
to other sections that describe the changes in more detail.
Motif Programming Manual xi

Preface

. Our
er’s
a user.
ation
o play

the

cular
g, we
d put
ould

the
. You
as an
ight
otif.
nd to
our
lized

you
ate a
hese
ctures
sting
C, to
ade
they

nual.
et
t for

f this

event
bugs
The Plot
There are several plots and subplots in this book and the stories told are intertwined
primary goal is to help you learn about the Motif environment from both the programm
and the user’s perspectives. However, we are talking to you as a programmer, not as
We treat the user as a third party who is not with us now. In order to create an applic
for the user, you sometimes have to assume her role, so at times we may ask you t
such a role to help you think about things from the user’s perspective rather than
programmer’s.

Each chapter begins by discussing the goals that Motif is trying to achieve using a parti
widget or gadget. For example, before we describe how to create a FileSelectionDialo
introduce the object visually and conceptually, discuss its features and drawbacks, an
you in the role of the user. Once you understand what the user is working with, you sh
have a better perspective on the task of presenting it to her.

The next subplot is that of application design. Many design concepts transcend
graphical user interface (GUI) and are common to all programs that interact with users
could even interpret this book as a programmer’s guide that happens to use Motif
example. As you read the material, you should stop and think about how you m
approach a particular interface method if you were using another toolkit instead of M
A wild concept, perhaps, but this approach is the key to better application design a
toolkit independence. If Motif changes in a later release, or if you decide to port y
application to another toolkit or even another windowing system, the more genera
your code is, the easier it will be to bring it into a new realm successfully.

The last story we are telling is that of general programming technique. By providing
with examples of good programming habits, styles, and usages, we hope to propag
programming methodology that has proven to be successful over the years. T
techniques have been applied to applications that have been ported to multiple archite
and operating systems. As an added bonus, we have thrown in a number of intere
programming tricks. No, these are not hacks, but conveniences that are particular to
UNIX, or even to the X Window System. We don’t focus on these things, but they are m
available to you in passing, so you should have no problem identifying them when
come up.

This book is intended to be used as a programmer’s manual, not a reference ma
Volume 6B, contains reference material for all of the Motif library functions and widg
classes. We have tried to identify those features of the toolkit that are most importan
general discussion, so we do not discuss every aspect of the Motif toolkit in the body o
book.

Any major software development effort, especially in its early stages, has bugs that pr
certain features from being used and the Motif toolkit is no exception. There are some
xii Motif Programming Manual

Preface

the
to
gs that
em.
ative
it that
licly

.

swer
ng
d, and
, with
voke
is?”
e up.

in a

and
epts

he C
try
of

ality
with

ng up

he X
ic
, the

at the
n be
a fairly
in the Motif toolkit that have not yet been worked out, but this does not imply that
toolkit is poorly written or riddled with errors. Throughout the book, we try to alert you
any potential problems you may encounter due to bugs. In some cases, there are thin
work in Motif, but they are poorly designed, and we don’t recommend that you use th
Again, we provide an explanation of what’s going on and sometimes describe an altern
solution. There are also some features, resources, and functions available in the toolk
are not supported by OSF. OSF reserves the right to change anything not pub
documented, so rather than discuss undocumented features, we simply ignore them

We should also point out that this book is not intended to solve all your problems or an
all your questions concerning Motif or its toolkit. It is not going to spoon feed you by givi
you step-by-step instructions on how to achieve a particular task. You are encourage
even expected, to experiment on your own with the example applications or, better yet
your own programs. We want to provide you with discussion and examples that pro
you into asking questions like, “What would happen if I changed this program to do th
It would be unrealistic to believe that we could address every problem that might com
Rather than approaching situations using overly specific examples, we discuss them
generalized way that should be applicable to many different scenarios.

Assumptions
The basic method for creating simple applications in Motif is conceptually simple
straightforward. Even if you only dabble in C, you can probably understand the conc
well enough to do most things. However, unless you have a strong handle on t
programming language, there is an upper limit to what you will be able to do when you
to create a full-featured, functioning application. After all, the user-interface portion
most applications should make up no more than 30-40% of the total code. The function
of an application is up to you and is not discussed here. Without a strong background
C, or some other structured programming language, you might have a problem keepi
with the material presented here.

This book also assumes that you are familiar with the concepts and architecture of t
Toolkit Intrinsics, which are presented in Volume 4M, and Volume 5. A bas
understanding of the X Window System is also useful. For some advanced topics
reader may need to consult Volume 1, and Volume 2.

How This Book Is Organized
While this book attempts to serve the widest possible audience, that does not imply th
material is so simple that it is only useful to novice programmers. In fact, this book ca
considered an advanced programmer’s handbook, since in many places, it assumes
sophisticated knowledge of many features of the X Window System.
Motif Programming Manual xiii

Preface

Each
ject
t are

ject. If
apter.
or uses

that
stify
e this
ized
an

by-
the

ook,

at we
pters.
are of
Each chapter is organized so that it gets more demanding as you read through it.
chapter begins with a short introduction to the particular Motif element that is the sub
of the chapter. The basic mechanics involved in creating and manipulating the objec
addressed next, followed by the resources and other configurable aspects of the ob
there is any advanced material about the object, it is presented at the end of the ch
Many chapters also include exercises that suggest how the material can be adapted f
not discussed explicitly in the text.

While the chapters may be read sequentially, it is certainly not required or expected
you do so. As you will soon discover, there are many circular dependencies that ju
skipping around between chapters. Since there is no organization that would eliminat
problem, the material is not organized so that you “learn as you go.” Instead, we organ
the material in a top-down manner, starting with several chapters that provide
introduction to the Motif look and feel, followed by chapters organized on a widget-
widget basis. The higher-level manager widgets are discussed first, followed by
primitive widgets and gadgets. Advanced material is positioned at the end of the b
since the details are not of paramount importance to the earlier material.

In short, everything is used everywhere. Starting at the beginning, however, means th
won’t necessarily assume you know about the material that is referenced in later cha
On the other hand, the later chapters may make the assumption that you are aw
material in earlier chapters.

The book is broken down into twenty seven chapters and one appendix as follows:

Chapter 1
Introduction to Motifanswers the question “Why Motif?” and suggests some
of the complexities that the programmer has to master in order to make an
application easy to use.

Chapter 2
The Motif Programming Modelteaches the fundamentals of Motif by example.
It presents a simple “Hello, World” program that shows the structure and
style common to all Motif programs. Much of this material is already cov-
ered in detail in Volume 4M,so the chapter can be read as a refresher, or a
light introduction for those who haven’t read the earlier book. The chapter
references Volume 4 and Volume 1, to point out areas that the programmer
needs to understand before progressing with Motif.

Chapter 3
Overview of the Motif Toolkitexplains what is involved in creating a real ap-
plication. The chapter discusses the arrangement of primitive widgets in
an interface, the use of dialog boxes and menus, and the relationship be-
tween an application and the window manager. The chapter also describes
all of the changes in Release 2.1 of the Motif toolkit. After reading this
xiv Motif Programming Manual

Preface
chapter, the programmer should have a solid overview of Motif application
programming and be able to read the remaining chapters in any order.

Chapter 4
The Main Windowdescribes the Motif MainWindow widget, which can be
used to frame many types of applications. The MainWindow is a manager
widget that provides a MenuBar, a scrollable work area, and various other
optional display and control areas.

Chapter 5
Introduction to Dialogsdescribes the fundamental concepts that underly all
Motif dialogs. It provides a foundation for the more advanced material in
the following chapters. In the course of the introduction, this chapter also
provides details on Motif’s predefined MessageDialog classes.

Chapter 6
Selection Dialogspresents the more complex Motif-supplied dialogs for dis-
playing selectable items, such as lists of files or commands, to the user.

Chapter 7
Custom Dialogsdescribes how to create new dialog types, either by custom-
izing Motif dialogs or by creating entirely new dialogs.

Chapter 8
Manager Widgetsprovides detailed descriptions of the various classes of Mo-
tif manager widgets. Useful examples explore the various methods of posi-
tioning components in Form and RowColumn widgets.

Chapter 9
The Container and Icon Gadgetdescribes two components which are new to
Motif 2. These were designed to work together in order to provide a more
graphical presentation of the front end of the application than the older
Main Window. The IconGadget pictorially represents application objects;
the Container lays them out in a variety of styles, including Tablular, Grid,
and Tree formats. The layout can be changed dynamically: the Container
and IconGadget combination approximates to a Model-View-Controller
(MVC) system for the Motif widget set.

Chapter 10
ScrolledWindows and ScrollBarsdescribes the ins and outs of scrolling, with
particular attention to application-defined scrolling, which is often re-
quired when the simple scrolling provided by the ScrolledWindow widget
is insufficient.

Chapter 11
The DrawingArea Widgetdescribes the Motif DrawingArea widget, which pro-
vides a canvas for interactive drawing. The chapter simply highlights, with
Motif Programming Manual xv

Preface
numerous code examples, the difficulties that may be encountered when
working with this widget, rather than trying to teach Xlib drawing tech-
niques. Some knowledge of Xlib is assumed; we direct the reader to Volume
1, for additional information.

Chapter 12
Labels and Buttonsprovides an in-depth look at labels and buttons, the most
commonly-used primitive widgets. The chapter discusses the Label, Push-
Button, ToggleButton, ArrowButton, and DrawnButton widget classes.

Chapter 13
The List Widgetdescribes yet another method for the user to exert control
over an application. A List widget displays a group of items from which the
user can make a selection.

Chapter 14
The ComboBox Widgetdescribes another component which is new in Motif 2.
The ComboBox combines List display with Text input, although the List
can be hidden until required. The widget therefore maximizes user conven-
ience using the minimal of screen space.

Chapter 15
The SpinBox and SimpleSpinBox Widgetsare also new in Motif 2. Similar in con-
cept to the ComboBox, the widgets allow the user to choose from a set of
values, and the current choice is presented through a TextField. The differ-
ence is that the user changes the current choice not by selecting from a List,
but by rotating through the set of available values using ArrowButtons
provided for the purpose.

Chapter 16
The Scale Widgetdescribes how to use the Scale to display a range of values.

Chapter 17
The Notebook Widgetdescribes a component which provides page or tab man-
ager functionality to the Motif 2 toolkit. The programmer adds children to
the Notebook, only one of which is visible at any given time. The user can
select between pages using Tabs (PushButtons) aligned along the edges of
the Notebook, or by selecting the required page number from a SpinBox
which the Notebook creates automatically.

Chapter 18
Text Widgetsexplains how the Text and TextField widgets can be used to
provide text entry in an application, from a single data-entry field to a full-
fledged text editor. Special attention is paid to problems such as how to
mask or convert data input by the user so as to control its format. The chap-
xvi Motif Programming Manual

Preface
ter also discusses the internationalization features of the widgets provided
in Motif 1.2.

Chapter 19
Menusdescribes the menus provided by the Motif toolkit.The chapter exam-
ines how menus are created and presents some generalized menu creation
routines.

Chapter 20
Interacting With the Window Managerprovides additional information on the
relationship between an application and the Motif Window Manager
(mwm). It discusses the shell widget resources and window manager proto-
cols that can be used to communicate with the window manager. It also dis-
cusses various CDE desktop aspects of the window manager interaction.

Chapter 21
The Clipboarddescribes a way for the application to interact with other ap-
plications. Data is placed on the clipboard, where it can be accessed by oth-
er windows on the desktop, regardless of the applications with which they
are associated.

Chapter 22
Drag and Droppresents the drag and drop mechanism for transferring data
that is provided in Motif 1.2. The chapter describes the built-in drag and
drop features of the Motif toolkit and provides examples of adding drag and
drop functionality to an application.

Chapter 23
The Uniform Transfer Modeldescribes the scheme introduced in Motif 2 which
allows the programmer to handle the various data transfer operations sup-
ported by Motif (Primary and Secondary Selections, the Clipboard, Drag-
and-Drop) using a single programming interface.

Chapter 24
Render Tables describes the Motif 2 mechanisms which control the way in
which compound strings are displayed by the toolkit. In Motif 2, strings
which appear in widgets can be multi-colored, multi-font, and laid out in a
multi-column arrangement. The coloration, font, and tabular information
is held separately from the string which is to be drawn in the form of a
render table.

Chapter 25
Compound Stringsdescribes Motif’s technology for encoding font and direc-
tional information in the strings that are used by almost all Motif widgets.
It discusses how to use compound strings in an internationalized applica-
tion.
Motif Programming Manual xvii

Preface

s,
Chapter 26
Signal Handlingpresents the problems that can be encountered when mixing
UNIX signals with X applications. It explains how signals work and why
they can wreak such havoc with X. It presents the new features of X11R6
which are expressly designed to handle this problem.

Chapter 27
Advanced Dialog Programmingdescribes the issues involved in creating mul-
ti-stage help systems, using WorkingDialogs that allow the user to inter-
rupt long-running tasks, and dynamically changing the pixmaps displayed
in a dialog.

Appendix
Additional Example Programsprovides several additional examples that illus-
trate techniques not discussed in the body of the book.

Related Documents
The following books on the X Window System are available from O’Reilly & Associate
Inc.:

Volume Zero X Protocol Reference Manual

Volume One Xlib Programming Manual

Volume Two Xlib Reference Manual

Volume Three X Window System User’s Guide, Motif Edi-
tion

Volume Four X Toolkit Intrinsics Programming Manual,
Motif Edition

Volume Five X Toolkit Intrinsics Reference Manual

Volume Six A Motif Programming Manual

Volume Seven XView Programming Manualwith accompa-
nying reference volume.

Volume Eight X Window System Administrator’s Guide

PHIGS Programming Manual

PHIGS Reference Manual

PEXlib Programming Manual

PEXlib Reference Manual

Quick Reference The X Window System in a Nutshell
xviii Motif Programming Manual

Preface

r user

e and

gs),
ming

trary

ence

ons is

vide
for
Programming Supplement for Release 6 of the X Window System

Conventions Used in This Book
Italic is used for:

• UNIX path names, filenames, program names, user command names, options fo
commands, and variable expressions in syntax sections.

• New terms where they are defined.

Typewriter Font is used for:

• Anything that would be typed verbatim into code, such as examples of source cod
text on the screen.

• Variables, data structures (and fields), symbols (defined constants and bit fla
functions, macros, and a general assortment of anything relating to the C program
language.

• All functions relating to Motif, Xt, and Xlib.

• Names of subroutines in example programs.

Italic Typewriter Font is used for:

• Arguments to functions, since they could be typed in code as shown but are arbi
names that could be changed.

Boldface is used for:

• Names of buttons and menus.

Obtaining Motif
Motif sources can be obtained from a number of locations, although the primary refer
site is:

http://www.opengroup.org/motif

These sources are known as Open Motif, and the use of such sources in applicati
restricted to Open Source platforms.

Alternatively, if your hardware vendor is an OSF member, they may be able to pro
Motif binaries for your machine. Various independent vendors also provide binaries
some machines.Source licenses must be obtained directly from OSF:

OSF Direct
Open Software Foundation
11 Cambridge Center
Motif Programming Manual xix

Preface

: by
listed
st.

net
sers).
ve

ble

ion is
Cambridge, MA 02142
USA
+1 617 621-7300
Internet: direct@osf.org

Obtaining the Example Programs
The example programs in this book are available electronically in a number of ways
FTP, FTPMAIL, BITFTP, and UUCP. The cheapest, fastest, and easiest ways are
first. If you read from the top down, the first one that works for you is probably the be
Use FTP if you are directly on the Internet. Use FTPMAIL if you are not on the Inter
but can send and receive electronic mail to internet sites (this includes CompuServe u
Use BITFTP if you send electronic mail via BITNET.Use UUCP if none of the abo
works.

Versions of the example programs for Motif 2.1, Motif 1.2 and Motif 1.1 are availa
electronically. If you want the Motif 2.1 version, use the filenameexamples21.tar.Z, as
shown in the sample sessions below. The filename for the Motif 1.2 version isexamples12.
tar.Z.

FTP
To use FTP, you need a machine with direct access to the Internet. A sample sess
shown, with what you should type in boldface.

% ftp ftp.uu.net
Connected to ftp.uu.net.220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST
1992) ready.
Name (ftp.uu.net:paula): anonymous
331 Guest login ok, send domain style e-mail address as password.
Password: paula@ora.com (use your user name and host here)
230 Guest login ok, access restrictions apply.
ftp> cd /published/oreilly/xbook/motif
250 CWD command successful.
ftp> binary (Very important! You must specify binary transfer for compressed files.)
200 Type set to I.
ftp> get examples12.tar.Z
200 PORT command successful.
150 Opening BINARY mode data connection for examples12.tar.Z
226 Transfer complete.
ftp> quit
221 Goodbye.
%

If the file is a compressed tar archive, extract the files from the archive by typing:

% zcat examples12.tar.Z | tar xf -

System V systems require the followingtar command instead:
xx Motif Programming Manual

Preface

eive
ail

ds
ou.

lp” in
This
sted
’re

.”

he

ve.

ges
rves
rth.
% zcat examples12.tar.Z | tar xof -

If zcat is not available on your system, use separate uncompress andtar commands.

FTPMAIL
FTPMAIL is a mail server available to anyone who can send electronic mail to and rec
it from Internet sites. This includes any company or service provider that allows em
connections to the Internet. Here’s how you do it.

You send mail toftpmail@online.ora.com. In the message body, give the FTP comman
you want to run. The server will run anonymous FTP for you and mail the files back to y
To get a complete help file, send a message with no subject and the single word “he
the body. The following is an example mail session that should get you the examples.
command sends you a listing of the files in the selected directory, and the reque
example files. The listing is useful if there’s a later version of the examples you
interested in.

% mail ftpmail@online.ora.com
Subject:reply paula@ora.com (where you want files mailed)
opencd /published/oreilly/xbook/motif
dirmode
binary
uuencode
get examples12.tar.Z
quit
%

A signature at the end of the message is acceptable as long as it appears after “quit

All retrieved files will be split into 60KB chunks and mailed to you. You then remove t
mail headers and concatenate them into one file, and thenuudecodeor atobit. Once you’ve
got the desired file, follow the directions under FTP to extract the files from the archi

VMS, DOS, and Mac versions ofuudecode, atob, uncompress, andtar are available.

BITFTP
BITFTP is a mail server for BITNET users. You send it electronic mail messa
requesting files, and it sends you back the files by electronic mail. BITFTP currently se
only users who send it mail from nodes that are directly on BITNET, EARN, or NetNo
BITFTP is a public service of Princeton University. Here’s how it works.

To use BITFTP, send mail containing your ftp commands toBITFTP@PUCC. For a
complete help file, send HELP as the message body.

The following is the message body you should send to BITFTP:

FTP ftp.uu.net NETDATA
USER anonymous
Motif Programming Manual xxi

Preface

om
sions
e

Cs
ET;

your
CP

nic

om

, and

ction
gram

s not
form
PASS your Internet email address (not your bitnet address)
CD /published/oreilly/xbook/motif
DIR
BINARYG
ET examples12.tar.Z
QUIT

Once you’ve got the desired file, follow the directions under FTP to extract the files fr
the archive. Since you are probably not on a UNIX system, you may need to get ver
of uudecode, uncompress, atob, andtar for your system. VMS, DOS, and Mac versions ar
available. The VMS versions are ongatekeeper.dec.com in /archive/pub/VMS.

Questions about BITFTP can be directed to Melinda Varian,MAINT@PUCCon BITNET.

UUCP
UUCP is standard on virtually all UNIX systems, and is available for IBM-compatible P
and Apple Macintoshes. The examples are available by UUCP via modem from UUN
UUNET’s connect-time charges apply.

You can get the examples from UUNET whether you have an account or not. If you or
company has an account with UUNET, you will have a system with a direct UU
connection to UUNET. Find that system, and type:

uucp uunet\!~/published/oreilly/xbook/motif/examples12.tar.Z yourhost\!~/ yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead ofcsh. The file
should appear some time later (up to a day or more) in the directory/usr/spool/uucppublic/
yourname. If you don’t have an account but would like one so that you can get electro
mail, then contact UUNET at 703-204-8000.

It’s a good idea to get the file/published/oreilly/xbook/motif/ls-lR.Zas a short test file
containing the filenames and sizes of all the files in the directory.

Once you’ve got the desired file, follow the directions under FTP to extract the files fr
the archive.

Copyright
The example programs are written by Dan Heller, Paula Ferguson, Antony Fountain
Jeremy Huxtable for theMotif Programming Manual, Copyright 1994 O’Reilly
&Associates, Inc. Permission to use, copy, and modify these programs without restri
is hereby granted, as long as this copyright notice appears in each copy of the pro
source code.

For the purposes of making the book easier to read, the above copyright notice doe
appear in the program examples. However, the copyright does exist in the electronic
of the programs available on the Internet.
xxii Motif Programming Manual

Preface

you’re

ave

. The

ou
lled

ny
ally
the
we

s. For
er, is

orm
f

hout
e to
kler,
am
ding.
eil
rking
wife

ing
HaL
Compiling the Example Programs
Once you have the examples and you’ve unpacked the archive as described above,
ready to compile them. The easiest way is to useimake, a program supplied with the X11
distribution that generates proper Makefiles on a wide variety of systems.imakeuses
configuration files called Imakefiles that are included with the examples. If you h
imake, you should go to the top-level directory containing the examples, and type:

% xmkmf
% make Makefiles
% make

The examples all have the same application class for purposes of the app-defaults file
class name is “Demos” and the app-defaults file (Demos) in the main examples directory
should be placed in/usr/X11R6/lib/app-defaults/Demoson a UNIX system. If you can’t
write to that directory, or if your normal X11 directory tree is installed elsewhere, y
should set the environment variable XAPPLRESDIR to the directory where you insta
the examples.

Acknowledgments
Third Edition. The current edition of this book was updated to cover Motif 2.1 by Anto
Fountain and Jeremy Huxtable, both of Imperial Software Technology. Jerry origin
wrote most of the Motif 2.1 sample programs which appear in the book. He also wrote
utility Snap, which was used to recreate all the screen shots for this manual. Originally
intended to include this in the Appendix as a sample application, but space forbade thi
myself, I simply made sure that the examples were non-deprecated. The text, howev
mine, and I accept the blame for everything.

Special thanks go to the people who worked on the production of this book. The final f
of this book is the work of the staff at O’Reilly & Associates. I would like to thank all o
them for allowing me to take on this project; a special thanks to Paula Ferguson, wit
whom the manuscript would never have reached the printer. The authors would lik
thank all at IST for their patience and support. A special thanks must go to Denise Buc
John Bishop, Andy Davies, Simon Davies, Ruth Lambert, Andy and Tricia Lovell, Grah
Salisbury, and Rob Snell, who all cheerfully assisted in the onerous task of proof rea
Thanks to Alan Sandell for keeping the printer working. A big thanks to Andy Lovell, N
Smyth, and Derek Lambert for their patience and support when I could have been wo
on company matters. And last but definitely not least, a very special thank you to my
Emma for keeping the home fires burning.

Antony J. Fountain

Second Edition.The second edition of this book was updated to cover Motif 1.2,includ
drag and drop and internationalization, by Paula Ferguson. Dave Brennan, of
Motif Programming Manual xxiii

Preface

t UIL
at

ure
e of
torial

ui,
s to
a for

t the
SF
, Inc.

orm
to

for
sher
the
d the

at
ate,
ith,
Liz
e there
d me

ors or

ile
kes

osing
Computer Systems, took on the unenviable task of learning everything he could abou
and Mrm, in order to write the UIL programming material for this edition. He did a gre
job of covering a complex subject.

Adrian Nye deserves recognition for allowing me to work on this project, when I’m s
that he had other projects he would have liked to send my way. I don’t think either on
us had any idea how involved this update project would become. He also provided edi
support that helped keep me on track in the final stages of the work on the book.

The other writers at O’Reilly &Associates in Cambridge, Valerie Quercia and Linda M
provided support that kept me sane while I was working on the book. Their willingnes
listen and offer advice is greatly appreciated. Extra gratitude goes to Valerie Querci
her help with the screen dumps for the book.

David Flanagan deserves credit for always being willing to answer my questions abou
technical details of Motif and X. Douglas Rand, Scott Meeks, and David Brooks at O
answered questions and helped review the new material. Daniel Jahn, of SAS Institute
, also provided valuable review comments for this edition.

Special thanks go to the people who worked on the production of this book. The final f
of this book is the work of the staff at O’Reilly &Associates. The authors would like
thank Chris Reilly for the figures, Donna Woonteiler, Chris Tong, and Ellie Cutler
indexing, Lenny Muellner for tools support, and Stephen Spainhour, Clairemarie Fi
O’Leary, Kismet McDonough, and Eileen Kramer for copy editing and production of
final copy. Thanks also to Donna Woonteiler for her patience in helping me understan
production process.

Finally, I’d like to thank my friends for putting up with me when I kept telling them th
I’d be done working non-stop in a month or two. Special thanks to my house m
Meredith Hunt, who put up with me when I was stressed out and not much fun to live w
and who took care of the cats when I wasn’t around. My friends Karen Lewis and
Bradley opened their house to me when I needed to escape and be someplace wher
are mountains. And thanks to the great people at the Boston Rock Gym, who provide
with a much-needed outlet for climbing the walls.

Despite the efforts of all of these people, the authors alone are responsible for any err
omissions that remain.

Paula M. Ferguson

First Edition. The first edition of this book took over a year and a half to write and comp
from the beginning. But when I look back on the entire effort, and I think about what it ta
to do things like this (and other difficult things in life), I realize that what itreally requires
is a state of mind and a mental model that lends itself to seeing the big picture and cho
to do what’s necessary to get the job done.
xxiv Motif Programming Manual

Preface

t’s
for

ind of
ode
nor
ibes an
hown
me

who
e on
ets

lping
nks

ng at
eks

d
ates’

done
met
the
g,
n a
ny
mps
terns

tones.
en it

orth,

l,
ain

ee
To this, I can only credit one person, Tim O’Reilly, my friend and editor of this book. I
his approach to life, his values, his way of thinking about things, and his talent
expressing them is what has influenced me more than anything else in adopting the k
mental framework necessary to write a book like this (or to start my company, Z-C
Software, or to do anything I do in life). He never gives me advice when I ask for it,
does he tell me what to do. Instead, he uses quotes, cites anecdotes, or just descr
abstract thought that always seems to be appropriate to every situation. In short, he’s s
me a way of thinking about things that appreciates the big picture. I take this with
wherever I go, and in whatever I do. Without it, I couldn’t have written this book.

Those who worked most closely with me on the project include Irene Jacobson,
dedicated long hours to meticulous editing and support. Her intuition and insistenc
proper use of words saved many cuts of Tim O’Reilly’s scalpel. David Lewis also g
super-high marks for his excellent feedback, for his technical expertise, and for he
take care of certain Z-Mail ports while I was busy hunched over this computer. More tha
go to the great folks at Z-Code Software, Bart Schaefer and Don Hatch, for not laughi
me when I told people for at least six months that the book would take “just two more we
now.”(I really meant it, too!) Actually, they helped quite a bit with reading nroff’
manuscripts, and by taking care of the business whenever I was at O’Reilly &Associ
offices in “Bahston.”

The figures in this book come in two forms: screen dumps and hand-generated figures
by Chris Reilly. What a super job he did--and always on time. And how can I thank Kis
McDonough, Lenny Muellner, Rosanne Wagger, Mike Sierra, Eileen Kramer, and
other production folks at O’Reilly &Associates, who did a wonderful job of copy editin
proofing, page layout, and all the other things that make the difference betwee
manuscript and a finished book. And that’s not all: Ellie Cutler wrote the index. To
Marotto of Cambridge Computer Associates figured out how to convert our screen du
into PostScript files and how to scale screen dumps without the moire and plaid pat
you see in many books. He used Jeff Poskanzer’spmbplusto convertxwd dumps togif
format, and then wrote a set of image-processing programs that shift and enhance the
Daniel Gilly took on the enormous job of developing the reference appendices wh
became clear that I wouldn’t have time.

Enthusiastic applause goes to Libby Hanna (do I get areal official OSF/Motif decoder ring
now!!??), David Brooks, Scott Meeks, Susan Thompson, Carl Scholz, Benjamin Ellsw
and the entire cast at OSF in Cambridge for their support. And, of course,everyoneon the
motif-talk mailing list.(I wish I could remember all your names!)

People I can’t forget: Bill “Rock” Petro, Akkana, Mike Harrigan at NCD for the termina
Danny Backx at BIM (sorry I didn’t get you any review copies!), John Harkin, and cert
folks at Sun that I’d love to mention, but I can’t because they’re into thatOL-thangand they
wouldn’t want to be associated with theM-word, Jordan Hayes, Paula Ferguson, and K
Motif Programming Manual xxv

Preface

t the

n in
tre,

.

e to
ner,

but
ase let
, by

est a
Hinckley (just because he’s cool).Also thanks to Ralph Swick and Donna Converse a
X Consortium for being somewhat patient with me.

Added thanks to Lynn Vaughn at CNN for keeping me informed about what’s going o
the world, since I have no time to look out the window; to Short Attention-Span Thea
for keeping me amused; and to Yogurt World, for keeping me fed.

This book was written using a Sun workstation, thevi editor (for which I guess I ought to
thank Bill Joy), SoftQuad’ssqtroff, X11R4 and various versions of Motif (1.0 through 1.1
3).

For catching and reporting errors that have been fixed in the second printing, I’d lik
thank Akkana, Wayne Robertz, Glen Shute, Scott Strool, Trevor Taylor, Peter Wag
Andrew Wason, Tim Weinrich, and Bill Wohler.

Dan Heller

We’d Like to Hear From You
We have tested and verified all of the information in this book to the best of our ability,
you may find that features have changed (or even that we have made mistakes!). Ple
us know about any errors you find, as well as your suggestions for future editions
writing:

O’Reilly & Associates, Inc.
103 Morris Street, Suite A
Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or requ
catalog, send email to:

info@ora.com (via the Internet)
uunet!ora!info (via UUCP)

To ask technical questions or comment on the book, send email to:

bookquestions@ora.com (via the Internet)
xxvi Motif Programming Manual

geted
d

m,
ch of
Chapter 1

In this chapter:
• Basic User-interface

Concepts
• What Is Motif?
• Designing User

Interfaces

So many computers, so man

Developing an application use
the application for the Micros
its own distinct toolkit interfac
you had to encapsulate the
Motif Programming Manual
1

t. Yet

ions.
ys,
test
erver
ough
The
e a

e to
olkit
me
f
in

ing
m
ale
lly
nner
UNIX
e

n for
Introduction to Motif
y operating systems, so many toolkits*.

d to be a simple choice, depending upon whether we tar
oft world, for UNIX, or for the Apple MacIntosh. Each ha
e. If you wanted to write your application cross-platfor

functionality through a set of common C++ classes, ea
which would have a separate internal implementation for each operating environmen
for the myriad of UNIX platforms, all you had to do was write Motif.

But now there is Linux, and Java, and GTK+ and Qt, and a host of other considerat
Life never was so complex, and all we want to do is write an application. In many wa
the task of the application programmer is now to write the application with the grea
degree of toolkit independence that can be achieved, whether through a client-s
architecture to separate the interface from the back-end processing, or still thr
encapsulation techniques which hide the underlying toolkit from the higher levels.
toolkit ought in principle to be irrelevant; in practice this is not possible: there has to b
windowing toolkit somewhere at the bottom level, and that toolkit must be appropriat
the target operating system and environment. A emulator or cross-platform common to
never quite succeeds in providing the requisite functionality in all levels of detail; for so
platforms, if it is not in the native toolkit, it simply isn’t ported; this is particularly true o
Windows environments, where using anything other than MFC is simply wrong
principle. MFC isthe native windowing environment for Windows. It just is.

So why Motif? Because it remains what it has long been: the common native window
toolkit for all the UNIX platforms, fully supported by all the major operating syste
vendors. It is still the only truly industrial strength toolkit capable of supporting large sc
and long term projects. Everything else is tainted: it isn’t ready or fully functiona
complete, or the functional specification changes in a non-backwards-compatible ma
per release, or there are performance issues. Perhaps it doesn’t truly port across
systems, or it isn’t fully ICCCM compliant with software written in any other toolkit on th
desktop, or there are political battles as various groups try to control the specificatio

* Infandum, regina, iubes renouare dolorem...
1

Chapter 1: Motif Programming Model

ave
ng to
you
lly

ught
ser in
u are
tive of
ully

we
but
oxes,
gth
ls
ith

er, or
ed on
ts
pects

rface
ther
oolkit
it is

nting
ork.

face
nfuse
o high

ace
are

ber.
rns.
their own purposes. Indeed it may matter very much whose version of the toolkit you h
managed to acquire, or if the toolkit is open sourced so you have no idea who is goi
stick their untrusted fingers into it at any time. So many problems with each choice
make. With Motif, you know where you are: its stable, its robust, its professiona
supported, and it all works.

And yet whatever the toolkit you choose to write your application in, the design goals o
to remain precisely the same. You should be trying to present the application to the u
the most consistent, simple to use, and simple to understand manner of which yo
humanly capable. Interfaces consist of basic controls and layout managers, irrespec
the language it is written in. In this respect, Motif, despite its long history, remains as f
capable as any basic toolkit. It is true that Motif 1.2 lacked some of the features which
now expect from a windowing toolkit - the philosophy of design moves on with time -
these issues are addressed in the 2.1 version of the toolkit. The ComboBoxes, SpinB
Tree and Grid layouts are all there. Where Motif differs from other toolkits is the stren
of the component inter-operability. The Motif toolkit is not just a collection of contro
written in a particular language: everything, but everything, is designed to work w
everything else, whether it be navigation between controls, or inter-object data transf
the sharing of style resources throughout the control hierarchy. And because it is bas
top of the X interface toolkit, Xt, it will work with the vast range of third party componen
and add-ons which are available to the X world. In many ways, it is precisely these as
which are stronger in the Motif 2.1 toolkit than ever before.

Much of this chapter can be read as a general introduction to graphical user inte
toolkits; the concepts which we present are not specific to Motif, or indeed to any o
windowing toolkit. The ideas presented here should be general enough to read in a t
independent manner; how you implement those ideas using the specific Motif toolk
covered in subsequent chapters of this book.

Basic User Interface Concepts
Whether you are the designer of the software or an engineer responsible for impleme
someone else’s design, there are some basic principles that will benefit you in your w
Let’s begin with the basics:

• All applications running on a user’s workstation should have a consistent inter
design. Programs that deviate from the expected design will almost assuredly co
the user even if the changes were intended for the user’s benefit. Chances are als
that the user will not want to use the questionable software again.

• Users rely on rote memory; they will remember seemingly complicated interf
interaction techniques provided that the functions they perform are useful and
invoked frequently. There is a limit, however, to how much users want to remem
It is important that essential or frequently used functions follow memorable patte
2 Motif Programming Manual

Chapter 1: Motif Programming Model

ay.

n in
, the

ight;

too
rtain

s, the
anity-

and X
the

ho
your

CDE,
range

the
kind,
yle of

ign
hical
the
not
ed
hich
ugh

t users
tive.
tif
• Novice users will probably not want to customize or alter their applications in any w
If they do, the available methods must be as easy and painless as possible.

• Users with more experience most certainly might want to customize the applicatio
all sorts of ways: the greater degree of customization which the application allows
better.

One of the first things the hard-core X programmer learns is that “the user is always r
if he wants to customize his interface, by God you had better let him.”

This principle is absolutely correct. Unfortunately, many early X applications carry it
far and end up “spineless.” Many such programs actually require the user to make ce
customizations in order for the program to be usable or attractive. For some program
problem worsens if unreasonable customization settings are given, since there is no s
checking for unreasonable configurations.

So far, such customization issues have not become over-problematic because UNIX
applications are used almost exclusively by technical people who understand
environment and know how to work within it. But it is important to consider users w
know absolutely nothing about computers and who don’t want to - they are only using
software because they have to.

The customization issue has partly been addressed in any case by environments like
or the Schemes mechanisms on SGI platforms: users can choose from (and add to) a
of preset styles which will affect all applications on the desktop. Part of the work of
engineer is now to ensure that the application participates in desktop schemes of this
so that the user can customize in a general way rather than having to configure the st
every application individually.

What Is Motif?
So, back to Motif. What is it and how can it help you solve your user-interface des
goals? To start, Motif is a set of guidelines that specifies how a user interface for grap
computers shouldlook and feel. This term describes how an application appears on
screen (the look) and how the user interacts with it (the feel). Look and Feel is
something specific to Motif; all windowing toolkits should present a standardiz
internally-consistent methodology so that the user is comfortable using the controls w
the application presents. Specific toolkits, however, have distinct look and feel, altho
since some toolkits share a common design philosophy there is a cross-over so tha
familiar with one platform are not necessarily naked when presented with an alterna
This will be made clear in the paragraphs which follow. Firstly, let us look at a Mo
application.
Motif Programming Manual 3

Chapter 1: Motif Programming Model

ring

ting,
, any

f the
and
r by

tion
ents,
ed in

anged
ation

osh
face
on is
Figure 1-1 shows a Motif application, used for taking snapshots of windows or captu
areas of the screen.

The user interacts with the application by typing at the keyboard, and by clicking, selec
and dragging various graphic elements of the application with the mouse. For example
application window can be moved on the screen by moving the pointer to the top o
window’s frame (the title bar), pressing and holding down a button on the mouse,
dragging the window to a new location. The window can be made larger or smalle
pressing a mouse button on any of the resize corners and dragging.

Most applications sport buttons that can be clicked with the mouse to initiate applica
actions. Motif uses highlighting and shadowing to make buttons, and other compon
look three-dimensional. When a button is clicked on, it actually appears to be press
and released.

A row of buttons across the top of most applications forms amenu bar. Clicking on any of
the titles in the menu bar pops up a menu of additional buttons. Buttons can also be arr
in palettes that are always visible on the screen. When a button is clicked, the applic
can take immediate action or it can pop up an additional window called adialog box. A
dialog box can ask the user for more information or present additional options.

This style of application interaction isn’t new to most people, since the Apple MacInt
popularized it years ago. What is different about Motif is that the graphical user inter
specification is designed to be independent of the computer on which the applicati
running.

Figure 1-1: A Motif Application
4 Motif Programming Manual

Chapter 1: Motif Programming Model

of
ions.
bility

user

t that
t was
ork-
osh,
d of

ant
a

are
an
he

of
user
some

n the
ment.

odel
ursors
me
of the

n.

s all
f the

er.
mail

s.
Motif was designed by the Open Software Foundation (OSF), a non-profit consortium
companies such as Hewlett-Packard, Digital, IBM, and dozens of other corporat
OSF’s charter calls for the development of technologies that will enhance inter-opera
between computers from different manufacturers. Targeted technologies range from
interfaces to operating systems.

Part of OSF’s charter was to choose an appropriate windowing system environmen
would enable the technology to exist on as wide a range of computers as possible. I
decided that the OSF/Motif toolkit should be based on the X Window System, a netw
based windowing system that has been implemented for UNIX,VMS, DOS, Macint
and other operating systems. X provides an extremely flexible foundation for any kin
graphical user interface.

When used properly, the Motif toolkit enables you to produce completely Motif-compli
applications in a relatively short amount of time. At its heart, though, Motif is
specification rather than an implementation. While most Motif applications
implemented using the Motif toolkit provided by OSF, it would be quite possible for
application implemented in a completely different way to comply with the Motif GUI. T
specification is captured in two documents: theMotif Style Guide, which defines the
external look and feel of applications, and theApplication Environment Specification,
which defines the application programmer’s interface (API).*

The Motif specifications don’t have a whole lot to say about the overall layout
applications. Instead, they focus mainly on the design of the objects that make up a
interface - the menus, buttons, dialog boxes, text entry, and display areas. There are
general rules, but for the most part, the consistency of the user interface relies o
consistent behavior of the objects used to make it up, rather than their precise arrange

The Motif specification is broken down into two basic parts:

• The output model describes what the objects on the screen look like. This m
includes the shapes of buttons, the use of three-dimensional effects, the use of c
and bitmaps, and the positioning of windows and subwindows. Although so
recommendations are given concerning the use of fonts and other visual features
desktops, Motif is flexible in most of these recommendations.

• The input model specifies how the user interacts with the elements on the scree

The key point of the specification is that consistency should be maintained acros
applications. Similar user-interface elements should look and act similarly regardless o
application that contains them.

Motif can be used for virtually any application that interacts with a computer us
Programs as conceptually different as a CAD/CAM package or an electronic

* Both books have been published for OSF by Prentice-Hall and are available in most technical bookstore
Motif Programming Manual 5

Chapter 1: Motif Programming Model

ace is
the

ed
les as
ager.
f an

A)
for

ms”
their

ire
the

stic
nd

od
the

e a
to the

ical

tions
se
take

e as
nd, at
ifficult

face
with

ough
akes
application still use the same types of user-interface elements. When the user interf
standardized, the user gets more quickly to the point where he is working with
application, rather than just mastering its mechanics.

Those familiar with Microsoft Windows should have little trouble in using a Motif-bas
application.This is not a coincidence; its user-interface is based on the same princip
Motif. Motif can be seen as a superset of both MS-Windows and Presentation Man
Even though the others came first, Motif views them as specific implementations o
abstract specification.

The Motif interface was intentionally modelled after IBM’s Common User Access (CU
specification, which defines the interface for OS/2 and Microsoft Windows. The reason
this is that there is a proven business model for profiting from an “open syste
philosophy. As a result, all of the major operating system vendors support Motif as
native graphical interface environment.

You have two options for making applications Motif-compliant. You can write the ent
application yourself, and make sure that all your user-interface features conform to
Motif GUI specifications, or you can use a programming toolkit, which is a more reali
option. A toolkit is a collection of pre-written functions that implement all the features a
specifications of a particular GUI.

However, a toolkit cannot write an application for you, nor can it enforce go
programming techniques. It isn’t going to tell you that there are too many objects on
screen or that your use of colors is outrageous. The job of Motif is solely to provid
consistent appearance and behavior for user-interface controls. So, before we jump in
mechanics of the Motif toolkit, let’s take a moment longer with the philosophy of graph
user interfaces.

Designing User Interfaces
The principles behind an effective user interface cannot be captured in the specifica
for Motif or any other GUI. Even though the Motif toolkit specifies how to create and u
its interface elements, there is still quite a bit left unsaid. As the programmer, you must
the responsibility of using those elements effectively and helping the user to b
productive as possible. You must take care to keep things simple for the beginner a
the same time, not restrict the more experienced user. This task is perhaps the most d
one facing the programmer in application design.

There is frequently no right or wrong way to design an interface. Good user-inter
design is usually a result of years of practice: you throw something at a user, he plays
it, complains, and throws it back at you. Experience will teach you many lessons, alth
we hope to guide you in the right direction, so that you can avoid many common mist
and so that the ones that you do make are less painful.
6 Motif Programming Manual

Chapter 1: Motif Programming Model

umb.

so
s, the
he

king
ask in
ental
le, a
d and
and
ther
FAX
ts.

hes is
r real-
they
ple.

ases,
t the
hat it

that
the

tion
half-
ose

ke it
heir

You
posed
aybe
have
So, rather than having absolute commandments, we rely on heuristics, or rules of th
Here is a rough list to start with:

• Keep the interface as simple as possible.

• Make direct connections to real-world objects or concepts.

• If real-world metaphors are not available, improvise.

• Don’t restrict functionality to accommodate simplicity.

This list may sound flippant, but it is precisely what makes designing an interface
frustrating. Keeping an interface as simple as possible relies on various other factor
most basic of which is intuition. The user is working with your application because
wants to solve a particular problem or accomplish a specific task. He is going to be loo
for clues to spark that connection between the user interface and the preconceived t
his mind. Strive to make the use of an application obvious by helping the user form a m
mapping between the application and real-world concepts or objects. For examp
calculator program can use buttons and text areas to graphically represent the keypa
the one-line display on a calculator. Most simple calculators have the common digit
arithmetic operator keys; a graphical display can easily mimic this appearance. O
examples include a programmatic interface to a cassette player, telephone, or
machine. All of these could have graphical equivalents to their real-world counterpar

The reason these seemingly obvious examples are successful interface approac
because they take advantage of the fact that most people are already familiar with thei
life counterparts. But there is another, less obvious quality inherent in those objects:
are simple. The major problem concerning interface design is that not everything is sim
There isn’t always a real-world counterpart to use as a crutch. In the most frustrating c
the concept itself may be simple, but there may not be an obvious way to presen
interaction. Of course, once someone thinks of the obvious solution, it seems odd t
could have been difficult in the first place.

Consider the VCR. Conceptually, a VCR is a simple device, yet statistics used to say
70% of VCR owners don’t know how to program one. How many times have you seen
familiar 12:00-AMflashing in someone’s living room? Researchers say that this situa
occurs because most VCRs are poorly designed and are “too feature full.” They’re
right; the problem is not that they are too feature full, but that the ways to control th
features are too complicated. Reducing the capabilities of a VCR isn’t going to ma
easier to use; it’s just going to make it less useful. The problem with VCRs is that t
designers focused too much on functionality and not enough on usability.

So, how do you design an interface for a VCR when there is no other object like it?
improvise. Sure, the VCR is a simple device; everyone understands how one is sup
to work, but few people have actually designed one that is easy to use until recently. M
you’ve heard about the new device that, when connected to your VCR, enables you to
Motif Programming Manual 7

Chapter 1: Motif Programming Model

ar to
you
es to
been
e now

not
ht of a
ult to
on

face
an
fonts

lors
many
and

rloads

xity.
ber
y be
t is
and

end
user.

ikely
true

ly in
ned

may
cated
to be
of the

luate
th a
a complete TV program guide displayed on your screen in the bar-graph layout simil
the nightly newspaper listings. All you have to do is point and click on the program
want to record and that’s it - you’re done. No more buttons to press, levels of featur
browse through, dials to adjust or manuals to read. At last, the right interface has
constructed. None of the machine’s features have been removed. It’s just that they ar
organized in an intuitive way and are accessible in an simple manner.

This method for programming VCRs satisfies the last two heuristics. Functionality has
been reduced, yet simplicity has been heightened because a creative person thoug
new way to approach the interface. The lesson here is that no object should be diffic
use no matter how feature full it is or how complex it may seem. You must rely heavily
your intuition and creativity to produce truly innovative interfaces.

Let’s return to computer software and how these principles apply to the user-inter
design model. The first heuristic is simplicity, which typically involves fewer, rather th
more, user-interface elements on the screen. Buttons, popup menus, colors, and
should all be used sparingly in an application. Often, the availability of hundreds of co
and font styles along with the attractiveness of a three-dimensional interface compels
application programmers to feel prompted, and even justified, in using all of the bells
whistles. Unfortunately, overuse of these resources quickly fatigues the user and ove
his ability to recognize useful and important information.

Ironically, the potential drawbacks to simplicity are those that are also found in comple
By oversimplifying an interface, you may introduce ambiguity. If you reduce the num
of elements on your screen or make your iconic representations too simple, you ma
providing too little information to the user about what a particular interface elemen
supposed to do. Under-use of visual cues may make an application look bland
uninteresting.

One of Motif’s strengths is the degree of configurability that you can pass on to the
user. Colors, fonts, and a wide variety of other resources can be set specifically by the
You should be aware, however, that once your application ships, its default state is l
to be the interface most people use, no matter how customizable it may be. While it is
that more sophisticated users may customize their environment, you are ultimate
control of how flexible it is. Also, novice users quickly become experts in a well-desig
system, so you must not restrict the user from growth.

Simplicity may not always be the goal of a user interface. In some cases, an application
be intentionally complex. Such applications are only supposed to be used by sophisti
users. For example, consider a 747 aircraft. Obviously, these planes are intended
flown by experts who have years of experience. In this case, aesthetics is not the goal
interior design of a cockpit; the goal is that of functionality.

In order to design an effective graphical user interface for an application, you must eva
the goals of both your particular application and your intended audience. Only wi
8 Motif Programming Manual

Chapter 1: Motif Programming Model

ce to
complete understanding of these issues will you be able to determine the best interfa
use. And remember, an irate customer just might call you for help.
Motif Programming Manual 9

Chapter 1: Motif Programming Model
10 Motif Programming Manual

ello,
ms.
Chapter 1

In this chapter:
• Basic X Toolkit

Terminology and
Concepts

• The Xm and Xt
Libraries

• Programming With Xt
and Motif

• Summary

This chapter teaches the fun
World” program, showing the
Because much of this materia
Motif Programming Manual
2

for

to
efore

ics
a
iliar
any

this
reas.

ces
t or

the

use
I).
OSF)
The Motif
Programming Model

damentals of Motif by example. It dissects a simple “H
program structure and style common to all Motif progra
l is already covered in detail in Volume 4,X Toolkit Intrinsics

Programming Manual, this chapter can be used as a refresher or a light introduction
those who haven’t read the earlier book. It makes reference to Volume 1,Xlib
Programming Manual, and Volume 4 to point out areas that the programmer needs
understand (windows, widgets, events, callbacks, resources, translations) b
progressing with Motif.

Though we expect most readers of this book to be familiar with the X Toolkit Intrins
(Xt), this chapter briefly reviews the foundations of Motif in Xt. This review serves
variety of purposes. First, for completeness, we define our terms, so if you are unfam
with Xt, you will not be completely at sea if you forge ahead. Second, there are m
important aspects of the X Toolkit Intrinsics that we aren’t going to cover in this book;
review gives us a chance to direct you to other sources of information about these a
Third, Motif diverges from Xt in some important ways, and we point out these differen
up front. Finally, we point out some of the particular choices you can make when X
Motif provides more than one way to accomplish the same task.

If you are unfamiliar with any of the concepts introduced in this chapter, please read
first few chapters of Volume 4. Portions of Volume 1, and Volume 3,X Window System
User’s Guide, may also be appropriate.

Basic X Toolkit Terminology and
Concepts
As discussed in Chapter 1,Introduction to Motif, the Motif user-interface specification is
completely independent of how it is implemented. In other words, you do not have to
the X Window System to implement a Motif-style graphical user interface (GU
However, to enhance portability and robustness, the Open Software Foundation (
11

Chapter 2: Motif Programming Model

lkit

ser-
-
try or
ntrol

dget

ged
self

Motif
d and
lasses

face
ting

that
dgets
uld

class
bel

rom

from
reate,

es to
out
in the

otif
chose to implement the Motif GUI using X as the window system and the X Too
Intrinsics as the platform for the Application Programmer’s Interface (API).

Xt provides an object-oriented framework for creating reusable, configurable u
interface components calledwidgets. Motif provides widgets for such common user
interface elements as labels, buttons, menus, dialog boxes, scrollbars, and text-en
display areas. In addition, there are widgets called managers, whose only job is to co
the layout of other widgets, so the application doesn’t have to worry about details of wi
placement when the application is moved or resized.

A widget operates independently of the application, except through prearran
interactions. For example, a button widget knows how to draw itself, how to highlight it
when it is clicked on with the mouse, and how to respond to that mouse click.

The general behavior of a widget, such as a PushButton, is defined as part of the
library. Xt defines certain base classes of widgets, whose behavior can be inherite
augmented or modified by other widget classes (subclasses). The base widget c
provide a common foundation for all Xt-based widget sets. Awidget set, such as Motif’s
Xm library, defines a complete set of widget classes, sufficient for most user-inter
needs. Xt also supports mechanisms for creating new widgets or for modifying exis
ones.

Xt also supports lighter-weight objects calledgadgets, which for the most part look and act
just like widgets, but their behavior is actually provided by the manager widget
contains them. For example, a pulldown menu pane can be made up of button ga
rather than button widgets, with the menu pane doing much of the work that wo
normally be done by the button widgets.

Most widgets and gadgets inherit characteristics from objects above them in the
hierarchy. For example, the Motif PushButton class inherits the ability to display a la
from the Label widget class, which in turn inherits even more basic widget behavior f
its own superclasses. See Volume 4,X Toolkit Intrinsics Programming Manual, for a
complete discussion of Xt’s classing mechanisms; see Chapter 3,Overview of the
Motif Toolkit , for details about the Motif widget class hierarchy.

The object-oriented approach of Xt completely insulates the application programmer
the code inside of widgets. As a programmer, you only have access to functions that c
manage, and destroy widgets, plus certain public widget variables known asresources. As
a result, the internal implementation of a widget can change without requiring chang
the API. A further benefit of the object-oriented approach is that it forces you to think ab
an application in a more abstract and generalized fashion, which leads to fewer bugs
short run and to a better design in the long run.

Creating a widget is referred to as instantiating it. You ask the toolkit for aninstanceof a
particular widgetclass, which can be customized by setting its resources. All M
12 Motif Programming Manual

Chapter 2: Motif Programming Model

tton

you
e lot.
that
their

, and

t run-
and

rom
ice is

ntial to
es for
ore
the
he
with

er. In
rules

us

any
me of
Motif
isual
one

ust
ides
tes a
hen
es a

o an
th no
PushButton widgets have the ability to display a label; an instance of the PushBu
widget class actually has a label that can be set with a resource.

Creating widgets is a lot like buying a car: first you choose the model (class) of car
want, then you choose the options you want, and then you drive an actual car off th
There may exist many cars exactly like yours, others that are similar, and still others
are completely different. You can create widgets, destroy them, and even change
attributes just as you can buy, sell, or modify a car by painting it, adding a new stereo
so on.

Widgets are designed so that many of their resources can be modified by the user a
time. When an application is run, Xt automatically loads data from a number of system
user-specific files. The data from these files is used to build theresource database, which
is used to configure the widgets in the application. If you want to keep the user f
modifying resources, you can set their values when you create the widget. This pract
commonly referred to ashard-coding resources.

It is considered good practice to hard-code only those resource values that are esse
program operation and to leave the rest of the resources configurable. Default valu
configurable resources are typically specified in an application defaults file, which is m
colloquially referred to as the app-defaults file. By convention, this file is stored in
directory/usr/X11R6/lib/app-defaultsand it has the same name as the application with t
first letter capitalized.The app-defaults file is loaded into the resource database along
other files that may contain different values set by the system administrator or the us
the event of a conflict between different settings, a complex set of precedence
determines the value actually assigned to a resource. See Volume 4,X Toolkit Intrinsics
Programming Manual, for more information on how to set resources using the vario
resource files.

Motif widgets are prolific in their use of resources. For each widget class, there are m
resources that neither the application nor the user should ever need to change. So
these resources provide fine control over the three-dimensional appearance of
widgets; these resources should not be modified, since that would interfere with the v
consistency of Motif applications. Other resources are used internally by Motif to make
large, complex widget appear to the user in a variety of guises.

Thecallback resourcesfor a widget are a particularly important class of resources that m
be set in the application code. A widget that expects to interact with an application prov
a callback resource for each type of interaction it supports. An application associa
function with the callback resources in which it is interested; the function is invoked w
the user performs certain actions in the widget. For example, a PushButton provid
callback for when the user activates the button.

Note, however, that not every event that occurs in a widget results in a callback t
application function. Widgets are designed to handle many events themselves, wi
Motif Programming Manual 13

Chapter 2: Motif Programming Model

ple.
et
lled
,
ation

ever,
otif,

er.
and
nly

, we
arly
ns are
ons
or
er-

is a
ld be
ck
lback
d be

Xt
ides
s for
ents.

as a

ents
may
m, or

ssion
interaction from the application. All widgets know how to draw themselves, for exam
A widget may even provide application-like functionality. For example, a Text widg
typically provides a complete set of editing commands via internal widget functions ca
actions. Actions are mapped to events in atranslation table. This table can be augmented
selectively overridden, or completely replaced by settings contained in the implement
of a widget class, in application code, or in a user’s resource files.

In the basic Xt design, translations are intended to be configurable by the user. How
the purpose of Xt is to provide mechanism, not impose user-interface policy. In M
translations are typically not modified by either the user or the application programm
While it is possible for an application to install event handlers or new translations
actions for a widget, most Motif widgets expect application interaction to occur o
through callbacks.

Since the Motif widgets are designed to allow application interaction through callbacks
don’t discuss translations very often in this book. Some of the Motif widgets, particul
buttons when they are used in menus, have undefined behavior when their translatio
augmented or overridden. An experienced Xt programmer may feel that Motif’s limitati
on the configurability of translations violates Xt. But consider that Xt is a library f
building toolkits, not a toolkit itself. Motif has the further job of ensuring consistent us
interface behavior across applications.

Whether the goal of consistency is sufficient justification for OSF’s implementation
matter of judgement, but it should at least be taken into account. At any rate, you shou
aware of the limitations when configuring Motif widgets. Motif widgets provide callba
resources to support their expected behavior. If a widget does not have a cal
associated with an event to which you want your application to respond, you shoul
cautious about adding actions to the widget or modifying its translations.

The Xm and Xt Libraries
A Motif user interface is created using both the Motif Xm library and the Intrinsics’
library. Xt provides functions for creating and setting resources on widgets. Xm prov
the widgets themselves, plus an array of utility routines and convenience function
creating groups of widgets that are used collectively as single user-interface compon
For example, the Motif MenuBar is not implemented as one particular widget, but
collection of smaller widgets put together by a convenience function.

An application may also need to make calls to the Xlib layer to render graphics or get ev
from the window system. In the application itself, rather than in the user interface, you
also be expected to make lower-level system calls into the operating system, file syste
hardware-specific drivers. The application may also be making use of the X11R6 Se
Management (SM) and the X11R6 InterClient Exchange (ICE) facilities*. Thus, the whole
14 Motif Programming Manual

Chapter 2: Motif Programming Model

s the

ing
eeded.

the
of
ibuted
ayed

ry
gets
lib.
e to
size,

ay
ible

ow
e ex-
upple-
application may have calls to various libraries within the system. Figure 2-1 represent
model for interfacing to these libraries.

As illustrated above, the application itself may interact with all layers of the window
system, the operating system, and other libraries (math libraries, rpc, database) as n
On the other hand, the user-interface portion of the application should restrict itself to
Motif, Xt, and Xlib libraries whenever possible. This restriction aids in the portability
the user-interface across multiple computers and operating systems. Since X is a distr
windowing system, once the application runs on a particular computer, it can be displ
on any computer running X - even across a local or wide-area network.

In addition to restricting yourself to using the Motif, Xt, and Xlib libraries, you should t
to use the higher-level libraries whenever possible. Focus on using Motif-specific wid
and functions, rather than trying to implement equivalent functionality using Xt or X
Higher-level libraries hide a great number of details that you would otherwise hav
handle yourself. By following these guidelines, you can reduce code complexity and
creating applications that are easier to maintain.

In situations where the Motif library does not provide the functionality you need, you m
attempt to borrow widgets from other toolkits or write your own. This technique is poss

* SM and ICE are fully described in theProgrammer’s Supplement for Release 6 of the X Wind
System. We will conform to the X11R6 guidelines and use the SessionShell widget class throughout th
amples; othewise, Session Management will not form part of this manual, and you are referred to the S
ment for more details.

Xlib (X Window System)

Xt (X Toolkit Intrinsics)

Xm (Motif)

User Interface

Application

Other
Libraries ICE

SM

Operating System

Figure 2-1. User interface library model
Motif Programming Manual 15

Chapter 2: Motif Programming Model

most
ays
user

the
ther
rrors

mple
the

4,
and made relatively simple because Motif is based on Xt.* For example, an application
might make good use of a general-purpose graphing widget.

Whatever libraries you use, be sure to keep your application modular. The first and
important step in the development of an application is its design. You should alw
identify the parts of the application that are functional and the parts that make up the
interface. Well-designed applications keep the user-interface code separate from
functional code. You should be able to unplug the Motif code and replace it with ano
user-interface widget set based on Xt merely by writing corresponding code that mi
the Motif implementation.

Programming With Xt and Motif
The quickest way to understand the basic Motif programming model is to examine a si
application. Example 2-1 is a version of the classic “hello world” program that uses
Motif toolkit.†

Example 2-1. The hello.c program

/* hello.c -- initialize the toolkit using an application context
** and a toplevel shell widget, then create a pushbutton that says
** Hello using the varargs interface.
*/

#include <Xm/PushB.h>

main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;
void button_pushed(Widget, XtPointer, XtPointer);
XmString label;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Hello", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);

label = XmStringCreateLocalized ("Push here to say hello");
XtSetArg(args[0], XmNlabelString, label);
button = XmCreatePushButton (toplevel, "pushme", args, 1);
XmStringFree (label);
XtAddCallback (button, XmNactivateCallback, button_pushed, NULL);
XtManageChild (button);

* While this book discusses certain methods for extending the Motif library, you should refer to VolumeX
Toolkit Intrinsics Programming Manual, for a general discussion of how to build your own widgets.

† XtVaAppInitialize () is deprecated in X11R6. The SessionShell widget class, andXtVaOpenApplica-
tion () are only availble in X11R6.
16 Motif Programming Manual

Chapter 2: Motif Programming Model

a
a to

you

es for
a
s
You

es

if 2.1
is

not
ion
mple
es are
nges

ing

the
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void button_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

printf ("Hello Yourself!\n");
}

The output of the program is shown in Figure 2-2.

You can get the source code forhello.c and the rest of the examples in this book vi
anonymousftp or other methods that are described in the Preface. It is a good ide
compile and run each example as it is presented.

The example programs come with Imakefiles that should make building them easy if
have theimakeprogram. This program should already be in/usr/X11R6/binon UNIX-
based systems that have X11 Release 6 installed. You also need the configuration fil
imake; they are in/usr/X11R6/lib/configon most UNIX-based systems. An Imakefile is
system-independent makefile that is used byimaketo generate a Makefile. This process i
necessary because it is impossible to write a Makefile that works on all systems.
invokeimakeusing thexmkmfprogram. Complete instructions for compiling the exampl
usingimake are provided in theREADME file included with the source code.

As explained in the Preface, there are versions of the example programs for both Mot
and Motif 1.2 available electronically. However, all of the example code in this book
designed to work with Motif 2.1 (and X11R6); the programs use functions that are
available in Motif 1.2 (and X11R5). Where we use Motif 2.1 functions, we try to ment
how to perform the same tasks using Motif 1.2, usually in a footnote. To use the exa
programs with Motif 1.2, make the changes we describe. When the necessary chang
significant, we may explain both versions of the program. For a description of the cha
that we made to convert the example programs to Motif 2.1, seeChanges in Motif 2.1, in
Chapter 3.

To compile any of the examples on a UNIX system without using imake, use the follow
command line:

cc -O -o filename filename .c -lXm -lXt -lX11

If you want to do debugging, replace -O with -g in this command line. The order of
libraries is important. Xm relies on Xt, and both Xm and Xt rely on Xlib (the-lX11 link
flag specifies Xlib).

Figure 2-2: Output of the hello program
Motif Programming Manual 17

Chapter 2: Motif Programming Model

g Xt

at it

r the

h
(e.g.
ctly

ents

rom
in the
lume

ing a

s, we
idgets.

t

s you
t
out
r file.
the
Now let’s take a look at this program step by step, noting elements of the underlyin
model and where Motif differs from it.

Header Files
An application that uses the Motif toolkit must include a header file for each widget th
uses. For example,hello.cuses a PushButton widget, so we include <Xm/PushB.h>.The
appropriate header file for each Motif widget class is included on the reference page fo
widget in Volume 6B,Motif Reference Manual.

If you simply browse through/usr/Motif2.1/include/Xm(or wherever you have installed
your Motif distribution) trying to find the appropriate header file, you will find that eac
widget class actually has two header files. The one with the name ending in a “P”
PushBP.h) is the widget’s private header file and should not normally be included dire
by an application. Private header files are generally used only by the code that implem
a widget class and its subclasses.

Xt uses public and private header files to hide the details of widget implementation f
applications. This technique provides object-oriented encapsulation and data hiding
C language, which is not designed to support object-oriented programming. (See Vo
4, X Toolkit Intrinsics Programming Manual, for additional information on the object-
oriented design of widgets.)

For some types of objects, you may see another pair of header files, each contain
capital “G” at the end of their names (for example,PushBG.handPushBGP.h). These files
are for the gadget version of the object. For the most part, when we talk about widget
include gadgets. Later chapters make it clear when to use gadgets and when to use w

A quick examination of the#include directives in each of the Motif widget or gadge
header files reveals that each of them includes <Xm/Xm.h>, the general header file for the
Motif library. <Xm/Xm.h> in turn includes the following files:

#include <X11/Intrinsic.h>
#include <X11/Shell.h>
#include <X11/Xatom.h>
#include <Xm/XmStrDefs.h>
#include <Xm/VirtKeys.h>

Therefore, none of these files ever need to be included by your application, as long a
include <Xm/Xm.h>. Since <Xm/Xm.h> is included by each widget header file, you do no
need to include it directly either. If you look closely at the code, you’ll see that just ab
every necessary header file is included the moment you include your widget heade
This method of using header files contrasts with the way other Xt-based toolkits, like
Athena toolkit or the OPEN LOOK Intrinsics Toolkit (OLIT), use header files.

The Motif toolkit provides a new header file, <Xm/XmAll.h>, that simply includes all of the
public header files.
18 Motif Programming Manual

Chapter 2: Motif Programming Model

hat if
n see
ting
ions,

les

pper

next
d, the
w file.

be
ions,

ific

ions
n the
first,
er

ort
alled
hout
the
dates,
We recommend that you not duplicate the inclusion of header files. One reason is t
you include only the header files that you need, whoever has to maintain your code ca
which widgets you are dealing with in your source files. Another reason is that duplica
header file is generally bad practice, as you run the risk of redeclaring macros, funct
and variables.

However, it isn’t always easy to prevent multiple inclusions. For example, <Xm/Xm.h> is
included by each widget header file that you include. All of the Motif, Xt and X header fi
are protected from multiple inclusion using a technique calledifdef-wrapping. We
recommend that you use this method in your own header files as well. The ifdef-wra
for <X11/Intrinsic.h> is written as follows:

#ifndef _XtIntrinsic_h
#define _XtIntrinsic_h
/* Include whatever is necessary for the file... */
#endif /* _XtIntrinsic_h */

The wrapper defines_XtIntrinsic_h when a file is first included. If the file is ever
included again during the course of compiling the same source (.c) file, the #ifdef
prevents anything from being redeclared or redefined.

Of course, the wrapper prevents multiple inclusion only within a single source file; the
source file that gets compiled goes through the same test. If the same files are include
same macros, data types, and functions are declared again for the benefit of the ne
For this reason, you should never write functions in a header file, since it would
equivalent to having the same function exist in every source file. Function declarat
however, are acceptable and expected.

In addition to the widget header files, you will most likely need other include files spec
to your application, such as <stdio.h> or <ctype.h>.

The order of inclusion is generally not important unless certain types or declarat
required by one file are declared in another. In this case, you should include the files i
necessary order. Otherwise, application-specific header files are usually included
followed by UI-specific header files (with Xt header files, if any, preceding Motif head
files), followed by system-specific header files.

Setting the Language Procedure
For Release 5 of the X Window System, the X Toolkit was modified to better supp
internationalization. An internationalized application retrieves the user’s language (c
a locale) from the environment or a resource file and operates in that language wit
changes to the binary. An internationalized application must display all of its text in
user’s language and accept textual input in that same language. It must also display
times, and numbers in the appropriate format for the language environment.
Motif Programming Manual 19

Chapter 2: Motif Programming Model

h is
a
t the
ation
f

X

de

cond
itional
cedure

t
guage

ment
rrent
ume

and
Motif
and

any
h as
X internationalization is based on the ANSI-C internationalization model. This approac
based on the concept oflocalization, whereby an application uses a library that reads
customizing database at start-up time. This database contains information abou
characteristics of every locale that is supported by the system. When an applic
establishes its locale by callingsetlocale() , the library customizes the behavior o
various routines based on the locale. See the Third Edition of Volume 1,Xlib Programming
Manual, for a complete description of the concepts and implementation of
internationalization.

Xt support of internationalization is trivial in most applications; the only additional co
needed is a call toXtSetLanguageProc() before the toolkit is initialized.
XtSetLanguageProc() sets thelanguage procedurethat is used to set the locale of an
application. The first argument to the routine specifies an application context, the se
argument specifies the language procedure, and the third parameter specifies add
data that is passed to the language procedure when it is called. Since the language pro
is responsible for setting the locale, an Xt application does not callsetlocale() directly.
The language procedure is called byXtDisplayInitialize() .

If the second argument toXtSetLanguageProc() is NULL, the routine registers a defaul
language procedure. Here’s the call that we used in Example 2-1 to set the default lan
procedure:

XtSetLanguageProc (NULL, NULL, NULL);

The default language procedure sets the locale according to the LANG environ
variable, verifies that the current locale is supported, and returns the value of the cu
locale. For more information about establishing the locale in an Xt application, see Vol
4, X Toolkit Intrinsics Programming Manual.

Most of the support for internationalization in Motif is provided by Xlib and Xt. Xlib
provides support for internationalized text output, interclient communication,
localization of the resource database, while Xt handles establishing the locale. The
Text and TextField widgets have been modified to support internationalized text input
output; see Chapter 18,Text Widget Internationalization, for more information. The Motif
routines that work with compound strings and render tables* have also been updated in
Motif 2.1. See Chapter 24,Render Tables, and Chapter 25,Compound Strings, for details
on the new API forXmString andXmRenderTable values.

Initializing the Toolkit
Before an application creates any widgets, it must initialize the toolkit. There are m
ways to perform this task, most of which also perform a number of related tasks, suc

* The XmFontList is obsolete in Motif 2.0 and later, and is replaced by theXmRenderTable .
20 Motif Programming Manual

Chapter 2: Motif Programming Model

list of

any

user,

tion
the

use

ction
top

gets
more

t,
th an
ost
olkit
uire
than
ort

ater
opening a connection to the X server and loading the resource database. Here’s a
some of the things that are almost always done:

• Open the application’s connection to the X server.

• Parse the command line for the standard X Toolkit command-line options plus
custom command-line options that have been defined for the application.

• Create the resource database using the app-defaults file, if any, as well as any
host, and locale-specific resource files.

• Create the application’s top-level window, a Shell class widget that handles interac
with the window manager and acts as the parent of all of the other widgets in
application.

There are several functions available to perform toolkit initialization. The one we
throughout isXtVaOpenApplication() * , since it performs all of the functions listed
above in one convenient call. Here’s the call we used in Example 2-1:

Widget toplevel;
XtAppContext app;

toplevel = XtVaOpenApplication (&app, "Hello", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

The widget returned byXtVaOpenApplication() is a shell widget. The shell widget
acts as the top-level window of the application and handles the application’s intera
with the window manager. The SessionShell widget class which we will use for the
level also interacts with the X11R6 Session Management facilities. All of the other wid
created by the application are created as descendents of the shell, of which we’ll talk
later in this chapter.

The Application Context

The first argument toXtVaOpenApplication() is the address of an application contex
which is a structure that Xt uses to manage some internal data associated wi
application. Most applications do not manipulate the application context directly. M
often, an application receives an opaque pointer to an application context in the to
initialization call and merely passes that pointer to a few other toolkit functions that req
it as an argument. The fact that the application context is a public variable, rather
hidden in the toolkit internals, is a forward-looking feature of Xt, designed to supp
multiple threads of control.

The X11R5 initialization callXtVaAppInitialize() is still supported by later versions
of the toolkit. Its use is discouraged because the new initialization calls provide a gre
degree of upward compatibility with future Xt-based applications.

* XtVaAppInitialize () is considered deprecated in X11R6.XtVaOpenApplication () and the SessionShell
widget class are only availble in X11R6.
Motif Programming Manual 21

Chapter 2: Motif Programming Model

lues
3,

name
ts file.

ault)
ined
used

pt that

ly be

le, all

have
tions.

d-line
hese

4,
-

any
any

want
rious

and
The Application Class

The second argument toXtVaOpenApplication() is a string that defines theclass
nameof the application. A class name is used in resource files to specify resource va
that apply to all instances of an application, a widget, or a resource. (See VolumeX
Window System User’s Guide, and Volume 4,X Toolkit Intrinsics Programming Manual,
for details.) For many applications, the application class is rarely used and the class
is important only because it is also used as the name of the application’s app-defaul

Whenever a widget is created in Xt, its resources must have certain initial (or def
values. You can either hard-code the values, allow them to default to widget-def
values, or specify the default values in the app-defaults file. These default values are
unless the user has provided his own default settings in another resource file.

By convention, the class name is the same as the name of the application itself, exce
the first letter is capitalized.* For example, a program nameddrawwould have a class name
of Draw and an app-defaults filename of/usr/X11R6/lib/app-defaults/Draw. Note,
however, that there is no requirement that an app-defaults file with this name actual
installed.

Exceptions can be made to this convention, as long as you document it. For examp
the example programs in this book have the class name ofDemos, which allows us to set
certain common defaults in a single file. This technique can be useful whenever you
a large collection of independent programs that are part of the same suite of applica

Command-line Arguments

The third and fourth arguments specify an array of objects that describe the comman
arguments for your program, if any, and the number of arguments in the array. T
arguments are unused in most of the examples in this book and are specified asNULLand
0, respectively. The programxshowbitmap.cin the Appendix A,Additional Example
Programs, provides an example of using command-line arguments. See VolumeX
Toolkit Intrinsics Programming Manual, for a more complete discussion of application
specific command-line arguments.

The fifth and sixth arguments contain the value (argv) and count (argc) of any actual
command-line arguments. The initialization call actually removes and acts on
arguments it recognizes, such as the standard X Toolkit command-line options and
options that you have defined in the third argument. After this call,argv should contain
only the application name and any expected arguments such as filenames. You may
to check the argument count at this point and issue an error message if any spu
arguments are found.

* Some applications follow the convention that if the application’s name begins with an “X”, the X is silent
so the second letter is capitalized as well. For example, the class name ofxterm is XTerm.
22 Motif Programming Manual

Chapter 2: Motif Programming Model

and
They
hen

the
y an

ey do
e not
uld

ction
or

It is

e
er to

re

e for
Fallback Resources

The seventh argument is the start of aNULL-terminated list offallback resourcesfor the
shell widget created by the initialization call. Fallback resources provide a kind of “belt
suspenders” protection against the possibility that an app-defaults file is not installed.
are ignored if the app-defaults file or any other explicit resource settings are found. W
no fallback resources are specified, the seventh argument should beNULL.

It is generally a good idea to provide fallbacks for resources that are essential to
operation of your application. An example of how fallback resources can be used b
application is shown in the following code fragment:

String fallbacks[] =
{

"Demos*background: white",
"Demos*XmText.foreground: black",
/* list the rest of the app-defaults resources here... */
NULL

};
...
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, fallbacks,

sessionShellWidgetClass, NULL); *

...

Fallback resources protect your application against a missing app-defaults file, but th
not guard against one that is modified incorrectly or otherwise corrupted, since they ar
used if the app-defaults file is present in any form. A better fallback mechanism wo
provide protection against these types of problems. Fortunately, there is the fun
XrmCombineDatabases() , that allows you to provide real fallbacks in case the user
the system administrator misconfigures the app-defaults file.

The Top Level Shell Class

The eighth parameter specifies the type of shell to be used for the top level.
recommended that this is thesessionShellWidgetclass , which is derived from the
applicationShellWidgetClass †. We are not actually using any of the features of th
X11R6 SessionShell in the examples, however we will use the SessionShell in ord
conform to the recommendations.

Additional Initialization Parameters

The ninth parameter is the start of aNULL-terminated list of resource/value pairs that a
applied to the top-level widget returned byXtVaOpenApplication() . If there are no
resource settings, which is often the case for this function, you can passNULLas the ninth
parameter. If you do pass any parameters, it should be done just as we describ

* XtVaAppInitialize () is deprecated in X11R6.

† The ApplicationShell is considered obsolete in X11R6. The SessionShell is only availble in X11R6.
Motif Programming Manual 23

Chapter 2: Motif Programming Model

ith

bug
ilers
iler-
rror,

iadic
t
,

using

e/

ed by
tion
se
r
e

a
t

ibed
t
dget

while
also

more

root
p-
its
XtVaCreateWidget() later in this chapter. All of the functions whose names begin w
XtVa support the same type of varargs-style (variadic) argument lists.

The X11 Release 6 implementation ofXtVaOpenApplication() and other varargs
functions may not work entirely as expected for some non-ANSI-C compilers due to a
in the way that Xt declares variadic functions. This problem only arises for some comp
that do not understand function prototypes. The problem is rare since it is comp
dependent and it only happens on older compilers. It is not a compiler error but an Xt e
since functions are not supposed to mix fixed parameter declarations with var
declarations.XtVaOpenApplication() mixes these declarations; the first eigh
parameters are fixed while the ninth throughnth arguments are variadic. ANSI-C allows
and even requires, this type of specification.

If you experience problems such as segmentation faults or bus errors as a result of
XtVaOpenApplication() , you can try passing an extraNULLparameter after the final
NULL. Another option is to useXtOpenApplication() , which is identical to
XtVaOpenApplication() , but does not contain a variable argument list of resourc
values pairs. Instead, it uses the non-variadicargs andnum_args method of specifying
resource values, which we describe later in this chapter.

Creating Widgets
There is a convenience function for creating every class of widget and gadget support
the Motif toolkit. For example, to create a PushButton widget, you can use the func
XmCreatePushButton() . To create the corresponding gadget, you can u
XmCreatePushButtonGadget() . In addition, there are convenience functions fo
creatingcompound objects. A compound object is a collection of widgets that is treated lik
a single object. For example, a ScrolledList object is really a List widget inside
ScrolledWindow widget.XmCreateScrolledList() creates the compound objec
consisting of both widgets.

The convenience functions for creating all of the different types of widgets are descr
in Volume 6B,Motif Reference Manual.In addition to the convenience routines, the X
Intrinsics also define generic routines which can be used to create arbitrary wi
instances, namelyXtVaCreateWidget() andXtVaCreateManagedWidget() . These
functions allow you to decide whether to create a widget as managed or unmanaged,
the Motif convenience functions always create unmanaged widgets. The Xt routines
allow you to set resources for a widget using the varargs interface, which can often be
convenient than theargs andnum_args method used by the Motif creation routines.

X nests windows using a parent-child model. A display screen is defined as the
window; every application has a top-level window that is a child of the root window. A to
level window in turn has subwindows, which overlay it but cannot extend beyond
boundaries. If a window extends beyond the boundaries of its parent, it is clipped.
24 Motif Programming Manual

Chapter 2: Motif Programming Model

del.
idget

For
t in
o be
other
r-
t that
own

ple
hells
itself
’s the

t has
l, the

ource
e can

t in

idget
two

ure to

mber
ext
Because every widget has its own X window, widgets follow a similar parent-child mo
Whenever a widget is created, it is created as the child of another widget. The shell w
returned by the call toXtVaOpenApplication() is the top-level widget of an
application. It is usually overlaid with a special class of widget called amanager widget,
which implements rules for controlling the size and placement of widget children.
example, the Motif RowColumn widget is a manager that allows widgets to be laid ou
regular rows and columns, while the Form widget is a manager that allows widgets t
placed at precise positions relative to one another. A manager widget can contain
manager widgets as well asprimitive widgets, which are used to implement actual use
interface controls. Managers also support gadgets. A gadget is a lighter-weight objec
is identical to its corresponding widget in general functionality, but does not have its
window.

In Example 2-1,the button was created as a child of the top-level shell window.This sim
application contains only one visible widget, so it does not use a manager. Actually, s
are extremely simple managers. A shell can only have one child; the shell makes
exactly the same size as the child so the shell remains invisible behind the child. Here
call we used to create the button:

button = XmCreatePushButton (toplevel, "pushme", args, 1);

The first argument is the parent of the widget, which must be a manager widget tha
already been created. In this example, the parent of the PushButton widget is topleve
shell widget returned by the call toXtVaOpenApplication ().

The second argument is a string that is used as the name of the widget in the res
database. If a user wants to specify the color of the button label for the application, sh
use the following specification in a resource file:

hello.pushme.foreground: blue

The name is different from the variable name that is used to refer to the widge
application code. The following resource specification is not correct:

hello.button.foreground: blue

The resource name does not need to be identical to the variable name given to the w
inside the program, though to minimize confusion, many programmers make the
names the same. If you want users to be able to configure widget resources, be s
include the names of the widgets in your documentation.

The remainder of the argument list is an array of resource settings, followed by the nu
of items in this array. We’ll talk about the format of these resource settings in the n
section.
Motif Programming Manual 25

Chapter 2: Motif Programming Model

sses.
) are

Motif

e name
ith

-
e

ides
s

e C

e
t or

other
ed

ou
t, the
as a

eation
e

ess
Setting and Getting Widget Resources
A widget class defines resources of its own and it inherits resources from its supercla
The names of the resources provided by each widget class (new and inherited
documented in the widget reference pages in Volume 6B,Motif Reference Manual. The
most useful resources are described in detail in the individual chapters on each of the
widget classes.

When resources are set in a program, each resource name begins with the prefixXmN. These
names are mnemonic constants that correspond to actual C strings that have the sam
without the XmN prefix. For example, the actual resource name associated w
XmNlabelString is labelString . The XmNidentifies the resource as being Motif
related. Motif also uses theXmC prefix to identify resource class symbols. Xt uses th
prefix XtN for any resources defined by its base widget classes. Motif also prov
correspondingXmNnames for most of these resources.* When you are specifying resource
in a resource file or when you are using the-xrm option to specify resources on the
command line, omit theXmN prefix.

The main purpose of the constant definitions for resource names is to allow th
preprocessor to catch spelling errors. If you use the stringwidth rather than the constant
XmNwidth , the program still works. However, if you typewiddth , the compiler happily
compiles the application, but your program won’t work and you’ll have a difficult tim
trying to figure out why. Because resource names are strings, there is no way for X
Motif to report an error when an unknown resource name is encountered. On the
hand, if you useXmNwiddth , then the compiler complains that the token is an undefin
variable.

Setting Resources During Widget Creation

The Motif convenience functions, as well as the Xt functionsXtCreateWidget() and
XtCreateManagedWidget() , require you to declare resource settings in an array. Y
pass this array to the function, along with the number of items in the array. By contras
varargs-style functions in Xt allow you to specify resources directly in a creation call,
NULL-terminated list of resource/value pairs.

As an example, in the call toXmCreatePushButton() in hello.c, the only resource set
was the string displayed as the PushButton’s label, and this was passed to the cr
routine in the Arg arrayargs. Alternatively, a variable length list of resources could hav
been set in the same call using the Xt mechanisms, as shown in the following code:

button = XtVaCreateWidget ("pushme", xmPushButtonWidgetClass,toplevel,
XmNlabelString, label, XmNwidth, 200, XmNheight, 50, NULL);

* Some toolkits use theXtN prefix, even though its resource are not common to all Xt toolkits. If you need acc
to an Xt-based resource that does not have a correspondingXmNconstant, you need to include the file <X11/
StringDefs.h>.
26 Motif Programming Manual

Chapter 2: Motif Programming Model

n its

ger be
we’ve

lutely
rces.
app-

urce.
value
ram,

utton

were

urce

nd the
s the
ectly
the

e.

mbols

n call
These settings specify that the widget is 200 pixels wide by 50 pixels high, rather tha
default size, which would be just big enough to display its label.

When you set resources in the creation call for the widget, those resources can no lon
configured by the user. Such resources are said to be hard-coded. For example, since
set the width and height of the PushButton in the call toXtVaCreateManagedWidget() ,
a user resource specification of the following form is ignored:

*pushme.width: 250
*pushme.height: 100

It is recommended that you hard-code only those resource values that are abso
required by your program. Most widgets have reasonable default values for their resou
If you need to modify the default values, specify the necessary resource values in an
defaults file, instead of in the application code.

Every resource has a data type that is specified by the widget class defining the reso
When a resource is specified in a resource file, Xt automatically converts the resource
from a string to the appropriate type. However, when you set a resource in your prog
you must specify the value as the appropriate type. For example, the Motif PushB
widget expects its label to be a compound string (see Chapter 25,Compound Strings), so
we create a compound string, use it to specify the resource value, and free it when we
done.

Rather than specifying a value of the appropriate type, you can invoke Xt’s reso
converters in a varargs list using the keywordXtVaTypedArg , followed by four additional
parameters: the resource name, the type of value you are providing, the value itself, a
size of the value in bytes. Xt figures out the type of value that is needed and perform
necessary conversion. For example, to specify the background color of the button dir
in our program without calling an Xlib routine to allocate a colormap entry, we can use
following code:

button = XtVaCreateManagedWidget ("pushme", xmPushButtonWidgetClass, toplevel,
XmNlabelString, label,XtVaTypedArg, XmNbackground, XmRString,
"red", strlen ("red") + 1, NULL);

The data type in this construct is specified using a special symbol called arepresentation
type, rather than the C type. AnXmRprefix identifies the symbol as a representation typ
See Volume 4,X Toolkit Intrinsics Programming Manual, for more information on
resource type conversion and the possible values for representation types. These sy
are defined in the same way as theXmNsymbols that are used for resource names.

Setting Resources After Widget Creation

After a widget has been created, you can set resources for it usingXtVaSetValues() . The
values set by this function override any values that are set either in the widget creatio
or in a resource file. The syntax for usingXtVaSetValues() is:
Motif Programming Manual 27

Chapter 2: Motif Programming Model

rces.

nce
have

ample,

se

you
s of a

, the
way

rom a
rieved
d, the
XtVaSetValues (widget_id, resource-value-list , NULL);

Thewidget_id is the value returned from a widget creation call, andresource-value-
list is aNULL-terminated list of resource/value pairs.

Some Motif widget classes also provide convenience routines for setting certain resou
For example, XmToggleButtonSetState() sets the XmNset resource of a
ToggleButton. The available convenience functions are described in Volume 6B,Motif
Reference Manual, and in the chapters on each widget class in this book. A convenie
function has direct access to the internal fields in a widget’s data structures, so it might
slightly better performance thanXtVaSetValues() . Functionally, however, the two
methods are generally freely interchangeable.

Getting Resource Values

The routine used to get widget resource values isXtVaGetValues(). The syntax of this
routine is exactly the same asXtVaSetValues() , except that the value part of the
resource/value pair is the address of a variable that stores the resource value. For ex
the following code gets the label string and the width for a Label widget:

extern Widget label;
XmString str;
Dimension width;
...
XtVaGetValues (label, XmNlabelString, &str, XmNwidth, &width, NULL);

Notice that the value forXmNlabelString is anXmString , which is a Motif compound
string. Almost all of the Motif widget resources that specify textual information u
compound strings rather than regular character strings. TheXmNvalue andXmNvalueWcs
resources for Text and TextField widgets are the only exceptions to this policy. When
are retrieving a string resource from a widget, make sure that you pass the addres
compound string, not a character string, as in the following incorrect example:

extern Widget label;
char *buf;
Dimension width;
...
XtVaGetValues (label, XmNlabelString, &buf, /* do not do this */ XmNwidth,

&width, NULL);

If you try to get a compound string resource value with a character string variable
program still works, but the value of the character string is meaningless. The correct
to handle a compound string resource is to retrieve it with anXmString variable and then
get the character string from the compound string usingXmStringUnparse() . See
Chapter 25,Compound Strings, for more information.

There are some things to be careful about when you are getting resource values f
widget. First, always pass the address of the variable that is being used to store the ret
value. A value represented by a pointer is not copied into the address space. Instea
28 Motif Programming Manual

Chapter 2: Motif Programming Model

iable
y, the

d

by
ged
or the
nt to
alue,
ed to
use

dget

cular
etting
. For
a

, we

red
he

otif

get
ourth

onger
he text
routine sets the value for the address of the pointer to the position of the internal var
that contains the desired value. If you pass an array, rather than a pointer to the arra
routine cannot move its address. If you pass the address of a pointer,XtVaGetValues()
is able to reset the pointer to the correct internal value.* For values that are not represente
by pointers, such as integers, the value is simply copied. For example, thewidth value is
an int , so the resource value is copied into the variable.

You should also be careful about changing the value of a variable returned
XtVaGetValues() . In the case of a variable that is not a pointer, the value can be chan
because the variable contains a copy of the value and does not point to internal data f
widget. However, if the variable is a pointer to a string or a data structure, it does poi
internal data for the widget. If you dereference the pointer and change the resulting v
you are changing the internal contents of the widget. This technique should not be us
change the value of a resource. To modify a resource value, you should
XtVaSetValues() with a defined resource name, as this routine ensures that the wi
redraws and manages itself appropriately.

Motif also provides convenience routines for getting certain resource values from parti
widget classes. Most of these functions correspond to the convenience routines for s
resource values. Many of the functions allocate memory for the value that is returned
example,XmTextGetString() allocates space for and returns a pointer to the text in
Text widget. When a convenience function for retrieving a resource value is available
generally recommend using it.

Using Argument Lists

The Motif convenience functions, and some Xt functions likeXtCreateWidget() and
XtCreateManagedWidget() , require you to set resources using a separately-decla
array of objects of typeArg . You pass this array to the appropriate function along with t
number of items in the array.

For example, the following code fragment creates a Label widget using a M
convenience routine:

Arg args[2];
int n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
label = XmCreateLabel (toplevel, "label", args, n);
XtManageChild (label);

For all of the Motif convenience routines, the first argument is the parent of the wid
being created, the second argument is the widget’s name, and the third and f

* The Motif toolkit sometimes sets the given address to allocated data, which must be freed when it is no l
needed. This situation occurs when a compound string resource is retrieved from a widget and when t
value of a Text widget is retrieved. These cases are discussed in Chapter 18,Text Widgets, and Chapter 25,
Compound Strings.
Motif Programming Manual 29

Chapter 2: Motif Programming Model

array.
ience

ple,

ment
e of

the
eters

ance
o a
nly

ce it
t has
of the
tation

where
listic
ranges

nding
hose
arguments are the array of resource specifications and the number of resources in the
Since the class of the widget being created is reflected in the name of the conven
function, it does not need to be specified as an argument to the routine. For exam
XmCreateLabel() creates a Label widget, whileXmCreatePushButton() creates a
PushButton widget.

Xt also provides some generic widget creation functions that use the non-variadic argu
lists for specifying widget resources. The following code fragment shows the us
XtCreateWidget() :

Arg args[5];
int n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
label = XtCreateWidget ("label", xmLabelWidgetClass, toplevel, args, n);
XtManageChild (label);

With this routine, the name of the widget is the first parameter, the widget class is
second parameter, and the parent is the third parameter. The fourth and fifth param
specify the resources, as in the Motif convenience routines. Functionally, in this inst
the two methods of widget creation are logically identical, and it simply boils down t
question of personal taste. In examples, we will prefer the Motif creation routines, if o
because this is a Motif and not an Xt manual.

The argument-list style of setting resources is a touch clumsy and error-prone, sin
requires you to declare an array (either locally or statically) and to make sure that i
enough elements. It is a common programming mistake to forget to increase the size
array when new resource/value pairs are added; this error usually results in a segmen
fault.

In spite of the disadvantages of this method of setting resources, there are still cases
the convenience routines are logically preferred (as opposed to purely sty
considerations). One such case is when the routine creates several widgets and ar
them in a predefined way consistent with theMotif Style Guide. The argument-list style
functions also can be useful when you have different resources that should be set depe
on run-time constraints. For example, the following code fragment creates a widget w
foreground color is set only if the application knows it is using a color display:

extern Widget parent;
Arg args[5];
Pixel red;
int n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
if (using_color) {

XtSetArg (args[n], XmNforeground, red); n++;
}
...
widget = XmCreatePushButton (parent, "name", args, n);
30 Motif Programming Manual

Chapter 2: Motif Programming Model

more
ong as
side
r of

each
be

ich in
ne
name
ource

the

nt
This
nt to

nt to
The non-variadic routines also allow you to pass the exact same set of resources to
than one widget. Since the contents are unchanged, you can reuse the array for as l
it is still available. Be careful of scoping problems, such as using a local variable out
of the function where it is declared. The following code fragment creates a numbe
widgets that all have the same hard-coded resources:

static char *labels[] = { "A Label", "Another Label", "Yet a third" };
XmString label;
Widget widget, rc;
Arg args[3];
int i, n = 0;

/* Create an unmanaged RowColumn widget parent */
rc = XmCreateRowColumn (parent, "rc", NULL, 0);

/* Create RowColumn's children -- all 50x50 with different labels */
XtSetArg (args[n], XmNwidth, 50); n++;
XtSetArg (args[n], XmNheight, 50); n++;

for (i = 0; i < XtNumber (labels); i++) {
xm_label = XmStringCreateLocalized (labels[i]);
XtSetArg (args[n], XmNlabelString, xm_label);
widget = XmCreateLabel (rc, "label", args, n + 1);
XtManageChild (widget);
XmStringFree (xm_label);

}
/* Now that all the children are created, manage RowColumn */
XtManageChild (rc);

Each Label widget is created with the same width and height resource settings, while
XmNlabelString resource is distinct. All other resource settings for the widgets can
set in a resource file.

To set resources in a resource file, you need to specify the names of the widgets, wh
this case are all set tolabel. It is perfectly legal to give the same name to more than o
widget. As a result, a resource specification in a resource file that uses a particular
affects all of the widgets with that name, provided that the widget tree matches the res
specification. For example, you could set the foreground color of all of the Labels using
following resource specification:

*rc.label.foreground: red

Other widgets in the application that have the widget namelabel, but are not children of the
widget namedrc, are not affected by this specification. Obviously, whether you really wa
to use the same name for a number of widgets is dependent on your application.
technique makes it easier to maintain a consistent interface, but it also limits the exte
which the application can be customized.

We could have used the elements of thelabels array as widget names, but in this
example, these strings contain spaces, which are “illegal” widget names. If you wa
Motif Programming Manual 31

Chapter 2: Motif Programming Model

r other

name

the

rdless
r the

oked
ack

In one
ts can
n the
ilable

the

are
nts.
ou,

lves,
is
d by

the
to

. This
e of
each

ts
and
when
hile
allow the user to specify resources on a per-widget basis, you cannot use spaces o
non-alphanumeric characters, except the hyphen (-) and the underscore(_), in widget
names. If per-widget resource specification is not a concern, you can use any widget
you like, includingNULL or the null string ("").

Even if a widget has an illegal name, the user can still specify resources for it using
widget class, as in the following example:

*rc.XmLabel.foreground: red

This resource setting causes each Label widget to have a foreground color of red, rega
of the name of the widget (and provided that the resource value is not hard-coded fo
widget). See Volume 4,X Toolkit Intrinsics Programming Manual, for a discussion of
appropriate widget names and further details on resource specification syntax.

Event Handling for Widgets
Once we have created and configured the widgets for an application, they must be ho
up to application functions via callback resources. Before we can talk about callb
resources and callback functions, we need to discuss events and event handling.
sense, the essence of X programming is the handling of asynchronous events. Even
occur in any order, in any window, as the user moves the pointer, switches betwee
mouse and the keyboard, moves and resizes windows, and invokes functions ava
through user interface components. X handles events by dispatching them to
appropriate application and to the separate windows that make up each application.

Xlib provides many low-level functions for handling events. In special cases, which
described later in this book, you may need to dip down to this level to handle eve
However, Xt simplifies event handling by having widgets handle many events for y
without any application interaction. For example, widgets know how to redraw themse
so they respond automatically toExpose events, which are generated when one window
covered up by another and then uncovered. These “widget survival skills” are handle
functions calledmethodsdeep in the widget internals. Some typical methods redraw
widget, respond to changes in resource settings that result from calls
XtVaSetValues() , and free any allocated storage when the widget is destroyed.

The functionality of a widget also encompasses its behavior in response to user events
type of functionality is typically handled by action routines. Each widget defines a tabl
events, called a translation table, to which it responds. The translation table maps
event, or sequence of events, to one or more actions.

Consider the PushButton inhello.c. Run the program and note how the widget highligh
its border as the pointer moves into it, displays in reverse-video when you click on it,
switches back when you release the button. Watch how the highlighting disappears
you move the pointer out of the widget. Also, notice how pressing the SPACEBAR w
32 Motif Programming Manual

Chapter 2: Motif Programming Model

e the

ction
utine
the

utton,
tton
sed,
e

tion,
o

re X

ent

ommon

. An
ouse
as
the pointer is in the widget has the same effect as clicking on it. These behaviors ar
kinds of things that are captured in the widget’s translation table:

<Btn1Down>: Arm()
<Btn1Down>, <Btn1Up>: Activate() Disarm()
<Btn1Down>(2+): MultiArm()
<Btn1Up>(2+): MultiActivate()
<Btn1Up>: Activate() Disarm()
<Btn2Down>: ProcessDrag()
<Key>osfSelect: ArmAndActivate()
<Key>osfActivate: PrimitiveParentActivate()
<Key>osfCancel: PrimitiveParentCancel()
<Key>osfHelp: Help()
~Shift ~Meta ~Alt <Key>Return: PrimitiveParentActivate()
~Shift ~Meta ~Alt <Key>space: ArmAndActivate()
<EnterWindow>: Enter()
<LeaveWindow>: Leave()

The translation table contains a list of event translations on the left side, with a set of a
functions on the right side. When an event specified on the left occurs, the action ro
on the right is invoked. As we just described, moving the pointer in and out of
PushButton causes some visual feedback. TheEnterWindow andLeaveWindow events
generated by the pointer motion cause theEnter() andLeave() actions to be invoked.

As another example, when the first mouse button is pressed down inside the PushB
theArm() action routine is called. This routine contains the code that displays the bu
as if it were “pushed in,” as opposed to “pushed out.” When the mouse button is relea
both theActivate() andDisarm() routines are invoked in that order. Here is wher
your application actually steps in. If you have provided an appropriate callback func
theActivate() action calls it. TheDisarm() routine causes the button to be redrawn s
that it appears “pushed out” again.

Event Specification

In the Xt syntax, events are specified using symbols that are tied fairly closely to pu
hardware events, such asButtonPress or EnterWindow. For example,<Btn1Down>
specifies a button press for the first mouse button.KeyPress events are indicated by
symbols called keysyms, which are hardware-independent symbols that repres
individual keystrokes. Different keyboards may produce different hardwarekeycodesfor
the same key; the X server uses keysyms as a portable representation, based on the c
labels found on the tops of keys.

Motif provides a further level of indirection in the form ofvirtual keysyms, which describe
key events in a completely device-independent manner. For example,osfActivate
indicates that the user invoked an action that Motif considers to be an activating action
activating action typically corresponds to the RETURN key being pressed or the left m
button being clicked. Similarly,osfHelp corresponds to a user request for help, such
the HELP or F1 key being pressed.
Motif Programming Manual 33

Chapter 2: Motif Programming Model

ased
upport

SF

tep

,
ny
ny
can

One
and
ult
ETE
get

 key.

bles,
ke
Text

et.

the
ew
Virtual keysyms are supposed to be provided by the vendor of the user’s hardware, b
on the keys on the keyboard, but some X vendors also provide keysym databases to s
multiple keyboards. The X Consortium provides a virtual keysym database in the file/usr/
X11R6/lib/XKeysymDB. This file contains a number of predefined key bindings that O
has registered with the X Consortium to support actions in the Motif toolkit.

Virtual keysyms can be invoked by physical events, but the Motif toolkit goes one s
further and defines them in the form ofvirtual bindings. Here’s the translation table for the
PushButton widget expressed using virtual bindings:

BSelect Press: Arm()
BSelect Click Activate() Disarm()
BSelect Release: Activate() Disarm()
BSelect Press 2+: MultiArm()
BSelect Release 2+: MultiActivate() Disarm()
BTranserPress: ProcessDrag()
KSelect: ArmAndActivate()
KHelp: Help()

Examples of virtual bindings areBSelect , which corresponds to the first mouse button
andKHelp , which is usually the HELP key on the keyboard. The rule of thumb is that a
virtual binding beginning with a “B” corresponds to a mouse button event, while a
binding beginning with a “K” corresponds to a keyboard event. More than one event
be bound to a single virtual keysym. For example, theMotif Style Guidepermits F1 to be a
help key, so that key is also virtually bound toKHelp .

Virtual bindings can be specified by a system administrator, a user, or an application.
common use of virtual bindings is to reconfigure the operation of the BACKSPACE
DELETE keys. On some keyboards, the BACKSPACE key is in a particularly diffic
location for frequent access. Users of this type of keyboard may prefer to use the DEL
key for backspacing. These people may find the default operation of the Motif Text wid
annoying, since it does not allow them to backspace using their “normal” backspace

Since Xt allows applications and users to override, augment, or replace translation ta
many people familiar with Xt try to specify a new translation for the DELETE key to ma
it act like a backspace. The translation invokes the action routine that backspaces in a
widget. However, this approach is limited, in that it only works for a single Text widg
The Text widget has the following translation:

<Key>osfBackSpace: delete-previous-char()

The virtual keysymosfBackSpace is bound todelete-previous-char() , which is
the backspace action. Rather than changing the translation table to specify that<Key>
Delete should invoke this action, a user can redefine the virtual binding of
osfBackSpace keysym. A user can configure his own bindings by specifying the n
virtual keysym bindings in a.motifbindfile in his home directory. The following virtual
binding specifies that the DELETE key is mapped to osfBackSpace :
34 Motif Programming Manual

Chapter 2: Motif Programming Model

Text

t and

the
all

is

,
s

ts and
an
But
to the
ore

s. For

widget
ny

eason
ent

gets.

eing
e of
osfBackSpace: <Key>Delete

As a result of this specification, the DELETE key performs the backspace action in the
widget, as well as any other widgets in the Motif toolkit that use theosfBackSpace
keysym. The advantage of using virtual bindings is that the interface remains consisten
nothing in the toolkit or the application needs to change.

Virtual keysym bindings can also be set in a resource file, using
XmNdefaultVirtualBindings resource. The resource can be specified for
applications or on a per-application basis. To map the DELETE key toosfBackSpace ,
use the following specification:

*defaultVirtualBindings: \
osfBackSpace: <Key>Delete \n\
other bindings

The only difference between the syntax for the resource specification and for the.motifbind
file is that the resource specification must have a newline character (\n) between each
entry. The complete syntax of Motif virtual bindings is explained in Volume 6B,Motif
Reference Manual.

Motif a client,xmbind, that configures the virtual key bindings for Motif applications. Th
action is performed by the Motif Window Manager (mwm) or any application that uses the
Motif toolkit at startup, so you really only need to usexmbindif you want to reconfigure
the bindings without restartingmwmor a Motif application. Motif also provides a function
XmTranslateKey() , to translate a keycode into a virtual keysym. This function allow
applications that override the defaultXtKeyProc to handle Motif’s virtual key bindings.

Callbacks

Translations and actions allow a widget class to define associations between even
widget functions. A complex widget, such as the Motif Text widget, is almost
application in itself, since its actions provide a complete set of editing functions.
beyond a certain point, a widget is helpless unless control is passed from the widget
application. A widget that expects to call application functions defines one or m
callback resources, which are the hooks on which an application can hang its function
example, the PushButton widget defines theXmNactivateCallback ,
XmNarmCallback , andXmNdisarmCallback callback resources.

It is no accident that the callback resource names bear a resemblance to the names of
action routines. In addition to highlighting the widget, the action routines call a
application functions associated with the callbacks of the same name. There is no r
why a callback has to be called by an action; a widget could install a low-level ev
handler to perform the same task. However, this convention is followed by most wid

Figure 2-3 illustrates the event-handling path that results in an application callback b
invoked. The widget’s translation table registers the widget’s interest in a particular typ
Motif Programming Manual 35

Chapter 2: Motif Programming Model

event
is a
utine
ance
pass
ack
and if

most

ond
lback

t
. You

d. You
by
can
make

cope

ment
ne

yle
event. When Xt receives an event that happened in the widget’s window, it tests the
against the translation table. If there is no match, the event is thrown away. If there
match, the event is passed to the widget and an action routine is invoked. The action ro
may perform a function internal to the widget, such as changing the widget’s appear
by highlighting it. Depending on the design of the widget, the action routine may then
control to an application callback function. If the action is associated with a callb
resource, it checks to see if a callback function has been registered for that resource,
so, it dispatches the callback.

There are several ways to connect an application function to a callback resource. The
common is to callXtAddCallback() , as demonstrated inhello.c:

void button_pushed(Widget, XtPointer, XtPointer);
...
XtAddCallback (button, XmNactivateCallback, button_pushed, NULL);

The first argument specifies the widget for which the callback is installed. The sec
parameter is the name of the callback resource, while the third is a pointer to the cal
function. The fourth argument is referred to asclient data. If this parameter is specified, its
value is passed to the callback function when it is called. Here, the client data isNULL.

The client data can be a value of any type that has the same size as anXtPointer .An
XtPointer is usually the same as achar pointer; it is typically represented by a 32-bi
value. You can pass pointers to variables, data structures, and arrays as client data
cannot pass actual data structures; the result of passing a data structure is undefine
can pass variables of typeint or char , but understand that you are passing the data
value, not by reference. If you want to pass a variable so that the callback routine
change its value, you must pass the address of the variable. In this case, you need to
sure that the variable is global, rather than local, since a local variable loses its s
outside of the routine that callsXtAddCallback() .

The callback function itself is passed the widget, the client data, if any, and a third argu
that is referred to ascall data. The signature of a callback function can be expressed in o
of two ways: using an ANSI-compliant function prototype or using the older st
conventions of K&R C. The ANSI-style function declaration is as follows:

void button_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
36 Motif Programming Manual

Chapter 2: Motif Programming Model

r way
and
In the strictest sense, declaring the types of the parameters to the function is the prope
to handle function declarations and signatures. While this convention is good style

Figure 2-3: Event handling using action routines and callbacks

X Toolkit Intrinsics
Event Loop

Action routine
Callback

Registered?

Callback function

Does event

translations?

Widget

Application

Xt Intrinsics

match widget’s

User presses Button 1

Determine the widget
the event occurred in

Yes

No

No

Yes
Motif Programming Manual 37

Chapter 2: Motif Programming Model

lder

icult
urse

eing
to the

tains
l as
ack
d

he

apter
ted in

in
t

tion

lways
on to
recommended for upwards compatibility, most compilers today still understand the o
style conventions:

void button_pushed (widget, client_data, call_data)
Widget widget;
XtPointer client_data;
XtPointer call_data;

The second style is potentially the more portable method, although it is extremely diff
to think of any operating system vendors whose compiler is not ANSI aware. In the co
of the book, we make a habit of declaringclient_data and call_data as
XtPointers , even though we usually know the actual types of the parameters b
passed to the function. Before referencing these parameters, we cast the values
appropriate types.

The third parameter in a Motif-based callback function is always a structure that con
information specific to the widget class that invoked the callback function, as wel
information about the event that triggered the callback. There is a generic callb
structure,XmAnyCallbackStruct , as well as variations for specific widget classes an
callback resources. TheXmAnyCallbackStruct is defined as follows:

typedef struct {
int reason;
XEvent *event;

} XmAnyCallbackStruct;

The callback structure for the Motif PushButton widget class, t
XmPushButtonCallbackStruct , is defined as follows:

typedef struct {
int reason;
XEvent *event;
int click_count;

} XmPushButtonCallbackStruct;

We discuss the callback structures for a widget class in this book (see the ch
corresponding to the specific widget type). The callback structures are also documen
the widget reference pages in Volume 6B,Motif Reference Manual.

All of the callback structures contain at least the two fields found
XmAnyCallbackStruct . The reason field always contains a symbolic value tha
indicates why the callback was called. These values are defined in/usr/Motif2.1/include/
Xm/Xm.h and are usually self-explanatory. For example, when a callback func
associated with a PushButton’sXmNactivateCallback resource is called, thereason
is XmCR_ACTIVATE. The different values forreason make it easier to write callback
routines that are called by more than one type of widget. By testing thereason field, you
can determine the appropriate action to take in the callback. Because the widget is a
passed to the callback function, you can also find out what widget caused the functi
be invoked.
38 Motif Programming Manual

Chapter 2: Motif Programming Model

e a

ssed
ack

of the
two

all
he
n
isted
s are

t
turn
ed to

ore

pter.
g

s with
ntial
Theevent field contains the actual event that triggered the callback, which can provid
great deal of useful information. See Volume 4,X Toolkit Intrinsics Programming Manual,
for information on how to interpret the contents of an event. That subject is not discu
at length in this book, although our examples frequently use the events in callb
structures to control processing.

The Event Loop
Once all of the widgets for an application have been created and managed and all
callbacks have been registered, it’s time to start the application running. The final
function calls inhello.cperform this task:

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

Realizing a widget creates the actual window for the widget. When you c
XtRealizeWidget() on the top-level widget of an application (the one returned by t
call to XtVaOpenApplication()), Xt recursively traverses the hierarchy of widgets i
the application and creates a window for each widget. Before this point, the widgets ex
only as data structures on the client side of the X connection. After the call, the widget
fully instantiated, with windows, fonts, and other X server data in place. The firstExpose
event is also generated, which causes the application to be displayed.

The call toXtAppMainLoop() turns control of the application over to the X Toolki
Intrinsics. Xt handles the dispatching of events to the appropriate widgets, which in
pass them to the application via callbacks. The application code is idle until summon
life by user-generated events.

Summary
We’ve looked at the skeleton of a simple Motif program. Every application follows m
or less the same plan:

1. Initialize the X Toolkit Intrinsics.

2. Create and manage widgets.

3. Configure widgets by setting their resources.

4. Register callbacks to application functions.

5. Realize the widgets and turn control over to Xt’s event loop.

How this skeleton is fleshed out in a real application is the subject of the next cha
Chapter 3,Overview of the Motif Toolkit, addresses the role of manager widgets in layin
out a user interface, the use of dialog boxes and other popups for transient interaction
the user, the many specialized types of widgets available in Motif, and other esse
Motif Programming Manual 39

Chapter 2: Motif Programming Model

n for
concepts. Once you have read that chapter, you should have a sufficient foundatio
reading the remaining chapters in any order.
40 Motif Programming Manual

on. It
ager
and
Chapter 1

In this chapter:
• The Motif Style
• Application Controls
• Application Layout
• Putting Together a

Complete Application
• Changes in Motif 2.1
• Summary

This chapter helps the reade
discusses how to handle the
widget, when to put compon
Motif Programming Manual
3

the
she

t-
ets,

we
e an

any
pter
otif

wn

are

here
mple
is
s in

gn it
here
Overview of the Motif
Toolkit

r understand the components of a real Motif applicati
geometry management of primitive widgets within a man
ents into the main window, when to use dialog boxes

menus, and how to relate to the window manager. After reading this chapter,
programmer should have a solid overview of Motif application programming, and
should be able to read the remaining chapters in any order.

In Chapter 2,The Motif Programming Model,we talked about the basic structure of an X
based program. We described how to initialize the toolkit, create and configure widg
link them to the application, and turn control over to Xt’s main loop. In this chapter,
discuss the widgets in the Motif toolkit and how you can put them together to creat
effective user interface for an application.

If you already have a basic understanding of the Motif widgets, you can jump ahead to
of the later chapters in the book that focus on individual widget classes. This cha
provides some insight into the design of the widgets and a general overview of the M
style and methodology, which you may find useful when developing your o
applications.

This chapter also describes all of the new features in Release 2.1 of Motif. If you
familiar with Motif 1.2 but need to get up to speed with Motif 2.1, you should readChanges
in Motif 2.1on page 86. In this section, we summarize the new features and tell you w
to find more information about them.We also describe all the changes made to the exa
programs in this book to make them up-to-date with Motif 2.1. While Motif 2.1
backwards-compatible with Motif 1.2, there are a number of functions and resource
Motif 2.1 that replace obsolete functions and resources in Motif 1.2.

The Motif Style
You don’t build a house just by nailing together a bunch of boards; you have to desi
from the ground up before you really get started. Even with a prefabricated house, w
41

Chapter 3:Overview of the Motif Toolkit

g the
r an
You
eate

user
user-

uped,

the
, as

hand,
f
e

of
ked
or

on a
ore
u).

ould

s
for a

lines
e
a

ny of
rface

jects
bject.
e a
many of the components have already been built, you need a master plan for puttin
pieces together. Similarly, when you are designing a graphical user interface fo
application, you have to think about the tasks your application is going to perform.
must envision the interface and then learn to use your tools effectively in order to cr
what you’ve envisioned.

The Motif toolkit provides basic components that you can assemble into a graphical
interface. However, without design schematics, the process of assembling the
interface elements may become ad hoc or inconsistent. Here is where theMotif Style Guide
comes in. It presents a set of guidelines for how widgets should be assembled and gro
as well as how they should function and interact with the user.

All Motif programmers should be intimately familiar with theStyle Guide. While we make
recommendations for Motif style from time to time, this book is not a replacement for
Style Guide. There are many aspects of Motif style that are not covered in detail here
they involve the content of an application rather than just the mechanics. On the other
theMotif Style Guideis not an instructional manual for the Motif toolkit. In fact, many o
the objects described in theStyle Guideare not even widgets, but higher-level, mor
complex objects that are composed of many widgets.

For example, theStyle Guidedescribes an object called a MenuBar, which spans the top
the main window of an application. The MenuBar contains menu titles that, when clic
on, display PulldownMenus. The Motif toolkit does not implement MenuBars
PulldownMenus as distinct widget classes, nor does theStyle Guide make any
recommendations about how menu objects should be implemented. What theStyle Guide
does talk about (albeit somewhat loosely) are the actions that can be taken by an item
menu: it can invoke an application function, pop up a dialog box containing yet m
options and commands, or display a cascading menu (also known as a pullright men

TheStyle Guidealso makes recommendations about the menus that an application sh
provide. For example, most applications should have aFile menu that provides items such
as anExitbutton to exit the application and aSavebutton to save file. It also specifies detail
of presentation, such as that you should provide an ellipsis (...) as part of the label
menu item that requires the user to provide more information before action is taken.

How the Motif toolkit goes about supporting, and in some cases enforcing, the guide
of theMotif Style Guidebrings up some interesting points, particularly in relation to som
of the underlying principles of the X Toolkit Intrinsics. In Xt, a widget is envisioned as
self-contained object that is designed to serve a specific, clearly-defined function. Ma
the Motif widgets, such as Labels, PushButtons, ScrollBars, and other common inte
objects, are implemented as separate widgets.

In other cases, however, Motif steps outside of the Xt model by creating compound ob
out of several widgets and then expecting you to treat them as if they were a single o
For example, Motif provides the ScrolledText and ScrolledList objects, which combin
42 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

es

n be
d no
as a
ither a

to

nd
tion
when,

n
ience
osed

iding
ves
urce
you
r both

the
. In
und
w to

ng
idget

the
ed to
ese

than
sing
, since
Text or List widget with a ScrolledWindow widget, which in turn automatically manag
horizontal and vertical ScrollBars.

In another case, the Motif toolkit provides a complex, general-purpose widget that ca
configured to appear in several guises. There is no MenuBar widget class an
PulldownMenu widget class. Instead, the RowColumn widget, which also serves
general-purpose manager widget, has resources that allow it to be configured as e
MenuBar or a PulldownMenu pane. Those familiar with Xt may find this widget design
be a breach of Xt’s design goals, though.

In order to allow the programmer to think of ScrolledText objects, MenuBars, a
PulldownMenus as distinct objects, the Motif toolkit provides convenience crea
functions. These routines make it appear as though you are creating discrete objects
in fact, you are not. For example, the toolkit functionsXmCreateMenuBar() and
XmCreateSimplePulldownMenu() automatically create and configure a RowColum
widget as a MenuBar and a PulldownMenu, respectively. There are also conven
routines for creating various types of predefined dialog boxes, which are actually comp
of widgets from four or five separate widget classes.

Convenience routines emphasize the functional side of user-interface objects while h
their implementation. However, since Motif is a truly object-oriented system, it beho
you to understand what you’re really dealing with. For example, if you want to use reso
classes to configure all MenuBars to be one color and all PulldownMenus another,
cannot do so because they are not actually distinct widget classes. The class name fo
objects isXmRowColumn.

In the remainder of this chapter, we look at Motif user-interface objects from
perspective of both the functional object illusion and the actual widget implementation
the body of the book, we use the Motif convenience routines for creating both compo
objects, and simple widgets or gadgets. With the compound objects, we show you ho
pierce the veil of Motif’s convenience functions and work directly with the underlyi
widgets when necessary. Figure 3-1 shows the entire class hierarchy of the Motif w
set.

We begin by taking a closer look at the Motif user-interface components with which
user typically interacts. Then we examine how the manager widget classes are us
arrange the more visible application controls. And finally, we explore the use of all of th
objects to create functional windows and dialogs that make up a real application.

Application Controls
In many ways, application controls are the heart of a graphical user interface. Rather
controlling an application by typing commands, the user is presented with choices u
graphical elements. The user no longer needs to remember the syntax of commands
Motif Programming Manual 43

Chapter 3:Overview of the Motif Toolkit

otif’s
nience

t is not
gets.
The
her choices are presented to her as she goes along. As we’ve discussed, some of M
application controls (such as menus) are compound objects assembled by conve
routines. Others are simple, single-purpose widgets that you can create directly.

The widgets in this latter group are collectively referred to asprimitive widgets -- not
because they are simple, but because they are designed to work alone. The contras
between primitive and sophisticated widgets, but between primitive and manager wid
Some of the primitive Motif widget classes have corresponding gadget classes.

ApplicationShellMenuShell

WMShell

Manager

Primitive

OverrideShell

Object

RectObj

WindowObj

ArrowButtonGadgetCore

PanedWindow

Notebook

Frame

DrawingArea

Container

ComboBox

TextField

Text

ScrollBar

List

Label

SeparatorGadget

LabelGadget

IconGadget

Separator

ScrolledWindow

Scale

ArrowButton

SpinBox

BulletinBoard

RowColumn

CascadeButtonGadget

PushButtonGadget

ToggleButtonGadget

ToggleButton

PushButton

DrawnButton

CascadeButton

Gadget

Form

SelectionBox

MessageBox

Command

FileSelectionBox

Shell

Composite

Constraint

DialogShellVendorShell TransientShell

PrintShellTopLevelShell

GrabShell

MainWindow

SimpleSpinBox

Key

Motif

Xt Intrinsics

Figure 3-1: Class Hierarchy of the Motif widget set

SessionShell
44 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

ble

ets.
mitive
one

is
all its
This
really
mer,

s, the
ndow
d the
ctual
re 3-2.

ned
class
ll as

all; a
e, heav-
following sections describe the different types of primitive application controls availa
in the Motif toolkit.

The compound objects in the Motif toolkit are composed of primitive widgets and gadg
Because an understanding of these objects relies on an understanding of the pri
widgets, as well as the Motif manager and shell widgets, we are going to postp
discussing compound objects until later in the chapter.

The Primitive Widget Class
The Primitive widget class is a superclass for all of the Motif primitive widgets. Th
widget class is a metaclass; it serves only to define certain common behavior used by
subclasses, so one never instantiates a widget directly from the Primitive class.
statement is somewhat like saying that hammer is a class of object, but that you never
have a generic hammer. You can only have a specific type of hammer, like a claw ham
a ball peen hammer, or a sledge hammer.*

Just as all hammers have particular characteristics that qualify them as hammer
Primitive widget class provides its subclasses with common resources such as wi
border attributes, highlighting, and help with keyboard traversal (so the user can avoi
mouse and navigate through the controls in a window using the keyboard). The a
widget classes that you use are subclassed from the Primitive class, as shown in Figu

The Primitive class itself inherits even more basic widget behavior from the Xt-defi
Core widget class, which establishes the basic nature of “widgetness.” The Core
provides widgets with the capability to have windows and background colors, as we

* A claw hammer has the prongs in the back behind the hammer-head that allow you to pull nails out of a w
ball peen hammer has a round corner where the claw would be otherwise be; a sledge hammer is the larg
yweight hammer used to drive thick nails through concrete or to destroy things.

Primitive

TextField

Text

ScrollBar

List

Label

Separator

ArrowButton

ToggleButton

PushButton

DrawnButton

CascadeButton

Figure 3-2: The Primitive widget class hierarchy

Core

Motif

Xt Intrinsics
Motif Programming Manual 45

Chapter 3:Overview of the Motif Toolkit

tance
used

of a
g
an

een

any
s to
d this
s of
d drop

e it is
mmer
s the
nce to

n the
s the

urce
translations, actions, and so on. You could actually use a simple Core widget as an ins
and define your own translations and action routines, although this technique is not
frequently. Complete details are provided in Volume 4.

The Label Class

The Label widget provides a visual label either as text or as an image in the form
Pixmap .The text of a Label is anXmString , or compound string, not a character strin
(char *).A compound string can be oriented from left-to-right or right-to-left and it c
also contain multiple lines and multiple fonts. Chapter 25, Compound Strings, discusses
functions that manipulate compound strings, as well as functions that convert betw
character strings and compound strings.

The Label widget does not provide any callback routines, since it does not have
specified behavior. Using Xt, you could install event translations and action routine
make a Label respond to user input, but the Label widget is not intended to be use
way. It is only meant to be used to display labels or other visual aids. In Motif, instance
Label and all of its subclasses are automatically registered as drag sources for drag an
operations by the toolkit* .

Label widgets are described in detail in Chapter 12, Labels and Buttons. Figure 3-3 displays
a single Label widget with multiple lines and multiple fonts.

The PushButton Class

The PushButton widget supports the same visual display capabilities as a Label, sinc
subclassed from Label. In addition, the PushButton provides resources for the progra
to install callback routines that are called when the user arms, activates, or disarm
button. The PushButton also displays a shadow border that changes in appeara
indicate when the pointer is in the widget and when it has been activated.

When a PushButton is not selected, it appears to project out towards the user. Whe
pointer moves into the button, its border is highlighted. When the user actually select

* In fact, in Motif 2.1, drag and drop for a Label, LabelGadget, or Scale may be disabled by default if the reso
XmNenableUnselectableDrag is False. See the section on XmDisplay in Volume 6B for more details.

Figure 3-3: A Label with multiple lines and fonts
46 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

nd is
ile the
e 3-4

e-
nts to
get
se of
ides
d and
d in

an
or
the

st
nd
ward.
tton
user
button by pressing the first mouse button on it, the button appears to be pushed in a
said to be armed. The user activates a PushButton by releasing the mouse button wh
button is armed. PushButton widgets are also covered in detail in Chapter 12. Figur
shows some examples of PushButtons.

The DrawnButton Class

The DrawnButton widget is similar to a PushButton in its functionality and its thre
dimensional appearance. However, the DrawnButton is used when an application wa
draw the text or image directly into the widget’s window, rather than have the wid
handle the drawing. If the image is dynamic and changes frequently during the cour
an application, you may want to handle the drawing yourself. The DrawnButton prov
additional callback resources that are called when the button is resized or expose
additional ways to draw an outlined border. The DrawnButton widget is discusse
Chapter 12. Figure 3-5 shows some DrawnButtons.

The ToggleButton Class

The ToggleButton widget displays text or graphics like a Label widget, but it has
additional indicator graphic (a square, diamond, and additionally in Motif 2.1, a circle
check mark shape) to the side of the label. The indicator shows the state of
ToggleButton: in Motif 1.2 this could be simply on or off; in Motif 2.1 a toggle can exi
in a third indeterminatestate. When the ToggleButton is on, the indicator is colored a
appears to be pushed in. When the button is off, the indicator appears to project out
In the indeterminate state, the toggle is half colored, half uncolored. The ToggleBu
provides an additional resource for specifying a callback routine that is called when the
changes the state of the ToggleButton.

Figure 3-4: PushButton widgets

Figure 3-5: DrawnButton widgets
Motif Programming Manual 47

Chapter 3:Overview of the Motif Toolkit

llback
s
as a
ther
hen
aped;
scribed
n be

s. A
uBar

ading
by a

utton
s that
h the
f its
play.
use
other

ver.

bel
it is
an

ser
the
One common use of ToggleButtons is to set the application state. In this case, the ca
routines typically set simpleBoolean variables internal to the application. ToggleButton
can also be arranged in two different kinds of groups. In one configuration, known
RadioBox, only one button in the group of buttons can be chosen at a time. The o
configuration, a CheckBox, allows the user to select any number of buttons. W
ToggleButtons are grouped as a RadioBox, the indicators are by default diamond-sh
otherwise, they default to a square-shaped appearance. ToggleButton widgets are de
in detail in Chapter 12. Figure 3-6 shows the two different ways that ToggleButtons ca
grouped.

The CascadeButton Class

The CascadeButton widget is a special kind of button that is used to popup menu
CascadeButton can only be used as a child of a RowColumn widget, such as: in a Men
as the title of a PulldownMenu, in a PulldownMenu pane as an item that has a casc
menu associated with it, or as the button in an OptionMenu. The menu that is posted
CascadeButton is not a part of the widget itself; the menu is associated with the b
through a resource. A CascadeButton merely provides the label and other visual aid
support the appearance that a menu can pop up from the object. Even thoug
CascadeButton widget class is subclassed from Label and could inherit all o
functionality, Motif imposes restrictions on the labels that a CascadeButton can dis
CascadeButton labels cannot contain multiple lines or multiple fonts. Beca
CascadeButtons are typically used in menus, they do not display border shadows like
buttons. They do have similar highlighting behavior when selected, howe
CascadeButton widgets are explained in both Chapter 4,The Main Window, and Chapter
20, Interacting with the Window Manager.

The ArrowButton Class

Despite the similarity in its name, the ArrowButton widget is not subclassed from La
like the other button widgets. Like the remaining widgets described in this section,
subclassed directly from the Primitive widget class. The ArrowButton widget contains
image of an arrow pointing in one of four directions: up, down, left, or right. When the u
selects this widget, the ArrowButton provides visual feedback giving the illusion that

RadioBoxCheckBox

Figure 3-6: ToggleButton widgets
48 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

rform

easy
re a
ss for
the

ems
or the
item
a

f the
size
urces
pter
button is pressed in and invokes a callback routine that an application can use to pe
application-specific positioning.

In most respects, an ArrowButton can be considered identical to a PushButton, as it is
enough to provide an arrow pixmap for a PushButton. Since directional arrows a
common user-interface element, the ArrowButton is provided as a separate widget cla
simplicity. ArrowButton widgets are covered in detail in Chapter 12. Figure 3-7 shows
four variations of the ArrowButton widget.

The List Class

The List widget provides a mechanism for the programmer to make a list of text it
available to the user for selection. The user selects items from a List using the mouse
keyboard. The List widget allows you to specify whether the user can select a single
or multiple items. While List is a Primitive widget, it is typically created as part of
ScrolledList compound object using a Motif convenience function. The advantage o
ScrolledList object is that it provides a ScrollBar when the List grows bigger than the
of its visible area. Instances of the List widget are automatically registered as drag so
for drag and drop operations by the toolkit. We explore the List widget in detail in Cha

Figure 3-7: ArrowButton widgets
Motif Programming Manual 49

Chapter 3:Overview of the Motif Toolkit

e

otif
hen
er to

ber
are
13, The List Widget. Figure 3-8 shows a List widget in context with other interfac
elements.

The ScrollBar Class

The ScrollBar widget is one of the more intuitive user-interface elements in the M
toolkit. ScrollBars are almost always used as children of a ScrolledWindow widget. W
the contents of a window are larger than the viewing area, a ScrollBar allows the us
scroll the window to view the entire contents.

ScrollBars can be oriented vertically or horizontally. The ScrollBar also provides a num
of callback resources that allow you to control its operation. ScrollBar widgets

Figure 3-8: A List widget in an application dialog
50 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

lay. A
rtically
boxes
thetic

ides
that

as a
hter-
er

t and
g and
discussed in Chapter 10, Scrolled Windows and ScrollBars. Figure 3-9 shows both vertical
and horizontal ScrollBars.

The Separator Class

The Separator widget is used as a visual aid to separate adjacent items in a disp
Separator appears as a line between the objects it is separating; it can be oriented ve
or horizontally. Separators can be used in menus to separate menu items, in dialog
to separate discrete areas of control, and at various points in an interface for purely aes
reasons.

The Text and TextField Classes

The Text widget is a complete text editor contained in a widget. The Text widget prov
resources to configure the editing style of the widget, as well as callback resources
allow text verification. The widget can be configured as a multiline text entry area or
single-line data entry field. The TextField widget class is available as a somewhat lig
weight text entry area. The TextField widget is limited to a single-line, but in all oth
respects there is little difference between the two classes. Instances of the Tex
TextField widgets are automatically registered as drag sources and drop sites for dra
drop operations by the toolkit.

Figure 3-9: ScrollBars

Vertical
ScrollBar

Horizontal
ScrollBar
Motif Programming Manual 51

Chapter 3:Overview of the Motif Toolkit

text
r 18
get.

gets
ts,
adgets,
dget,
e and

idgets
The Text and TextField widgets can be used in many different ways to support the
entry requirements of an application. The two widgets are described in detail in Chapte,
Text Widgets. Figure 3-10 shows an application that uses various forms of the Text wid

Gadgets
Another set of application controls is provided in the form of gadgets. There are gad
that are equivalent to many of the primitive widgets: ArrowButtonGadge
SeparatorGadgets, PushButtonGadgets, CascadeButtonGadgets, ToggleButtonG
LabelGadgets, and in Motif 2.1, IconGadgets. The IconGadget is similar to a LabelGa
except that it can display a label and an image simultaneously. The appearanc
behavior of the gadgets are mostly identical to that of the corresponding widgets*. A further
understanding of how gadgets work depends on an understanding of the manager w
that support them, so we are going to return to this topic later in the chapter.

* The IconGadget is exceptional: there is no widget equivalent to this gadget class.

Figure 3-10: Text Widgets.

Object

RectObj

WindowObj

ArrowButtonGadgetCore

SeparatorGadget

LabelGadget

IconGadget

CascadeButtonGadget

PushButtonGadget

ToggleButtonGadget
Gadget

Figure 3-11: The Gadget class hierarchy
52 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

is a
lass is
s the

ents
ction
with a
ll the

ts.
xes,

s that
other
.

idgets.
only

gets

lness
rovide
dgets
d they
y can
can
nd

nd of
itive
ind
t like
n

idget.
user
The Gadget class is a superclass for all of the Motif gadgets. Like Primitive, this class
metaclass that is never instantiated. However, gadgets are not widgets. The Gadget c
subclassed from the RectObj class, not from the Core widget class. Figure 3-11 show
class hierarchy for gadgets.

Application Layout
While the controls are the most obvious part of a graphical user interface, these elem
alone do not make an effective interface. A random arrangement of buttons or a colle
of nested menus can make an application as obscure and as difficult to use as one
command-line interface. The arrangement of the controls in an application makes a
difference.

To help you lay out your application, Motif provides you with a set of manager widge
You can think of manager widgets as boxes in which you can put things. These bo
however, can grow or shrink as necessary to provide the best fit possible for the item
they contain. You can place boxes inside of other boxes, whether or not they contain
items. By using different size boxes, you can organize things in many different ways

Manager widgets are so named because they manage the size and position of other w
The relationship between a manager widget and the widgets that it manages is comm
referred to as theparent-childmodel. The manager acts as the parent, and the other wid
are its children.

Unlike primitive widgets, such as PushButtons, ScrollBars, and Labels, whose usefu
depends on their visual appearance and interaction with the user, manager widgets p
no visual feedback and have few callback routines that react to user input. Manager wi
have two basic purposes: they manage the sizes and positions of their children, an
provide support for gadgets. Like other widgets, manager widgets have windows, the
receive events, and they can be manipulated directly with Motif and Xt functions. You
draw directly into the window of a manager widget, look for events in the widget, a
specify resources for it.

There are many manager widget classes, each of which is tuned for a particular ki
widget layout. A manager widget can manage other manager widgets, as well as prim
widgets like Labels and PushButtons. In fact, the layout of an application is typically a k
of tree structure. As discussed in Chapter 1, the top of the tree is always a shell widge
that returned byXtVaAppInitialize() . Shell widgets are composite widgets that ca
only have a single managed child. This child is usually a general-purpose manager w
This manager contains other managers and the primitive widgets that compose the
interface for a window in an application.
Motif Programming Manual 53

Chapter 3:Overview of the Motif Toolkit

the

the
Figure 3-12 shows all of the different manager and primitive widgets that make up
displayed dialog box.

The parent-child relationships between the widgets in this dialog box are illustrated in
tree structure shown in Figure 3-13.

Figure 3-12: The layout of a dialog box

ru
by

_l
p

D
on

e

P
rin

t

H
el
p

P
rin

te
r
N
am

e:

S
ta
n
d
a
rd
 M

e
s
s
a
g
e
 H

e
a
d
e
rs

A
ll
 M

e
s
s
a
g
e
 H

e
a
d
e
rs

M
e
s
s
a
g
e
 B

o
d
y
 O

n
ly

A
c
ti
v
e
 F

o
ld
e
r:
 /
u
s
r/
s
p
o
o
l/
m

a
il
/a

rg
v

P
ri
n
t
M

e
s
s
a
g
e
s

M
e
s
s
a
g
e
s

3
 5

 9
-1

2

Label

Shell

Form
Form

RowColumn

LabelGadget

TextField

RowColumn(RadioBox)

ToggleGadgets

PushButton

Form

LabelGadget

RowColumn

RowColumn

TextField
54 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

user

is a
class.
of its

the
cs of
eneral
he
hese
Although the dialog box is composed of many different components, it appears to the
as a single, conceptually focused user-interface object.

The Manager Widget Class
As with the Primitive widget class and the Gadget class, the Manager widget class
superclass for all of the Motif manager widgets. The Manager class is another meta
You never create an instance of a Manager widget; you create an instance of one
subclasses. The actual widget classes that you use are shown in Figure 3-14.

Manager is subclassed from the Xt Constraint class, which in turn is subclassed from
Xt Composite class. The Composite widget class defines the basic characteristi
widgets that are able to manage the size and position of other widgets. Xt uses the g
term composite widgetfor any widget with this capability. The Constraint class adds t
capability to provide additional resources for the widgets that are being managed. T

Form

RowColumn

LabelGadget

RowColumn

Figure 3-13: Parent-child relationships between widgets

Label

RowColumn

LabelGadget

Form

Form

RowColumn

PushButton

PushButton

PushButton

ToggleButtonGadget

ToggleButtonGadget

ToggleButtonGadget

LabelGadget

TextField

Shell

LabelGadget

TextField
Motif Programming Manual 55

Chapter 3:Overview of the Motif Toolkit

t how

mer
s, the
ular
ch as
rface

m an
clude
erent
er 8,
resources constrain the position of the widgets. They can be thought of as hints abou
the widgets should be laid out.

Motif provides a number of general-purpose manager widgets that allow the program
to manage the size and arrangement of an arbitrary number of children. In some way
art of Motif programming is the design of effective widget layouts, using these partic
manager widgets. Motif also provides some narrowly-focused manager widgets, su
certain dialog classes, that can almost be treated as if they were single user-inte
components. These widgets create and manage their children with minimal help fro
application.We sometimes refer to these widgets as compound objects, since they in
both a manager widget and one or more children. This section describes the diff
manager widgets briefly; a more detailed description of the widgets is given in Chapt
Manager Widgets.

The DrawingArea Class

The DrawingArea widget provides an area in which an application can dis-
play graphics. Callback routines can be used to notify the application when

Manager

Object

RectObj

WindowObj

Core

PanedWindow

Notebook

Frame

DrawingArea

Container

ComboBox

ScrolledWindow

Scale

SpinBox

BulletinBoard

RowColumn

Form

SelectionBox

MessageBox

Command

FileSelectionBox

Composite

Constraint

MainWindow

SimpleSpinBox

Key

Motif

Xt Intrinsics

Figure 3-14: Class hierarchy of the Manager widget classes
56 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit
expose and resize events take place and when there is input from the key-
board or mouse. The DrawingArea can also be used to manage the geome-
try layout for child widgets, but its functionality in this area is quite
limited.The DrawingArea is discussed in detail in Chapter 11, The Drawin-
gArea.

The ScrolledWindow Class

The ScrolledWindow widget provides a viewport for data such as text or
graphics. If the data that is being viewed is larger than the ScrolledWin-
dow, ScrollBars allow the user to view the entire contents of the window in-
teractively. The ScrolledWindow is discussed in Chapter 10,
ScrolledWindows and ScrollBars.

The MainWindow Class

The MainWindow widget acts as the standard layout manager for the main
window of an application. It is specifically tuned to pay attention to the ex-
istence of a MenuBar, a command area, a message area, a work region, and
ScrollBars, although all of these areas are optional. The MainWindow is
discussed in Chapter 4, The Main Window.

The RowColumn Class

The RowColumn widget is perhaps the most widely used and robust of all
of the manager widgets. As its name suggests, the widget lays out its chil-
dren in rows and columns. The RowColumn widget is used by many differ-
ent parts of the toolkit to implement compound objects like MenuBars,
PulldownMenus, CheckBoxes, and RadioBoxes. The general purpose Row-
Column is discussed in Chapter 8, Manager Widgets.

The Frame Class

The Frame widget provides a three-dimensional border for a widget that
does not normally have a border. It can also be used to enhance the style of
the border for a widget that already has a border. In Motif, a Frame widget
can have two children: a work area and a title. The work area child can be
a manager widget that contains many other children. The Frame is dis-
cussed in Chapter 8, Manager Widgets.

The PanedWindow Class

The PanedWindow widget manages its children in a vertically (and, in Mo-
tif 2.1, a horizontally) tiled format. Its width always matches the widest
widget in its list of managed children; the widget forces all of its children
Motif Programming Manual 57

Chapter 3:Overview of the Motif Toolkit
to stretch to the same width as that widget. Each pane in a PanedWindow
contains a child widget; every pane has an associated sash (or grip) that al-
lows the user to change the height of the pane interactively. Resizing a
pane with the grip can cause the widgets in other panes to change size. The
PanedWindow is discussed in Chapter 8, Manager Widgets.

The BulletinBoard Class

The BulletinBoard widget does not impose much of a layout policy for the
widgets that it manages. The widget acts like a real bulletin board, in that
an application pins a widget on the bulletin board, and it sticks where it is
placed. The BulletinBoard does impose margins and has a resource that
controls whether or not its children can overlap. However, when a Bullet-
inBoard is resized, it does not move or resize its children based on its new
size. The BulletinBoard is useful mostly for the layout of dialog boxes and
other windows that are rarely resized. The predefined Motif dialog widget
classes use BulletinBoard widgets for this reason. The BulletinBoard is
discussed in Chapter 8, Manager Widgets.

The Form Class

The Form widget provides a great deal of control over the placement and
sizing of the widgets it manages. A Form can lay out its children in a grid-
like manner or it can allow its children to link themselves to one another
in a chain-like fashion. Form uses constraint resources to specify how chil-
dren are resized and positioned relative to each other and the Form as a
whole. The Form is discussed in Chapter 8, Manager Widgets.

The Scale Class

The Scale widget is a slider object that is somewhat similar in appearance
and functionality to a ScrollBar. A Scale is typically used to provide feed-
back to the user about the value of a state variable in an application. This
widget class is not intended to be used as a general manager. The Scale cre-
ates and manages its own widgets, which are needed to construct the Scale
object. The only children that you can add to a Scale widget are Label widg-
ets that represent tick marks, although in Motif 2.1 there are convenience
routines to automatically place tick marks along the Scale. The Scale is dis-
cussed in Chapter 16, The Scale Widget.

The following Manager widget classes are additionally available in Motif 2.1:*

* Available from Motif 2.0 onwards.
58 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

-

The Container Class

The Container class is a complex constraint widget which can lay out Icon-
Gadget children in three styles: in a tree arrangement, with a tabular data
style, and in a free floating format based upon the x, y specifications for
each child. The Container class allows for a more object-oriented approach
to the front end of an application than the older MainWindow, in that the
IconGadget children can pictorially represent application objects of some
kind with the Container providing the layout and selection mechanisms.
The Container is discussed in Chapter 9, The Container and IconGadget Widg
ets. Figure 3-15 shows the Container configured to display in a tree ar-
rangement with additional tabular data.

The SpinBox Class

The SpinBox class allows the user to input data by selecting from, and ro-
tating through, a set of values. Text widget children are added to the Spin-
Box, whereupon the range or set of values associated with each text is
specified through constraint resources. The SpinBox automatically adds

Figure 3-15: A Container widget with IconGadget children
Motif Programming Manual 59

Chapter 3:Overview of the Motif Toolkit
extra ArrowButtons which are used for rotating through the values of the
text widget child which currently has the input focus. The programmer
however has to supply the Text widgets underneath the SpinBox. For con-
venience, the SimpleSpinBox subclass is provided which encapsulates the
most frequent use of this type of arrangement: it comes with a single built-
in Text child. The SpinBox is discussed in Chapter 15, The SpinBox and Sim-
pleSpinBox Widgets. Figure 3-16 shows a SpinBox containing three Label and
Text children, and a SimpleSpinBox. The SimpleSpinBox is not meant to

be used as a general purpose manager.

The ComboBox Class

The ComboBox class combines textual input with list selection. The widget
presents itself to the user as a Text widget with an ArrowButton to the
side. The user can either type directly into the Text widget, or press the Ar-
rowButton, when a list of items from which to choose is popped up imme-
diately under the Text. Whether in fact the Text widget is directly editable,
and whether the list of available options is permanently visible (as opposed
to being displayed on user request by pressing the ArrowButtons) is con-
trollable through resources when the ComboBox is created. This widget
class is not intended to be used as a general manager. The ComboBox is dis-

SpinBox with
multiple Text

SimpleSpinBox

Figure 3-16: SpinBox and SimpleSpinBox widgets

SpinBox

children

ArrowButtons
60 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit
cussed in Chapter 14, The ComboBox Widget. Sample ComboBoxes are shown
in Figure 3-17.

The Notebook Class

The Notebook class lays out its children as though they are pages in a book.
That is, only one child is currently visible at any given time, and they all
occupy a single area on the screen; the user can chose from the available
pages either by selecting from Tabs which can be associated with a child,
or by activating the Page Scroller, which is typically a SpinBox. To com-
plete the analogy, resources are provided to control the general book-like
characteristics of the Notebook in terms of its binding and overlapping
page appearance. The Notebook is a constraint widget: you add children,
and then specify the role which each child is to perform. Typically, a Form
or other manager is added to represent some page, and optionally Push-
Buttons can be added and associated with a page in order to represent Tab
inserts along the edges of the Notebook pages. The Notebook is discussed

Figure 3-17: ComboBoxes with other widgets
Motif Programming Manual 61

Chapter 3:Overview of the Motif Toolkit

n as
nt.
ich

nto an
fair

pect,
ls of

new
ger
m for
if the
own
shell
ager
h the
the
ither

putes
ly go
in Chapter 17, The Notebook Widget. Figure 3-18 shows a Notebook with Tabs
inserted on the edge.

Geometry Management
The process by which a manager widget controls the layout of its children is know
geometry management. A child widget is always placed within the boundaries of its pare
A child cannot move or resize itself without requesting permission from its parent, wh
can deny the request. The manager, acting as the parent, can even force the child i
arbitrary size or position. However, like any good parent, a manager widget should be
at all times and not deny reasonable requests made by its children. As you might ex
geometry management can be quite complex in an application with several leve
managers.

As an example, consider adding a new item to a List widget. In order to display the
item, the List widget must grow vertically, so it requests a new size from its mana
parent. If that parent can accommodate the larger size, or it has another mechanis
satisfying the request, such as ScrollBars, it can approve the request. However,
manager itself must grow to honor the List widget’s request, it has to negotiate with its
parent. This chain reaction may go all the way up to the shell widget, in which case the
must communicate with the window manager about the new size. If the window man
and the shell agree to the new size, the acknowledgement filters back down throug
widget tree to the List widget, which can now grow to its requested size. If any of
composite widgets in the hierarchy refuse to resize, the List widget’s request is e
denied or only partially fulfilled.

Most of the time, this type of interaction completes successfully, as there are rarely dis
among children about resizing negotiations or positional boundaries. Children usual

Figure 3-18: The Notebook widget
62 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

tion is
f the
ible
ts.

o this
n of

mple,
ic
like
ry.

tment
hese
lume

iest
ver
rce
idget
le, the

its
the
um

traint
r the
rces,
lf.
sizes

hile
ed for

n its
ored
es the
nager
t can
child.

d it in
where their managers put them and make very few requests of their own. One excep
a RowColumn widget that is acting as a MenuBar, since it must be situated at the top o
window, and it must span the window horizontally. ScrollBars are another poss
exception, since they are typically positioned at the edges of ScrolledWindow widge

So, how do children request geometry changes from their parents? The answer t
question is rather complicated, since the X Toolkit Intrinsics supports a large selectio
functions that enable two-way communication about geometry management. For exa
a child can useXtMakeGeometryRequest() to request permission to be made a specif
size or to be placed in a particular location. A parent can use a function
XtQueryGeometry() to give a child the opportunity to announce its preferred geomet

Some of these functions and methods are described in Chapter 1, but a detailed trea
of custom geometry management techniques is beyond the scope of this book. T
functions are mostly used by the internals of composite and constraint widgets. See Vo
4, for a more detailed discussion of geometry management techniques.

In the Motif toolkit, geometry management cannot work without cooperation. The eas
way for a child to cooperate with its parents and siblings is simply to comply with whate
layout policy is supported by its manager widget parent. A child should not try to fo
itself into a size or a position that is not supported by its parent. Each of the manager w
classes described above is designed to support a specific layout style. For examp
RowColumn widget lays out its children in rows and columns, the Form widget allows
children to specify positions relative to other widgets within the Form, and
PanedWindow widget lets its children specify their desired maximum and minim
heights.

Manager widgets use constraint resources to support their layout policies. Cons
resources are defined by Xt’s Constraint widget class, which is a superclass fo
Manager widget class and thus all of the Motif manager widgets. Unlike other resou
constraint resources apply to thechildrenof a manager widget, not to the manager itse
Examples of constraint resources include maximum and minimum heights, relative
and positions, specific positional constraints, and even absolute x, y coordinates. W
these examples deal exclusively with size and position, constraint resources can be us
any arbitrary information that needs to be kept on a per-child basis.

Here’s how constraint resources work. When a manager needs to size or positio
children, it deals only with the children that are managed; unmanaged children are ign
in geometry management negotiations. For each managed child, the manager examin
child’s constraint resources. Depending on the constraints that are specified, the ma
either enforces the geometry changes or negotiates with its own parent to see if i
comply with the changes. This process uses an extra internal data structure for each
The data structure stores the constraints that are used by the widget’s parent to ai
geometry management.
Motif Programming Manual 63

Chapter 3:Overview of the Motif Toolkit

their
define
any
tself,
ally,
ystem

an
rhaps
.

ere
mon
eated

mall

ent, a
ndle
, and
w-
nly be
erpart

t uses
These
they
osite
h a
ified
idget.
ality.

ger
ts in
have
first

ance
they

nerate
Gadget Management
In addition to handling geometry management, manager widgets are responsible for
gadget children. In order to understand how managers support gadgets, we need to
more clearly what a gadget is. Every widget has its own X window, which simplifies m
aspects of programming, since each widget can take responsibility for repainting i
selecting its own events, and in general being as self-sufficient as possible. Historic
however, windows have been perceived as heavyweight objects. The concern is that s
performance will be degraded if an application uses too many windows. Since
application with a graphical user interface frequently uses hundreds of widgets, or pe
even thousands for a very large program, the performance issue is an important one

Gadgets, or windowless widgets, were originally developed as a part of Motif. They w
added to Xt as of X11 Release 4. Motif provides gadget versions of many com
primitive widgets, such as PushButtons and Labels. Like widgets, gadgets can be cr
using either Motif convenience functions orXtCreateManagedWidget() . While the
widget and gadget versions of an object are functionally very similar, there are some s
but important differences.

Because a gadget does not have its own window, it is entirely dependent on its par
manager widget, for its basic functionality. For example, the manager must ha
redrawing the gadget on exposure, highlighting it as a result of keyboard traversal
notifying it of event activity. Without a window, a gadget has no control over windo
based attributes normally associated with a widget. For this reason, gadgets can o
used in managers that support them. How closely a gadget emulates its widget count
is largely dependent on the capabilities of the manager widget parent.

In Motif 1.2, the Manager class limits the colors that can be used by gadgets. A gadge
the same background, foreground, and shadow colors as its manager widget parent.
restrictions are not inherent in the Xt Composite widget class or in Xt-based gadgets;
are specific to the Motif 1.2 Manager and Gadget classes. It is possible to write a Comp
widget that allows its gadget children to specify their own background colors. Suc
widget would have to paint the area of its window occupied by the gadget with the spec
color to give the user the impression that the gadget is indeed a separately-colored w
Indeed, gadgets in Motif 2.1 have been redesigned with precisely this extra function

Although gadgets were originally developed to improve performance, it is no lon
necessary to automatically use them if you are looking for performance improvemen
an application with many widgets. In both X11 Release 4 and Release 5, windows
become substantially lighter-weight objects than they were when gadgets were
developed. If anything, gadgets are worse than widgets at this point from a perform
perspective because the Motif managers take a very simplistic approach to the way
handle events for gadgets. A manager tracks all events, evenMotionNotify , whether or
not its gadgets have expressed interest in the events. As a result, gadgets typically ge
64 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

ork
dgets,

ents

rt of
other
more
sed

menu
tions.

for
oard
g a

dget.
.

arrow
URN
uses

ere
HIFT

em,

play
p;
are
board
dget.
idget
dow

tton
utton
play
ts that
a great deal of network traffic. X terminal users are especially likely to notice a netw
performance drop. There are some other complications that surround the use of ga
which we discuss when they come up in the course of this book.

Keyboard Traversal
Keyboard traversalis a mechanism that allows a user to navigate through the compon
in a user interface using only the keyboard. TheMotif Style Guidespecifies that all
applications must support keyboard traversal for all application functionality. Suppo
keyboard traversal is important because not every display provides a mouse or
pointing device. For some applications, such as data entry, using keyboard traversal is
convenient than using a pointing device. All of the Motif widgets support keyboard-ba
navigation.

Keyboard traversal is based on the concept of atab group. A tab group is a group of widgets
that are related for the purpose of keyboard traversal. For example, all the items in a
are considered a tab group, since they are grouped together and perform related func

At any given time, only one component on a display can be “listening” to the keyboard
keyboard events. The widget that is listening to the keyboard is said to have the keyb
focus, or input focus. The widget that has the input focus identifies itself by displayin
location cursor. The location cursor is often a highlighted border that surrounds the wi
A user can move the input focus to another widget using the mouse or the keyboard

The user can move the keyboard focus between items in the same tab group using the
keys. When the user finds the item that she wants, she can activate it with the RET
key or the SPACEBAR. If the user wants to move from one tab group to another, she
the TAB key. (In a multiline Text widget, CTRL-TAB is used because otherwise th
would be no way to insert a tab character.) To traverse the tab groups in reverse, the S
key is used with the TAB key. Keyboard traversal wraps from the last item to the first it
both within a tab group and between tab groups.

Although keyboard traversal is not completely controlled by manager widgets, they do
a pivotal role in implementing it. A manager widget is typically initialized as a tab grou
its primitive widget children are members of the tab group. The Text and List widgets
exceptions to this rule. These widgets are set up as their own tab groups, so that key
traversal can be used to move among the text in a Text widget or the items in a List wi
Within a tab group, there is no sense of a manager-within-manager structure. The w
hierarchy is flattened out so that it appears to the user that all of the controls in a win
are at the same level.

Keyboard traversal only works if each widget in an interface cooperates. If a PushBu
has the keyboard focus and the user presses the TAB key, the internals of the PushB
widget are responsible for directing the focus to the next tab group. Manager widgets
a key role in keyboard traversal because they are responsible for the keyboard even
Motif Programming Manual 65

Chapter 3:Overview of the Motif Toolkit

ager

it is
, the

are
n tab
tions

uch

d a
that
dow
otif

anize

d to
also
link

otif
ation.
ty of
are an

ally
s in
l main
h the
ds and
elete, or
rams,

trols,
take place within gadgets. If an event occurs within a PushButton gadget, its man
parent is responsible for directing the input focus to the next tab group.

Although the whole process of keyboard traversal may seem complex and difficult,
automated by the Motif toolkit and does not require application intervention. However
toolkit does provide mechanisms that allow you to control keyboard navigation. There
resources that allow you to specify widgets that are tab groups, widgets that are i
groups, and widgets that do not participate in keyboard navigation. There are also func
that allow you to specify explicitly the direction of keyboard traversal. Fortunately, s
fine-tuning is rarely necessary.

Putting Together a Complete Application
Managers and primitive widgets provide the basic tools with which you can buil
graphical user interface from the ground up. Motif also provides several components
address the large-scale organization of an application. The specialized MainWin
manager widget is intended to be used as the organizing frame for an application. M
also provides different types of menus and dialog boxes that can be used to org
application functionality.

Since an application is always used in conjuction with a window manager, we nee
discuss the role played by the window manager. In the course of this discussion, we
need to take a closer look at shell widgets, since they provide the communication
between an application and the window manager.

Both pixmaps and colors play an important role in a graphical user interface. M
provides routines that cache pixmaps so that they can be reused throughout an applic
The three-dimensional appearance of Motif components is implemented using a varie
color resources. It is important to understand these resources so that the 3D shadows
effective part of the user interface.

The Main Window
Every application is different. A word processor, paint program, or spreadsheet typic
has a single main work area, with controls taking on a peripheral role, perhap
PulldownMenus. More sophisticated programs, on the other hand, may have severa
work areas. For example, an electronic mail program may have a work area in whic
user reviews and selects from a list of incoming messages, another where she rea
responds to messages, and yet another where she issues commands to organize, d
otherwise affect groups of messages. Still other applications, such as data-entry prog
don’t really have a separate work area. The work area is really just a collection of con
such as CheckBoxes and text entry areas, that are filled in by the user.
66 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

ing
g up
g the
as
fore

most
lace
rge
gram
wer

is
as she

s
nded

tely
For

s, an
hich
area.
It is quite conceivable that an application could provide multiple windows for perform
different tasks. For example, an order entry program might use one window for lookin
a customer record, another for checking stock on hand, and yet another for enterin
current order. Motif allows for the creation of multiple top-level application windows,
well as transient dialog boxes that ask for additional information or confirmation be
carrying out a command.

Nonetheless, every application has at least one main window. The main window is the
visible window in an application. It is the first window the user sees and also the p
where the user interacts with most application functionality. No matter how small or la
an application may be, there needs to be a focal point that ties it all together. As a pro
grows more complex, the main window may grow more abstract and perform fe
functions, but it always exists. In a sophisticated application, the main window
transformed into a hub where the user starts, finishes, and returns again and again
goes from one function to the next.

The Motif Style Guidesuggests a particular layout for the main window. Application
should use this layout unless they have a compelling reason not to. The recomme
layout is shown in Figure 3-19.

A main window should have a menu bar across the top, with the work area immedia
below it. The work area usually contains the main interface object of the application.
example, a paint or draw application might provide a DrawingArea widget as a canva
electronic mail application might provide a ScrolledList of message summaries from w
the user can make selections, and a Text editor might place a Text widget in the work

Figure 3-19: Recommended layout for MainWindow widget

Menu Bar

Work Area

Command Area

Message Area
Motif Programming Manual 67

Chapter 3:Overview of the Motif Toolkit

dow

w its
also

ed
otif

ow
ges

om the

e
the

t the

the
is

ane is
and
An application work area might require a custom widget or a non-widget-based X win
instead.

The work area can have both horizontal and vertical scrollbars allowing the user to vie
entire contents if they are too large to be displayed all at once. The main window can
contain an optionalcommand areabelow the work area, where the user can enter typ
commands. This area is most helpful for porting character-based applications to a M
GUI, but it can be useful for other applications as well. At the bottom of the main wind
is an optionalmessage area. This area should be used for status and informational messa
only, not for error messages or any other type of message that requires a response fr
user.

While it is possible to construct your own main window, the Motif toolkit provides th
special-purpose MainWindow widget, which supports the recommended style. All of
elements in the MainWindow are optional, so an application can use it to display jus
areas that it requires. The MainWindow widget is described in detail in Chapter 1.

Menus
Motif supports three different styles of menus. PulldownMenus that are displayed from
MenuBar in a MainWindow are the most common type of menu. A PulldownMenu
displayed when the user selects a CascadeButton in the MenuBar. The menu p
displayed below the CascadeButton. Figure 3-20 shows a typical MenuBar
PulldownMenu.

Figure 3-20: A MenuBar and an associated PulldownMenu
68 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

enus

otif
s for
tons,
ase of
up a
s or
ading
ulated

her
ent.
umn
e user
tly on
f the
s an

enu
t any
ouse
o an
An item in a PulldownMenu can have acascading menuassociated with it. The cascading
menu is displayed to the right of the menu item as shown in Figure 3-21, so these m
are sometimes referred to aspullright menus.

MenuBars, PulldownMenus, and cascading menus are all created in a similar way. M
provides convenience functions that create specially configured RowColumn widget
these menu objects. The RowColumn widget is then populated with PushBut
CascadeButtons, ToggleButtons, and Separators, or their gadget equivalents. In the c
a MenuBar, all of the children must be CascadeButtons, since each button brings
separate menu. In a PulldownMenu pane, most of the items are PushButton
ToggleButtons, although Separators can be used for clarity. If an item posts a casc
menu, it must be a CascadeButton. The additional menu is created separately, pop
with its own buttons, and attached to the CascadeButton.

Motif also supports a construct called an OptionMenu. An OptionMenu is anot
specially-configured RowColumn widget, but in this case the behavior is quite differ
An OptionMenu is typically used to prompt the user to choose a value. The RowCol
widget displays a Label and a CascadeButton that shows the current value. When th
clicks on the button, a menu that contains the rest of the choices is popped up direc
top of the CascadeButton. Choosing an item from the menu modifies the label o
CascadeButton so that it shows the currently-selected item. Figure 3-22 show
OptionMenu, both before and after it is popped up.

Additionally, Motif provides PopupMenus. Unlike the other types of menus, a PopupM
is not attached to a visible interface element. A PopupMenu can be popped up a
arbitrary location in an application, usually as a result of the user pressing the third m
button. PopupMenus are meant to provide shortcuts to application functionality, s

Figure 3-21: A cascading menu
Motif Programming Manual 69

Chapter 3:Overview of the Motif Toolkit

ent

nly
made,
the

epost
the

In
r an
e
re a
of

ows
ause it

one
pt to
s a
nts,
tually
tained

the
ea
t the
ical
application can use different PopupMenus in different contexts and for differ
components in an interface.

A menu can be torn off from the component that posted it. A menu is normally o
displayed for as long as it takes the user to make a selection. Once the selection is
the menu is closed. When a menu is torn off, it remains posted in its own window. Now
user can make as many selections from the menu as she would like without having to r
the menu each time. For more information on tear-off menu functionality, as well as
different types of Motif menus, see Chapter 19, Menus.

The Window Manager
To the user, the MainWindow looks like the top-level window of an application.
window-system talk, a top-level window resides at the top of the window hierarchy fo
application. Its parent is theroot window, which is what the user perceives as th
background behind all the windows on the desktop. In the Xt-world, however, things a
little different. Behind every visible top-level application window is a special kind
widget known as a shell widget.

Every window that can be placed independently on the screen, including top-level wind
and dialog boxes, has a shell widget as its parent. The user does not see the shell bec
is obscured by all of the other widgets in the window. A shell widget can only contain
managed child widget; the shell does not perform any geometry management exce
shrink-wrap itself around this child. The child is typically a manager widget, such a
MainWindow, that is responsible for managing the layout of the primitive compone
such as Labels, Text widgets, ScrollBars, and PushButtons. The items that the user ac
sees and interacts with are descendants of the shell widget because they are con
within its boundaries.

Aside from managing its single child, the main job of the shell is to communicate with
window manageron behalf of the application. Without the shell, the application has no id
what else is happening on the desktop. It is very important for you to understand tha
window manager is a separate application from your own. The visual and phys

Before After

Figure 3-22: An OptionMenu
70 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

most
m a

let’s
f a
main
on it
p of
u’re
true

s the
with

its
is the
dow
izing.
, and

e a
the
interaction between an application and the window manager is usually so close that
users cannot tell the difference between the two, but the distinction is important fro
programming perspective.

To get an idea of the relationship between the window manager and an application,
compare it with the way a bed is built and how it fits into a room. A bed is made up o
frame, a mattress, and as many accessories as you want to pile on top of it. The
window is the mattress; the sheets, pillows, blankets, and stuffed animals you throw
represent the user-interface controls inside the main window. The whole lot sits on to
the bed frame, which is the shell widget. When you push a bed around the room, yo
really pushing the bed’s frame. The rest just happens to go along with it. The same is
for windows on the screen. The user never moves an application window, she move
shell widget using the window manager frame. The application just happens to move
it.

You may have to stretch your imagination a little to visualize a bed resizing itself with
frame, but this is precisely what happens when the user resizes an application. It
window manager that the user interacts with during a resizing operation. The win
manager only informs the application about the new size when the user is done res
The window manager tells the shell, the shell communicates the new size to its child
the change filters down to the rest of the widgets in the application.

The window manager frame is composed ofwindow decorationsthat the window manager
places on all top-level windows. These controls allow the user to interactively mov
window, resize it, cause it to redraw itself, or even to close it. Figure 3-23 shows
Motif Programming Manual 71

Chapter 3:Overview of the Motif Toolkit

ve,
elf or
ns.
tion.

n
the
ant

or not
the
This
es for
akes
f the

one
alog
-exist
dow
standard Motif window manager (mwm) decorations. For information on how to usemwm,
see Motif Volume 3.

Thewindow menudisplays a list of window manager functions that allow the user to mo
resize, and exit the application. An application does not have access to the menu its
the items within it; similarly, it cannot get handles to the minimize and maximize butto
These objects belong to the window manager and act independently from an applica

Motif provideswindow manager protocolsthat allow menu items like these to affect a
application. An application can also interact with the window manager using many of
same types of protocols. You can specify which of the items in the window menu you w
to appear, whether or not there are resize handles on the window frame, and whether
you want to allow the user to iconify the window. However, the user is expecting all of
applications on her desktop to interact consistently with the window manager.
expectation is magnified by the fact that the user has probably set quite a few resourc
the window manager. Since unexpected interference from an application rarely m
users happy, you should leave the window manager alone. A technical discussion o
window manager can be found in Chapter 20, Interacting with the Window Manager.

As we pointed out earlier, it is possible for an application to have more than
independent window. In addition to the main window, there may be one or more di
boxes, as well as popup windows, and even independent application windows that co
with the main window. Each of these cases requires different handling by the win

Resize

Horizontal
resize

Vertical resize handle

Client

Window menu button Title bar Minimize button

Maximize

Figure 3-23: Motif window manager decorations

button

area

handle

Corner
72 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

e 3-24
otif
aviors

y free
menu,
take
ed to
tion.

pass
floor
to use
een-
ions
ndow
trols,
ng the

the

o be
s you
manager, and as a result, there are several different classes of shell widgets. Figur
shows the class hierarchy of the different types of shell widgets available in the M
toolkit. The Shell widget class is another metaclass that specifies resources and beh
inherited by all of its subclasses.

Shells for Menus

In some cases, an application needs to put up a temporary window that is completel
of window manager interaction. Menus are one such a case. When a user pops up a
she typically wants to make a choice immediately, and she wants that choice to
precedence over any other window system activity. The window manager does not ne
be involved either to decorate or to position the menu, as it is entirely up to the applica

As its name suggests, the OverrideShell widget class is provided for windows that by
the window manager. OverrideShells are like futons; you can place them on the
without using a bed-frame (and without being tasteless). It doesn’t make much sense
an OverrideShell as the main window for an application, except possibly for a scr
locking application. The purpose of this type of application is to prevent other applicat
from appearing on the screen while the computer is left unattended. Because the wi
manager is unaware of the OverrideShell, it does not provide window manager con
and it does not interpret window manager accelerators and other methods for bypassi
lock.

The OverrideShell is a generic Xt-based widgetclass, so the Motif toolkit provides
MenuShell to service the special interface needs required by theMotif Style Guide. The
MenuShell’s translation table is set to support keyboard traversal, itsXmNfocusPolicy is
set to XmPOINTER, and its XmNallowShellResize resource is set toTrue . The
MenuShell also makes sure that its child is a RowColumn widget. There is little more t
said about MenuShells, but for an in-depth discussion on the various types of menu
can use in Motif, see Chapter 19, Menus.

MenuShell

WMShell

OverrideShell

Object

RectObj

WindowObj

Core

Shell

Composite

DialogShellVendorShell TransientShell

ApplicationShell PrintShellTopLevelShell

GrabShell

Key

Motif

Xt Intrinsics

Figure 3-24: The Shell widget class hierarchy

SessionShell
Motif Programming Manual 73

Chapter 3:Overview of the Motif Toolkit

state
y the

e X
and
tly
a
.

ors,
our

elves
ell is
e

For
olled

the
hell

pens

at are
tely
. For
ell.

and
dget

ter 5

your
Shells for Window Manager Communication

Shell widgets must communicate with the window manager to negotiate screen real e
and a wide variety of other properties. The information that is exchanged is defined b
X Consortium’s Inter-Client Communications Conventions Manual(ICCCM). The
WMShell widget class implements ICCCM-compliant behavior as a standard part of th
Toolkit Intrinsics, so that it is available to all vendors providing Xt-based widget sets
window managers. This shell widget is what allows Motif applications to work correc
with virtually any ICCCM-compliant window manager. In our analogy, a WMShell is
simple, wire bed-frame that doesn’t have any special attributes, like wheels or rollers

The VendorShell widget class is subclassed from the WMShell class; it allows vend
such as OSF, to define attributes that are specific to their own window managers. In
analogy, this widget class is like having a bed frame that has attached cabinets, sh
above the headboard, or nice wheels that glide on the carpet. The Motif VendorSh
aware of special features ofmwm. The widget does not actually add any functionality to th
window manager, but it is designed for applications that wish to interact with it.
example, all the attributes of window manager decorations can be modified or contr
through resources specific to the VendorShell.

WMShells and VendorShells are never instantiated directly by an application, but
features they provide are available to an application. For example, the Motif VendorS
allows an application to specify the items in the window menu and to control what hap
when the user closes the window from the window menu. Chapter 20,Interaction with the
Window Manager, discusses window manager interactions in more detail.

Shells for Dialogs

You can think of dialog boxes as an application’ssecondary windows. Since dialogs are not
meant to remain on the screen for very long, they do not need all of the decorations th
typically provided by the window manager. However, dialogs are not comple
independent like menus, so they do need to be controlled by the window manager
example, if an application is iconified, its dialog boxes are typically iconified as w
Dialog boxes are usually implemented in Xt using TransientShells.

The DialogShell is a Motif-defined widget class subclassed from the TransientShell
VendorShell classes. Motif functions for creating dialog boxes tend to hide the shell wi
side of the dialog. When you make a call likeXmCreateMessageDialog() , you are
actually creating a MessageBox widget as a child of a DialogShell widget. See Chap,
Introduction to Dialogs, for details on Motif dialogs.

Shells for Application Windows

When you initialize the X Toolkit with a call such asXtOpenApplication() , you are
automatically returned a SessionShell widget to use as the top-level widget in
74 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

lly
ly with

main

uire
s.
ient
age
on to
ypes
tion

clude
delete
lled

es in
s of

ften
application*. If an application uses additional top-level windows, they are typica
TopLevelShells. The differences between these two classes are subtle and deal most
how resources are specified in a resource file. In Chapter 7,Custom Dialogs, we explore
some ways in which TopLevelShells can be used as primary windows apart from the
window.

Dialogs
Some applications can get all their work done in one main window. Others may req
multiple windows, so Motif allows an application to have multiple top-level window
However, even applications without this level of complexity need to display trans
windows called dialog boxes. Motif provides two main types of dialog boxes: mess
dialogs and selection dialogs. Message dialogs are designed to allow an applicati
communicate with the user, while selection dialogs prompt the user to enter different t
of information. It is also possible to create custom dialogs for specialized applica
functionality.

Message Dialogs

Message dialogs simply communicate some kind of message to the user and in
buttons that allow the user to respond to the message. For example, a menu item to
a file might issue a dialog with the message, “Are you sure?” with PushButtons labe
Yes, No, andCancel.

The Motif MessageBox widget that is used to create message dialogs actually com
seven different guises. The different styles are meant to be used for different type
messages; some of the styles also display a symbol defined by theMotif Style Guide. Motif
provides convenience routines for creating all of the different styles, so they are o
referred to as if they are distinct widget classes.

ErrorDialog

The ErrorDialog shows a “do not enter” symbol along with a message that
the user has made an error. For example, she may have pressed a PushBut-
ton at the wrong time, made an invalid selection in a List widget, or entered
an unknown filename for a Text widget.

InformationDialog

The InformationDialog displays an “i” along with an informational mes-
sage. These dialogs are usually displayed in response to a request for help.

* The ApplicationShell, XtAppInitialize () and XtVaAppInitialize () are considered deprecated in
X11R6.
Motif Programming Manual 75

Chapter 3:Overview of the Motif Toolkit

on
MessageDialog

The MessageDialog does not display a symbol by default, although a sym-
bol can be specified using the XmNsymbolPixmap resource. These dialogs
can be used to display any kind of message.

QuestionDialog

The QuestionDialog shows a question mark symbol with a question that
the user needs to answer. Questions are typically of the yes/no form, so the
possible answers typically include Yesand No. A QuestionDialog should not
be used for a question that requires an answer in the form of text or a se-
lection from a list of some kind.

TemplateDialog

Motif provides a TemplateDialog to allow an application to create a custom
dialog. By default, the TemplateDialog does not display a symbol or a mes-
sage, but these items can be added to the dialog.

WarningDialog

The WarningDialog displays an exclamation mark along with a message
that warns the user about a particular situation. These dialogs are com-
monly used to make sure that the user wants to do something destructive,
like delete a file or exit an application without saving data.

WorkingDialog

The WorkingDialog displays an hourglass with a message indicating that
the application is busy processing a lengthy computation or anything else
that requires the user to wait.

Figure 3-25 shows a typical QuestionDialog in an application. For more information
message dialogs, see Chapter 5,Introduction to Dialogs.

Figure 3-25: A QuestionDialog
76 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

otif
e, a
n be
type

alog.

ome
Selection Dialogs

Selection dialogs are meant to provide the user with a list of choices of some sort. M
provides different styles of selection dialogs for different purposes. For exampl
SelectionDialog presents a ScrolledList containing an arbitrary list of choices that ca
selected with the mouse. The dialog also contains TextField widget that can be used to
in a choice which may or may not also be on the list. Figure 3-26 shows a SelectionDi

The PromptDialog, as shown in Figure 3-27 is useful for prompting the user to enter s
information.

Figure 3-26: A SelectionDialog

Figure 3-27: A PromptDialog
Motif Programming Manual 77

Chapter 3:Overview of the Motif Toolkit

d to

text
tion
been
igure

r 6,
The FileSelectionDialog is a more complex cousin to the SelectionDialog. It is use
select a file in the directory structure. A FileSelectionDialog is shown in Figure 3-28.

The CommandDialog is an extension of the PromptDialog in that items input to the
entry field are stored in a ScrolledList. The intent is for the user to provide the applica
with commands; the list region contains a history of the commands that have already
typed. The user can select an item in the history list to reissue a previous command. F
3-29 shows an example of a CommandDialog.

For detailed information about all of the different Motif selection dialogs, see Chapte
Selection Dialogs.

Figure 3-28: A FileSelectionDialog

Figure 3-29: A CommandDialog
78 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

alog
stom

nted

an see
ents.
also
s. A
eters
ttons.
e an

apter
the
not
Custom Dialogs

There are many types of functionality that are not covered by the standard Motif di
types. Fortunately, it is fairly easy to create your own dialogs. If you need to create a cu
dialog, there are some guidelines in theMotif Style Guidethat you should follow. At the
highest level, all dialogs are broken down into two major components: thecontrol area(or
work area) and theaction area. These areas are conceptual regions that may be represe
by multiple widgets.

In a message dialog, the control area is used only to display messages, but as you c
from the selection dialogs, this area can be used to provide a variety of control elem
For example, the SelectionDialog uses a List widget and a TextField widget. It is
common for a custom dialog to display an array of PushButtons or ToggleButton
communications program might have a setup dialog that allows the user to set param
such as baud rate, parity, start and stop bits, and so on, using an array of ToggleBu
The controls in the control area provide information that is used by the application onc
action area button is pressed.

Figure 3-30 shows a custom dialog with a control area that contains many items. Ch
7, Custom Dialogs, discusses how to build customized dialogs, which may require
direct creation of widgets in the control area. Motif dialogs, on the other hand, do
Motif Programming Manual 79

Chapter 3:Overview of the Motif Toolkit

that

at the
m an

in a

before
rface

ce of
sing,
s far

can
may
uires
it is
require you to create any of the objects in the control area. The widgets displayed in
part of the dialog are always predefined and automatically created.

Dialog Modality

One important concept to be aware of when it comes to dialogs ismodality. In general,
GUI-based programs are expected to be modeless. What this ultimately means is th
user, not the application, should be in control. The user should be able to choose fro
array of application functions at any time, rather than stepping through them
prearranged sequence, under the application’s control.

Of course, there are limits to modelessness. Sometimes one thing has to happen
another. Often, sequencing can be taken care of simply by nesting graphical user inte
elements. For example, faced with the main window, the user may have only a choi
menu titles; once she pulls down the file menu, she may have a choice of opening, clo
saving, renaming, or printing the contents of a file. At some point, though, she goe
enough down a particular path that her choices need to be constrained.

With respect to dialogs, modality allows a dialog box to acquire input before the user
go back to working with the application. For example, if the user asks to load a file, she
need to specify a filename in a dialog before she can edit the file. A modal dialog req
an answer immediately, by disallowing input to any other part of the application until

Figure 3-30: A custom dialog
80 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

deless.
racts

ges.
The

s

s.
o

hanism
share

andle
s, the
r and
r you

n
zero,

sing
nd
ding

ven

ib
either satisfied or cancelled. There may be other cases, though, where dialogs are mo
They can be left up on the screen without an immediate response, while the user inte
with the main application window or another dialog.

Pixmaps
In this section, we are going to take a closer look at how Motif supports graphic ima
The Motif Label widget and all of its subclasses can display pixmaps as their labels.
MessageBox provides theXmNsymbolPixmap resource for specifying the image that i
displayed in a dialog.

The Motif toolkit provides a number of routines for manipulating pixmap
XmGetPixmapByDepth() andXmGetPixmap() both create a pixmap and cache it, s
that it can be reused by an application.XmGetPixmapByDepth() provides a way to
specify the depth of the pixmap that is created.XmGetPixmap() always creates a pixmap
that has the same depth as the screen on which image is created. The caching mec
provided by these routines is on a per-client basis; different processes cannot
pixmaps.

Whenever a new pixmap is created using one of these functions, the toolkit retains a h
to the pixmap in case another call is made requesting the same image. If this occur
function returns the exact same pixmap that was returned to the original requeste
increments an internal reference counter. In order to keep a clean house, wheneve
retrieve a pixmap using eitherXmGetPixmap() or XmGetPixmapByDepth() , you
should callXmDestroyPixmap() when you no longer need the image. This functio
decrements the reference count for the pixmap. If the reference count reaches
XmDestroyPixmap() actually callsXDestroyPixmap() to discard the pixmap.

XmGetPixmapByDepth() takes the following form:

Pixmap XmGetPixmapByDepth(Screen *screen
char *image_name ,
Pixel foreground ,
Pixel background ,
int depth)

The image_name can either be a filename or the name of an image registered u
XmInstallImage() , which we are going to describe shortly. The background a
foreground colors and the depth of the pixmap are specified by the correspon
parameters.

XmGetPixmap() takes the same form asXmGetPixmapByDepth() , minus thedepth
parameter.XmGetPixmap() creates a pixmap that has the same depth as the gi
screen , so you cannot rely onXmGetPixmap() to create a single-plane pixmap.* In
Motif, you can useXmGetPixmapByDepth() to create a bitmap; you can also use an Xl
routine,XCreateBitmapFromData() .
Motif Programming Manual 81

Chapter 3:Overview of the Motif Toolkit

If the
nt for
have a

ap.
ame

o

used
an

cial
WheneverXmGetPixmapByDepth() or XmGetPixmap() is called, it looks in the cache
for a previously-created pixmap that matches the given name, colors, and depth.
routine finds a match, it returns the cached pixmap and increments the reference cou
the image. Since the pixmaps are cached, two separate parts of an application could
handle to the same pixmap.

The image_name parameter is the key to where the routines get the data for the pixm
As we just mentioned, this parameter can either be a filename or a symbolic n
previously registered usingXmInstallImage() . Both XmGetPixmap() and
XmGetPixmapByDepth() use the following algorithm to determine what pixmap t
return or create:

1. Look in the pixmap cache for an image that has the same screen , image_
name, foreground , background , and depth as the specified image. If there
is a match, return the pixmap.

2. If there is no match in the pixmap cache, look in the image cache for an im-
age that matches the specified image_name . If there is a match, use the im-
age to create the pixmap that is returned.

3. Otherwise, interpret the image_name as a filename, read the pixmap data
directly out of that file, and create the pixmap.

The first step is fairly straightforward. The second step checks the image cache that is
internally by the Motif toolkit. Motif defines a number of images that you can use in
application. Table 3-1 lists the image names predefined by the toolkit.

* The terms single-bit and single-plane are interchangeable; they imply a pixmap with only two colors:0 and1.
While the termbitmapusually refers to a single-plane pixmap, this is not necessarily true outside of the X so
culture.

. Table 3-1: Predefined Image Names in the Motif Toolkit

Image Name Description

background Solid background tile

25_foreground A 25% foreground, 75% background tile

50_foreground A 50% foreground, 50% background tile

75_foreground A 75% foreground, 25% background tile

vertical_tile Vertical lines tile (Motif 1.2.3 onwards)

horizontal_tile Horizontal lines tile (Motif 1.2.3 onwards)

horizontal As horizontal_tile (Motif 1.2.2 backwards compatibility)

vertical As horizontal_tile (Motif 1.2.2 backwards compatibility)

slant_left Left slanting lines tile

slant_right Right slanting lines tile

menu_cascade A rightwards pointing arrow (Motif 2.1)
82 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

ther
your
sing

ly
ate

n

ay be

ing
ll

t
ixmap

ded
e.

, the
to
alues
in

mage.
Motif also installs a number of images at run-time to support dialog images and o
random pixmaps. None of these image names are publicly available. You can install
own images by predefining them and loading them into the image cache u
XmInstallImage() , which takes the following form:

Boolean XmInstallImage (XImage image , char * image_name)

The image parameter is a pointer to anXImage data structure that has been previous
created or, more commonly, statically initialized by the application. It is possible to cre
an image dynamically from an existing window or pixmap usingXGetImage() , but this
is not the way the function is typically used.

If you attempt to install an image using animage_name that matches one already in the
cache, the function returnsFalse and the image is not installed. Otherwise, the functio
returnsTrue . You can uninstall an image by callingXmUninstallImage() . Once the
image is uninstalled, it cannot be referenced by name any more and a new image m
installed with the same name. TheXImage structure is not copied by
XmInstallImage() , so if the image pointer you pass has been allocated us
XCreateImage() or XGetImage() , you must not free the data until after you ca
XmUninstallImage() .

If XmGetPixmap() or XmGetPixmapByDepth() finds a match in the image cache, i
creates the pixmap based on the image data, not on the image itself. As a result, the p
that is created is not affected by the image being uninstalled byXmUninstallImage() .

If the pixmap retrieval routines do not find a match in the image cache, the pixmap is loa
from a file. If image_name starts with a slash character (/), it is taken as a full pathnam
Otherwise, the routines look for the file using a search path. On POSIX systems
environment variableXBMLANGPATHcan be set to specify a desired directory in which
search for bitmap files. If this variable is not set, the pathname used is based on the v
of theXAPPLRESDIR, HOME, andLANGenvironment variables. See the reference page
Volume 6B, for complete details on the search path that is used.

WhenXmGetPixmap() or XmGetPixmapByDepth() looks in the pixmap cache for a
image name, the pathname must match completely for the routine to return a cached i

menu_cascade_rtol A leftwards pointing arrow (Motif 2.1)

menu_checkmark A tick mark (Motif 2.1)

menu_dash A horizontal line (Motif 2.1)

collapsed A rightwards pointing filled arrow (Motif 2.1)

collapsed_rtol A leftwards pointing filled arrow (Motif 2.1)

expanded A filled arrow pointing downwards (Motif 2.1)

. Table 3-1: Predefined Image Names in the Motif Toolkit (continued)

Image Name Description
Motif Programming Manual 83

Chapter 3:Overview of the Motif Toolkit

r
these

it can
on to
. A
color

ility
tion.
zation
case,
r: a

sue.

the

the
pects

lored
lors

get,
idth

s the
itive

D
tics of
round
of a
the
The filexlogo64will not match a previously-loaded pixmap that has the name/usr/X11R6/
include/bitmaps/xlogo64. If you do not need to worry about using different pixmaps fo
different environments, we recommended that you always specify a full pathname to
routines to be assured that you get the desired file.

Color
Color plays an important role in a graphical user interface. It appeals to the senses, so
provide an aesthetic quality, while at the same time it can be used to convey informati
the user. However, for all the power of color, it is frequently abused by applications
color combination that appeals to some people may offend others. The safest bet with
is to avoid hard-coding any use of color in your application and provide enough flexib
so that the user can configure colors in a resource file or interactively using the applica
Of course, many applications are based on the use of color, so this sweeping generali
only applies to those parts of an application that are not dependent on color. In any
you should be wary when providing information or state purely through the use of colo
color-blind user may not notice the differences; color-blindness is not a trivial or rare is

The Motif widget set provides a number of widget resources that specify colors. All of
Motif widgets use theXmNforeground andXmNbackground resources. Although every
widget class makes different use of theXmNbackground andXmNforeground resources,
text is typically rendered in the foreground color and everything else is shown using
background color. Some widgets provide additional color resources for particular as
of their appearance. For example, ToggleButtons use theXmNselectColor resource for
the square/diamond selection indicator, PushButtons useXmNarmColor as their
background when they are armed, and ScrollBars useXmNtroughColor to set the color of
the area behind the slider and directional arrows. In Motif 2.1, gadgets can also be co
in much the same way that their widget equivalents can; in Motif 1.2, however, their co
are inherited from their Manager parent.

TheXmNborderColor resource is another resource that can be specified for any wid
as it is defined by the Core widget class. Since Motif widgets typically have a border w
of 0, this resource is rarely used. TheXmNhighlightColor resource specifies the color
of the highlighting rectangle that is displayed around the interface component that ha
keyboard focus. This resource is defined by the Gadget, Manager, and Prim
metaclasses, so it can be specified for any Motif component.

Perhaps the most troublesome of all the color resources areXmNtopShadowColor and
XmNbottomShadowColor . These are the colors that give Motif widgets their 3
appearance on a color display. If set inappropriately, these colors can ruin the aesthe
an interface. These resources are set automatically by the toolkit based on the backg
color of the object, so the colors are not normally a problem. If the background color
PushButton is blue when it is created, the toolkit automatically calculates
84 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

e

ally
f you
rs
only

of a
and
ated

late

r the

ns an
you

or a
rray
hat

tes
color
sing
to
XmNtopShadowColor to be a slightly lighter shade of blue and th
XmNbottomShadowColor to be a slightly darker shade.

The problems arise if you want to change the background color of a widget dynamic
because the toolkit does not automatically change the shadow colors for you. So i
change theXmNbackground of the PushButton to red, the top and bottom shadow colo
remain the different shades of blue. In Motif 1.2, note that the shadow resources are
used by widgets, not gadgets: if you dynamically change the background color
manager widget, it automatically recalculates the top and bottom shadow colors
redisplays its gadgets correctly. Many consider the fact that this process is not autom
for widgets to be a design flaw in the Motif toolkit.

If you need to change the background color of a widget dynamically, you can recalcu
the shadow colors and set the resources yourself. You can use theXmChangeColor()
routine, which takes the following form:

void XmChangeColor (Widget widget , Pixel background)

This routine changes all the foreground color, shadow colors, and select color fo
specifiedwidget based on thebackground color. The select color only applies to
ToggleButtons (XmNselectColor) and PushButtons (XmNarmColor).

The routineXmGetColors() can be used to query the colors which Motif
calculates . XmGetColors () takes the following form:

void XmGetColors(Screen * screen ,
Colormap colormap ,
Pixel bg,
Pixel * fg ,
Pixel * top_shadow ,
Pixel * bottom_shadow ,
Pixel *select)

This routine takes a colormap and a background color and calculates and retur
appropriate foreground color, top and bottom shadow colors, and select color. Once
have the colors, you could specify the appropriate resources for the widget.

A basic problem behind setting and getting colors for widgets is that what you get f
given pixel value depends on the colormap. A pixel is simply an index value into an a
of color definitions (a colormap). The problem with colormaps is that you never know w
colormap is associated with any particular widget.

By calling XtVaSetValues() using the type-converting resource,XtVaTypedArg , we
defer the problem to the toolkit and its string-to-color type converter. The toolkit alloca
the color out of the colormap already owned by the toolkit and sets the background
accordingly. Then we can get the actual pixel value and the colormap u
XtVaGetValues() . We pass the colormap and the background pixel value
Motif Programming Manual 85

Chapter 3:Overview of the Motif Toolkit

the

olor.
to it
in

n

he
ries

the
se
the

any
otif

cific
e book

olor
adow,
p and

ods
may
guely

class
yet
hich

write
XmGetColors() to calculate the rest of the colors. Once we have obtained all of
colors, we can set them usingXtVaSetValues() .

The Label widget and its subclasses cannot display text using more than one c
However, you can create a multi-plane pixmap and render various strings directly in
usingXDrawString() . You can use multiple colors by changing the foreground color
theGCusingXSetForeground() or XChangeGC() . Once you have the pixmap, you ca
use it to set theXmNlabelPixmap resource for the widget.

The text of the entries in a List widget is rendered using the widget’sXmNforeground
color. You cannot change the color of individual items in a List widget. T
XmNbackground of the List affects all areas of the widget not associated with the ent
themselves. The text in a Text widget or a TextField widget is also displayed using
XmNforeground color; there is no way to display text using different colors in the
widgets. When a List widget or Text widget is the direct child of a ScrolledWindow,
ScrollBars automatically match the background color of the List or Text widget.

Changes in Motif 2.1
Release 2.1 of the Motif toolkit introduces a number of new features, as well as m
enhancements to existing functionality. This section summarizes all of the changes in M
2.1 and refers you to other sections in the book for more detailed information on spe
changes. We also describe the changes that we made to the example programs in th
to make them accurate with respect to Motif 2.1.

General Toolkit Changes

Gadget Resources

Gadgets can now be painted independently, and no longer directly inherit their c
appearance from the Manager parent. Foreground, background, top and bottom sh
and highlight colors are now included in the gadget cache. Similarly cached are the to
bottom shadow pixmaps, and the highlight pixmap.

Traits

A Trait is an encapsulation of a piece of logical widget behavior. It defines a set of meth
for querying and setting this behavior, whatever it may be. Different widget classes
share in common the behavior, even though their class inheritance graphs are only va
related. To be more concrete, if we consider a ComboBox and a Text widget, the
hierarchy for the ComboBox does not derive through a Text class directly, and
considered logically, because the ComboBox and the Text widget both have a value w
is a string, there is sufficient in common such that we could define methods to read or
86 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

hods

ether
get:

s in

y in
be

de in

d. In
idget
for
fault
In

, font,

nts in

zed
hich
l, and

up of
multi-

ions
asses

,

in a
the value irrespective of which widget instance we are actually dealing with. Such met
already exist in Motif 2.0, and are known as a Trait.

Traits are named, and there is a standard routine for querying a widget to determine wh
it supports a given trait. And thus there are two ways of setting the value of a text wid
we can use the olderXmTextSetString() functional interface, or we can fetch the
XmQTaccessTextual trait from the widget concerned, then use thesetValue() routine
of the trait. The beauty of the second method is that it will also work for other widget
the Motif set which are logically also Text-like in some of their behavior.

However, Traits are really the domain of the widget author, to provide consistenc
behavior between logically related widget classes. Mention of particular Traits will
made if and when necessary, otherwise you are referred to the Widget Writer’s Gui
the official documentation.

Renditions and RenderTables

The XmFontList data type and associated functions are now considered deprecate
Motif 1.2, the appearance of compound strings depended upon a small number of w
attributes, of which theXmNfontList resource is the most important. The mechanisms
inheriting compound string appearance characteristics relied solely upon de
XmFontList values derived usually from the containing VendorShell or BulletinBoard.
Motif 2.0, there is the new entity called theXmRendition , which is a named (tagged)
object that consists of a complete set of appearance resources, including coloration
underline and strike-through settings. AnXmRendition is a shareable object which is
independently reference counted. AnXmRenderTable is simply a set ofXmRendition
objects; compound strings are rendered by comparing tags associated with compone
the string against taggedXmRendition objects in theXmRenderTable . The means
whereby a widget inherits compound string rendering information is now rationali
through the Trait mechanisms: a parent widget may choose to implement a Trait w
provides default render table data to its descendants. The BulletinBoard, VendorShel
MenuShell classes implement such a Trait.

The appearance of a compound string can now be specified through a whole gro
attributes that can be manipulated as a single set. Compound strings may now be
colored as a result.

An XmRendition object is a pseudo-widget: although not true widget classes, Rendit
and RenderTables may be specified in resource files, as well as in code. Widget cl
which used to support theXmNfontList now also support anXmNrenderTable
resource. For backwards compatibility, theXmNfontList resource continues to persist
although it is internally implemented through the newXmRenderTable type.

It is not necessary to precisely specify all attributes for each and every Rendition with
RenderTable: attributes may be given the valueXmAS_IS, which simply means that the
Motif Programming Manual 87

Chapter 3:Overview of the Motif Toolkit

the

be
tions

it
font
Tab
vious

the
entry,

are

er to

in

B
is is

n

pes.
value of the attribute is inherited from Renditions which are placed earlier in
RenderTable.

Renditions and RenderTables are discussed at length in Chapter 24.

TabLists

In Motif 1.2, creating tabular or multi-columnar data within a widget could usually only
performed through some code by the programmer which required careful calcula
based upon the size of the current font. Motif 2.0 introduces the notion of anXmTabList ,
which is a set ofXmTabobjects. AnXmTabdescribes a logical offset across a widget:
consists of a floating point quantity, a unit in which the quantity is expressed (inches,
units, millimetres, and so forth), and an offset model, which specifies whether the
value is counted in terms of absolute distance across the widget, or relative to a pre
XmTab object in theXmTabList .

The newXmRendition object contains anXmTabList attribute. The creation of a multi-
column list can now be achieved by embedding tab component separators within
compound strings of the list: each tab separator marks the beginning of a new column
where that column appears on the screen depends on theXmNtabList attribute of the
Rendition used to render that portion of the compound string. Tabs and TabLists
covered as part of the discussion in Chapter 25, Compound Strings.

Compound Strings

Compound strings have been re-modelled to use the new XmRendition object. In ord
do this, new XmString component types have been defined.

The compound string segments XmSTRING_COMPONENT_RENDITION_BEGIN and
XmSTRING_COMPONENT_RENDITION_ENDcan be embedded into a compound string
order to associate portions of the string with particular Rendition specifications.

To enable tabular layout of compound strings, the newXmSTRING_COMPONENT_TA
segment is defined, and this marks a column boundary within the string. How th
rendered will depend upon the value of theXmTabList attribute associated with the
current Rendition in force.

Additionally, the compound string segmentsXmSTRING_COMPONENT_LAYOUT_PUSHand
XmSTRING_COMPONENT_LAYOUT_POPcan be used to embed layout directio
specifications into the string.

XmStringComponentCreate () has been augmented to create the new component ty

Compound Strings are discussed in Chapter 25.
88 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

rsing

st in
The

ed
ally

ssing

the

the
red

rrow
r for
to both
l.

e to
the

hare
otif
iform

ce
the

that
e best
iately
plest
Parse Mappings and Parse Tables

Strings and compound strings can be dynamically manipulated by new table-driven pa
routines. AnXmParseMapping represents an entry in the table, anXmParseTable is the
table itself. Each entry in the table specifies a transformation: what to compare again
the original input string, what to replace any matching occurrence with, and so forth.
XmParseMapping object can either perform simple substitutions by supplying fix
substitution patterns, or it can specify further substitution routines which dynamic
modify the input depending on circumstances.

Typically, parse tables and their constituent parse mapping objects are used by pa
them as parameters to theXmStringParseText (), XmStringUnparse (), and
XmStringGenerate () functions.

Essentially, parse tables are simply filters which provide programmatic control over
way in which strings are converted into compound strings, or vice versa.

Parse Mappings are discussed in Chapter 25, Compound Strings.

Layout Direction

In Motif 1.2, although compound strings could be reversed by suitable setting of
XmNstringDirection resource, the layout of components in which they were rende
could not. The new Motif 2.0XmNlayoutDirection resource rectifies the issue: it is
possible to reverse the layout of a ComboBox, for example, so that the constituent a
button is drawn to the left of the text. This could be performed at user request eithe
reasons of Internationalization or handedness. Layout direction resources are added
the Manager and Primitive base classes: all Motif widgets therefore inherit the contro

Uniform Transfer Model

In Motif 1.2, different styles of communication between widgets required separate cod
implement. Thus the codes to implement data transfer through the ClipBoard, to
primary or secondary selection, and through Drag and Drop would not necessarily s
much in common in terms of the functions required to achieve the desired effect. In M
2.0, the disparate communication interfaces have been subsumed into a common Un
Transfer Model.

Under the Model, two new callbacks are added to the system: anXmNconvertCallback ,
and anXmNdestinationCallback . The convert callback is associated with the sour
of the data, and is both responsible for exporting the data in the format required by
destination, and in furnishing a list of formats in which the source is prepared to export
data. The destination callback communicates with the source in order to determine th
format in which to receive the data, and it arranges for the data to be handled appropr
when it arrives by setting up a transfer procedure to perform the task. The sim
Motif Programming Manual 89

Chapter 3:Overview of the Motif Toolkit

out

ll the
hich
only

in a

event
k and
d to

evant
the
s
ata,

and

rces

d

ed

e
ever
destination callback could in fact request data in a fixed format from the source with
bothering to request the list of supported forms.

The programmer is not required to implement convert and destination callbacks for a
various types of data transfer which Motif supports. Widgets have mechanisms w
utilize the Trait system in order to effect default data transference. A programmer
needs to write convert or destination callbacks where the data is to be transferred
manner which differs from the built-in target formats.

The Uniform Transfer Model is discussed in Chapter 23.

Automatic Popup Support

In the past, in order to popup a context sensitive menu, it was necessary to write
handler code to intercept ButtonPress events, followed by the appropriate code to pic
display the relevant menu. In Motif 2.0, the RowColumn widget has been enhance
provide auto-popup behavior, and the decision making process of selecting the rel
menu to display has been encapsulated in a new callback,
XmNpopupHandlerCallback , built into the Manager and Primitive classes. Now it i
only necessary to provide the callback, filling in an appropriate field of the callback d
in order to specify the required menu: the housekeeping tasks of event interception
menu display are built-in.

Specific Widget Changes
Motif 2.1 introduces a number of new widget classes, as well as including new resou
for classes previously defined.

VendorShell

The VendorShell has the new resourcesXmNbuttonRenderTable ,
XmNlabelRenderTable , andXmNtextRenderTable . These supersede the deprecate
XmNbuttonFontList , XmNlabelFontList , XmNtextFontList resources
respectively.

For finer control over the X input contexts which are created in Internationaliz
applications, the resourceXmNinputMethod is provided: the valueXmPER_SHELLcreates
one input context per shell hierarchy, the valueXmPER_WIDGETcreates one for each
widget which requests one.

VendorShell also supports theXmNlayoutDirection resource. The widget does not us
this resource itself, but maintains and supplies the resource as a default for which
descendant in the widget hierarchy lacks an explicit value.
90 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

e
iring

e
also

d

he

of

ith a
ing on

nd
by
ent
out

he
In Motif 2.0, XmNshellUnitType is considered deprecated: it is replaced by th
XmNunitType resource. This also acts as a default value for widget descendants requ
resolution information.

ArrowButton

The XmNdetailShadowThickness resource allows the programmer to specify th
shadow thickness inside the triangle of the ArrowButton. The ArrowButtonGadget
supports the resource.

BulletinBoard

The BulletinBoard has the new resourcesXmNbuttonRenderTable ,
XmNlabelRenderTable , andXmNtextRenderTable which superseded the deprecate
XmNbuttonFontList , XmNlabelFontList , XmNtextFontList resources
respectively.

ComboBox

ComboBox is a new widget as of Motif 2.0, combining direct textual input with t
convenience of list selection.

Container

Container is a new widget in Motif 2.0. It organises IconGadget children in a variety
layout styles, including a Tree format.

Display

The XmDisplay object has suffered a number of changes in order to interface Motif w
CDE desktop. Most of the resources alter the appearance of Toggles, and the shadow
Buttons, and are described fully in Volume 6B.

The most important of the new resources are theXmNnoFontCallback and
XmNnoRenditionCallback lists. Whenever an attempt is made to render a compou
string, if font or rendition information is found to be absent, a callback can be supplied
the programmer which can attempt to find an alternative. This is a significant improvem
over Motif 1.2, where the system itself would decide on an appropriate default font with
recourse to any intelligent intervention.

DrawingArea

DrawingArea now supports the new XmNconvertCallback and
XmNdestinationCallback resources associated with the Uniform Transfer Model. T
DrawingArea itself does not define any export target formats.
Motif Programming Manual 91

Chapter 3:Overview of the Motif Toolkit

ed in
single

ors

orts
id

nd
the

ion
adget
ainer
ciated
ular

rce
r of

f the

new
FileSelectionBox

In Motif 2.0 and later, the search pattern and base directory path can be display
separate text fields, as opposed to being concatenated together and displayed in a
field. The resourceXmNpathMode controls whether this new feature is enabled.

Gadget

The appearance resources XmNbackground , XmNbackgroundPixmap ,
XmNbottomShadowColor , XmNbottomShadowPixmap , XmNhighlightPixmap ,
XmNtopShadowPixmap are added so that Gadgets no longer strictly inherit their col
from the Manager parent.

As for the Manager and Primitive base classes, Gadget also supp
XmNlayoutDirection to control the order in which components of the object are la
out.

GrabShell

A new widget in Motif 2.0. GrabShell is a shell widget which grabs the pointer a
keyboard when it is mapped. It therefore directs focus to its child, and is used by
ComboBox to implement its popup list.

IconGadget

New in Motif 2.0, the IconGadget can display both textual and pixmap informat
simultaneously. The gadget is closely associated with the Container. Each IconG
supposedly represents pictorially some application object of some kind, and the Cont
organises the layout and selection of the given objects. Extra “detail” data can be asso
with an IconGadget, and the Container can display this extra information in a tab
format.

Label

The XmNfontList resource is deprecated, and is superseded by theXmNrenderTable
resource. Similarly for LabelGadget.

List

The List supports keyboard matching of items in Motif 2.0 and later. If the resou
XmNmatchBehavior is enabled, characters typed are compared with the first characte
each item, and the new currently selected item is reset accordingly. The color o
selected item itself can now be specified through theXmNselectColor resource.

The set of selected positions can be manipulated through the
XmNselectedPositions , XmNselectedPositionCount resources.
92 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

the

e

2.0

re

are

set

e

The way in which the user selects items in the list is controllable through
XmNselectionMode resource. InXmNORMAL_MODE, navigating the list using the keyboard
can select the item under the location cursor. InXmADD_MODE, navigating through the list
has no side effects with respect to the selected item set.

The List supports theXmNdestinationCallback in order to make the widget partake in
the Uniform Transfer Model.

MainWindow

From Motif 2.0, the routineXmMainWindowSetAreas () is marked as deprecated. Th
programmer should set theXmNcommandWindow, XmNmenuBar, XmNmessageWindow,
XmNworkWindow, XmNhorizontalScrollBar , XmNverticalScrollBar resources
directly using the standard Xt mechanisms.

Manager

New support for automatic popup menu control is provided through the Motif
XmNpopupMenuHandlerCallback .

The Motif 2.0XmNlayoutDirection resource facilitates automatic layout control.

MenuShell

The XmNbuttonFontList andXmNlabelFontList resources are deprecated, and a
superseded by theXmNbuttonRenderTable and XmNlabelRenderTable resources.
Similarly deprecated is theXmNdefaultFontList resource, although there is no
replacementXmNdefaultRenderTable resource.

Notebook

Notebook is a new widget in Motif 2.0. It simply lays out its children as though they
pages in a book.

PanedWindow

As of Motif 2.0, the PanedWindow now officially supports a horizontal configuration:
theXmNorientation resource toXmHORIZONTAL or XmVERTICAL to taste.

Primitive

The XmNlayoutDirection , XmNconvertCallback resources are added to this bas
class.

To support automatic context-sensitive menus, theXmNpopupHandlerCallback has
been added to the system.
Motif Programming Manual 93

Chapter 3:Overview of the Motif Toolkit

can
code

the
t is to
pshot

r-

ion

new

ough
gle

sage.

d or

r than
g.

he

which
r
ard
PrintShell

The PrintShell interfaces with the X11R6 X Print (Xp) extensions. A widget hierarchy
be printed by creating that hierarchy underneath a PrintShell, followed by appropriate
to invoke the printing. Printing can be either synchronous, or asynchronous, and
programmer can decide, by setting appropriate widget resources, whether the outpu
consist of the contents of the widgets concerned, or whether it is more of a screen sna
of the widgets themselves.

RowColumn

A new resource,XmNtearOffTitle , allows the programmer to specify a title for a tea
off menu.

Scale

As of Motif 2.0, the Scale widget supports automatic tick marks. The funct
XmScaleSetTicks () evenly spaces marks of various sizes along the edge.

The Scale can be configured as to whether it responds to user input through the
XmNeditable resource: for a read-only scale, set the resource to false.

Arrows can be placed at either or both ends of the Scale through theXmNshowArrows
resource, and the general appearance of the slider is configurable thr
XmNsliderMark : this can be configured to appear in various etched rectan
arrangements, as a circle, or as a thumb mark.

The size of the slider is configurable through theXmNsliderSize resource. This resource
is undocumented by the official channels, and thus there is no official guidance to its u

The color of the slider is also tunable: it can either be based upon the foregroun
background of the Scale, or upon the existing trough color. TheXmNsliderVisual
resource controls this aspect of behavior.

The Scale can behave as a thermometer, with the slider anchored at one end rathe
floating in the middle.XmNslidingMode is the resource required to configure this settin

Lastly, as of Motif 2.0, theXmNfontList resource is deprecated, and replaced with t
newerXmNrenderTable resource. The Scale also supports theXmNconvertCallback
list in order to participate in the Uniform Transfer Model.

Screen

The XmScreen object has been enhanced to provide a greater control over the way in
Motif allocates colors. TheXmNcolorAllocationProc resource allows the programme
to specify a procedure to perform the allocation. The default is the stand
XAllocColor () routine.
94 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

nd

es

used

hich
CDE

f an

llBar:

r
eded,

rag

.1,
rpose
alues
pre-

lues
alues
cally
Similarly, the algorithm by which Motif calculates default foreground, background, a
shadow colors is also now tunable through theXmNcolorCalculationProc resource.

The allocation of pixmaps can be controlled through theXmNbitmapConversionModel
resource: by default (XmMATCH_DEPTH) pixmaps are created such that the depth match
the widget for which they are allocated. Setting the value toXmMATCH_DYNAMICconverts
loaded bitmap files to a pixmap depth of 1.

Also on the subject of pixmaps, theXmNinsensitiveStipplePixmap resource
provides a stipple to use when making widgets appear insensitive. This is mostly
internally by the Gadget utilities.

Motif as of version 2.0 supports the notion of color objects: theXmNuseColorObject
resource enables the feature, such that if a color is dynamically altered, all widgets w
reference the color are changed as a side effect. Clearly, this resource is part of the
enhancements to Motif: it allows the desktop to change the whole style of color o
application without having to modify the entire widget hierarchy.

ScrollBar

Much of the enhancements associated with the Scale are in fact related to the Scro
XmNeditable , XmNshowArrows, XmNsliderMark , XmNsliderVisual ,
XmNslidingMode are all newly supported as of Motif 2.0.

The resourceXmNsnapBackMultiple controls the behavior of the ScrollBar if the use
drags the mouse outside the bounds of the widget. It specifies a distance, which if exce
causes the ScrollBar to snap back to its pre-drag settings.

ScrolledWindow

As of Motif 2.0, the ScrolledWIndow (and derived classes) supports automatic d
through the resourceXmNautoDragModel .

SpinBox and SimpleSpinBox

Two new widget classes, the first available as of Motif 2.0, the second from Motif 2
which allows the user to rotate through a range of values. SpinBox is the general pu
manager, into which any number of Text components are added. It rotates the v
associated with the Text component which currently has the focus. SimpleSpinBox is a
packaged unit that contains a single built-in Text component. The range of va
associated with any Text is specified through constraint resources. Rotation of the v
is achieved by pressing on an ArrowButton which the SpinBox components automati
add for the purpose.
Motif Programming Manual 95

Chapter 3:Overview of the Motif Toolkit

e

rance

e

inate.

e

t also
come

range

e

For

each
Text and TextField

The number of lines within the Text is now available through theXmNtotalLines
resource, added as of Motif 2.1.

In both widget classes, theXmNfontList resource is obsolete, replaced with th
XmNrenderTable resource, and theXmNdestinationCallback is added in order to
interface with the Uniform Transfer Model.

ToggleButton and ToggleButtonGadget

The Toggle widgets have been reworked in order to provide consistency of appea
under the CDE environment.

The resourceXmNdetailShadowThickness controls the thickness of the shadow on th
Toggle indicator.

In Motif 2.0 and later, a Toggle may be in one of three states: set, unset, and indeterm
By default, the Toggle holds two states, unless the resourceXmNtoggleMode is set to
XmTOGGLE_INDETERMINATE, which enables the third state. The resourc
XmNindeterminateInsensitivePixmap and XmNindeterminatePixmap are
pixmaps displayed when the toggle is in the third indeterminate state.

In Motif 1.2, the resourceXmNindicatorOn is a Boolean value; in Motif 2.0 and later, this
becomes an enumerated type, and specifies not just whether the indicator is visible, bu
its appearance: a check box, shadowed box, check (tick) mark, cross, and so on be
available. This blurs the distinction with the resourceXmNindicatorType , which is
extended to includeXmONE_OF_MANY_ROUND, XmONE_OF_MANY_DIAMOND, indicating a
round or diamond shaped indicator.

The resource XmNset also changes type from Boolean to an enumeration. The valid
is nowXmUNSET, XmSET, andXmINDETERMINATE.

Lastly, anXmNunselectColor is added from Motif 2.0 onwards to complement th
XmNselectColor resource.

Changes to the Example Programs
All of the example programs in this book have been updated to Motif 2.1 and X11R6.
example, calls tomanipulate compound strings and font lists have been
replaced with calls tohandle the new render table type .

Changes involving new Motif 2.1 functions and resources are described in detail when
example is presented.
96 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

ut
ay
use a
or a

swer

n can
ook

ved in
otif
ble to
Summary
The Motif widget set gives you a great deal of flexibility in designing an application. B
with this flexibility can come indecision, or even confusion, about the most effective w
to use these objects. If you want to give a user a set of exclusive choices, should you
PulldownMenu, a dialog box that contains ToggleButtons arranged in a CheckBox,
List widget? There is no right answer--or perhaps it is better to say that the right an
depends on the nature of the choices and the flow of control in your application.

Designing an effective user-interface is an art. Only experience and experimentatio
teach you the most effective way to organize an application. What we can do in this b
is teach you how to use each widget class and give you a sense of the tradeoffs invol
using different widgets. In this chapter, we’ve given you a broad overview of the M
toolkit. Subsequent chapters delve into each widget class in detail. You should be a
read the chapters in any order, as the needs of your application dictate.
Motif Programming Manual 97

Chapter 3:Overview of the Motif Toolkit
98 Motif Programming Manual

any
ar, a

It is
Chapter 1

In this chapter:
• Creating a MainWindow
• The MenuBar
• The Command and Mess

Areas
• Using Resources
• Summary
• Exercises

This chapter describes the M
types of applications. The Ma
scrollable work area, and var

As discussed in Chapter 3,O
application is the most visible
Motif Programming Manual
age 4
ere
ss the
ry
ch
vide
essage

e
ow
The Main Window
otif MainWindow widget, which can be used to frame m
inWindow is a manager widget that provides a menu b
ious other optional display and control areas.

verview of the Motif Toolkit, the main window of an
and the most used of all the windows in an application.

the focal point of the user’s interactions with the program, and it is typically the place wh
the application provides most of its visual feedback.To encourage consistency acro
desktop, theMotif Style Guidesuggests a generic main window layout, which can va
from application to application, but is generally followed by most Motif applications. Su
a layout is shown in Figure 4-1. As described in Section 3.4.1, a main window can pro
a menubar, a work area, horizontal and vertical scrollbars, a command area, and a m
area.

In an effort to facilitate the task of building a main window, the Motif toolkit provides th
MainWindow widget. This widget supports the different areas of the generic main wind

Figure 4-1: The main window of a Motif program

MenuBar

Command Area

Work Area

Message Area
99

Chapter 4: The Main Window

the
nd

the
ply
inal
otif
still
are

you

get
g the

s and
, this
the
d it
ad of
an
the

t as
n

n
, as
layout. However, the MainWindow widget is not the only way to handle the layout of
main window of your application. You are not required to use the MainWindow widget a
you should not feel that you need to follow the Motif specifications to the letter. While
Style Guidestrongly recommends using the main window layout, many applications sim
do not fit the standard GUI design model. For example, a clock application, a term
emulator, a calculator, and a host of other desktop applications do not follow the M
specifications in this regard, but they can still have Motif elements within them and can
be regarded as Motif-compliant. If you already have an application in mind, chances
you already know whether or not the main window layout is suited to the application; if
are in doubt, your best bet is to comply with theMotif Style Guide.

Before we start discussing the MainWindow widget, you should realize that this wid
class does not create any of the widgets it manages. It merely facilitates managin
widgets in a way that is consistent with theStyle Guide. In order to discuss the
MainWindow widget, we are going to have to discuss a number of other widget classe
use them in examples. As a beginning chapter in a large book on Motif programming
may seem like a bit much to handle, especially if you are completely unfamiliar with
Motif toolkit. We encourage you to branch off into other chapters whenever you fin
necessary to do so. However, it is not our intention to explain these other widgets ahe
time, nor is it our assumption that you already understand them. The lack of
understanding of the other widgets should not interfere with our goal of describing
MainWindow widget and how it fits into the design of an application.

Creating a MainWindow
The MainWindow widget class is defined in <Xm/MainW.h>, which must be included
whenever you create a MainWindow widget. As mentioned in Chapter 2, The Motif
Programming Model, you should probably use a SessionShell or TopLevelShell widge
the parent of a MainWindow*. If the MainWindow is being used as the main applicatio
window, the SessionShell returned byXtOpenApplication() † (or another similar
toolkit initialization function) is typically used as the parent. The functio
XmCreateMainWindow() can be used to create an instance of a MainWindow widget
shown in the following code fragment‡:

#include <Xm/Xm.h>
#include <Xm/MainW.h>

main (int argc, char *argv[])
{

Widget app_shell, main_w;

* The ApplicationShell is considered deprecated in X11R6.

† XtAppInitialize (), XtVaAppInitialize () are now considered deprecated in X11R6.

‡ XtVaAppInitialize () is considered deprecated in X11R6.
100 Motif Programming Manual

Chapter 4: The Main Window

hat it
ow
tical
al
se the
me
more

e use
dow

any
t style
only

d to

1-1
XtAppContext app_context;
/* Resources for the MainWindow */
Arg resource_values[...];
Cardinal num_values;/* Number of resources applied */

XtSetLanguageProc (NULL, NULL, NULL);
app_shell = XtVaOpenApplication (&app_context, "App-Class", NULL, 0, &argc,

argv, NULL, sessionShellWidgetClass, NULL);
main_w = XmCreateMainWindow (app_shell, “mw”, resource_values, num_values);
XtManageChild (main_w);
XtRealizeWidget (app_shell);
XtAppMainLoop (app_context);

}

The MainWindow class is subclassed from the ScrolledWindow class, which means t
inherits all the attributes of a ScrolledWindow, including its resources. A ScrolledWind
allows the user to view an arbitrary widget of any size by attaching horizontal and ver
ScrollBars to it. You can think of a MainWindow as a ScrolledWindow with the addition
ability to have an optional menu bar, command area, and message area. Becau
MainWindow is subclassed from the ScrolledWindow widget, we will be referring to so
ScrolledWindow resources and disclosing some facts about the ScrolledWindow. For
information about the ScrolledWindow, see Chapter 10, Scrolled Windows and ScrollBars.
You may eventually need to learn more about the ScrolledWindow widget to best mak
of the MainWindow, but this chapter tries to present the fundamentals of the MainWin
widget, rather than focus on the ScrolledWindow.

While a MainWindow does control the sizes and positions of its widget children like
manager widget, the geometry management it performs is not the classic managemen
of other manager widgets. The MainWindow is a special-case object that handles
certain types of children and performs only simple widget positioning. It is designe
support the generic main window layout specified by theMotif Style Guide. Let’s take a
look at how the MainWindow can be used in an actual application. Example
demonstrates how the MainWindow widget fits into a typical application design.*

Example 1-1: The show_pix.c program

/* show_pix.c -- A minimal example of a MainWindow. Use a Label as the
* workWindow to display a bitmap specified on the command line.
*/
#include <Xm/MainW.h>
#include <Xm/Label.h>
main (int argc, char *argv[])
{

Widget toplevel, main_w, label_w;
XtAppContext app_context;
Pixmap pixmap;
Arg al[4];

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 101

Chapter 4: The Main Window

ins
d as

the

. The
hat is
.

Cardinal ac = 0;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app_context, "Demos", NULL, 0, &argc,

argv, NULL, sessionShellWidgetClass, NULL);
if (!argv[1]) {

printf ("usage: %s bitmap-file\n", argv[0]);
exit (1);

}

ac = 0;
XtSetArg(al[ac], XmNscrollBarDisplayPolicy, XmAS_NEEDED); ac++;
XtSetArg(al[ac], XmNscrollingPolicy, XmAUTOMATIC); ac++;
main_w = XmCreateMainWindow (toplevel, "main_window", al, ac);

/* Load bitmap given in argv[1] */
pixmap = XmGetPixmap (XtScreen (toplevel), argv[1], BlackPixelOfScreen

(XtScreen (toplevel)), WhitePixelOfScreen (XtScreen
(toplevel)));

if (pixmap == XmUNSPECIFIED_PIXMAP) {
printf ("can't create pixmap from %s\n", argv[1]);
exit (1);

}
/* Now create label using pixmap */
ac = 0;
XtSetArg(al[ac], XmNlabelType, XmPIXMAP); ac++;
XtSetArg(al[ac], XmNlabelPixmap, pixmap); ac++;
label_w = XmCreateLabel (main_w, "label", al, ac);

/* set the label as the "work area" of the main window */
XtVaSetValues (main_w, XmNworkWindow, label_w, NULL);
XtManageChild (label_w);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app_context);

}

In this example, the MainWindow widget is not used to its full potential. It only conta
one other widget, a Label widget, that is used to display a bitmap from the file specifie
the first argument on the command line (argv[1]).*The Label widget is used as the work
area window for the MainWindow. We did this intentionally to focus your attention on
scrolled-window aspect of the MainWindow widget. The following command line:

% show_pix /usr/X11R6/include/bitmaps/xlogo64

* XtVaOpenApplication () parses the command-line arguments that are used when the program is run
command-line options that are specific to Xlib or Xt are evaluated and removed from the argument list. W
not parsed is left inargv ; our program readsargv [1] as the name of a bitmap to display in the MainWindow
102 Motif Programming Manual

Chapter 4: The Main Window

the
been
p
ion

the

er
an
d by

ss
or the

occurs

and
the
ot
produces the output shown in Figure 4-2.

The file specified on the command line should contain X11 bitmap data, so that
application can create a pixmap. The pixmap is displayed in a Label widget, which has
specified as theXmNworkWindowof the MainWindow. As shown in Figure 4-2, the bitma
is simply displayed in the window. However, if a larger bitmap is specified, only a port
of the bitmap can be displayed, so ScrollBars are provided to allow the user to view
entire bitmap. The output of the command:

% show_pix /usr/X11R6/include/bitmaps/escherknot

is shown in Figure 4-3.

The bitmap is obviously too large to be displayed in the MainWindow without eith
clipping the image or enlarging the window. Rather than resize its own window to
unreasonable size, the MainWindow can display ScrollBars. This behavior is enable
setting the MainWindow resourcesXmNscrollBarDisplayPolicy to XmAS_NEEDED
and XmNscrollingPolicy to XmAUTOMATIC. These values automate the proce
whereby ScrollBars are managed when they are needed. If there is enough room f
entire bitmap to be displayed, the ScrollBars are not provided. Try resizing theshow_pix
window and see how the ScrollBars appear and disappear as needed. This behavior
as a result of settingXmNscrollBarDisplayPolicy to XmAS_NEEDED.

Since we do not specify a size for the MainWindow, the toolkit sets both the width
height to be100 pixels. These default values are not a documented feature. Both
MainWindow and the ScrolledWindow suffer from the same problem: if you do n

Figure 4-2: Output of show_pix xlogo64

Figure 4-3: Output of show_pix escherknot
Motif Programming Manual 103

Chapter 4: The Main Window

is

ther

ntrol
for
is
but
as

vide
he
or
the
e
w.
ea in
specifically set theXmNwidth andXmNheight resources, the default size of the widget
not very useful.

The XmNscrollBarDisplayPolicy and XmNscrollingPolicy resources are
inherited from the ScrolledWindow widget class. BecauseXmNscrollingPolicy is set
to XmAUTOMATIC, the toolkit creates and manages the ScrollBars automatically. Ano
possible value for the resource isXmAPPLICATION_DEFINED, which implies that the
application is going to create and manage the ScrollBars for the MainWindow and co
all of the aspects of their functionality. Application-defined scrolling is the default style
the MainWindow widget, but it is unlikely that you will want to leave it that way in th
instance: application-defined scrolling is usually required for hand-drawn X graphics,
since the Label widget knows how to draw itself, we can leave the scrolling policy
XmAUTOMATIC. For complete details on the different scrolling styles, see Chapter 10.

Using the application-defined scrolling policy does not necessarily require you to pro
your own scrolling mechanisms. It simply relieves the MainWindow widget of t
responsibility of handling the scrolling functionality. If you use a ScrolledList
ScrolledText widget as the work area, you should definitely leave
XmNscrollingPolicy as XmAPPLICATION_DEFINED, since these widgets manag
their own ScrollBars. They will handle the scrolling behavior instead of the MainWindo
Example 1-2 shows an example of a program that uses a ScrolledList for the work ar
a MainWindow widget.*

Example 1-2: The main_list.c program

/* main_list.c -- Use the ScrolledList window as the feature
* component of a MainWindow widget.
*/

#include <Xm/MainW.h>
#include <Xm/List.h>

main (int argc, char *argv[])
{

Widget app_shell, main_w, list_w;
XtAppContext app_context;
Pixmap pixmap;

XtSetLanguageProc (NULL, NULL, NULL);
app_shell = XtVaOpenApplication (&app_context, "Demos", NULL, 0, &argc,

argv, NULL, sessionShellWidgetClass, NULL);
main_w = XmCreateMainWindow (app_shell, "main_window", NULL, 0);
list_w = XmCreateScrolledList (main_w, "main_list", NULL, 0);
XtVaSetValues (list_w, XtVaTypedArg, XmNitems, XmRString,

"Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,
XmNitemCount, 8, XmNvisibleItemCount, 5, NULL);

* XtVaAppInitialize() is considered deprecated in X11R6.
104 Motif Programming Manual

Chapter 4: The Main Window

gle

in a
eate
le the

h

list
k to
ype

ust
fied
ext
its
n of

dent
he
we
reated,
e

et of
ton is
bels,
that it
XtManageChild (list_w);
/* set the list_w as the "work area" of the main window */
XtVaSetValues (main_w, XmNworkWindow, XtParent (list_w), NULL);
XtRealizeWidget (app_shell);
XtAppMainLoop (app);

}

In order to simplify the application, we specified the items in the ScrolledList as a sin
string:

XtVaSetValues (list_w, XtVaTypedArg, XmNitems, XmRString,
"Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,
XmNitemCount, 8, XmNvisibleItemCount, 5,
NULL);

This technique provides the easiest way to specify a list for a List widget. The items
List widget must be specified as an array of compound strings. If we took the time to cr
each list item separately, we would have to create each compound string, assemb
array ofXmString objects and specify it as theXmNitems resource, and then free eac
string separately after the widget was created. By usingXtVaTypedArg , the whole list can
be created in one line using the List widget’s type converter to convert the string into a
of compound strings. We use this form of resource specification frequently in the boo
simplify examples. See Volume 4, for a complete discussion on how this kind of t
conversion is done. See Chapter 13, The List Widget, for details on the List widget; see
Chapter 25, Compound Strings, for details on XmStrings.

It is important to note that whileXmCreateScrolledList() creates both a
ScrolledWindow widget and a List widget, it returns the List widget. As a result, we m
useXtParent() to get access to the ScrolledWindow widget, so that it can be speci
as the work area of the MainWindow. A common programming error with a ScrolledT
or a ScrolledList widget is using the actual Text or List widget rather than
ScrolledWindow parent. Again, we refer you to Chapter 10, for a complete discussio
the use of ScrolledText and ScrolledList compound objects.

The MenuBar
Creating a MenuBar is a fairly complex operation, and one that is completely indepen
of the MainWindow itself. However, one of the principal reasons for using t
MainWindow widget is that it manages the layout of a MenuBar. In this section,
demonstrate the simplest means of creating a MenuBar. Once a MenuBar has been c
you simply tell the MainWindow to include it in the window layout by specifying th
MenuBar as the value of theXmNmenuBar resource for the MainWindow.

In the Motif toolkit, a MenuBar is not implemented as a separate widget, but as a s
CascadeButtons arranged horizontally in a RowColumn widget. Each CascadeBut
associated with a PulldownMenu that can contain PushButtons, ToggleButtons, La
and Separators. The managing RowColumn widget has a resource setting indicating
Motif Programming Manual 105

Chapter 4: The Main Window

these
tines
ting
r 20
ite

ut the
Motif

n
pecify
just
ated,

that
isplay

nuBar
use.
is being used as a MenuBar.You do not need to know any specific details about any of
widgets in order to create a functional MenuBar, since Motif provides convenience rou
that allow you to create self-sufficient menu systems. While the specifics on crea
PopupMenus, PulldownMenus, and MenuBars are covered in more detail in Chapte,
Interacting with the Window Manager, the basic case that we present in this section is qu
simple.

There are a variety of methods that you can use to create and manage a MenuBar, b
easiest method is to use the convenience menu creation routine provided by the
toolkit: XmVaCreateSimpleMenuBar() .*This function is demonstrated in the following
code fragment:

XmString file, edit, help;
Widget menubar, main_w;
...
/* Create a simple MenuBar that contains three menus */
file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
help = XmStringCreateLocalized ("Help");
menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",

XmVaCASCADEBUTTON, file, 'F',
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, help, 'H',
NULL);

XmStringFree (file);
XmStringFree (edit);
XmStringFree (help);

The output generated by this code is shown in Figure 4-4.

Like the functions XtVaSetValues() and XtVaCreateWidget() , the routine
XmVaCreateSimpleMenuBar() takes a variable-length argument list of configuratio
parameters. In addition to resource/value pairs, it also takes special arguments that s
the items in the MenuBar. You can specify RowColumn-specific resource/value pairs
as you would for any varargs routine. Once all the items in a MenuBar have been cre
it must be managed usingXtManageChild() .

If you are specifying an item in the MenuBar, the first parameter is a symbolic constant
identifies the type of the item. Since CascadeButtons are the only elements that can d

* There is also a non-varargs version of this function. It requires you to create each of the buttons in the Me
individually and associate it with a PulldownMenu via resources. The varargs function is often easier to

Figure 4-4: A simple MenuBar
106 Motif Programming Manual

Chapter 4: The Main Window

ound
s
the

for the
the

string
rings,

ou are
gn to
reated

ith 0
the

need

. The

You
for

ion

the
of

ame
tains
PulldownMenus, the first parameter should always be set toXmVaCASCADEBUTTON. The
label of the CascadeButton is given by the second parameter, which must be a comp
string. In the above example, the variablefile contains a compound string that contain
the text File . The third parameter specifies an optional mnemonic character for
CascadeButton that can be used to post the menu from the keyboard. The mnemonic
File menu isF. By convention, the first letter of a menu or menu item label is used as
mnemonic.

We use the compound string creation function,XmStringCreateLocalized() , to
create the compound strings for the menu labels. This function creates a compound
with the text encoded in the current locale. For a complete discussion of compound st
see Chapter 25.

Since you are not creating each CascadeButton using the normal creation routines, y
not returned a handle to each button.You might think that the label string that you assi
each button is used as the widget’s name, but this is not the case. The buttons are c
sequentially, so the MenuBar assigns the namebutton_ n to each button. The valuen is
the position of the button in the MenuBar, where positions are numbered starting w
(zero).We will discuss how you can specify resources for items on the MenuBar later in
chapter.

Do not attempt to install callback routines on the CascadeButtons themselves. If you
to know when a particular menu is popped up, you should use theXmNpopupCallback on
the MenuShell that contains the PulldownMenu associated with the CascadeButton
popup and popdown callback lists are described briefly in Chapter 7,Custom Dialogs; for
more information, see Volume 4,X Toolkit Intrinsics Programming Manual.

Creating a PulldownMenu
Every CascadeButton in a MenuBar must have a PulldownMenu associated with it.
can create the items in a PulldownMenu using a method that is similar to the one
creating a MenuBar. A PulldownMenu can be created using the funct
XmVaCreateSimplePulldownMenu() . This routine is slightly more involved than
XmVaCreateSimpleMenuBar() . The routine takes the following form:

Widget XmVaCreateSimplePulldownMenu (Widget parent ,
String name ,
int post_from_button ,
XtCallbackProc callback ,...)

The post_from_button parameter specifies the CascadeButton that posts
PulldownMenu. This parameter is an index (starting at zero) into the array
CascadeButtons in theparent widget, which should be a MenuBar. Thenameparameter
specifies the widget name for the RowColumn widget that is the PulldownMenu. This n
is not the title of the CascadeButton associated with the menu. The MenuShell that con
the PulldownMenu uses the same name with_popup appended to it. Thecallback
Motif Programming Manual 107

Chapter 4: The Main Window

items

in the

t it to
ndles
s the

ntain

The
pend
in a
parameter specifies a function that is invoked whenever the user activates any of the
in the menu. The rest of the arguments toXmVaCreateSimplePulldownMenu() are
either RowColumn resource/value pairs or special arguments that specify the items
PulldownMenu.

You should not manage a PulldownMenu after you create it because you do not wan
appear until it is posted by the user. The CascadeButton that posts the menu ha
managing the menu when it needs to be displayed. The following code fragment show
use ofXmVaCreateSimplePulldownMenu() to create a PulldownMenu:

XmString open, save, quit, quit_acc;
Widget menubar, menu;
...
/* First menu is the File menu -- callback is file_cb() */
open = XmStringCreateLocalized ("Open...");
save = XmStringCreateLocalized ("Save...");
quit = XmStringCreateLocalized ("Quit");
quit_acc = XmStringCreateLocalized ("Ctrl-C");
menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaPUSHBUTTON, save, 'S', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q', "Ctrl<Key>c", quit_acc,
NULL);

XmStringFree (open);
XmStringFree (save);
XmStringFree (quit);
XmStringFree (quit_acc);
...

Unlike a MenuBar, which can only contain CascadeButtons, a PulldownMenu can co
a number of different types of elements. As withXmVaCreateSimpleMenuBar() , these
elements are specified by a symbolic constant that identifies the type of the item.
symbolic constant is followed by a variable number of additional parameters that de
on the type of the menu item.You can use the following values to specify the items
PulldownMenu:

XmVaPUSHBUTTON
The item is a PushButton. It takes four additional parameters: a compound
string label, a mnemonic, an accelerator, and a compound string that con-
tains a text representation of the accelerator. When the PushButton is se-
lected, the callback routine is called. It is passed an integer value as
client_data that indicates the item on the PulldownMenu that was acti-
vated. The value is an index into the menu that ranges from 0 to n-1 ; if
client_data is two, then the third item in the menu was selected.

XmVaTOGGLEBUTTON
The item is a ToggleButton. It takes the same four additional parameters
as described for XmVaPUSHBUTTON. When the ToggleButton is selected, the
108 Motif Programming Manual

Chapter 4: The Main Window

u item
value of the button is toggled and the callback routine is called. The
client_data that is passed to the callback routine is handled the same as
for PushButtons.

XmVaCHECKBUTTON
This value is identical to XmVaTOGGLEBUTTON.

XmVaRADIOBUTTON
The item is a ToggleButton with RadioBox characteristics, which means
that only one item in the menu can be set at a time. The PulldownMenu
does not enforce this behavior, so you must either handle it yourself or
specify other RowColumn resources to make the menu function like a Ra-
dioBox. We demonstrate creating a menu with RadioBox behavior later in
the chapter. This value takes the same additional parameters and deals
with the callback routine in the same way as ToggleButtons.

XmVaCASCADEBUTTON
The item is a CascadeButton, which is usually associated with a pullright
menu. The value takes two additional parameters: a compound string label
and a mnemonic. Pullright menus are, ironically, easier to implement and
manage using the not-so-simple menu creation routines described in Chap-
ter 19, Menus.

XmVaSEPARATOR
The item is a Separator and it does not take any additional parameters.
Since separators cannot be selected, the callback routine is not called for
this item. Adding a separator does not affect the item count with respect to
the client_data values that are passed to the callback routine for other
menu items.

XmVaSINGLE_SEPARATOR
This value is identical to XmVaSEPARATOR.

XmVaDOUBLE_SEPARATOR
This value is identical to XmVaSEPARATOR, except that the separator widget
displays a double line instead of a single line.

XmVaTITLE
The item is a Label that is used to create a title in a menu. It takes one ad-
ditional parameter: a compound string label. The item is not selectable, so
it does not have a mnemonic associated with it and it does not call the call-
back routine. Adding a title does not affect the item count with respect to
the client_data values that are passed to the callback routine for other
menu items.

Just as with the CascadeButtons in a MenuBar, the labels associated with each men
are not the names of the widgets themselves. The names of the buttons arebutton_ n,
Motif Programming Manual 109

Chapter 4: The Main Window

es

rs for

odify
on is
ange

e
ty of
enu
tains
s on

e
form

The

th the
fore

such

ore
for
wheren is the position of the button in the menu (starting with zero). Similarly, the nam
of the separators and the titles areseparator_ n and label_ n, respectively. We will
discuss how you can use resources to specify labels, mnemonics, and accelerato
menus and menu items later in the chapter.

Menus are not intended to be changed dynamically. You should not add, delete, or m
the menus on the MenuBar or the menu items in PulldownMenus once an applicati
running. Rather than delete an item on a menu when it is not appropriate, you should ch
the sensitivity of the item usingXmNsensitive . The menus in an application should b
static in the user’s eyes; changing the menus would be like changing the functionali
the program while the user is running it. The one exception to this guideline involves m
items that correspond to dynamic objects. For example, if you have a menu that con
an item for each application that is running on a display, it is acceptable for the item
the menu to change to reflect the current state of the display.

SimpleMenu Callback Routines
The callback routine associated with theFile menu shown earlier is invoked whenever th
user selects any of the buttons in the menu. Just like any callback, the routine takes the
of anXtCallbackProc :

void file_cb (Widget widget , XtPointer client_data , XtPointer call_data)

The widget parameter is a handle to the widget that was selected in the menu.
client_data parameter is the index of the menu item in the menu. Thecall_data
parameter is a pointer to a callback structure that contains data about the callback. Bo
client_data andcall_data parameters should be cast to their appropriate types be
the data that they contain is accessed.

Every Motif callback routine has a callback structure associated with it. The simplest
structure is of typeXmAnyCallbackStruct , which has the following form:

typedef struct {
int reason;
XEvent *event;

} XmAnyCallbackStruct;

All of the Motif callback structures have these two fields, but they also contain m
detailed information about why the callback function was invoked. The callback routine
the File menu would be passed anXmPushButtonCallbackStruct , since all of the
menu items are PushButtons. This structure has the following form:

typedef struct {
int reason;
XEvent *event;
int click_count;

} XmPushButtonCallbackStruct;
110 Motif Programming Manual

Chapter 4: The Main Window

of

rned

ich of

me
eld
ays

re
by a

this

t was
ases.
he
Theclick_count field is not normally used when a PushButton is in a menu. If one
the items in the menu were a ToggleButton, thecall_data parameter would be of type
XmToggleButtonCallbackStruct , which has the following form:

typedef struct {
int reason;
XEvent *event;
int set;

} XmToggleButtonCallbackStruct;

The set field indicates whether the item was selected (turned on) or deselected (tu
off).

When a menu contains both PushButtons and ToggleButtons, you can determine wh
the two callback structures thecall_data parameter points to by examining thereason
field. Since all callback structures have this field, it is always safe to query it. As its na
implies, this field indicates why the callback routine was invoked. The value of this fi
may also indicate the type of the widget that invoked the callback. While we can alw
determine the type of thewidget parameter by using the macroXtIsSubClass() , using
the reason field is more straightforward. The PushButton widget uses the valueXmCR_
ACTIVATE to indicate that it has been activated, while the ToggleButton usesXmCR_
VALUE_CHANGEDto indicate that its value has been changed. In our example, thereason
will always beXmCR_ACTIVATE, since there are only PushButtons in the menu. If the
were also ToggleButtons in the menu, we would know that the callback was invoked
ToggleButton if the value wereXmCR_VALUE_CHANGED.

Theevent field in all of the callback structures is a pointer to anXEvent structure. The
XEvent identifies the actual event that caused the callback routine to be invoked. In
example, the event is not of particular interest.

In the callback function, you can choose to do whatever is appropriate for the item tha
selected. The callback structure is probably not going to be of that much help in most c
However, theclient_data passed to the function can be used to identify which of t
menu items was selected. The following code fragment demonstrates the use ofclient_
data :

/* a menu item from the "File" pulldown menu was selected */
void file_cb (Widget widget, XtPointer client_data, XtPointer call_data)
{

extern void OpenNewFile(void), SaveFile(void);
int item_no = (int) client_data;

if (item_no == 0)
/* the "new" button */
OpenNewFile ();

else if (item_no == 1)
/* the "save" button */
SaveFile();

else
Motif Programming Manual 111

Chapter 4: The Main Window

point
h as
es
erface
rably
to be

o far.
ary

otif
or of
these
ake
s or
, just
/* the "Quit" button */
exit (0);

}

The callback routines for menu items should be as simple as possible from a structural
of view. A well-designed application should have application-specific entry points suc
OpenNewFile() andSaveFile() , as shown in the previous example. These routin
should be defined in separate files that are not necessarily associated with the user-int
portion of the program. The use of modular programming techniques helps conside
when an application is being maintained by a large group of people or when it needs
ported to other user-interface platforms.

A Sample Application
Let’s examine an example program that integrates what we have discussed s
Example 1-3 modifies the behavior of our first example, which displayed an arbitr
pixmap, by allowing the user to change the bitmap dynamically using a M
FileSelectionDialog. The program also allows the user to dynamically change the col
the bitmap using a PulldownMenu. As you can see by the size of the program, adding
two simple features is not trivial. Many functions and widgets are required in order to m
the program functional. As you read the example, don’t worry about unknown widget
details that we haven’t addressed just yet; we will discuss them afterwards. For now
try to identify the familiar parts and see how everything works together.*

Example 1-3: The dynapix.c program

/* dynapix.c -- Display a bitmap in a MainWindow, but allow the user
** to change the bitmap and its color dynamically. The design of the
** program is structured on the pulldown menus of the menubar and the
** callback routines associated with them. To allow the user to choose
** a new bitmap, the "Open" button pops up a FileSelectionDialog where
** a new bitmap file can be chosen.
*/
#include <Xm/MainW.h>
#include <Xm/Label.h>
#include <Xm/MessageB.h>
#include <Xm/FileSB.h>

/* Globals: the toplevel window/widget and the label for the bitmap.
** "colors" defines the colors we use, "cur_color" is the current
** color being used, and "cur_bitmap" references the current bitmap
** file.
*/
Widget toplevel, label;
String colors[] = {"Black", "Red", "Green", "Blue"};

* XtVaAppInitialize () is considered deprecated in X11R6.XmStringGetLtoR () is deprecated in Motif 2.0,
and is replaced byXmStringUnparse ().
112 Motif Programming Manual

Chapter 4: The Main Window
Pixel cur_color;
/* make large enough for full pathnames */
char cur_bitmap[1024] = "xlogo64";

main (int argc, char *argv[])
{

Widget main_w, menubar, menu, widget;
XtAppContext app;
Pixmap pixmap;
XmString file, edit, help, open, quit, red, green, blue, black;
void file_cb(Widget, XtPointer, XtPointer);
void change_color(Widget, XtPointer, XtPointer);
void help_cb(Widget, XtPointer, XtPointer);
Arg al[10];
Cardinal ac = 0;

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit and parse command line options. */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* main window contains a MenuBar and a Label displaying a pixmap */
ac = 0;
XtSetArg(al[ac], XmNscrollBarDisplayPolicy, XmAS_NEEDED); ac++;
XtSetArg(al[ac], XmNscrollingPolicy, XmAUTOMATIC); ac++;
main_w = XmCreateMainWindow (toplevel, "main_window", al, ac);
/* Create a simple MenuBar that contains three menus */
file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
help = XmStringCreateLocalized ("Help");
menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",

XmVaCASCADEBUTTON, file, 'F',
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, help, 'H',
NULL);

XmStringFree (file);
XmStringFree (edit);
/* don't free "help" compound string yet -- reuse it later */
/* Tell the menubar which button is the help menu */
if ((widget = XtNameToWidget (menubar, "button_2")) != (Widget) 0)

XtVaSetValues (menubar, XmNmenuHelpWidget, widget, NULL);
/* First menu is the File menu -- callback is file_cb() */
open = XmStringCreateLocalized ("Open...");
quit = XmStringCreateLocalized ("Quit");
XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, open, 'N', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
NULL);

XmStringFree (open);
XmStringFree (quit);
/* Second menu is the Edit menu -- callback is change_color() */
black = XmStringCreateLocalized (colors[0]);
red = XmStringCreateLocalized (colors[1]);
green = XmStringCreateLocalized (colors[2]);
Motif Programming Manual 113

Chapter 4: The Main Window
blue = XmStringCreateLocalized (colors[3]);
menu=XmVaCreateSimplePulldownMenu(menubar, "edit_menu",1, change_color,

XmVaRADIOBUTTON, black, 'k', NULL, NULL,
XmVaRADIOBUTTON, red, 'R', NULL, NULL,
XmVaRADIOBUTTON, green, 'G', NULL, NULL,
XmVaRADIOBUTTON, blue, 'B', NULL, NULL,
/* RowColumn resources to enforce */
XmNradioBehavior, True,
/* radio behavior in Menu */
XmNradioAlwaysOne, True,
NULL);

XmStringFree (black);
XmStringFree (red);
XmStringFree (green);
XmStringFree (blue);
/* Initialize menu so that "black" is selected. */
if ((widget = XtNameToWidget (menu, "button_0")) != (Widget) 0)

XtVaSetValues (widget, XmNset, XmSET, NULL);
/* Third menu is the help menu -- callback is help_cb() */
XmVaCreateSimplePulldownMenu (menubar, "help_menu", 2, help_cb,

XmVaPUSHBUTTON, help, 'H', NULL, NULL, NULL);
XmStringFree (help); /* we're done with it; now we can free it */
XtManageChild (menubar);
/* user can still specify the initial bitmap */
if (argv[1])

(void) strcpy (cur_bitmap, argv[1]);
/* initialize color */
cur_color = BlackPixelOfScreen (XtScreen (toplevel)),
/* create initial bitmap */
pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap, cur_color,

WhitePixelOfScreen (XtScreen (toplevel)));
if (pixmap == XmUNSPECIFIED_PIXMAP) {

puts ("can't create initial pixmap");
exit (1);

}
/* Now create label using pixmap */
ac = 0;
XtSetArg(al[ac], XmNlabelType, XmPIXMAP); ac++;
XtSetArg(al[ac], XmNlabelPixmap, pixmap); ac++;
label = XmCreateLabel (main_w, "label", al, ac);
XtManageChild (label);
/* set the label as the "work area" of the main window */
XtVaSetValues (main_w, XmNmenuBar, menubar, XmNworkWindow, label, NULL);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/*
** Popdown routine for the File Selection Box
*/
void hide_fsb (Widget w, XtPointer client_data, XtPointer call_data)
{

/* This also pops down the XmDialogShell parent of the
114 Motif Programming Manual

Chapter 4: The Main Window
** File Selection Box
*/
XtUnmanageChild (w);

}

/* Any item the user selects from the File menu calls this function.
** It will either be "Open" (item_no == 0) or "Quit" (item_no == 1).
*/
void file_cb(Widget widget, /* menu item that was selected */

XtPointer client_data, /* the index into the menu */
XtPointer call_data) /* unused */

{
static Widget dialog; /* make it static for reuse */
void load_pixmap(Widget, XtPointer, XtPointer);
int item_no = (int) client_data;

if (item_no == 1) /* the "quit" item */
exit (0);

/* "Open" was selected. Create a Motif FileSelectionDialog w/callback */
if (!dialog) {

dialog = XmCreateFileSelectionDialog (toplevel, "file_sel", NULL, 0);
XtAddCallback (dialog, XmNokCallback, load_pixmap, NULL);
XtAddCallback (dialog, XmNcancelCallback, hide_fsb, NULL);

}
/* This also pops up the XmDialogShell parent of the File selection box */
XtManageChild (dialog);

}

/* The OK button was selected from the FileSelectionDialog (or, the user
** double-clicked on a file selection). Try to read the file as a bitmap.
** If the user changed colors, we call this function directly from
** change_color()to reload the pixmap. In this case, we pass NULL as the
** callback struct so we can identify this special case.
*/
void load_pixmap (Widget dialog, XtPointer client_data, XtPointer call_data)
{

Pixmap pixmap;
char *file = NULL;
XmFileSelectionBoxCallbackStruct *cbs;

cbs = (XmFileSelectionBoxCallbackStruct *) call_data;
if (cbs) {

file = (char *) XmStringUnparse (cbs->value, NULL,
XmCHARSET_TEXT, XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL);

if (file == (char *) 0)
return; /* internal error */

(void) strcpy (cur_bitmap, file);
XtFree (file); /* free allocated data from XmStringUnparse() */

}
pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap, cur_color,

WhitePixelOfScreen (XtScreen (toplevel)));
if (pixmap == XmUNSPECIFIED_PIXMAP)

printf ("Can't create pixmap from %s\n", cur_bitmap);
Motif Programming Manual 115

Chapter 4: The Main Window
else {
Pixmap old;
XtVaGetValues (label, XmNlabelPixmap, &old, NULL);
XmDestroyPixmap (XtScreen (toplevel), old);
XtVaSetValues (label, XmNlabelType, XmPIXMAP, XmNlabelPixmap, pixmap,

NULL);
}

}
/* called from any of the "Edit" menu items. Change the color of the
** current bitmap being displayed. Do this by calling load_pixmap().
*/
void change_color (Widget widget, /* selected menu item */

XtPointer client_data, /* the index into the menu */
XtPointer call_data) /* unused */

{
XColor xcolor, unused;
Display *dpy = XtDisplay (label);
Colormap cmap = DefaultColormapOfScreen (XtScreen (label));
int item_no = (int) client_data;

if (XAllocNamedColor (dpy, cmap, colors[item_no], &xcolor, &unused) == 0 ||
cur_color == xcolor.pixel)

return;

cur_color = xcolor.pixel;
load_pixmap (widget, NULL, NULL);

}

#define MSG \
"Use the FileSelection dialog to find bitmap files to\n\
display in the scrolling area in the main window. Use\n\
the edit menu to display the bitmap in different colors."

/* The help button in the help menu from the menubar was selected.
** Display help information defined above for how to use the program.
** This is done by creating a Motif information dialog box. Again,
** make the dialog static so we can reuse it.
*/
void help_cb (Widget widget, XtPointer client_data, XtPointer call_data)
{

static Widget dialog;
if (!dialog) {

Arg args[5];
int n = 0;
XmString msg = XmStringCreateLocalized (MSG);
XtSetArg (args[n], XmNmessageString, msg); n++;
dialog = XmCreateInformationDialog (toplevel, "help_dialog", args, n);

}
/* This also pops up the XmDialogShell parent of the XmMessageBox */
XtManageChild (dialog);

}

116 Motif Programming Manual

Chapter 4: The Main Window

the
. Just

ttons

is
to

sed at
r
s a
y is
p out.

e one
the
the
The output of the program is shown in Figure 4-5.

The beginning of the program is pretty much as expected. After the toolkit is initialized,
MainWindow and the MenuBar are created the same way as in the previous examples
after the MenuBar is created, however, we make the following calls:

if ((widget = XtNameToWidget (menubar, "button_2")) != (Widget) 0)
XtVaSetValues (menubar, XmNmenuHelpWidget, widget, NULL);

The purpose of these statements is to inform the MenuBar which of its CascadeBu
contains theHelp menu. Setting the MenuBar’sXmNmenuHelpWidget resource to the
CascadeButton returned byXtNameToWidget() causes the MenuBar to position the
menu specially. TheHelp menu is placed at the far right on the MenuBar; this position
necessary for the application to conform to Motif style guidelines. For details on how
support a help system, see Chapter 7,Custom Dialogsand Chapter 27,Advanced Dialog
Programming.

PulldownMenus are created next in the expected manner. The only variation is for theEdit
menu, where each item in the menu represents a color. Since only one color can be u
a time, the color that is currently being used is marked with a diamond-shape indicato*. In
order to get this radio-box behavior, each menu item in the PulldownMenu i
XmVaRADIOBUTTONand the menu is told to treat the items as a RadioBox. The analog
that of an old car radio, where selecting a new station causes the other selectors to po
Just as you can only have the radio tuned to one station at a time, you may only hav
color set at a time. The RadioBox functionality is managed automatically by
RowColumn widget that is used to implement the PulldownMenu. Setting
XmNradioBehavior and XmNradioAlwaysOne RowColumn resources toTrue
provides the RadioBox behavior. See Chapter 12,Labels and Buttons, for a complete

* From Motif 2.0 onwards, the shape partly depends upon the XmDisplay objectXmNenableToggleVisual re-
source, and may appear round, as in Figure 4.6.

Figure 4-5: Output of dynapix.c
Motif Programming Manual 117

Chapter 4: The Main Window

Box-

adio
) is
the

he

he

t

d

eates
the

get a

often

sing
ms,
le and

. For
me

e the
at it
tent

ended
description and further examples of this type of behavior. Figure 4-6 shows the Radio
styleEdit menu.

Although the RowColumn manages the RadioBox automatically, we need to turn the r
on by setting the initial color. After the PulldownMenu is created, the menu (RadioBox
initialized so that its first item is selected, since we know that we are using black as
initial color. XtNameToWidget() is used again to get the appropriate button from t
menu. Since the menu items were created usingXmVaRADIOBUTTON, the widget that is
returned is a ToggleButton.TheXmNset resource is used to turn the button on. Once t
menu has been initialized, the Motif toolkit handles everything automatically.

Note that when we create theHelp menu, there is only one item in the menu. You migh
think that it is redundant to have a singleHelp item in theHelpmenu, but this design is an
element of Motif style. TheMotif Style Guidestates that items on the MenuBar shoul
always post PulldownMenu, not perform application actions directly.

It is important to note thatXmVaCreateSimplePulldownMenu() returns the
RowColumn widget that contains the items in the menu, even though the routine cr
both the RowColumn widget and its MenuShell parent. The routine does not return
MenuShell widget that is actually popped up and down when the menu posted. To
handle to that widget, you need to useXtParent() on the RowColumn widget. This
design makes sense, since you need access to the RowColumn widget much more
than you need access to the MenuShell.

Once all of the items have been installed, the MenuBar is managed u
XtManageChild() . The approach to creating MenuBars, PulldownMenus, menu ite
and their associated callback routines that we have described here is meant to be simp
straightforward. In some cases, you may find that these techniques are too limiting
example, you cannot specify different callback routines for different items in the sa
menu, you cannot pass different client data for different items, and you cannot nam
widgets individually. The most inconvenient aspect of this method, however, is th
requires so much redundant code in order to build a realistically sized MenuBar. Our in
here is to introduce the basic concepts of menus and to demonstrate the recomm

Figure 4-6: The Edit menu for dynapix.c
118 Motif Programming Manual

Chapter 4: The Main Window

an be

the

ialog

alog:

el
lier in
d to

racter
design approach for applications. We describe how the menu creation process c
generalized for large menu systems in Chapter 19.

The rest of Example 1-3 is composed of callback routines that are used by
PulldownMenu items. For example, when the user selects either of the items in theFile
menu, the functionfile_cb() is called. If theQuit item is selected, theclient_data
parameter is1 and the program exits. If theOpenitem is selected,client_data is 0 and
a FileSelectionDialog is popped up to allow the user to select a new bitmap file. The d
is created using the convenience routineXmCreateFileSelectionDialog() , which
produces the results shown in Figure 4-7. Two callback routines are installed for the di
load_pixmap() , which is called when the user presses theOK button, andhide_fsb() ,
which is called when the user selects theCancelbutton. For more detailed information on
the FileSelectionDialog, see Chapter 6,Selection Dialogs.

The load_pixmap() function loads a new bitmap from a file and displays it in the Lab
widget. This function uses the same method for loading a pixmap as was used ear
main() .Since the function is invoked as a callback by the FileSelectionDialog, we nee
get the value of the file selection. The value is taken from thevalue field of the
FileSelectionDialog’s callback structure,XmFileSelectionBoxCallbackStruct .
Since the filename is represented as a compound string, it must be converted to a cha
string. The conversion is done usingXmStringUnparse() * , which creates a regular C
string for use byXmGetPixmap() . The load_pixmap() routine is also called directly

* XmStringGetLtoR () is considered deprecated from Motif 2.0 onwards.

Figure 4-7: File FileSelectionDialog for dynapix.c
Motif Programming Manual 119

Chapter 4: The Main Window

r

ng

s the
ted for
he
other
s in

eate

me is

-
s
f
rent
or

e the

on

f an

aining
terial
ake

that
he
tion.

The
from change_color() , so we need to check thecall_data parameter. This paramete
is NULL if the routine is not invoked as a callback.

If XmGetPixmap() succeeds, we get the old pixmap and destroy it usi
XmDestroyPixmap() before we install the new pixmap.XmGetPixmap() loads and
caches a pixmap. If the function is called more than once for a given image, it return
cached image, which saves space because a new version of the pixmap is not alloca
each call.XmDestroyPixmap() decrements the reference count for the image; if t
reference count reaches to zero, the pixmap is actually destroyed. Otherwise, an
reference to it may exist, so nothing is done. It is important to use these two function
conjunction with each other. However, if you use other pixmap-loading functions to cr
pixmaps, you cannot useXmDestroyPixmap() to free them.

The functionchange_color() is used as the callback routine for items in theEdit menu.
The names of the colors are stored in thecolors array. The index of a color in this array
is the same as the index of the corresponding menu item in the menu.The color na
parsed and loaded usingXAllocNamedColor() , provided that the string exists in the
RGB database (usually/usr/X11R6/lib/rgb.txt). If the routine is successful, it returns a non
zero status and theXColor structure is filled with the RGB data and pixel value. In thi
case, load_pixmap() is called to reload the pixmap with the new color. I
XAllocNamedColor() returns zero, or if the returned pixel value is the same as the cur
one,change_color() returns, as there is no point in reloading an identical pixmap. F
additional information about loading and using colors, see Volume 1, and Volume 2.

Thehelp_cb() function is the callback routine for theHelpmenu item on theHelpmenu.
It simply displays an InformationDialog that contains a message describing how to us
program. See Chapter 5,Introduction to Dialogs,and Chapter 27, Advanced Dialog
Programming, for a complete description of these dialogs and suggestions
implementing a functional help system.

The Command and Message Areas
We have already covered most of what you need to know about the MainWindow o
application in this chapter and Chapter 3,Overview of the Motif Toolkit. The material in
the rest of the chapter is considered somewhat advanced, so you could skip the rem
sections and be relatively secure in moving onto the next chapter. The remaining ma
provides details about the MainWindow widget that need to be discussed in order to m
this chapter complete.

The greatest difficulty with the command and message areas of the MainWindow is
these objects are better defined in the Motif specification than in the Motif toolkit. T
command area is intended to support a tty-style command-line interface to an applica
The command area is not supposed to act likextermor any sort of terminal emulator; it is
just a single-line text area for entering individually typed commands for an application.
120 Motif Programming Manual

Chapter 4: The Main Window

needed
the

egin by

om a
s can
than

ing a
ge, it

ndard
ject,
all
message area is just an output-only area that is used for error and status messages as
by an application. While both of these areas are optional MainWindow elements,
message area is usually more common than the command area. Nevertheless, let’s b
discussing the command area.

A command area is especially convenient for applications that are being converted fr
tty-style interface to a graphical user interface. Properly converted, such application
do rather well as GUI-based programs, although the conversion can be more difficult
you might expect. For example, a PostScript interpreter could be implemented us
command area in the MainWindow. However, since PostScript is a verbose langua
does not work well with single-line text entry fields.

Example 1-4 shows how the command area can be used to allow the user to input sta
UNIX commands. The output of the commands is displayed in the ScrolledText ob
which is the work area of the MainWindow. For simplicity, we’ve kept the MenuBar sm
so as to dedicate most of the program to the use of the command area.*

Example 1-4: The cmd_area.c program

/* cmd_area.c -- use a ScrolledText object to view the
** output of commands input by the user in a Command window.
*/

#include <Xm/Text.h>
#include <Xm/MainW.h>
#include <Xm/Command.h>
#include <stdio.h> /* For popen() */

/* main() -- initialize toolkit, create a main window, menubar,
** a Command Area and a ScrolledText to view the output of commands.
*/

main (int argc, char *argv[])
{

Widget toplevel, main_w, menubar, menu, command_w, text_w;
XtAppContext app;
XmString file, quit;
extern void exit(int);
void exec_cmd(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;

XtSetLanguageProc (NULL, NULL, NULL);

/* initialize toolkit and create toplevel shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

* XtVaAppInitialize () is considered deprecated in X11R6.XmStringGetLtoR () is deprecated in Motif 2.0:
XmStringUnparse () is the preferred function.
Motif Programming Manual 121

Chapter 4: The Main Window
sessionShellWidgetClass, NULL);

(void) close (0); /* don't let commands read from stdin */

/* MainWindow for the application -- contains menubar, ScrolledText
** and CommandArea (which prompts for filename).
*/
n = 0;
XtSetArg(args[n], XmNcommandWindowLocation,

XmCOMMAND_BELOW_WORKSPACE); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);

/* Create a simple MenuBar that contains one menu */
file = XmStringCreateLocalized ("File");
menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",

XmVaCASCADEBUTTON, file, 'F', NULL);
XmStringFree (file);

/* "File" menu has only one item (Quit), so make callback exit() */
quit = XmStringCreateLocalized ("Quit");
menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0,

(void (*)()) exit,
XmVaPUSHBUTTON, quit, 'Q', NULL, NULL, NULL);

XmStringFree (quit);

/* Menubar is done -- manage it */
XtManageChild (menubar);

/* Create ScrolledText -- this is work area for the MainWindow */
n = 0;
XtSetArg (args[n], XmNrows, 24); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT);n++;
text_w = XmCreateScrolledText (main_w, "text_w", args, n);
XtManageChild (text_w);

/* store text_w as user data in "File" menu for file_cb() callback */
XtVaSetValues (menu, XmNuserData, text_w, NULL);

/* Create the command area -- this must be a Command class widget */
file = XmStringCreateLocalized ("Command:");
n = 0;
XtSetArg(args[n], XmNpromptString, file); n++;
command_w = XmCreateCommand (main_w, "command_w", args, n);
XmStringFree (file);
XtAddCallback (command_w, XmNcommandEnteredCallback, exec_cmd,

(XtPointer) text_w);
XtVaSetValues (command_w,

XmNmenuBar, menubar,
XmNcommandWindow, command_w,
XmNworkWindow, XtParent (text_w),
NULL);

XtManageChild (command_w);
122 Motif Programming Manual

Chapter 4: The Main Window

am is
nd a
idget
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* execute the command and redirect output to the ScrolledText window */
voidexec_cmd (Widget cmd_widget, /* command, not Text widget */

XtPointer client_data, /* passed text_w client_data */
XtPointer call_data)

{
char *cmd, buf[BUFSIZ];
XmTextPosition pos;
FILE *pp, *popen();
Widget text_w = (Widget) client_data;
XmCommandCallbackStruct*cbs = (XmCommandCallbackStruct *) call_data;

cmd = (char *) XmStringUnparse (cbs->value, XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT, XmCHARSET_TEXT, NULL, 0, XmOUTPUT_ALL);

if (!cmd || !*cmd) {
/* nothing typed? */
if (cmd)

XtFree (cmd);
return;

}
/* make sure the file is a regular text file and open it */
if ((pp = popen (cmd, "r")) == (FILE *) 0)

perror (cmd);
XtFree (cmd);
if (pp == (FILE *) 0)

return;
/* Clear output from any previous command */
XmTextSetString (text_w, ““);

/* put the output of the command in the Text widget by reading
** until EOF (meaning that the command has terminated).
*/
for (pos = 0; fgets (buf, sizeof (buf), pp) ; pos += strlen (buf))

XmTextReplace (text_w, pos, pos, buf);

(void) pclose (pp);
}

This example uses a Command widget for the command area. The output of the progr
shown in Figure 4-8. The Command widget provides a command entry area a
command history area. However, you do not necessarily have to use a Command w
Motif Programming Manual 123

Chapter 4: The Main Window

ple

ow
_
the

of
ed

nce
the
e

the
et,
is a

or a
for the command area. A TextField widget can be used instead to provide a sim
command area.

When we created the MainWindow, we set theXmNcommandWindowLocation resource
to XmCOMMAND_BELOW_WORKSPACE, which caused the command area to be placed bel
the work window. Although the default value of the resource isXmCOMMAND_ABOVE
WORKSPACE, theStyle Guiderecommends that the command area be positioned beneath
work window, rather than above it. You need to explicitly set the value
XmNcommandWindowLocation to ensure that the command area is position
appropriately.

Note that we use the ScrolledWindow that is created byXmCreateScrolledText() for
the work window, rather than the scrolling area provided by the MainWindow. Si
XmCreateScrolledText() returns a Text widget, we are careful to use the parent of
Text widget for theXmNworkWindowresource of the MainWindow. We set the areas of th
MainWindow usingthe standard XtVaSetValues() routine * .

Note that it is not entirely necessary to explicitly specify the roles each child of
MainWindow will perform. When you create a widget as a child of a MainWindow widg
the MainWindow checks the type of the widget you are adding. If the new widget
RowColumn that is being used as a MenuBar (XmNrowColumnType is XmMENU_BAR), the
MainWindow automatically uses it for the menu bar.This same check is performed f

* In Motif 2.0 and later,XmMainWindowSetAreas () is considered deprecated.

Figure 4-8: Output from the cmd_area program
124 Motif Programming Manual

Chapter 4: The Main Window

s you

r

here
an be
only
quite

the
es
e work

hen

hey
ough

eir
ative

ine
tency
hich
s by
s for
Command widget, which is automatically used as the command area. The resource
can use to specify child roles are:

XmNmenuBar XmNcommandWindow
XmNverticalScrollBar XmNhorizontalScrollBar
XmNworkWindow XmNmessageWindow

Once one of these values is set, it cannot be reset toNULL, although it can be reset to anothe
widget.

The message area is important in most applications, since it is typically the place w
brief status and informational messages are displayed. The message area c
implemented using different widgets, such as a read-only Text widget, a read-
ScrolledText object, or a Label widget. Using a Label widget as the message area is
simple and really doesn’t require any explanation. Chapter 18, Text Widgets, describes how
to use a read-only text area for the message area in a MainWindow.

If you specify theXmNmessageWindowresource, the message area is positioned across
bottom of the MainWindow. If you are not satisfied with how the MainWindow handl
the layout of the message area, you can make the message area widget a child of th
area manager widget and handle the layout yourself.

Using Resources
Resources specific to the MainWindow and its sub-elements can be useful w
configuring the default appearance of your application. If you set these resources in anapp-
defaultsfile, the specifications can also provide a framework for users to follow when t
want to set their own configuration parameters. Even users who are sophisticated en
to figure out how X resource files work still copy existing files and modify them to th
own tastes. To assist users, the app-defaults file for an application should be inform
and complete, even though it might be lengthy.

Of course, the first step in specifying resources in an app-defaults file is to determ
exactly which aspects of the program you want to be configurable. Remember, consis
is the only way to keep from completely confusing a user. Once you have decided w
portions of the application are going to be configurable, you can set resource value
specifying complete widget hierarchies. As an example, let’s specify some resource
the menu system fromdynapix.c. The application creates theFile menu in the following
way:

XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,
XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
NULL);
Motif Programming Manual 125

Chapter 4: The Main Window

titles
dified

in the

cribed

tes:

t
argin
ese
mple:

in
We can add accelerators to both theOpen and Quit menu items using the following
resource specifications:

dynapix.main_window.menubar*button_0.accelerator: Ctrl<Key>O
dynapix.main_window.menubar*button_0.acceleratorText: Ctrl+O
dynapix.main_window.menubar*button_1.accelerator: Ctrl<Key>C
dynapix.main_window.menubar*button_1.acceleratorText: Ctrl+C

The result is shown in Figure 4-9.

These resource settings work becauseXmNaccelerator and XmNacceleratorText
were not hard-coded by the application. By the same token, the labels of the MenuBar
and the menu items in the PulldownMenus are hard-coded values that cannot be mo
through resources. To relax this restriction, you could try setting thelabel andmnemonic
parameters toNULL in calls to XmVaCreateSimplePulldownMenu() . Unfortunately,
this technique makes resource specification awfully messy, since the CascadeButtons
MenuBar and the various PulldownMenus all have names of the formbutton_ n. The
other alternative is to use the more advanced methods of menu creation that are des
in Chapter 19.

The MainWindow provides a few other resources that control different visual attribu
they are XmNmainWindowMarginHeight , XmNmainWindowMarginWidth , and
XmNshowSeparator . The XmNshowSeparator resource controls whether or no
Separator widgets are displayed between the different areas of a MainWindow. The m
resources specify the width and height of the MainWindow’s margins. Generally, th
resources should not be set by the application, but left to the user to specify. For exa

*XmMainWindow.showSeparator: True
*XmMainWindow.mainWindowMarginWidth: 10
*XmMainWindow.mainWindowMarginHeight: 10

The class name for the MainWindow widget isXmMainWindow. If these resource settings
were specified in an app-defaults file, they would affect all of the MainWindow widgets
the application. If a user makes these specifications in his.Xdefaultsfile, they would apply
to all MainWindow widgets in all applications.

Figure 4-9: The File menu for dynapix.c with accelerators
126 Motif Programming Manual

Chapter 4: The Main Window

f an
used
in a
es.

s a
. The
ther
not

style
the
ose

uld

ue

es:
Summary
This chapter introduced you to the concepts involved in creating the main window o
application.To a lesser degree, we showed you how the MainWindow widget can be
to accomplish some of the necessary tasks. We identified the areas involved
MainWindow and used some convenience routines to build some adequate prototyp

The MainWindow can be difficult to understand because of its capabilities a
ScrolledWindow and because it supports the management of so many other objects
work area of a MainWindow usually contains a manager widget that contains o
widgets. Although the MainWindow can handle the layout of its different areas, we do
necessarily encourage you to use all its of its features. For larger, production-
applications, you would probably be better off using the MainWindow for the sake of
MenuBar, while placing the rest of the layout in the hands of a more general-purp
manager widget. These are described in Chapter 8,Manager Widgets.

You could also decide not to use the MainWindow widget at all. If done properly, you co
probably use one of the manager widget classes described in Chapter 8,Manager Widgets,
and still be Motif-compliant. Depending on your application, you might find this techniq
easier to deal with than the MainWindow widget.

Exercises
Based on the material in this chapter, you should be able to do the following exercis

1. Modify dynapix.c to have a new PulldownMenu that controls the
background color of the pixmap.

2. Modify dynapix.c so that it has a command area. The callback for the
Command widget should understand either filenames or color names. If
you feel adventurous, try to have it understand both the command file
and the command color . Each command would take a second argument
indicating the file or color to use.
Motif Programming Manual 127

Chapter 4: The Main Window
128 Motif Programming Manual

ides
f the
ed
Chapter 1

In this chapter:
• The Purpose of Dialogs
• The Anatomy of a Dialog
• Creating Motif Dialogs
• Dialog Resources
• Dialog Callback Routines
• Piercing the Dialog

Abstraction
• Dialog Modality
• Summary

This chapter describes the fun
a foundation for the more adv
introduction, the chapter
Motif Programming Manual
5

by
ost
ons
.

es in
more

ogs
w
uld be
lkit

aque
can
need
to

uires

Motif
book
mon
Introduction to
Dialogs

damental concepts that underlie all Motif dialogs. It prov
anced material in the following chapters. In the course o
also provides information about Motif’s predefin

MessageDialog classes.

In Chapter 4,The Main Window, we discussed the top-level windows that are managed
the window manager and that provide the overall framework for an application. M
applications are too complex to do everything in one main top-level window. Situati
arise that call for secondary windows, ortransient windows, that serve specific purposes
These windows are commonly referred to asdialog boxes, or more simply as dialogs.

Dialog boxes play an integral role in a GUI-based interface such as Motif.The exampl
this book use dialogs in many ways, so just about every chapter can be used to learn
about dialogs. We’ve already explored some of the basic concepts in Chapter 2, The Motif
Programming Model, and Chapter 3, Overview of the Motif Toolkit. However, the use of
dialogs in Motif is quite complex, so we need more detail to proceed further.

The Motif Style Guidemakes a set of generic recommendations about how all dial
should look. TheStyle Guidealso specifies precisely how certain dialogs should look, ho
they should respond to user events, and under what circumstances the dialogs sho
used. We refer to these dialogs as predefined Motif dialogs, since the Motif too
implements each of them for you. These dialogs are completely self-sufficient, op
objects that require very little interaction from your application. In most situations, you
create the necessary dialog using a single convenience routine and you’re done. If you
more functionality than what is provided by a predefined Motif dialog, you may have
create your own customized dialog. In this case, building and handling the dialog req
a completely different approach.

There are three chapters on basic dialog usage in this book - two on the predefined
dialogs and one on customized dialogs. There is also an additional chapter later in the
that deals with more advanced dialog topics. This first chapter discusses the most com
129

Chapter 5: Introduction to Dialogs

; they
as
y and

ost of
in
will
ork.

tion,

ed
ost of
vide
t they
g

full
is

dule

rent
sages,
sed to
ser to
class of Motif dialogs, called MessageDialogs. These are the simplest kinds of dialogs
typically display a short message and use a small set of standard responses, suchOK,
Yes, orNo. These dialogs are transient, in that they are intended to be used immediatel
then dismissed. MessageDialogs define resources and attributes that are shared by m
the other dialogs in the Motif toolkit, so they provide a foundation for us to build upon
the later dialog chapters. Although Motif dialogs are meant to be opaque objects, we
examine their implementation and behavior in order to understand how they really w
This information can help you understand not only what is happening in your applica
but also how to create customized dialogs.

Chapter 6, Selection Dialogs, describes another set of predefined Motif dialogs, call
SelectionDialogs. Since these dialogs are the next step in the evolution of dialogs, m
the material in this chapter is applicable there as well. SelectionDialogs typically pro
the user with a list of choices. These dialogs can remain displayed on the screen so tha
can be used repeatedly. Chapter 7, Custom Dialogs, addresses the issues of creatin
customized dialogs, and Chapter 27, Advanced Dialog Programming, discusses some
advanced topics in X and Motif programming using dialogs as a backdrop.

The Purpose of Dialogs
For most applications, it is impossible to develop an interface that provides the
functionality of the application in a single main window. As a result, the interface
typically broken up into discrete functional modules, where the interface for each mo
is provided in a separate dialog box.

As an example, consider an electronic mail application. The broad range of diffe
functions includes searching for messages according to patterns, composing mes
editing an address book, reporting error messages, and so on. Dialog boxes are u
display simple messages, as shown in Figure 5-1. They are also used to prompt the u

Figure 5-1: A Message dialog
130 Motif Programming Manual

Chapter 5: Introduction to Dialogs

more

s the
cus
quite
ain

is
s the
ide
answer simple questions, as shown in Figure 5-2. A dialog box can also present a

complicated interaction, as shown in Figure 5-3.

In Figure 5-3, many different widget classes are used to provide an interface that allow
user to generate code from a popular Motif GUI builder. The purpose of a dialog is to fo
on one particular task in an application. Since the scope of these tasks is usually
limited, an application usually provides them in dialog boxes, rather than in its m
window.

There is actually no such thing as a dialog widget class in the Motif toolkit. A dialog
actually made up of a DialogShell widget and a manager widget child that implement
visible part of the dialog. The DialogShell interacts with the window manager to prov

Figure 5-2: A Question dialog

Figure 5-3: A Custom dialog
Motif Programming Manual 131

Chapter 5: Introduction to Dialogs

, we

the
level
t the
ard
Box
idgets

. As
it can

tion.
port

d as
ood.
and

can
ience

ned
get
can
ame

of
e
ide

we
nd a
the

es of
For
the transient window behavior required of dialogs. When we refer to a dialog widget
are really talking about the manager widget and all of its children collectively.

When you write a custom dialog, you simply create and manage the children of
DialogShell in the same way that you create and manage the children of a top-
application shell. The predefined Motif dialogs follow the same approach, except tha
toolkit creates the manager widget and all of its children internally. Most of the stand
Motif dialogs are composed of a DialogShell and either a MessageBox or Selection
widget. Each of these widget classes creates and manages a number of internal w
without application intervention. See Chapter 3,Overview of the Motif Toolkit, to review
the various types of predefined Motif dialogs.

All of the predefined Motif dialogs are subclassed from the BulletinBoard widget class
such, a BulletinBoard can be thought of as the generic dialog widget class, although
certainly be used as generic manager widget (see Chapter 8,Manager Widgets). Indeed, a
dialog widget is a manager widget, but it is usually not treated as such by the applica
The BulletinBoard widget provides the keyboard traversal mechanisms that sup
gadgets, as well as a number of dialog-specific resources.

It is important to note that for the predefined Motif dialogs, each dialog is implemente
a single widget class, even though there are smaller, primitive widgets under the h
When you create a MessageBox widget, you automatically get a set of Labels
PushButtons that are laid out as described in theMotif Style Guide. What is not created
automatically is the DialogShell widget that manages the MessageBox widget. You
either create the shell yourself and place the MessageBox in it or use a Motif conven
routine that creates both the shell and its dialog widget child.

The Motif toolkit uses the DialogShell widget class as the parent for all of the predefi
Motif dialogs. In this context, a MessageBox widget combined with a DialogShell wid
creates what the Motif toolkit calls a MessageDialog. A careful look at terminology
help you to distinguish between actual widget class and Motif compound objects. The n
of the actual widget class ends inBox, while the name of the compound object made up
the widget and a DialogShell ends inDialog . For example, the convenience routin
XmCreateMessageBox() creates a MessageBox widget, which you need to place ins
of a DialogShell yourself. Alternatively,XmCreateMessageDialog() creates a
MessageDialog composed of a MessageBox and a DialogShell.

Another point about terminology involves the commonly-used term dialog box. When
say dialog box, we are referring to a compound object composed of a DialogShell a
dialog widget, not the dialog widget alone. This terminology can be confusing, since
Motif toolkit also provides widget classes that end inbox .

One subtlety in the use of MessageBox and SelectionBox widgets is that certain typ
behavior depend on whether or not the widget is a direct child of a DialogShell.
example, theMotif Style Guidesays that clicking on theOK button in the action area of a
132 Motif Programming Manual

Chapter 5: Introduction to Dialogs

log.
king

not

nce
tion
nce
ialog
ed of
oach
for a
to the
the

ion

not
h
is

t you

also
the

tion
f the
two
alogs
MessageDialog invokes the action of the dialog and then dismisses the dia
Furthermore, pressing the RETURN key anywhere in the dialog is equivalent to clic
on theOK button. However, none of this takes place when the MessageBox widget is
a direct child of a DialogShell.

Perhaps the most important thing to remember is how the Motif toolkit treats dialogs. O
a dialog widget is placed in a DialogShell, the toolkit tends to treat the entire combina
as a single entity. In fact, as we move on, you’ll find that the toolkit’s use of convenie
routines, callback functions, and popup widget techniques all hide the fact that the d
is composed of these discrete elements. While the Motif dialogs are really compos
many primitive widgets, such as PushButtons and TextFields, the single-entity appr
implies that you never access the subwidgets directly. If you want to change the label
button, you set a resource specific to the dialog class, rather than getting a handle
button widget and changing its resource. Similarly, you always install callbacks on
dialog widget itself, instead of installing them directly on buttons in the control or act
areas.

This approach may be confusing for those already familiar with Xt programming, but
yet familiar with the Motif toolkit. Similarly, those who learn Xt programming throug
experiences with the Motif toolkit might get a misconception of what Xt programming
all about. We try to point out the inconsistencies between the two approaches so tha
will understand the boundaries between the Motif toolkit and its Xt foundations.

The Anatomy of a Dialog
As described in Chapter 3,Overview of the Motif Toolkit, dialogs are typically broken
down into two regions known as the control and action areas. The control area is
referred to as the work area. The control area contains the widgets that provide
functionality of the dialog, such as Labels, ToggleButtons, and List widgets. The ac
area contains PushButtons whose callback routines actually perform the action o
dialog box. While most dialogs follow this pattern, it is important to realize that these
regions represent user-interface concepts and do not necessarily reflect how Motif di
are implemented.
Motif Programming Manual 133

Chapter 5: Introduction to Dialogs

for
dly
The
both

nings

are
h

citly

g.
ting
Figure 5-4 shows these areas in a sample dialog box.

TheMotif Style Guidedescribes in a general fashion how the control and action areas
all dialogs should be laid out. For predefined Motif dialogs, the control area is rigi
specified. For customized dialogs, there is only a general set of guidelines to follow.
guidelines for the action area specify a number of common actions that can be used in
predefined Motif dialogs and customized dialogs. These actions have standard mea
that help ensure consistency between different Motif applications.

By default, the predefined Motif MessageDialogs provide three action buttons, which
normally labelledOK, Cancel, andHelp, respectively. SelectionDialogs provide a fourt
button, normally labelledApply, which is placed between theOK andCancelbuttons. This
button is created but not managed, so it is not visible unless the application expli
manages it. TheStyle Guidespecifies that theOK button applies the action of the dialog
and dismisses it, while theApplybutton applies the action but does not dismiss the dialo
TheCancelbutton dismisses the dialog without performing any action other than reset

Figure 5-4: A sample dialog

Action

Control
Area

Area
134 Motif Programming Manual

Chapter 5: Introduction to Dialogs

e
fined
you
try to

e
up in
, as

otif
g and
in the

have

xes:
ge, to
of
og,
sses,
erent
d of a
e the

n la-
the dialog to the initial state, and theHelpbutton provides any help that is available for th
dialog*. When you are creating custom dialogs, or even when you are using the prede
Motif dialogs, you may need to provide actions other than the default ones. If so,
should change the labels on the buttons so that the actions are obvious. You should
use the common actions defined by theMotif Style Guideif they are appropriate, since thes
actions have standard meanings. We will address this issue further as it comes
discussion; it is not usually a problem until you create your own customized dialogs
described in Chapter 7,Custom Dialogs.

Creating Motif Dialogs
Under most circumstances, creating a predefined Motif dialog box is very simple. All M
dialog types have corresponding convenience routines that simplify the task of creatin
managing them. For example, a standard MessageDialog can be created as shown
following code fragment:

#include <Xm/MessageB.h>

extern Widget parent;
Widget dialog;
Arg arg[5];
XmString xms;
int n = 0;

xms = XmStringCreateLocalized ("Hello World");
XtSetArg (arg[n], XmNmessageString, xms); n++;
dialog = XmCreateMessageDialog (parent, "message", arg, n);
XmStringFree (xms);

The convenience routine does almost everything automatically.The only thing that we
to do is specify the message that we want to display.

Dialog Header Files
As we mentioned earlier, there are two basic types of predefined Motif dialog bo
MessageDialogs and SelectionDialogs. MessageDialogs present a simple messa
which a yes (OK) or no (Cancel) response usually suffices. There are six types
MessageDialogs: ErrorDialog, InformationDialog, QuestionDialog, TemplateDial
WarningDialog, and WorkingDialog. These types are not actually separate widget cla
but rather instances of the generic MessageDialog that are configured to display diff
graphic symbols. All of the MessageDialogs are compound objects that are compose
MessageBox widget and a DialogShell. When using MessageDialogs, you must includ
file <Xm/MessageB.h>.

* A more complete list of the pre-defined actions is given in Section 7.2.4. Note that Figure 5-4 has a butto
belledClose rather thanCancel, because the dialog in this instance is popped down without any reset.
Motif Programming Manual 135

Chapter 5: Introduction to Dialogs

from
are
than
th of
and a
arate
many

these
must

is

are

the
mat.
SelectionDialogs allow for more complicated interactions. The user can select an item
a list or type an entry into a TextField widget before acting on the dialog. There
essentially four types of SelectionDialogs, although the situation is a bit more complex
for MessageDialogs. The PromptDialog is a specially configured SelectionDialog; bo
these dialogs are compound objects that are composed of a SelectionBox widget
DialogShell. The Command widget and the FileSelectionDialog are based on sep
widget classes. However, they are both subclassed from the SelectionBox and share
of its features. When we use the general term “selection dialogs”, we are referring to
three widget classes plus their associated dialog shells. To use a SelectionDialog, you
include the file <Xm/SelectioB.h>.*For FileSelectionDialogs, the appropriate include file
<Xm/FileSB.h>, and for the Command widget it is <Xm/Command.h>.

Creating a Dialog
You can use any of the following convenience routines to create a dialog box.They
listed according to the header file in which they are declared:

<Xm/MessageB.h>:
Widget XmCreateMessageBox(Widget, char *, ArgList, Cardinal)
Widget XmCreateMessageDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateErrorDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateInformationDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateQuestionDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateTemplateDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateWarningDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreateWorkingDialog(Widget, char *, ArgList, Cardinal)

<Xm/SelectioB.h>:
Widget XmCreateSelectionBox(Widget, char *, ArgList, Cardinal)
Widget XmCreateSelectionDialog(Widget, char *, ArgList, Cardinal)
Widget XmCreatePromptDialog(Widget, char *, ArgList, Cardinal)

<Xm/FileSB.h>:
Widget XmCreateFileSelectionBox(Widget, char *, ArgList, Cardinal)
Widget XmCreateFileSelectionDialog(Widget, char *, ArgList, Cardinal)

<Xm/Command.h>:
Widget XmCreateCommand(Widget, char *, ArgList, Cardinal)

Each of these routines creates a dialog widget. In addition, the routines that end inDialog
automatically create a DialogShell as the parent of the dialog widget. All of
convenience functions for creating dialogs use the standard Motif creation routine for
For example,XmCreateMessageDialog() takes the following form:

Widget XmCreateMessageDialog (Widget parent, char *name,
ArgList arglist; Cardinal argcount)

* Yes, you read that right. It does, in fact, readSelectioB.h.The reason for the missingn is there is a fourteen-char-
acter filename limit on UNIX System V machines.
136 Motif Programming Manual

Chapter 5: Introduction to Dialogs

ith a
r or
t must
ou

t. For
r

ces
A

the
using

Motif
ources
ents
elow,

urces

ssed
In this case, we are creating a common MessageDialog, which is a MessageBox w
DialogShell parent.Theparent parameter specifies the widget that acts as the owne
parent of the DialogShell. Note that the parent must not be a gadget, since the paren
have a window associated with it. The dialog widget itself is a child of the DialogShell. Y
are returned a handle to the newly created dialog widget, not the DialogShell paren
the routines that just create a dialog widget, theparent parameter is simply a manage
widget that contains the dialog.

The arglist andargcount parameters for the convenience routines specify resour
using the old-styleArgList format, just like the rest of the Motif convenience routines.
varargs-style interface is not available for creating dialogs. However, you can use
varargs-style interface for setting resources on a dialog after is has been created by
XtVaSetValues() .

Setting Resources
There are a number of resources and callback functions that apply to almost all of the
dialogs. These resources deal with the action area buttons in the dialogs. Other res
only apply to specific types of dialogs; they deal with the different control area compon
such as Labels, TextFields, and List widgets. The different resources are listed b
grouped according to the type of dialogs that they affect:

General dialog resources:

XmNokLabelString XmNokCallback
XmNcancelLabelString XmNcancelCallback
XmNhelpLabelString XmNhelpCallback

MessageDialog resources:

XmNmessageString XmNsymbolPixmap

SelectionDialog resources:

XmNapplyLabelString XmNapplyCallback
XmNselectionLabelString XmNlistLabelString

FileSelectionDialog resources:

XmNfilterLabelString XmNdirListLabelString
XmNfileListLabelString

Command resources:

XmNpromptString

The labels and callbacks of the various buttons in the action area are specified by reso
based on the standard Motif dialog button names. For example, theXmNokLabelString
resource is used to set the label for theOK button.XmNokCallback is used to specify the
callback routine that the dialog should call when that button is activated. As discu
Motif Programming Manual 137

Chapter 5: Introduction to Dialogs

e and

the
s
d, so

ple,
a

It is
and

rces

that
to be

lback

, so

pop
nt to
earlier, it may be appropriate to change the labels of these buttons, but the resourc
callback names will always have names that correspond to their default labels.

The XmNmessageString resource specifies the message that is displayed by
MessageDialog. TheXmNsymbolPixmap resource specifies the iconic symbol that i
associated with each of the MessageDialog types. This resource is rarely change
discussion of it is deferred until Chapter 27.

The other resources apply to the different types of selection dialogs. For exam
XmNselectionLabelString sets the label that is placed above the list area in
SelectionDialog. These resources are discussed in Chapter 6.

All of these resources apply to the Labels and PushButtons in the different dialogs.
important to note that they are different from the usual resources for Labels
PushButtons. For example, the Label resourceXmNlabelString would normally be used
to specify the label for both Label and PushButton widgets. Dialogs use their own resou
to maintain the abstraction of the dialog widget as a discrete user-interface object.

Another important thing to remember about the resources that refer to widget labels is
their values must be specified as compound strings. Compound strings allow labels
rendered in arbitrary fonts and to span multiple lines. See Chapter 25, Compound Strings,
for more information.

The following code fragment demonstrates how to specify dialog resources and cal
routines:

Widget dialog;
XmString msg, yes, no;
extern void my_callback(Widget, XtPointer, XtPointer);

dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
yes = XmStringCreateLocalized ("Yes");
no = XmStringCreateLocalized ("No");
msg = XmStringCreateLocalized ("Do you want to quit?");
XtVaSetValues (dialog, XmNmessageString, msg, XmNokLabelString, yes,

XmNcancelLabelString, no, NULL);
XtAddCallback (dialog, XmNokCallback, my_callback, NULL);
XtAddCallback (dialog, XmNcancelCallback, my_callback, NULL);

XmStringFree (yes);
XmStringFree (no);
XmStringFree (msg);

Dialog Management
None of the Motif toolkit convenience functions manage the widgets that they create
the application must callXtManageChild() explicitly. It just so happens that managing
a dialog widget that is the immediate child of a DialogShell causes the entire dialog to
up. Similarly, unmanaging the same dialog widget causes it and its DialogShell pare
138 Motif Programming Manual

Chapter 5: Introduction to Dialogs

ell
ts as
them.
g, she

ed to

just

be a
can

the

Motif
. The
more

n on

the
ues
mple
tion’s
pop down. This behavior is consistent with the Motif toolkit’s treatment of the dialog/sh
combination as a single object abstraction. The toolkit is treating its own dialog widge
opaque objects and trying to hide the fact that there are Dialog Shells associated with
The toolkit is also making the assumption that when the programmer manages a dialo
wants it to pop up immediately.

This practice is somewhat confusing to experienced programmers of Xt, who are us
calling the routinesXtPopup () andXtPopdown () to display and hide a dialog. You should
note that managing or unmanagingany immediate child of a Motif DialogShell will cause
the whole dialog to appear or disappear respectively: this behavior is not restricted to
the built-in Motif dialog objects*.

For reference,XtPopup () andXtPopdown () take the following forms:

void XtPopup (Widget shell , XtGrabKind grab_kind)
void XtPopdown (Widget shell)

Theshellparameter to the function must be a shell widget; in this case it happens to
DialogShell. If you created the dialog using one of the Motif convenience routines, you
get a handle to the DialogShell by callingXtParent() on the dialog widget.

The grab_kind parameter can be one ofXtGrabNone , XtGrabNonexclusive , or
XtGrabExclusive . We almost always useXtGrabNone , since the other values imply a
server grab, which means that other windows on the desktop are locked out. Grabbing
server results in what is calledmodality; it implies that the user cannot interact with
anything but the current dialog. While a grab may be desirable in some cases, the
toolkit provides some predefined resources that handle the grab for you automatically
advantage of using this alternate method is that it allows the client to communicate
closely with the Motif Window Manager (mwm) and it provides for different kinds of
modality. These methods are discussed in Section 5.7.1. For detailed informatio
XtPopup() and the different uses ofgrab_kind, see Volume 4,X Toolkit Intrinsics
Programming Manual.

Let’s take a closer look at how dialogs are really used in an application. Examining
overall design and the mechanics that are involved will help to clarify a number of iss
about managing and unmanaging dialogs and DialogShells. The program listed in Exa
5-1 displays an InformationDialog when the user presses a PushButton in the applica
main window.†

Example 5-1: The hello_dialog.c program

/* hello_dialog.c -- your typical Hello World program using
** an InformationDialog.

* To be more precise, the ChangeManaged() method of the DialogShell callsXtPopup () andXtPopdown () inter-
nally, provided that theXmNmappedWhenManaged resource of the DialogShell is true (the default).

† XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 139

Chapter 5: Introduction to Dialogs
*/

#include <Xm/RowColumn.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, rc, hpb, gpb;
/* callbacks for the pushbuttons -- pops up dialog */
void popup_callback(Widget, XtPointer, XtPointer);
void exit_callback(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

rc = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

hpb = XmCreatePushButton (rc, "Hello", NULL, 0);
XtAddCallback (hpb,

XmNactivateCallback,
popup_callback,
(XtPointer) "Hello World");

gpb = XmCreatePushButton (rc, "Goodbye", NULL, 0);
XtAddCallback (gpb, XmNactivateCallback, exit_callback, NULL);

XtManageChild (hpb);
XtManageChild (gpb);
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback for the “Hello” PushButton.
** Popup an InformationDialog displaying the text passed as the client
** data parameter.
*/
void popup_callback (Widget button, XtPointer client_data,

XtPointer call_data)
{

Widget dialog;
XmString xm_string;
void activate_callback(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;
char *text = (char *) client_data;

 /* set the label for the dialog */
xm_string = XmStringCreateLocalized (text);
XtSetArg (args[n], XmNmessageString, xm_string); n++;
/* Create the InformationDialog as child of button */
140 Motif Programming Manual

Chapter 5: Introduction to Dialogs

ther
m is

ntrol
. In
evant
dialog = XmCreateInformationDialog (button, "info", args, n);
 /* no longer need the compound string, free it */
XmStringFree (xm_string);
/* add the callback routine */
XtAddCallback (dialog, XmNokCallback, activate_callback, NULL);
/* manage the MessageBox: has the side effect of displaying the
XmDialogShell parent*/
XtManageChild (dialog);

}

/*
** callback routine when the user pressed the “Goodbye” button
*/
void exit_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

exit (0);
}

/* callback routine for when the user presses the OK button.
** Yes, despite the fact that the OK button was pressed, the
** widget passed to this callback routine is the dialog!
*/
void activate_callback (Widget dialog,

XtPointer client_data,
XtPointer call_data)

{
puts ("OK was pressed.");

}

The output of this program is shown in Figure 5-5.

Dialogs are often invoked from callback routines attached to PushButtons or o
interactive widgets. Once the dialog is created and popped up, control of the progra
returned to the main event-handling loop (XtAppMainLoop()),where normal event
processing resumes. At this point, if the user interacts with the dialog by selecting a co
or activating one of the action buttons, a callback routine for the dialog is invoked
Example 5-1, we happen to use a MessageDialog, but the type of dialog used is irrel
to the model.

Figure 5-5: Output of the hello_dialog program
Motif Programming Manual 141

Chapter 5: Introduction to Dialogs

client

essed.

face
are

from
ey
of the

ther
le, if
ialog
g to

rce
action

et is

urns

ately
e that

the
just
When the PushButton in the main window is pressed,popup_callback() is called. A
text string that is used as the message to display in the InformationDialog is passed as
data. The dialog uses a single callback routine,activate_callback() , for the
XmNokCallback resource. This function is invoked when the user presses theOK button.
The callback simply prints a message to standard output that the button has been pr
Similar callback routines could be installed for theCancelandHelp buttons through the
XmNcancelCallback andXmNhelpCallback resources.

Closing Dialogs
You might notice that activating either theOKor theCancelbutton in the previous example
causes the dialog to be automatically popped down. TheMotif Style Guidesays that when
any button in the action area of a predefined Motif dialog is pressed, except for theHelp
button, the dialog should be dismissed. The Motif toolkit takes this specification at
value and enforces the behavior, which is consistent with the idea that Motif dialogs
self-contained, self-sufficient objects. They manage everything about themselves
their displays to their interactions with the user. And when it’s time to go away, th
unmanage themselves. Your application does not have to do anything to cause any
behavior to occur.

Unfortunately, this behavior does not take into account error conditions or o
exceptional events that may not necessarily justify the dialog’s dismissal. For examp
pressingOK causes a file to be updated, but the operation fails, you may not want the d
to be dismissed. If the dialog is still displayed, the user can try again without havin
repeat the actions that led to popping up the dialog.

The XmNautoUnmanage resource provides a way around the situation. This resou
controls whether the dialog box is automatically unmanaged when the user selects an
area button other than theHelp button. IfXmNautoUnmanage is True , after the callback
routine for the button is invoked, the DialogShell is popped down and the dialog widg
unmanaged automatically. However, if the resource is set toFalse , the dialog is not
automatically unmanaged. The value of this resource defaults toTrue for MessageDialogs
and SelectionDialogs; it defaults toFalse for FileSelectionDialogs.

Since it is not always appropriate for a dialog box to unmanage itself automatically, it t
out to be easier to setXmNautoUnmanage to False in most circumstances. This
technique makes dialog management easier, since it keeps the toolkit from indiscrimin
dismissing a dialog simply because an action button has been activated. While it is tru
we could program around this situation by callingXtPopup() or XtManageChild()
from a callback routine in error conditions, this type of activity is confusing because of
double-negative action it implies. In other words, programming around the situation is
undoing something that should not have been done in the first place.
142 Motif Programming Manual

Chapter 5: Introduction to Dialogs

d when
puter
mple
ether

oes to
ll of

serve
wn.

the
, you
the

tion
This discussion brings up some issues about when a dialog should be unmanaged an
it should be destroyed. If you expect the user to have an abundant supply of com
memory, you may reuse a dialog by retaining a handle to the dialog, as shown in Exa
5-4 later in this chapter. There are also performance considerations that may affect wh
you choose to destroy or reuse dialogs. It takes less time to reuse a dialog than it d
create a new one, provided that your application is not so large that it is consuming a
the system’s resources. If you do not retain a handle to a dialog, and if you need to con
memory and other resources, you should destroy the dialog whenever you pop it do

Another method the user might use to close a dialog is to select theCloseitem from the
window menu. This menu can be pulled down from the title bar of a window. Since
menu belongs to the window manager, rather than the shell widget or the application
cannot install any callback routines for its menu items. However, you can use
XmNdeleteResponse resource to control how the DialogShell responds to aCloseaction.
* It can have one of the following values:

XmUNMAP
This value causes the dialog to be unmapped. The dialog disappears from
the screen, but it is not destroyed, nor is it iconified. The dialog widget and
its windows are still intact and can be redisplayed using XtPopup() . This
value is the default for DialogShells.

XmDESTROY
This value destroys the DialogShell and calls its XmNdestroyCallback .
Note that all of the shell’s children are also destroyed, including the dialog
widget and its subwidgets. When the dialog is destroyed, you cannot redis-
play the dialog or reference its handle again. If you need the dialog again,
you have to create another one. Examples of using the XmNdestroyCall-
back are presented in Chapter 27, Advanced Dialog Programming.

XmDO_NOTHING
This value causes the toolkit to take no action. The value should only be
specified in circumstances where you want to handle the event on your
own. However, handling the event involves much more than installing a
simple callback routine. It requires building a lower-level mechanism that
interprets the proper events when they are sent by the window manager.
The most common thing to do in such cases is to activate the default action
of the dialog or to interpose a prompting mechanism to verify the user’s ac-
tion. This topic is discussed in Chapter 20, Interacting with the Window
Manager.

* The Motif VendorShell, from which the DialogShell is subclassed, is responsible for trapping the notifica
and determining what to do next, based on the value of the resource.
Motif Programming Manual 143

Chapter 5: Introduction to Dialogs

p or
take
the

ent.

ation
ere a
outine

Rather
pes,

t, the
ction

t, or
does
for

n it is
It may be convenient for your application to know when a dialog has been popped u
down. If so, you can install callbacks that are invoked whenever either of these events
place. The actions of popping up and down dialogs can be monitored through
XmNpopupCallback andXmNpopdownCallback callback routines. For example, when
the function associated with aXmNpopupCallback is invoked, you could position the
dialog automatically, rather than allowing the window manager to control the placem
See Chapter 7,Custom Dialogs, for more information on these callbacks.

Generalizing Dialog Creation
Posting dialogs that display informative messages is something just about every applic
is going to do frequently. Rather than write a separate routine for each case wh
message needs to be displayed, we can generalize the process by writing a single r
that handles most, if not all, cases. Example 5-2 shows thePostDialog() routine. This
routine creates a MessageDialog of a given type and displays an arbitrary message.
than use the convenience functions provided by Motif for each of the MessageDialog ty
the routine uses the generic functionXmCreateMessageDialog() and configures the
symbol to be displayed by setting theXmNdialogType resource.

Example 5-2: The PostDialog() routine

/*
** PostDialog() -- a generalized routine that allows the programmer
** to specify a dialog type (message, information, error, help, etc.),
** and the message to display.
*/
Widget PostDialog (Widget parent, int dialog_type, char *msg)
{

Widget dialog;
XmString text;

dialog = XmCreateMessageDialog (parent, "dialog", NULL, 0);
text = XmStringCreateLocalized (msg);
XtVaSetValues (dialog,

XmNdialogType, dialog_type,
XmNmessageString, text,
NULL);

XmStringFree (text);
XtManageChild (dialog);
return dialog;

}

This routine allows the programmer to specify several parameters: the parent widge
type of dialog that is to be used, and the message that is to be displayed. The fun
returns the new dialog widget, so that the calling routine can modify it, unmanage i
keep a handle to it. You may have additional requirements that this simplified example
not satisfy. For instance, the routine does not allow you to specify callback functions
the buttons in the action area and it does not handle the destruction of the widget whe
144 Motif Programming Manual

Chapter 5: Introduction to Dialogs

ontrol
hat it
erent

ases,
assed
oard
hell
log
Shell.

efault
the

by the
up.
ult

the
to
ource
no longer needed. You could extend the routine to handle these issues, or you could c
them outside the context of the function. You may also want to extend the routine so t
reuses the same dialog each time it is called and so that it allows you to disable the diff
action area buttons. All of these issues are discussed again in Chapter 6,Custom Dialogs,
and in Chapter 27,Advanced Dialog Programming.

Dialog Resources
The following sections discuss resources that are specific to Motif dialogs. In most c
these resources are BulletinBoard widget resources, since all Motif dialogs are subcl
from this class. However, they are not intended to be used by generic BulletinB
widgets. The resources only apply when the widget is an immediate child of a DialogS
widget; they are really intended to be used exclusively by the predefined Motif dia
classes. Remember that the resources must be set on the dialog widget, not the Dialog
See Chapter 8,Manager Widgets, for details on the generic BulletinBoard resources.

The Default Button
All predefined Motif dialogs have adefault buttonin their action area. The default button
is activated when the user presses the RETURN key in the dialog. TheOK button is
normally the default button, but once the dialog is displayed, the user can change the d
button by using the arrow keys to traverse the action buttons. The action button with
keyboard focus is always the default button. Since the default button can be changed
user, the button that is the default is only important when the dialog is initially popped
The importance of the default button lies in its ability to influence the user’s defa
response to the dialog.

You can change the default button for a MessageDialog by setting
XmNdefaultButtonType resource on the dialog widget. This resource is specific
MessageDialogs; it cannot be set for the various types of selection dialogs. The res
can have one of the following values:

XmDIALOG_OK_BUTTON
This value specifies that the default button is the furthest button on the left
of the dialog. By default, this button is the OK button, although its label
may have been changed to another string.

XmDIALOG_CANCEL_BUTTON
This value specifies that the Cancelbutton is the default button. This value
is appropriate in situations where the action of the dialog is destructive,
such as for a WarningDialog that is posted in order to warn the user of a
possibly dangerous action.
Motif Programming Manual 145

Chapter 5: Introduction to Dialogs

s
ne
ed

rom

y have

utine
XmDIALOG_HELP_BUTTON
This value specifies the Helpbutton, which is always the furthest button on
the right of a Motif dialog. This button is rarely set as the default button.

XmDIALOG_NONE
This value specifies that there is no default button.

The values forXmNdefaultButtonType come up again later, when we discus
XmMessageBoxGetChild() and again in Chapter 6, when we consider the routi
XmSelectionBoxGetChild() * . An example of how the default button type can be us
is shown in Example 5-3.

Example 5-3. The WarningMsg() function

/* WarningMsg() -- Inform the user that she is about to embark on a
** dangerous mission and give her the opportunity to back out.
*/
void WarningMsg (Widget parent, XtPointer client_data, XtPointer call_data)
{

static Widget dialog;
XmString text, ok_str, cancel_str;
char *msg = (char *) client_data;

if (!dialog)
dialog = XmCreateWarningDialog (parent, "warning", NULL, 0);

text = XmStringCreateLocalized (msg);
ok_str = XmStringCreateLocalized ("Yes");
cancel_str = XmStringCreateLocalized ("No");
XtVaSetValues (dialog,XmNmessageString, text,

XmNokLabelString, ok_str,
XmNcancelLabelString, cancel_str,
XmNdefaultButtonType, XmDIALOG_CANCEL_BUTTON,
NULL);

XmStringFree (text);
XmStringFree (ok_str);
XmStringFree (cancel_str);
XtManageChild (dialog);

}

The intent of this function is to create a dialog that tries to discourage the user f
performing a destructive action. By using a WarningDialog and by making theCancel
button the default choice, we have given the user adequate warning that the action ma

* Strictly speaking, the *GetChild() routines are deprecated in Motif 2.0 and later. You should prefer the ro
XtNameToWidget ().
146 Motif Programming Manual

Chapter 5: Introduction to Dialogs

wn in

urce
d
ve to
dle to

.6.3.

the
kes
widget
p, it
iately

urce
and

urce
pped
t that
oard
e of
he
ult
dangerous consequences.The output of a program running this code fragment is sho
Figure 5-6.

You can also set the default button for a dialog by the setting the BulletinBoard reso
XmNdefaultButton . This technique works for both MessageDialogs an
SelectionDialogs. The resource value must be a widget ID, which means that you ha
get a handle to a subwidget in the dialog to set the resource. You can get the han
subwidgets usingXmMessageBoxGetChild() or XmSelectionBoxGetChild() * .
Since this method breaks the Motif dialog abstraction, we describe it later in Section 5

Initial Keyboard Focus
When a dialog widget is popped up, one of the internal widgets in the dialog has
keyboard focus. This widget is typically the default button for the dialog, which ma
sense in most cases. However, there are situations where it is appropriate for another
to have the initial keyboard focus. For example, when a PromptDialog is popped u
makes sense for the TextField to have the keyboard focus so that the user can immed
start typing a response.

TheXmNinitialFocus resource can be used to handle this situation. Since this reso
is a Manager widget resource, it can be used for both MessageDialogs
SelectionDialogs, although it is normally only used for SelectionDialogs. The reso
specifies the subwidget that has the keyboard focus the first time that the dialog is po
up. If the dialog is popped down and popped up again later, it remembers the widge
had the keyboard focus when it was popped down and that widget is given the keyb
focus again. The resource value must again be a widget ID. The default valu
XmNinitialFocus for MessageDialogs is the subwidget that is also t
XmNdefaultButton for the dialog. For SelectionDialogs, the text entry area is the defa
value for the resource.

* XtNameToWidget () should be used in preference in Motif 2.0 and later.

Figure 5-6: An instance of the WarningMsg() routine
Motif Programming Manual 147

Chapter 5: Introduction to Dialogs

ion
s
will

own
akes

ed
ow
shell
uld not

heir
me
ly
the
ge

he
.

de

ode

ound
Button Sizes
TheXmNminimizeButtons resource controls how the dialog sets the widths of the act
area buttons. If the resource is set toTrue , the width of each button is set so that it is a
small as possible while still enclosing the entire label, which means that each button
have a different width. The default value ofFalse specifies that the width of each button
is set to the width of the widest button, so that all buttons have the same width.

The Dialog Title
When a new shell widget is mapped to the screen, the window manager creates its
window that contains the title bar, resize handles, and other window decorations and m
the window of the DialogShell the child of this new window. This technique is call
reparenting a window; it is only done by the window manager in order to add wind
decorations to a shell window. The window manager reparents instances of all of the
widget classes except OverrideShell. These shells are used for menus and thus sho
have window manager decorations.

Most window managers that reparent shell windows display titles in the title bars of t
windows. For predefined Motif dialogs, the Motif toolkit sets the default title to the na
of the dialog widget with the string_popup appended. Since this string is almost certain
not an appropriate title for the window, you can change the title explicitly using
XmNdialogTitle BulletinBoard resource. (Do not confuse this title with the messa
displayed in MessageDialog, which is set byXmNmessageString .) The value for
XmNdialogTitle must be a compound string. The BulletinBoard in turn sets t
XmNtitle resource of the DialogShell; the value of this resource is a regular C string

So, you can set the title for a dialog window in one of two ways. The following co
fragment shows how to set the title using theXmNdialogTitle resource:

XmString title_string = XmStringCreateLocalized ("Dialog Box");
Widget dialog = XmCreateMessageDialog (parent, "dialog_name", NULL, 0);

XtVaSetValues (dialog, XmNdialogTitle, title_string, NULL);
XmStringFree (title_string);

This technique requires creating a compound string. If you set theXmNtitle resource
directly on the DialogShell, you can use a regular C string, as in the following c
fragment:

dialog = XmCreateMessageDialog (parent, "dialog_name", NULL, 0);
XtVaSetValues (XtParent (dialog), XmNtitle, "Dialog Box", NULL);

While the latter method is easier and does not require creating and freeing a comp
string, it does break the abstraction of treating the dialog as a single entity.
148 Motif Programming Manual

Chapter 5: Introduction to Dialogs

the
y

ialogs
t the

the
o the
ource
t deal

, or

ables
ard.

hese
ithin a

le
ialog

g and

ing up

f an
source

ction
Dialog Resizing
The XmNnoResize resource controls whether or not the window manager allows
dialog to be resized. If the resource is set toTrue , the window manager does not displa
resize handles in the window manager frame for the dialog. The default value ofFalse
specifies that the window manager should provide resize handles. Since some d
cannot handle resize events very well, you may find it better aesthetically to preven
user from resizing them.

This resource is an attribute of the BulletinBoard widget, even though it only affects
shell widget parent of a dialog widget. The resource is provided as a convenience t
programmer, so that she is not required to get a handle to the DialogShell. The res
only affects the presence of resize handles in the window manager frame; it does no
with other window manager controls. See Chapter 20,Interacting with the Window
Manager, for details on how to specify the window manager controls for a DialogShell
any shell widget, directly.

Dialog Render Tables*

The BulletinBoard widget provides resources that enable you to specify the render t
that are used for all of the Button, Label, and Text widget descendants of the BulletinBo
Since Motif dialog widgets are subclassed from the BulletinBoard, you can use t
resources to make sure that fonts and other appearance resources that are used w
dialog are consistent. TheXmNbuttonRenderTable † resource specifies the render tab
that is used for all of the button descendants of the dialog. The resource is set on the d
widget itself, not on its individual children. Similarly, theXmNlabelRenderTable ‡

resource is used to set the render table for all of the Label descendants of the dialo
XmNtextRenderTable § is used for all of the Text and TextField descendants.

If one of these resources is not set, the toolkit determines the render table by search
the widget hierarchy for an ancestor that holds theXmQTspecifyRenderTable trait.
BulletinBoard, VendorShell, MenuShell, and derived widget classes hold this trait. I
ancestor is found, the render table resource is set to the value of that render table re
in the ancestor widget. See Chapter 24, for more information on render tables.

You can override theXmNbuttonRenderTable , XmNlabelRenderTable , and
XmNtextRenderTable resources on a per-widget basis by setting theXmNrenderTable
resource directly on individual widgets. Of course, you must break the dialog abstra

* As of Motif 2.0, the XmFontList is obsolete, and is replaced by theXmRenderTable type. For backwards
compatibility, theXmFontList is implemented through anXmRenderTable

† XmNbuttonFontList is deprecated, and is replaced byXmNbuttonRenderTable

‡ XmNlabelFontList is deprecated, and is replaced byXmNlabelRenderTable

§ XmNtextFontList is deprecated, and is replaced byXmNtextRenderTable
Motif Programming Manual 149

Chapter 5: Introduction to Dialogs

cribe
ring

ence
ng the
rces

of
any
back

es are
w
t that
and retrieve the widgets internal to the dialog itself to set this resource. While we des
how to retrieve the widgets in Section 5.6, we do not necessarily recommend configu
dialogs down to this level of detail.

Dialog Callback Routines
As mentioned earlier, the predefined Motif dialogs have their own resources to refer
the labels and callback routines for the action area PushButtons. Instead of accessi
PushButton widgets in the action area to install callbacks, you use the resou
XmNokCallback , XmNcancelCallback , andXmNhelpCallback on the dialog widget
itself. These callbacks correspond to each of the three buttons,OK, Cancel, andHelp.

Installing callbacks for a dialog is no different than installing them for any other type
Motif widget; it may just seem different because the dialog widgets contain so m
subwidgets. The following code fragment demonstrates the installation of simple call
for all of the buttons in a MessageDialog:

...
dialog = XmCreateMessageDialog (w, "notice", NULL, 0);
...
XtAddCallback (dialog, XmNokCallback, ok_pushed, (XtPointer) "Hi");
XtAddCallback (dialog, XmNcancelCallback, cancel_pushed, (XtPointer) "Bye");
XtAddCallback (dialog, XmNhelpCallback, help_pushed, NULL);
XtManageChild (dialog);
...

/* ok_pushed() --the OK button was selected. */
void ok_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *message = (char *) client_data;
printf ("OK was selected: %s\n", message);

}

/* cancel_pushed() --the Cancel button was selected. */
void cancel_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *message = (char *) client_data;
printf ("Cancel was selected: %s\n", message);

}

/* help_pushed() --the Help button was selected. */
void help_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

printf ("Help was selected\n");
}

In this example, a dialog is created and callback routines for each of the three respons
added usingXtAddCallback() . We also provide simple client data to demonstrate ho
the data is passed to the callback routines. These callback routines simply print the fac
they have been activated; the messages they print are taken from the client data.
150 Motif Programming Manual

Chapter 5: Introduction to Dialogs

back
as
the

s
t pass
, you

ith the

les and

re
ains
type

the
e

All of the dialog callback routines take three parameters, just like any standard call
routine. Thewidget parameter is the dialog widget that contains the button that w
selected; it is not the DialogShell widget or the PushButton that the user selected from
action area. The second parameter is theclient_data , which is supplied to
XtAddCallback() , and the third is thecall_data , which is provided by the internals
of the widget that invoked the callback.

The client_data parameter is of typeXtPointer , which means that you can pas
arbitrary values to the function, depending on what is necessary. However, you canno
a float or a double value or an actual data structure. If you need to pass such values
must pass the address of the variable or a pointer to the data structure. In keeping w
philosophy of abstracting and generalizing code, you should use theclient_data
parameter as much as possible because it eliminates the need for some global variab
it keeps the structure of an application modular.

For the predefined Motif dialogs, thecall_data parameter is a pointer to a data structu
that is filled in by the dialog box when the callback is invoked. The data structure cont
a callback reason and the event that invoked the callback. The structure is of
XmAnyCallbackStruct , which is declared as follows:

typedef struct {
int reason;
XEvent *event;

} XmAnyCallbackStruct;

The value of thereason field is an integer value that can be any one ofXmCR_HELP,
XmCR_OK, or XmCR_CANCEL. The value specifies the button that the user pressed in
dialog box. The values for thereason field remain the same, no matter how you chang
the button labels for a dialog. For example, you can change the label for theOK button to
sayHelp, using the resourceXmNokLabelString , but thereason parameter will still be
XmCR_OK when the button is activated.

Because the reason field provides information about the user’s response to the
dialog in terms of the button that was pushed, we can simplify the previous
code fragment and use one callback function for all of the possible actions. The
callback function can determine which button was selected by examining
reason. Example 5-4 demonstrates this simplification.*

Example 5-4. The reason.c program

/* reason.c -- examine the reason field of the callback structure
** passed as the call_data of the callback function. This field
** indicates which action area button in the dialog was pressed.
*/
#include <Xm/RowColumn.h>

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 151

Chapter 5: Introduction to Dialogs
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

/* main() --create a pushbutton whose callback pops up a dialog box */
main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, rc, pb1, pb2;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
rc = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
pb1 = XmCreatePushButton (rc, "Hello", NULL, 0);
XtAddCallback (pb1, XmNactivateCallback, pushed,

(XtPointer) "Hello World");
pb2 = XmCreatePushButton (rc, "Goodbye", NULL, 0);
XtAddCallback (pb2, XmNactivateCallback, pushed,

(XtPointer) "Goodbye World");
XtManageChild (pb1);
XtManageChild (pb2);
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() --the callback routine for the main app's pushbuttons.
** Create and popup a dialog box that has callback functions for
** the OK, Cancel and Help buttons.
*/
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

static Widget dialog;
char *message = (char *) client_data;
XmString t = XmStringCreateLocalized (message);

/* See if we've already created this dialog -- if so,
** we don't need to create it again. Just set the message
** and manage it (pop it up).
*/
if (!dialog) {

void callback(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;
XtSetArg (args[n], XmNautoUnmanage, False); n++;
dialog = XmCreateMessageDialog (widget, "notice", args, n);
XtAddCallback (dialog, XmNokCallback, callback,

(XtPointer) "Hi");
XtAddCallback (dialog, XmNcancelCallback, callback,

(XtPointer) "Foo");
XtAddCallback (dialog, XmNhelpCallback, callback,

(XtPointer) "Bar");
}

152 Motif Programming Manual

Chapter 5: Introduction to Dialogs

ton
opped

e to
ever

ol the
the

ects.
e of

alog
XtVaSetValues (dialog, XmNmessageString, t, NULL);
XmStringFree (t);
/* Managing child of DialogShell pops up the dialog */
XtManageChild (dialog);

}

/* callback() --One of the dialog buttons was selected.
** Determine which one by examining the "reason" parameter.
*/
void callback (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *button;
char *message = (char *) client_data;
XmAnyCallbackStruct*cbs = (XmAnyCallbackStruct *) call_data;

switch (cbs->reason) {
case XmCR_OK : button = "OK"; break;
case XmCR_CANCEL : button = "Cancel"; break;
case XmCR_HELP : button = "Help"; break;

}
printf ("%s was selected: %s\n", button, message);

if (cbs->reason != XmCR_HELP) {
/* the ok and cancel buttons "close" the widget:.
** Unmanaging child of DialogShell pops down the dialog.
*/
XtUnmanageChild (widget);

}
}

Another interesting change in this application is the waypushed() determines if the
dialog has already been created. By making the dialog widget handlestatic to the
pushed() callback function, we retain a handle to this object across multiple but
presses. For each invocation of the callback, the dialog’s message is reset and it is p
up again.

Considering style guide issues again, it is important to know when it is appropriat
dismiss a dialog. As noted earlier, the toolkit automatically unmanages a dialog when
any of the action area buttons are activated, except for theHelp button. This behavior is
controlled byXmNautoUnmanage, which defaults toTrue . However, if you set this
resource to False, the callback routines for the buttons in the action area have to contr
behavior on their own. In Example 5-4, the callback routine pops down the dialog when
reason is XmCR_OK orXmCR_CANCEL, but not when it isXmCR_HELP.

Piercing the Dialog Abstraction
As described earlier, Motif treats dialogs as if they are single user-interface obj
However, there are times when you need to break this abstraction and work with som
the individual widgets that make up a dialog. This section describes how the di
Motif Programming Manual 153

Chapter 5: Introduction to Dialogs

ess

that
s for

the
The
(e.g.

e type

gle-
hell,

The
pecial
that

the
tion
t from
convenience routines work, how to work directly with the DialogShell, and how to acc
the widgets that are internal to dialogs.

Convenience Routines
The fact that Motif dialogs are self-sufficient does not imply that they are black boxes
perform magic that you cannot perform yourself. For example, the convenience routine
the MessageDialog types follow these basic steps:

1. Create a popup shell widget of type xmDialogShellWidgetClass using Xt-
CreatePopupShell() .

2. Create a widget of type xmMessageBoxWidgetClass as the child of the Dia-
logShell.

3. Set the XmNdialogType resource for the dialog.

4. Install a callback routine for the XmNdestroyCallback resource of the Mes-
sageBox, so that it automatically destroys its DialogShell parent.

TheXmNdialogType resource can be set to one of the following values:

XmDIALOG_ERROR XmDIALOG_INFORMATION XmDIALOG_MESSAGE
XmDIALOG_QUESTION XmDIALOG_TEMPLATE XmDIALOG_WARNING
XmDIALOG_WORKING

The type of the dialog does not affect the kind of widget that is created. The only thing
type affects is the graphical symbol that is displayed in the control area of the dialog.
convenience routines set the resource based on the routine that is called
XmCreateErrorDialog() sets the resource toXmDIALOG_ERROR). The widget
automatically sets the graphical symbol based on the dialog type. You can change th
of a dialog after it is created usingXtVaSetValues() ; modifying the type also changes
the dialog symbol that is displayed.

The Motif dialog convenience routines create DialogShells internally to support the sin
object dialog abstraction. With these routines, the toolkit is responsible for the DialogS
so the dialog widget uses itsXmNdestroyCallback to destroy its parent upon its own
destruction. If the dialog is unmapped or unmanaged, so is its DialogShell parent.
convenience routines do not add any resources or call any functions to support the s
relationship between the dialog widget and the DialogShell, since most of the code
handles the interaction is written into the internals of the BulletinBoard.

The DialogShell
As your programs become more complex, you may eventually have to access
DialogShell parent of a dialog widget in order to get certain things done. This sec
examines DialogShells as independent widgets and describes how they are differen
154 Motif Programming Manual

Chapter 5: Introduction to Dialogs

from

, the

the

shell
rent.
l is
in it.
tion,
mple,

as the
also
yed,

the
. The

etry-
naged
not
make

the

s

This
ell,
by

he

g

other shell widgets. There are three main features of a DialogShell that differentiate it
a SessionShell and a TopLevelShell* .

• A DialogShell cannot be iconified by the user or by the application.

• When the parent of a DialogShell is iconified, withdrawn, unmapped, or destroyed
DialogShell children of that window are withdrawn or destroyed.

• A DialogShell is always placed on top of the shell widget that owns the parent of
DialogShell.†

The DialogShell is subclassed from the TransientShell and VendorShell classes. A
that is subclassed from TransientShell cannot be iconified independently of its pa
However, if the parent of a DialogShell is iconified or unmapped, the DialogShel
unmapped as well. If the parent is destroyed, so is the DialogShell and the dialog with
Remember, the parent of the DialogShell is another widget somewhere in the applica
such as a Label, a PushButton, a SessionShell, or even another DialogShell. For exa
if the callback for PushButton creates a dialog, the PushButton might be designated
owner of the dialog. If the shell that contains the PushButton is iconified, the dialog is
withdrawn from the screen. If the PushButton’s shell or the PushButton itself is destro
the dialog is destroyed as well.

The parent-child relationship between a DialogShell and its parent is different from
classic case, where the parent actually contains the child within its geometrical bounds
DialogShell widget is a popup child of its parent, which means that the usual geom
management relationship does not apply. Nonetheless, the parent widget must be ma
in order for the child to be displayed. If a widget has popup children, those children are
mapped to the screen if the parent is not managed, which means that you must never
a menu item the parent of a DialogShell.

Assuming that the parent is displayed, the window manager attempts to place
DialogShell based on the value of theXmNdefaultPosition BulletinBoard resource.
The default value of this resource isTrue , which means that the window manager position
the DialogShell so that it is centred on top of its parent. If the resource is set toFalse , the
application and the window manager negotiate about where the dialog is placed.
resource is only relevant when the BulletinBoard is the immediate child of a DialogSh
which is always the case for Motif dialogs. If you want, you can position the dialog
setting theXmNxandXmNyresources for the dialog widget. Positioning the dialog on t
screen must be done through aXmNmapCallback routine, which is called whenever the
application callsXtManageChild() . See Chapter 7, for a discussion about dialo
positioning.

* The ApplicationShell is considered deprecated in X11R6.

† This is at the whim of the window manager. Formwm, this is true. See Chapter 20 for more details.
Motif Programming Manual 155

Chapter 5: Introduction to Dialogs

f the
s
ng as
fined
if
esign
our

to
ind
tion

l:

ing

rect

sing
hen
t is
use

ction.
The Motif Window Manager imposes an additional constraint on the stacking order o
DialogShell and its parent.mwmalways forces the DialogShell to be directly on top of it
parent in the stacking order. The result is that the shell that contains the widget acti
the parent of the DialogShell cannot be placed on top of the dialog. This behavior is de
by theMotif Style Guideand is enforced by the Motif Window Manager and the Mot
toolkit. Many end-users have been known to report the behavior as an application-d
bug, so you may want to describe this behavior explicitly in the documentation for y
application, in order to prepare the user ahead of time.*

Internally, DialogShell widgets communicate frequently with dialog widgets in order
support the single-entity abstraction promoted by the Motif toolkit. However, you may f
that you need to access the DialogShell part of a Motif dialog in order to query informa
from the shell or to perform certain actions on it. The include file <Xm/DialogS.h> provides
a convenient macro for identifying whether or not a particular widget is a DialogShel

#define XmIsDialogShell(w)\
XtIsSubclass(w, xmDialogShellWidgetClass)

If you need to use this macro, or you want to create a DialogShell us
XmCreateDialogShell() , you need to include <Xm/DialogS.h>.

The macro is useful if you want to determine whether or not a dialog widget is the di
child of a DialogShell. For example, earlier in this chapter, we mentioned that theMotif
Style Guidesuggests that if the user activates theOK button in a MessageDialog, the entire
dialog should be popped down. If you have created a MessageDialog without u
XmCreateMessageDialog() and you want to be sure that the same thing happens w
the user presses theOK button in that dialog, you need to test whether or not the paren
a DialogShell before you pop down the dialog. The following code fragment shows the
of the macro in this type of situation:

/* traverse up widget tree until we find a dialog shell parent */
Widget GetDialogShellChild (Widget widget)
{

Widget parent;

while (widget) {
if (((parent = XtParent (widget)) != (Widget) 0)

if (XmIsDialogShell (parent))
return widget;

widget = parent;
}
return (Widget) 0;

}

/* traverse up the tree to find any shell ancestor */
Widget GetShell (Widget w)
{

* Other window managers behave differently. See Chapter 20 for more details about window manager intera
156 Motif Programming Manual

Chapter 5: Introduction to Dialogs

the

the
f the

If the
diate

els,
as a

andle
for a
s
get a
while (widget && !XtIsShell (widget))
widget = XtParent (widget);

return widget;
}

void ok_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget top;
/* do whatever the callback needs to do */
...
/* if immediate parent is not a DialogShell, mimic the same
** behavior as if it were.
*/

/* Motif DialogShell */
if ((top = GetDialogShellChild (w)) != (Widget) 0)

XtUnmanageChild (top);
/* Probably a topLevelShellWidgetClass */
if ((top = GetShell (w)) != (Widget)))

XtPopdown (top);
}

The Motif toolkit defines similar macros for all of its widget classes. For example,
header file <Xm/MessageB.h> defines the macroXmIsMessageBox() :

#define XmIsMessageBox(w)\
XtIsSubclass (w, xmMessageBoxWidgetClass)

This macro determines whether or not a particular widget is subclassed from
MessageBox widget class. Since all of the MessageDialogs are really instances o
MessageBox class, the macro covers all of the different types of MessageDialogs.
widget is a MessageBox, the macro returns True whether or not the widget is an imme
child of a DialogShell. Note that this macro does not returnTrue if the widget is a
DialogShell.

Internal Widgets
All of the Motif dialog widgets are composed of primitive subwidgets such as Lab
PushButtons, and TextField widgets. For most tasks, it is possible to treat a dialog
single entity. However, there are some situations when it is useful to be able to get a h
to the widgets internal to the dialog. For example, one way to set the default button
dialog is to use theXmNdefaultButton resource. The value that you specify for thi
resource must be a widget ID, so this is one of those times when it is necessary to
handle to the actual subwidgets contained within a dialog.
Motif Programming Manual 157

Chapter 5: Introduction to Dialogs

he

e the
t, so

able.

an
se to
tton

ion.

s

You can retrieve a subwidget of any component usingXtNameToWidget() * , which has
the following form:

Widget XtNameToWidget (Widget widget , char *child)

The widget parameter is a handle to a dialog widget, not its DialogShell parent. T
child parameter is the name associated with a descendant ofwidget . The children of a
MessageBox have the following constant names:

Symbol Message Separator
OK Cancel Help

For example, the Cancel button in a MessageDialog can be accessed as follows:

Widget cancel_b = XtNameToWidget (message_box, “Cancel”);

One method that you can use to customize the predefined Motif dialogs is to unmanag
subwidgets that are inappropriate for your purposes. To get the widget ID for a widge
that you can pass it toXtUnmanageChild() , you need to callXtNameToWidget() . You
can also use this routine to get a handle to a widget that you want to temporarily dis
These techniques are demonstrated in the following code fragment:

text = XmStringCreateLocalized ("You have new mail.");
XtSetArg (args[0], XmNmessageString, text);
dialog = XmCreateInformationDialog (parent, "message", args, 1);
XmStringFree (text);
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));

The output of a program using this code fragment is shown in Figure 5-7.

Since the message in this dialog is so simple, it does not make sense to have bothOK
and aCancelbutton, so we unmanage the latter. On the other hand, it does make sen
have aHelp button. However, there is currently no help available, so we make the bu
unselectable by desensitizing it usingXtSetSensitive() .

* The Motif convenience routines,XmMessageBoxGetChild (), XmSelectionBoxGetChild (), and so forth,
are considered deprecated in Motif 2.0.XmFileSelectionBoxGetChild () has not been maintained in partic-
ular, and Motif 2 components of the FileSelectionBox cannot be accessed using this convenience funct

Figure 5-7: MessageDialog with unmanaged Cancel, and insensitive Help button
158 Motif Programming Manual

Chapter 5: Introduction to Dialogs

ile a
els of
all
l input
other
ny
odal

her
ular

d, the
e the
not

that

user
and
odal
st as
used
ario.

d as a
rams.

e the
ck that
there

y the
nts.
If this
the
Dialog Modality
The concept of forcing the user to respond to a dialog is known asmodality. Modality
governs whether or not the user can interact with other windows on the desktop wh
particular dialog is active. Dialogs are either modal or modeless. There are three lev
modality: primary application modal, full application modal, and system modal. In
cases, the user must interact with a modal dialog before control is released and norma
is resumed. In a system modal dialog, the user is prevented from interacting with any
window on the display. Full application modal dialogs allow the user to interact with a
window on the desktop except those that are part of the same application as the m
window. Primary application modal dialogs allow the user to interact with any ot
window on the display except for the window that is acting as the parent for this partic
dialog.

For example, if the user selected an action that caused an error dialog to be displaye
dialog could be primary application modal, so that the user would have to acknowledg
error before she interacts with the same window again. This type of modality does
restrict her ability to interact with another window in the same application, provided
the other window is not the one acting as the parent for the modal dialog.

Modal dialogs are perhaps the most frequently misused feature of a graphical
interface. Programmers who fail to grasp the concept of event-driven programming
design, whereby the user is in control, often fall into the convenient escape route that m
dialogs provide. This problem is difficult to detect, let alone cure, because there are ju
many right ways to invoke modal dialogs as there are wrong ways. Modality should be
in moderation, but it should also be used consistently. Let’s examine a common scen
Note that this example does not necessarily favor using modal dialogs; it is presente
reference point for the types of things that people are used to doing in tty-based prog

A text editor has a function that allows the user to save its text to a file. In order to sav
text, the program needs a filename. Once it has a filename, the program needs to che
the user has sufficient permission to open or create the file and it also needs to see if
is already some text in the file. If an error condition occurs, the program needs to notif
user of the error, ask for a new filename, or get permission to overwrite the file’s conte
Whatever the case, some interaction with the user is necessary in order to proceed.
were a typical terminal-based application, the program flow would be similar to that in
following code fragment:

FILE *fp;
char buf [BUFSIZ], file [BUFSIZ];
extern char *index();
printf ("What file would you like to use? ");

if (!(fgets (file, sizeof (file), stdin)) || file[0] == 0) {
puts ("Cancelled."); return;

}

Motif Programming Manual 159

Chapter 5: Introduction to Dialogs

ing
t tty-
one

rent
best
ust

dow
event-

ut a
nario,
out
er’s
can

he
out

dant
e it
ight
or

ight
ore.
/* get rid of newline terminator */
*(index (file, '\n')) = 0;

/* "a+" creates file if it doesn't exist */
if (!(fp = fopen (file, "a+"))) {

perror (file); return;
}

if (ftell (fp) > 0) {
/* There's junk in the file already */
printf ("Overwrite contents of %s? ", file);
buf[0] = 0;
if (!(fgets (buf, sizeof (buf), stdin)) || buf[0] == 0 || buf[0] == 'n' ||

buf[0] == 'N') {
puts ("Cancelled.");
fclose (fp);
return;

}
}
rewind (fp);

This style of program flow is still possible with a graphical user interface system us
modal dialogs. In fact, the style is frequently used by engineers who are trying to por
based applications to Motif. It is also a logical approach to programming, since it does
task followed by another, asking only for information that it needs when it needs it.

However, in an event-driven environment, where the user can interact with many diffe
parts of the program simultaneously, displaying a series of modal dialogs is not the
way to handle input and frequently it’s just plain wrong as a design approach. You m
adopt a new paradigm in interface design that conforms to the capabilities of the win
system and meets the expectations of the user. It is essential that you understand the
driven model if you want to create well-written, easy-to-use applications.

Window-based applications should be modelled on the behavior of a person filling o
form, such as an employment application or a medical questionnaire. Under this sce
you are given a form asking various questions. You take it to your seat and fill it
however you choose. If it asks for your license number, you can get out your driv
license and copy down the number. If it asks for your checking account number, you
examine your check book for that information. The order in which you fill out t
application is entirely up to you. You are free to examine the entire form and fill
whatever portions you like, in whatever order you like.

When the form is complete, you return it to the person who gave it to you. The atten
can check it over to see if you forgot something. If there are errors, you typically tak
back and continue until it’s right. The attendant can simply ask you the question stra
out and write down whatever you say, but this prevents him from doing other work
dealing with other people. Furthermore, if you don’t know the answer to the question r
away, then you have to take the form back and fill it out the way you were doing it bef
160 Motif Programming Manual

Chapter 5: Introduction to Dialogs

tions
ff-line,

can
wn
f the
n the
form.
we

re are
re is
g a

n you
on is

ror.

ate
d to
ady
user
logs

sting

tly
s by
revent

ould
rtain
at we
gs are
e that
an
p to
No matter how you look at it, this process is not an interview where you are asked ques
in sequence and must answer them that way. You are supposed to prepare the form o
without requiring interaction from anyone else.

Window-based applications should be treated no differently. Each window, or dialog,
be considered to be a form of some sort. Allow the user to fill out the form at her o
convenience and however she chooses. If she wants to interact with other parts o
application or other programs on the desktop, she should be allowed to do so. Whe
user selects one of the buttons in the action area, this action is her way of returning the
At this time, you may either accept it or reject it. At no point in the process so far have
needed a modal dialog.

Once the form has been submitted, you can take whatever action is appropriate. If the
errors in any section of the dialog, you may need to notify the user of the error. He
where a modal dialog can be used legitimately. For example, if the user is usin
FileSelectionDialog to specify the file she wants to read and the file is unreadable, the
must notify her so that she can make another selection. In this case, the notificati
usually in the form of an ErrorDialog, with a message that explains the error and anOK
button. The user can read the message and press the button to acknowledge the er

It is often difficult to judge what types of questions or how much information is appropri
in modal dialogs. The rule of thumb is that questions in modal dialogs should be limite
simple, yes/no questions. You should not prompt for any information that is alre
available through an existing dialog, but instead bring up that dialog and instruct the
to provide the necessary information there. You should also avoid posting modal dia
that prompt for a filename or anything else that requires typing. You should be reque
this type of information through the text fields of modeless dialog boxes.

As for the issue of forcing the user to fill out forms in a particular order, it may be perfec
reasonable to require this type of interaction. You should implement these restriction
managing and unmanaging separate dialogs, rather than by using modal dialogs to p
interaction with all but a single dialog.

All of these admonitions are not to suggest that modal dialogs are rare or that you sh
avoid using them at all costs. On the contrary, they are extremely useful in ce
situations, are quite common, and are used in a wide variety of ways--even those th
might not recommend. We have presented all of these warnings because modal dialo
frequently misused and programs that use fewer of them are usually better than thos
use more of them. Modal dialogs interrupt the user and disrupt the flow of work in
application. There is no sanity checking to prevent you from misusing dialogs so it is u
you to keep the use of modal dialogs to a minimum.
Motif Programming Manual 161

Chapter 5: Introduction to Dialogs

e the
by

hild

alue

dialog
uld
t
e of
w

utside
pts

ply to
Implementing Modal Dialogs
Once you have determined that you need to implement a modal dialog, you can us
XmNdialogStyle resource to set the modality of the dialog. This resource is defined
the BulletinBoard widget class; it is only relevant when the widget is an immediate c
of a DialogShell. The resource can be set to one of the following values:

XmDIALOG_MODELESS
XmDIALOG_PRIMARY_APPLICATION_MODAL
XmDIALOG_FULL_APPLICATION_MODAL
XmDIALOG_SYSTEM_MODAL

XmDIALOG_MODELESSis the default value for the resource, so unless you change the v
any dialog that you create will be modeless.

When you use one of the modal values, the user has no choice but to respond to your
box before continuing to interact with the application. If you use modality at all, you sho
probably avoid usingXmDIALOG_SYSTEM_MODAL, since it is rarely necessary to restric
the user from interacting with all of the other applications on the desktop. This styl
modality is typically reserved for system-level interactions. Under the Motif Windo
Manager, when a system modal dialog is popped up, if the user moves the mouse o
of the modal dialog, the cursor turns into the international “do not enter” symbol. Attem
to interact with other windows cause the server to beep.

Example 5-5 shows a sample program that displays a dialog box that the user must re
before continuing to interact with the application.*

Example 5-5. The modal.c program

/* modal.c -- demonstrate modal dialogs. Display two pushbuttons
** each activating a modal dialog.
*/
#include <Xm/RowColumn.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

/* main() --create a pushbutton whose callback pops up a dialog box */
main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, button, rowcolumn;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);
rowcolumn = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
button = XmCreatePushButton (rowcolumn, "Application Modal", NULL, 0);

* XtVaAppInitialize () is considered deprecated in X11R6.
162 Motif Programming Manual

Chapter 5: Introduction to Dialogs
XtAddCallback (button, XmNactivateCallback, pushed,
(XtPointer) XmDIALOG_FULL_APPLICATION_MODAL);

XtManageChild (button);
button = XmCreatePushButton (rowcolumn, "System Modal", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,

(XtPointer) XmDIALOG_SYSTEM_MODAL);
XtManageChild (button);
XtManageChild (rowcolumn);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() --the callback routine for the main app's pushbutton.
** Create either a full-application or system modal dialog box.
*/
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

static Widget dialog;
XmString t;
void dlg_callback(Widget, XtPointer, XtPointer);
unsigned char modality = (unsigned char) client_data;

/* See if we've already created this dialog -- if so,
** we don't need to create it again. Just re-pop it up.
*/
if (!dialog) {

Arg args[5];
int n = 0;
XmString ok = XmStringCreateLocalized ("OK");
XtSetArg(args[n], XmNautoUnmanage, False); n++;
XtSetArg(args[n], XmNcancelLabelString, ok); n++;
dialog = XmCreateInformationDialog (widget, "notice", args, n);
XtAddCallback (dialog, XmNcancelCallback, dlg_callback, NULL);
XtUnmanageChild (XtNameToWidget (dialog, “OK”));
XtUnmanageChild (XtNameToWidget (dialog, “Help”));

}
t = XmStringCreateLocalized ("You must reply to this message now!");
XtVaSetValues (dialog, XmNmessageString, t, XmNdialogStyle, modality,
NULL);
XmStringFree (t);
XtManageChild (dialog);

}

void dlg_callback (Widget dialog, XtPointer client_data, XtPointer call_data)
{

XtUnmanageChild (dialog);
}

Motif Programming Manual 163

Chapter 5: Introduction to Dialogs

ue for
s the

ll not
Just
creen,

tion
r to

ou’d
ding.
ut

that
ds to
ng to
tion,
The output of this program is shown in Figure 5-8.

This program demonstrates both application modal and system modal dialogs.The val
theXmNdialogType resource is passed as client data to the callback routine that post
dialog.

Forcing an Immediate Response
In Example 5-5, once the dialog is posted, the function returns so thatXtAppMainLoop()
can continue to process the events. If the function does not return, the application wi
respond to user events and, for that matter, the dialog will not even be displayed.
because a dialog is realized and managed does not mean that it is displayed on the s
as events must be processed in order for it to appear. See Chapter 27,Advanced Dialog
Programming, for a discussion of this phenomenon. (See Volume 1,Xlib Programming
Manual, for more information on event processing.)

However, there are situations where it would be nice not to have to return from the func
and break its flow of control. As an example, consider a function that allows the use
perform a particularly dangerous action, such as removing or overwriting a file. What y
like to do is prompt the user first and allow her to reconsider the action before procee
If she confirms the action, you’d like to continue from within the same function witho
having to return in order to process events.

In order to write this type of function, we need to find a way to process the events
display and manage the dialog without returning to the main loop. The user also nee
be able to respond to the dialog, so we really need to allow normal event processi
continue in the context of the function. Let’s assume that there is a hypothetical func
AskUser() , that we can use in the following way:

if (AskUser ("Are you sure you want to do this?") == YES) {
/* proceed with action... */

}

Figure 5-7: Output of modal.c
164 Motif Programming Manual

Chapter 5: Introduction to Dialogs

e

essed
7.
The functionAskUser() should post a full application modal MessageDialog, wait for th
user to respond to the dialog, and return a predefined value for eitherYESor NO. The magic
of the function is to get around the requirement that events can only be read and proc
directly fromXtAppMainLoop() . The code for such a function is shown in Example 5-

Example 5-6. The AskUser() routine

#define YES1
#define NO2
/*
** AskUser() -- a generalized routine that asks the user a question
** and returns the Yes/No response.
*/
int AskUser (Widget parent, char *question)
{

static Widget dialog;
XmString text, yes, no;
static int answer;
void response(Widget, XtPointer, XtPointer);
extern XtAppContextapp;

if (!dialog) {
dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
yes = XmStringCreateLocalized ("Yes");
no = XmStringCreateLocalized ("No");
XtVaSetValues (dialog,

XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
XmNokLabelString, yes,
XmNcancelLabelString, no,
NULL);

XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtAddCallback (dialog, XmNokCallback, response,

(XtPointer) &answer);
XtAddCallback (dialog, XmNcancelCallback, response,

(XtPointer) &answer);
XmStringFree (yes);
XmStringFree (no);

}
answer = 0;
text = XmStringCreateLocalized (question);
XtVaSetValues (dialog, XmNmessageString, text, NULL);
XmStringFree (text);
XtManageChild (dialog);
/* while the user hasn't provided an answer, simulate main loop.
** The answer changes as soon as the user selects one of the
** buttons and the callback routine changes its value.
*/
while (answer == 0)

XtAppProcessEvent (app, XtIMAll);
XtUnmanageChild (dialog);
return answer;

}

Motif Programming Manual 165

Chapter 5: Introduction to Dialogs

og. It
r an

s that
r very
be

ed in

o we
a
te

ome
area

tion is
ttons,
er
s

oop

r
d a

er
this
the

the
/* response() --The user made some sort of response to the
** question posed in AskUser(). Set the answer (client_data)
** accordingly and destroy the dialog.
*/
void response (Widget widget, XtPointer client_data, XtPointer call_data)
{

int *answer = (int *) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

switch (cbs->reason) {
case XmCR_OK : *answer = YES; break;
case XmCR_CANCEL : *answer = NO; break;
default : return;

}
}

The first parameter to the function is the widget that acts as the parent of the new dial
is important to choose this widget wisely. The parent widget must not be a gadget o
unrealized widget; it should be a widget that is currently mapped to the screen. Widget
are menu items are not good candidates, since they are not mapped to the screen fo
long. The top-level shell widget of the widget that caused the callback function to
invoked is typically a good choice. The second parameter is the string that is display
the dialog.

The routine is intended to be used to display a dialog that asks a Yes/No question, s
change theOK andCancellabels to sayYesandNo, respectively. The routine creates
QuestionDialog as a staticWidget , which allows us to reuse the dialog, rather than crea
it each time the function is called. This technique may improve performance on s
machines. The modality of the dialog and the labels for the PushButtons in the action
are set at creation time, but the actual message string is set each time that the func
called, since the message can change. When we install the callback routines for the bu
we use the address of theanswer variable as the client data. As a result, when the us
responds to the question by selecting the Yes orNobutton, the callback routine has acces
to the variable and can change its value accordingly.

Thewhile loop is where the application waits for the user to make a selection. The l
exits when the variableanswer is changed from its initial value (0) to eitherYES(1) or
NO (2) by the callback routine. By usingXtAppProcessEvent() , we have effectively
reproduced theXtAppMainLoop() function that is used in the main application. Rathe
than returning to that level and breaking our flow of control, we have introduce
miniature main loop in the function itself.

While theAskUser() routine in Example 5-6 is useful as it is written, there are a numb
of enhancements that will make it even more useful. By using what we’ve learned in
chapter, we can come up with a simple, yet extremely robust interface for prompting
user for responses to questions without breaking the natural flow of control in
application. Example 5-7 demonstrates a generalized version ofAskUser() in a complete
166 Motif Programming Manual

Chapter 5: Introduction to Dialogs

at
application. The programask_user.callows the user to execute UNIX commands th
create and remove a temporary file.*

Example 5-7. The ask_user.c program

/* ask_user.c -- the user is presented with two pushbuttons.
** The first creates a file (/tmp/foo) and the second removes it.
** In each case, a dialog pops up asking for verification of the action.
**
** This program is intended to demonstrate an advanced implementation
** of the AskUser() function. This time, the function is passed the
** strings to use for the OK button and the Cancel button as well as
** the button to use as the default value.
**/
#include <Xm/DialogS.h>
#include <Xm/SelectioB.h>
#include <Xm/RowColumn.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

#define YES1
#define NO2
/* Generalize the question/answer process by creating a data structure
** that has the necessary labels, questions and everything needed to
** execute a command.
*/
typedef struct {

char *label; /* label for pushbutton used to invoke cmd */
char *question; /* question for dialog box to confirm cmd */
char *yes; /* what the "OK" button says */
char *no; /* what the "Cancel" button says */
int dflt; /* which should be the default answer */
char *cmd; /* actual command to execute (using system()) */

} QandA;

QandA touch_foo = {"Create", "Create /tmp/foo?", "Yes", "No",
YES, "touch /tmp/foo"};

QandA rm_foo = {"Remove", "Remove /tmp/foo?", "Yes", "No",
NO, "rm /tmp/foo"};

XtAppContext app;

main (int argc, char *argv[])
{

Widget toplevel, button, rowcolumn;
XmString label;
Arg args[2];
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 167

Chapter 5: Introduction to Dialogs
rowcolumn = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
label = XmStringCreateLocalized (touch_foo.label);
XtSetArg(args[0], XmNlabelString, label);
button = XmCreatePushButton (rowcolumn, "button", args, 1);
XtAddCallback (button,

XmNactivateCallback, pushed, (XtPointer) &touch_foo);
XtManageChild (button);
XmStringFree (label);
label = XmStringCreateLocalized (rm_foo.label);
XtSetArg (args[0], XmNlabelString, label);
button = XmCreatePushButton (rowcolumn, "button", args, 1);
XtAddCallback (button, XmNactivateCallback, pushed,

(XtPointer) &rm_foo);
XtManageChild (button);
XmStringFree (label);
XtManageChild (rowcolumn);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() --when a button is pressed, ask the question described
** by the QandA parameter (client_data). Execute the cmd if YES.
*/
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

QandA *quest = (QandA *) client_data;
if (AskUser (widget, quest->question,

quest->yes, quest->no, quest->dflt) == YES) {
printf ("Executing: %s\n", quest->cmd);
system (quest->cmd);

} else
printf ("Not executing: %s\n", quest->cmd);

}

/* AskUser() -- a generalized routine that asks the user a question
** and returns a response. Parameters are: the question, the labels
** for the "Yes" and "No" buttons, and the default selection to use.
*/
AskUser (Widget parent, char *question, char *ans1, char *ans2, int default_ans)
{

static Widget dialog = NULL; /* static to avoid multiple creation */
XmString text, yes, no;
static int answer;
void response(Widget, XtPointer, XtPointer);

if (!dialog) {
dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
XtVaSetValues (dialog, XmNdialogStyle,

XmDIALOG_FULL_APPLICATION_MODAL, NULL);
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtAddCallback (dialog, XmNokCallback, response,

(XtPointer) &answer);
XtAddCallback (dialog, XmNcancelCallback, response,
168 Motif Programming Manual

Chapter 5: Introduction to Dialogs

is
cify
.
and
tely
(XtPointer) &answer);
}
answer = 0;
text = XmStringCreateLocalized (question);
yes = XmStringCreateLocalized (ans1);
no = XmStringCreateLocalized (ans2);
XtVaSetValues (dialog,

XmNmessageString, text,
XmNokLabelString, yes,
XmNcancelLabelString, no,
XmNdefaultButtonType,
(default_ans == YES?

XmDIALOG_OK_BUTTON:
XmDIALOG_CANCEL_BUTTON),

NULL);
XmStringFree (text);
XmStringFree (yes);
XmStringFree (no);
XtManageChild (dialog);
while (answer == 0)

XtAppProcessEvent (app, XtIMAll);
XtUnmanageChild (dialog);
/* make sure the dialog goes away before returning. Sync with server
** and update the display.
*/
XSync (XtDisplay (dialog), 0);
XmUpdateDisplay (parent);
return answer;

}

/* response() --The user made some sort of response to the
** question posed in AskUser(). Set the answer (client_data)
** accordingly.
*/
void response (Widget widget, XtPointer client_data, XtPointer call_data)
{

int *answer = (int *) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

if (cbs->reason == XmCR_OK)
*answer = YES;

else if (cbs->reason == XmCR_CANCEL)
*answer = NO;

}

The new version ofAskUser() is more dynamic than before, since more of the dialog
configurable upon each invocation of the function. The routine now allows you to spe
the message, the labels for theOK andCancelbuttons, and the default button for the dialog
The flexibility of the routine is achieved at the cost of a few more lines of source code
additional parameters to the function. The performance of the function is comple
unaffected.
Motif Programming Manual 169

Chapter 5: Introduction to Dialogs

l

to the
nts to

k

se
area,
n on

quite
one
by
ialogs,
w to
f the

you
er 7,
and

ples.
One case that the new version ofAskUser() does not deal with is the need for additiona
buttons in the action area of the dialog. For example, what if you need to provide aCancel
button in addition to theYesandNo answers? Let’s say that the user has selected theQuit
menu item in a text editor application. Since the user has yet to update the changes
file that she has been editing, the application posts a dialog that asks her if she wa
update her changes before exiting. There are three possible responses:

• Yes, update the changes and exit (Yes).

• No, don’t update the changes, but exit anyway (No).

• Don’t update the changes and don’t exit the application (Cancel).

One easy way to provide these three choices is to set the label for theHelpbutton toCancel
using theXmNhelpLabelString resource. Then you just need to modify the callbac
function so that it handles theXmCR_HELPreason and returns a new value for theCancel
button.

However, this solution does not work if you want to provide help in addition to the
choices. The default MessageDialog only provides three buttons in the action
although you can add additional action area buttons to the dialog. For more informatio
how to handle this situation, see Chapter 7,Custom Dialogs.

Summary
Dialogs are used extensively in all window-oriented applications and their uses are
diverse. As a result, it is impossible to provide numerous examples of the use of any
particular style of dialog. This chapter introduced the implementation of Motif dialogs
using the predefined MessageDialogs as examples. We described how to create the d
how to set various dialog resources, how to handle dialog callback routines, and ho
implement modal dialogs. Although our examples used MessageDialogs, much o
discussion is applicable to other types of Motif dialogs.

The next chapter deals with the predefined Motif selection dialogs. These dialogs allow
to provide the user with a group of choices from which to make a selection. Chapt
Custom Dialogs, discusses how you can breakaway from the predefined Motif dialogs
build dialogs on your own. Chapter 27,Advanced Dialog Programming, gets into advanced
topics in Xt and Motif programming, using various types of MessageDialogs as exam
170 Motif Programming Manual

splay

nt
ange
ctive
Chapter 1

In this chapter:
• Types of

SelectionDialogs
• SelectionDialogs
• PromptDialogs
• The Command Widget
• FileSelectionDialogs
• Summary

This chapter describes the pr
a list of items, such as files o

In Chapter 5,Introduction to
windows that perform a single
from displaying a simple mes
Motif Programming Manual
6

ced
pter
otif

er can
log.

g with
ialogs

lt.
ser is

alog
nd a

nd a

as a
Selection Dialogs
edefined Motif selection-style dialogs. These dialogs di
r commands, and allow the user to select items.

Dialogs, we introduced the idea that dialogs are transie
task in an application. Dialogs may perform tasks that r
sage, to asking a question, to providing a highly intera

window that obtains information from the user. The previous chapter also introdu
MessageDialogs and discussed how they are used by the Motif toolkit.This cha
discusses SelectionDialogs, which are at the next level of complexity in predefined M
dialogs.

In general, SelectionDialogs are used to present the user with a list of choices. The us
also enter a new selection or edit an existing one by typing in a text area in the dia
SelectionDialogs are appropriate when the user is supposed to respond to the dialo
more than just a simple yes or no answer. With respect to the action area, SelectionD
have the same default button as MessageBoxes (e.g.,OK, Cancel, andHelp). The dialogs
also provide anApply button, but the button is not always managed by defau
SelectionDialogs are meant to be less transient than MessageDialogs, since the u
expected to do more than read a message.

Types of SelectionDialogs
As explained in Chapter 5, there are four kinds of SelectionDialogs. The SelectionDi
and the PromptDialog are compound objects composed of a SelectionBox a
DialogShell. To use these objects, you need to include the header file <Xm/SelectioB.h>.
The FileSelectionDialog is another compound object made up of a FileSelectionBox a
DialogShell. The include file for this object is <Xm/FileSB.h>. The Command widget is
somewhat different, in that it is typically used as part of a larger interface, rather than
dialog. To use the Command widget, include the file <Xm/Command.h>. You can create
each of these dialogs using the associated convenience routines:

Widget XmCreateSelectionBox (Widget parent , char *name, ArgList args , Cardinalnum_args)
Widget XmCreateSelectionDialog (Widgetparent , char *name, ArgList args , Cardinalnum_args)
Widget XmCreatePromptDialog (Widget parent , char *name, ArgList args , Cardinalnum_args)
171

Chapter 6: Selection Dialogs

eates

not
t in a
ons

n
e the
t be
lowing

e of
ing

Each
k. In

t of
akes a
n also

any
URN
rea

of a
Widget XmCreateFileSelectionBox (Widgetparent , char *name, ArgList args , Cardinal num_args)
Widget XmCreateFileSelectionDialog (Widgetparent , char *name, ArgList args , Cardinal num_args)
Widget XmCreateCommand (Widget parent , char *name, ArgList args , Cardinalnum_args)

Like the MessageDialog convenience routines, each of the SelectionDialog routines cr
a dialog widget. In addition, routines that end inDialog automatically create a
DialogShell as the parent of the dialog widget. Note that the Command widget does
provide a convenience routine that creates a DialogShell; to put a Command widge
DialogShell, you must create the DialogShell yourself. All of the convenience functi
use the standard format for Motif creation routines.

The SelectionBox resourceXmNdialogType specifies the type of dialog that has bee
created. The resource is set automatically by the dialog convenience routines. Unlik
XmNdialogType resource for MessageDialogs, the SelectionBox resource canno
changed once the dialog has been created. The resource can have one of the fol
values:

XmDIALOG_WORK_AREA XmDIALOG_PROMPT
XmDIALOG_SELECTION XmDIALOG_COMMAND
XmDIALOG_FILE_SELECTION

These values should be self-explanatory, with the exception ofXmDIALOG_WORK_AREA.
This value is set when a SelectionBox is not the child of a DialogShell and it is not on
the other types of dialogs. In other words, if you create a SelectionDialog us
XmCreateSelectionDialog() , the value isXmDIALOG_SELECTION, but if you use
XmCreateSelectionBox() , the value is XmDIALOG_WORK_AREA. When a
SelectionBox is created as the child of a DialogShell, theApply button is automatically
managed, except ifXmNdialogType is set toXmDIALOG_PROMPT. Otherwise, the button
is created but not managed.

The different types of SelectionDialogs are meant to be used for unique purposes.
dialog provides different components that the user can interact with to perform a tas
the following sections, we examine each of the SelectionDialogs in turn.

SelectionDialogs
The SelectionDialog provides a ScrolledList that allows the user to select from a lis
choices, as well as a TextField where the user can type in choices. When the user m
selection from the list, the selected item is displayed in the text entry area. The user ca
type new or existing choices into the text entry area directly. The dialog does not take
action until the user activates one of the buttons in the action area or presses the RET
key. If the user double-clicks on an item in the List, the item is displayed in the text a
and theOK button is automatically activated. Example 6-1 demonstrates the use
SelectionDialog.*
172 Motif Programming Manual

Chapter 6: Selection Dialogs
Example 6-1. The select_dlg.c program

/* select_dlg.c -- display two pushbuttons: days and months.
** When the user selections one of them, post a selection
** dialog that displays the actual days or months accordingly.
** When the user selects or types a selection, post a dialog
** the identifies which item was selected and whether or not
** the item is in the list.
**
** This program demonstrates how to use selection boxes,
** methods for creating generic callbacks for action area
** selections, abstraction of data structures, and a generic
** MessageDialog posting routine.
*/
#include <Xm/SelectioB.h>
#include <Xm/RowColumn.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>

Widget PostDialog();
char *days[] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",

"Friday", "Saturday"};
char *months[] = {"January", "February", "March", "April", "May", "June",

"July", "August", "September", "October", "November", "December"};
typedef struct {

char *label;
char **strings;
int size;

} ListItem;

ListItem month_items = {"Months", months, XtNumber (months)};
ListItem days_items = {"Days", days, XtNumber (days)};

/* main() --create two pushbuttons whose callbacks pop up a dialog */
main (int argc, char *argv[])
{

Widgettoplevel, button, rc;
XtAppContextapp;
voidpushed();

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
rc = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
button = XmCreatePushButton (rc, month_items.label, NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,

(XtPointer) &month_items);
XtManageChild (button);
button = XmCreatePushButton (rc, days_items.label, NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,

* XtVaAppInitialize () is deprecated in X11R6.XmStringGetLtoR () is depecated in Motif 2.0:XmStrin-
gUnparse () is the preferred funtion.
Motif Programming Manual 173

Chapter 6: Selection Dialogs
(XtPointer) &days_items);
XtManageChild (button);
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}
/* pushed() --the callback routine for the main app's pushbutton.
** Create a dialog containing the list in the items parameter.
*/
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget dialog;
XmString t, *str;
int i;
extern void dialog_callback();
ListItem *items = (ListItem *) client_data;

str = (XmString *) XtMalloc (items->size * sizeof (XmString));
t = XmStringCreateLocalized (items->label);

for (i = 0; i < items->size; i++)
str[i] = XmStringCreateLocalized (items->strings[i]);

dialog = XmCreateSelectionDialog (widget, "selection", NULL, 0);
XtVaSetValues (dialog,
XmNlistLabelString, t,
XmNlistItems, str,
XmNlistItemCount, items->size,
XmNmustMatch, True,
NULL);

XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtAddCallback (dialog, XmNokCallback, dialog_callback, NULL);
XtAddCallback (dialog, XmNnoMatchCallback, dialog_callback, NULL);
XmStringFree (t);

while (--i >= 0)
XmStringFree (str[i]); /* free elements of array */

XtFree ((char *) str); /* now free array pointer */
XtManageChild (dialog);

}
/* dialog_callback() --The OK button was selected or the user
** input a name by himself. Determine whether the result is
** a valid name by looking at the "reason" field.
*/
void dialog_callback (Widget widget, XtPointer client_data,

XtPointer call_data)
{

char msg[256], *prompt, *value;
int dialog_type;
XmSelectionBoxCallbackStruct *cbs =

(XmSelectionBoxCallbackStruct *) call_data;
switch (cbs->reason) {

case XmCR_OK : prompt = "Selection: ";
174 Motif Programming Manual

Chapter 6: Selection Dialogs
dialog_type = XmDIALOG_MESSAGE;
break;

case XmCR_NO_MATCH:prompt = "Not a valid selection: ";
dialog_type = XmDIALOG_ERROR;
break;

default : prompt = "Unknown selection: ";
dialog_type = XmDIALOG_ERROR;
break;

}
value = (char *) XmStringUnparse (cbs->value, XmFONTLIST_DEFAULT_TAG,

XmCHARSET_TEXT, XmCHARSET_TEXT, NULL, 0,
XmOUTPUT_ALL);

sprintf (msg, "%s%s", prompt, value);
XtFree (value);
(void) PostDialog (XtParent (XtParent (widget)), dialog_type, msg);
if (cbs->reason != XmCR_NO_MATCH) {

XtUnmanageChild (widget);
/* The shell parent of the Selection box */
XtDestroyWidget (XtParent (widget));

}
}
/*
** Destroy the shell parent of the Message box, and thus the box itself
*/
void destroy_dialog (Widget dialog, XtPointer client_data, XtPointer call_data)
{

XtDestroyWidget (XtParent (dialog));
/* The shell parent of the Message box */

}
/*
** PostDialog() -- a generalized routine that allows the programmer
** to specify a dialog type (message, information, error, help,
** etc..), and the message to show.
*/
Widget PostDialog (Widget parent, int dialog_type, char *msg)
{

Widget dialog;
XmString text;
dialog = XmCreateMessageDialog (parent, "dialog", NULL, 0);
text = XmStringCreateLocalized (msg);
XtVaSetValues (dialog, XmNdialogType, dialog_type,

XmNmessageString, text, NULL);
XmStringFree (text);
XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtAddCallback (dialog, XmNokCallback, destroy_dialog, NULL);
XtManageChild (dialog);
return dialog;

}

Motif Programming Manual 175

Chapter 6: Selection Dialogs

eek.
ms
ular
two

month

the
as the

r a

s the
ng
e
the
. It
t the
he

this
The output of the program is shown in Figure 6-1.

The program displays two PushButtons, one for months and one for the days of the w
When either button is activated, a SelectionDialog that displays the list of ite
corresponding to the button is popped up. In keeping with the philosophy of mod
programming techniques, we have broken the application into three routines -
callbacks and one general-purpose message posting function. The lists of day and
names are stored as arrays of strings.We have declared a data structure,ListItem , to store
the label and the items for a list. Two instances of this data structure are initialized to
correct values for the lists of months and days. We pass these data structures
client_data to the callback functionpushed() . This callback routine is associated with
both of the PushButtons.

Thepushed() callback function creates the SelectionDialogs. Since the list of items fo
SelectionDialog must be specified as an array ofXmString values, the list passed in the
client_data parameter must be converted. We create an array of compound string
size of the list and copy each item into the new array usi
XmStringCreateLocalized() . The resulting list is used as the value for th
XmNlistItems resource. The number of items in the list is specified as the value of
XmNlistItemCount resource. This value must be given for the list to be displayed
must be less than or equal to the actual number of items in the list. We also se
XmNlistLabelString resource to specify the label for the list of items in the dialog. T
SelectionDialog also provides theXmNlistVisibleItemCount resource for specifying
the number of visible items in the list. We let the dialog use the default value for
resource.

Figure 6-1: Output of the select_dlg program
176 Motif Programming Manual

Chapter 6: Selection Dialogs

of the
t

st. If
that

g

outine

k

the
both

wise,

e the

t
nt to
e of
t on
rent

, see

the
u use

the

not

utine.
The final resource that we set for the SelectionDialog isXmNmustMatch. This resource
controls whether an item that the user types in the text entry area must match one
items in the list. By setting the resource toTrue , we are specifying that the user canno
make up a month or day name. When the user activates theOK button or presses the
RETURN key, the widget checks the item in the text entry area against those in the li
the selection doesn’t match any of the items in the list, the program pops up a dialog
indicates the error.

Once the dialog is created, we desensitize itsHelp button because we are not providin
help. We install a callback routine for theOKbutton using theXmNokCallback . To handle
the case when the user types an item that does not match, we also install a callback r
for theXmNnoMatchCallback . Thedialog_callback() routine is used to handle both
cases. We use thereason field of the callback structure to determine why the callbac
was called and act accordingly. Thevalue field of the callback structure contains the
selected item. If the item is valid, we use the value to create a dialog that confirms
selection. Otherwise, we post an error dialog that indicates the invalid selection. In
cases we use the generalized function,PostDialog() , to display the MessageDialog. If
the selection is valid, the routine pops down and destroys the SelectionDialog. Other
we leave the dialog posted so that the user can make another selection.

Just as a point of discussion, you should realize that it was an arbitrary decision to hav
PostDialog() function acceptchar strings rather than anXmString . The routine could
be modified to use anXmString , but doing so doesn’t buy us anything. If you find tha
your application deals with one string format more often than the other, you may wa
modify your routines accordingly. You should be aware that converting from one typ
string to the other is relatively expensive; if it is done frequently, you may see an effec
performance. Another option is for your routine to accept both string types as diffe
parameters. You can pass a valid value for one parameter andNULLfor the other parameter
and deal with them accordingly. For more information on handling compound strings
Chapter 25,Compound Strings.

Callback Routines
The SelectionDialog provides callbacks for its action buttons in the same way as
MessageDialog. Instead of accessing the PushButton widgets to install callbacks, yo
the resourcesXmNokCallback , XmNapplyCallback , XmNcancelCallback , and
XmNhelpCallback on the dialog widget itself. These callbacks correspond to each of
four buttons,OK, Apply, Cancel, and Help. The SelectionDialog also provides the
XmNnoMatchCallback for handling the case when the item in the text entry area does
match an item in the list.

All of these callback routines take three parameters, just like any standard callback ro
The callback structure that is passed to all of the callback routines in thecall_data
Motif Programming Manual 177

Chapter 6: Selection Dialogs

llows:

ack

the
ctual

ound

ns,
t the
fferent
andle

he
the

is
d to
parameter is of typeXmSelectionBoxCallbackStruct . This structure is similar to the
one used by MessageDialogs, but it has more fields. The structure is declared as fo

typedef struct {
int reason;
XEvent *event;
XmString value;
int length;

} XmSelectionBoxCallbackStruct;

The value of thereason field is an integer value that specifies the reason that the callb
routine was invoked. The field can be one of the following values:

XmCR_OK XmCR_APPLY XmCR_CANCEL
XmCR_HELP XmCR_NO_MATCH

Thevalue andlength fields represent the compound string version of the item that
user selected from the list or typed into the text entry area. In order to get the a
character string for the item, you have to useXmStringUnparse() * to convert the
compound string into a character string. (See Chapter 25, for a discussion of comp
strings.)

Internal Widgets
The SelectionDialog is obviously composed of primitive subwidgets, like PushButto
Labels, a ScrolledList, and a TextField widget. For most tasks, it is possible to trea
dialog as a single entity because the dialog provides resources that manage the di
components. However, there are some situations where it is useful to be able to get a h
to the widgets internal to the dialog. TheXtNameToWidget() † routine allows you to
access the internal widgets. This routine takes the following form:

Widget XtNameToWidget (Widget widget , char * child _name)

The widget parameter is a handle to a dialog widget, not its DialogShell parent. T
child_name parameter specifies a particular subwidget in the dialog. For
SelectionDialog, the following are the names of the built-in components:

OK Cancel Help Apply
Items Selection Text SeparatorItemsList

These names are fairly self-explanatory:Selection is the Label associated with the
SelectionDialog TextField widget,Items is the Label for the items list, and so forth. Note
that ItemsList is the List itself, and not the ScrolledWindow containing the List. Th
means that ItemsList is not a direct child of the SelectionDialog, and hence you nee
access the widget using a wildcard specification inXtNameToWidget (), as follows:

* XmStringGetLtoR () is considered deprecated from Motif 2.0.

† XmSelectionBoxGetChild () is deprecated as of Motif 2.0.
178 Motif Programming Manual

Chapter 6: Selection Dialogs

olkit

ge it

te a
t-in

it by
ple
Widget list = XtNameToWidget (dialog, “*ItemsList”);

One use ofXtNameToWidget() is to get a handle to theApply button so that you can
manage it. When you create a SelectionBox that is not a child of a DialogShell, the to
creates theApplybutton, but it is unmanaged by default. TheApplybutton is available to
the PromptDialog, but it is unmanaged by default. To use the button, you must mana
and specify a callback routine, as in the following code fragment:

XtAddCallback (dialog, XmNapplyCallback, dialog_callback, NULL);
XtManageChild (XtNameToWidget (dialog, “Apply”));

The callback routine is the same as the one we set for theOK button, but thereason field
in the callback structure will indicate that it was called as a result of theApplybutton being
activated.

PromptDialogs
The PromptDialog is unique among the SelectionDialogs, in that it does not crea
ScrolledList object. For the PromptDialog, the following are the names of the buil
components:

OK Cancel Help Apply
Selection Text Separator

This dialog allows the user to type a text string in the text entry area and then enter
selecting theOK button or by pressing the RETURN key. Example 6-2 shows an exam
of creating and using a PromptDialog.

Example 6-2. The prompt_dlg.c program

/* prompt_dlg.c -- prompt the user for a string. Two PushButtons
** are displayed. When one is selected, a PromptDialog is displayed
** allowing the user to type a string. When done, the PushButton's
** label changes to the string.
*/
#include <Xm/SelectioB.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, rc, button;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

/* Initialize toolkit and create toplevel shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* RowColumn managed both PushButtons */
Motif Programming Manual 179

Chapter 6: Selection Dialogs
rc = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
/* Create two pushbuttons -- both have the same callback */
button = XmCreatePushButton (rc, "PushMe 1", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed, NULL);
XtManageChild (button);
button = XmCreatePushButton (rc, "PushMe 2", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed, NULL);
XtManageChild (button);
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/*
** Destroy the prompt dialog’s shell parent, and thus also the prompt
*/
void destroy_dialog (Widget w, XtPointer client_data, XtPointer call_data)
{

XtDestroyWidget (XtParent (w));
}

/* pushed() --the callback routine for the main app's pushbuttons.
** Create a dialog that prompts for a new button name.
**/
void pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget dialog;
XmString t = XmStringCreateLocalized ("Enter New Button Name:");
void read_name(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;
/* Create the dialog -- the PushButton acts as the DialogShell's
** parent (not the parent of the PromptDialog).
*/
XtSetArg (args[n], XmNselectionLabelString, t); n++;
XtSetArg (args[n], XmNautoUnmanage, False); n++;
dialog = XmCreatePromptDialog (widget, "prompt", args, n);
XmStringFree (t);
/* always destroy compound strings when done */
/* When the user types the name, call read_name()... */
XtAddCallback (dialog, XmNokCallback, read_name, (XtPointer) widget);
/* If the user selects cancel, just destroy the dialog */
XtAddCallback (dialog, XmNcancelCallback, destroy_dialog, NULL);
/* No help is available... */
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtManageChild (dialog);

}

/* read_name() --the text field has been filled in. */
void read_name (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget push_button = (Widget) client_data;
XmSelectionBoxCallbackStruct *cbs;
180 Motif Programming Manual

Chapter 6: Selection Dialogs

t
as the

t

alog,

here

and

rces

urce

d up,
user
the

s
text

gram
cbs = (XmSelectionBoxCallbackStruct *) call_data;
XtVaSetValues (push_button, XmNlabelString, cbs->value, NULL);
/* Name's fine -- go ahead and enter it */
XtDestroyWidget (XtParent (widget));

}

The output of the program is shown in Figure 6-2.

The callback routine for each of the PushButtons,pushed() , creates a PromptDialog tha
prompts the user to enter a new name for the PushButton. The PushButton is passed
client_data to theXmNokCallback routine,read_name() , so that the routine can se
the label of the PushButton directly from inside the callback. Theread_name() function
destroys the dialog once it has set the label, since the dialog is no longer needed.

If the Cancelbutton is pressed, the text is not needed, so we can simply destroy the di
using thedestroy_dialog () callback. We setXmNautoUnmanage to False for the
dialog because the application is assuming the responsibility of managing the dialog. T
is no help for the dialog so theHelp button is disabled by setting it insensitive.

The text area in the PromptDialog is a TextField widget, so you can get a handle to it
set TextField widget resources accordingly. UseXtNameToWidget() to access the
widget. In order to promote the single-entity abstraction, the dialog provides two resou
that affect the TextField widget. You can set theXmNtextString resource to change the
value of the text string in the widget. Like other string resources, the value for this reso
must be a compound string. TheXmNtextColumns resource specifies the width of the
TextField in columns.

One frustrating feature of the predefined SelectionDialogs is that when they are poppe
the TextField widget does not necessarily receive the keyboard focus by default. If the
is not paying attention, starts typing, and then presses the RETURN key, all of
keystrokes will be thrown away except the RETURN, which will activate theOK button.
This problem is solved through theXmNinitialFocus resource. This resource specifie
the widget that has the keyboard focus the first time that the dialog is popped up. The
entry area is the default value of the resource for SelectionDialogs. You can also pro
around the problem by usingXmProcessTraversal() to set the focus to a particular
widget.

Figure 6-2: Output of the prompt_dlg program
Motif Programming Manual 181

Chapter 6: Selection Dialogs

istory
and
es
e for

hell.
basis,
d as
tion

the
out

rities
ever,

user
and

dget
since
nBox
idget.

ol the

he
le

the

he

t, the
s

The Command Widget
A Command widget allows the user to enter commands and have them saved in a h
list widget for later reference. The Command widget is composed of a text entry area
a command history list. Unlike all of the other predefined Motif dialogs, this widget do
not provide any action area buttons. The widget does provide a convenient interfac
applications that have a command-driven interface, such as a debugger.

You can use the convenience routineXmCreateCommand() to create a Command widget
or you can useXtVaCreateWidget() with the classxmCommandWidgetClass . Motif
does not provide a convenience routine for creating a Command widget in a DialogS
The rationale is that the Command widget is intended to be used on a more permanent
since it accumulates a history of command input. A Command widget is typically use
part of a larger interface, such as in a MainWindow, which is why it does not have ac
buttons. (See Chapter 4,The Main Window, for an example.) If you want to create a
CommandDialog, you will have to create the DialogShell widget yourself and make
Command widget its immediate child. See Chapter 5, for more information ab
DialogShells.

The Command widget class is subclassed from SelectionBox. There are simila
between the two widgets, in that the user has the ability to select items from a list. How
the list is composed of the commands that have been previously entered. When the
enters a command, it is added to the list. If the user selects an item from the comm
history list, the command is displayed in the text entry area. Although the Command wi
inherits resources from the SelectionBox, many of the resources are not applicable
the Command widget does not have any action area buttons. None of the Selectio
resources for setting the labels and callbacks of the buttons apply to the Command w
For the Command widget, the following are the names of the built-in components:

Selection Text ItemsList

The Command widget provides a number of resources that can be used to contr
command history list. TheXmNhistoryItems andXmNhistoryItemCount resources
specify the list of commands and the number of commands in the list. T
XmNhistoryVisibleItemCount resource controls the number of items that are visib
in the command history.XmNhistoryMaxItems specifies the maximum number of items
in the history list. When the maximum value is reached, a command is removed from
beginning of the list to make room for each new command that is entered.

The Command widget provides two callback resources,XmNcommandEnteredCallback
andXmNcommandChangedCallback , for the text entry area. When the user changes t
text in the command entry area, theXmNcommandChangedCallback is invoked. If the
user presses the RETURN key or double-clicks on an item in the command history lis
XmNcommandEnteredCallback is called. The callback routine for each of the callback
takes the usual three parameters. The callback structure passed to the routines in thecall_
182 Motif Programming Manual

Chapter 6: Selection Dialogs

tion

es a
The
g.

urce
this

on is

e the

tion
and

The
se of
the
or a
trols
ular
data parameter is of typeXmCommandCallbackStruct , which is identical to the
XmSelectionBoxCallbackStruct . The possible values for thereason field in the
structure areXmCR_COMMAND_ENTERED andXmCR_COMMAND_CHANGED.

You can get a handle to the subwidgets of the Command widget using func
XtNameToWidget() * .

In order to support the idea that the dialog is a single widget, the toolkit also provid
number of convenience routines that you can use to modify the Command widget.
functionXmCommandSetValue() sets the text in the command entry area of the dialo
The function takes the following form:

void XmCommandSetValue (Widget widget , XmString command)

The command is displayed in the command entry area. The Command widget reso
XmNcommandspecifies the text for the command entry area, so you can also set
resource directly. Alternatively, you can useXmTextSetString() on the Text widget in
the dialog to set the command. However, note that the string you specify to this functi
a regular character string, not a compound string.

If you want to append some text to the string in the command entry area, you can us
routineXmCommandAppendValue() , which takes the following form:

void XmCommandAppendValue (Widget widget , XmString command)

The command is added to the end of the string in the command entry area. The func
XmCommandError() displays an error message in the history area of the Comm
widget. The function takes the following form:

void XmCommandError (Widget widget , XmString message)

The error message is displayed until the user enters the next command.

FileSelectionDialogs
Like the Command widget, the FileSelectionBox is subclassed from SelectionBox.
FileSelectionDialog looks somewhat different than the other selection dialogs becau
its complexity and its unusual widget layout and architecture. Functionally,
FileSelectionDialog allows the user to move through the file system and select a file
directory for use by the application. The dialog also lets the user specify a filter that con
the files that are displayed in the dialog. This filter is generally specified as a reg
expression reminiscent of the classic UNIX meta-characters (e.g.,* matches all files, while
*.c matches all files that end in.c).

* XmSelectionBoxGetChild () is deprecated as of Motif 2.0.
Motif Programming Manual 183

Chapter 6: Selection Dialogs

t

ilter
ern

ing

set
Figure 6-3 shows a FileSelectionDialog.

The control area of the FileSelectionDialog has potentially five components*: a Filter
text area, a currentDirectory field, a Directories list displaying the directories in the
current directory specified by the filter, aFiles list area containing files within the curren
directory, and aSelectionarea. If the user selects a directory, theDirectoryfield is modified
to reflect the selection. TheFiles list shows the files in the current directory. TheSelection
text entry area specifies the file selected by the user. If the user selects a file from theFiles
list, the full pathname is displayed in theSelection text entry area.

The Motif 1.2 FileSelectionBox contained only four areas: the data displayed in the F
and Directory fields was concatenated into a single TextField, with the filter patt
appended onto the current directory name.

For backwards compatibility, this is also true of the Motif 2.x FileSelectionBox, depend
upon the value of theXmNpathMode resource. IfXmNpathMode is XmPATH_MODE_FULL,
the FileSelectionBox has Motif 1.2 behavior; for separate filter and directory fields,
XmNpathMode to XmPATH_MODE_RELATIVE. Figure 6-3 displays the File Selection Box
in the path relative mode.

The FileSelectionDialog has four buttons in its action area. TheOK, Cancel, andHelp
buttons are the same as for other SelectionDialogs. TheFilter button acts on the directory
and pattern specified in the filter text entry area. For example, the user could enter/usr/src/
motif/lib/Xmas the directory and* as the filter†. When the user selects theFilter button or

* The Motif 1.2 FileSelectionBox has only four component areas.

Figure 6-3: A typical FileSelectionDialog

Directory

Filter

Directories

Selection

Files
184 Motif Programming Manual

Chapter 6: Selection Dialogs

ll of
rt is

files
ted

and
Filter

that

ade
the

the
s far

the

and
will

is

the
ther

t

gram
ngle
istic
eate
presses RETURN in the Text widget, the directory part of the filter is searched and a
the directories within that directory are displayed in the directories list. The pattern pa
then used to find all of the matching files in the directory and the files are shown in the
list. Only files are placed in this list; directories are excluded since they are lis
separately.

While this process seems straightforward, it become confusing in Motif 1.2 for users
programmers alike because of the way that the widget parsed the filter in the single
field. For example, consider the following string:/usr/src/motif/lib/Xm. This pathname
appears to be a common directory path, but in fact, the widget interpreted the filter so
the directory is/usr/src/motif/liband the pattern isXm. If searched, the directories list will
contain all the directories in/usr/src/motif/liband the files list won’t contain anything
becauseXmis a directory, not a pattern that matches any files. Since users frequently m
this mistake when using the FileSelectionDialog, you had to be sure to explain
operation of the dialog in the documentation for your application. For Motif 2.1, with
filter and directory portions placed in separate text fields, the issue is much clarified a
as the user is concerned.

For a File Selection Box which has the path mode as full (Motif 1.2 compatible),
convention that the widget follows is to use the last/ in the filter to separate the directory
part from the pattern part. Fortunately, the FileSelectionDialog provides resources
other mechanisms to retrieve the proper parts of the filter specification. We
demonstrate how to use these mechanisms in the next few subsections.

Creating a FileSelectionDialog
The convenience function for creating a FileSelectionDialog
XmCreateFileSelectionDialog() . The routine is declared in <Xm/FileSB.h>. The
function creates a FileSelectionBox widget and its DialogShell parent and returns
FileSelectionBox. Alternatively, you can create a FileSelectionBox widget using ei
XmCreateFileSelectionBox() or XtVaCreateWidget() with the widget class
specified asxmFileSelectionBoxWidgetClass . In this case, you could use the widge
as part of a larger interface, or put it in a DialogShell yourself.

Example 6-3 demonstrates how a FileSelectionDialog can be created. This pro
produces the dialog shown in Figure 6-3. The intent of the program is to display a si
FileSelectionDialog and print the selection that is made. We will provide a more real
example shortly. For now, you should notice how little code is actually required to cr
the dialog.*

† In Motif 1.2, the user would enter /usr/src/motif/lib/Xm/* in the single Filter field.

* XtVaAppInitialize () is deprecated in X11R6.XmStringGetLtoR () is deprecated in Motif 2.0: preferXm-
StringUnparse ().
Motif Programming Manual 185

Chapter 6: Selection Dialogs
Example 6-3. The show_files.c program

/* show_files.c -- introduce FileSelectionDialog; print the file
** selected by the user.
*/

#include <Xm/FileSB.h>

main (int argc, char *argv[])
{

Widget toplevel, text_w, dialog;
XtAppContext app;
extern void exit(int);
void echo_file(Widget, XtPointer, XtPointer);
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

/* Create a simple Motif 2.1 FileSelectionDialog */
XtSetArg (args[0], XmNpathMode, XmPATH_MODE_RELATIVE);
dialog = XmCreateFileSelectionDialog (toplevel, "filesb", args, 1);
XtAddCallback (dialog, XmNcancelCallback, (void (*)()) exit, NULL);
XtAddCallback (dialog, XmNokCallback, echo_file, NULL);
XtManageChild (dialog);
XtAppMainLoop (app);

}

/* callback routine when the user selects OK in the FileSelection
** Dialog. Just print the file name selected.
**/
void echo_file (Widget widget, /* file selection box */

XtPointer client_data,
XtPointer call_data)

{
char *filename;
XmFileSelectionBoxCallbackStruct *cbs =

(XmFileSelectionBoxCallbackStruct *) call_data;

filename = (char *) XmStringUnparse (cbs->value,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL);

if (!filename)
/* must have been an internal error */

return;
if (!*filename) {

/* nothing typed? */
puts ("No file selected.");
/* even "" is an allocated byte */
XtFree (filename);
186 Motif Programming Manual

Chapter 6: Selection Dialogs

the
item
in

nd
utine

of a
tailed

e the
tant
ange
nBox

f

the
e
nce

ere
return;
}
printf ("Filename given: \"%s\"\n", filename);
XtFree (filename);

}

The program simply prints the selected file when the user activates theOK button. The user
can change the file by selecting an item from the files list or by typing directly in
selection text entry area. The user can also activate the dialog by double-clicking on an
in the files list. The FileSelectionDialog itself is very simple to create; most of the work
the program is done by the callback routine for theOK button.

Internal Widgets
A FileSelectionDialog is made up of a number of subwidgets, including Text, List, a
PushButton widgets. You can get the handles to these children using the ro
XtNameToWidget() .*

FileSelectionDialog can manage a work area child: you can customize the operation
FileSelectionDialog by adding a work area that contains other components. For a de
discussion of this technique, see Chapter 7,Custom Dialogs.

Getting the children of a FileSelectionDialog is not necessary in most cases becaus
Motif toolkit provides FileSelectionDialog resources that access most of the impor
resources of the children. You should only get handles to the children if you need to ch
resources that are not involved in the file selection mechanisms. For the FileSelectio
widget, the following are the names of the built-in components:

Apply Cancel Help ItemsList
Items OK Selection Tex
Separator FilterLabel FilterText Dir
DirList DirL DirText

These values should be self-explanatory;DirL is the Label associated with the new Moti
2.1 separate Directory field (XmNpathMode equals XmPATH_MODE_RELATIVE), and
DirText is the separate Directory TextField itself. Note that as in the case of
SelectionDialog,ItemsListis the List itself, and not the ScrolledWindow containing th
List. This means that ItemsList is not a direct child of the FileSelectionDialog, and he
you need to access the widget using a wildcard specification inXtNameToWidget (), as
follows:

Widget list = XtNameToWidget (fsb, “*ItemsList”);

* XmFileSelectionBoxGetChild () is deprecated from Motif 2.0 onwards. It has not been maintained: th
are no bit masks to access the Motif 2.0 Directory Label (DirL) and Text (DirText) which are displayed when
XmNpathMode is XmPATH_MODE_RELATIVE.
Motif Programming Manual 187

Chapter 6: Selection Dialogs

sual

ack
g:

the

ire

an be

ng
e
the

ts the
Callback Routines
The XmNokCallback , XmNcancelCallback , XmNapplyCallback ,
XmNhelpCallback , and XmNnoMatchCallback callbacks can be specified for a
FileSelectionDialog as they are for SelectionDialog. The callback routines take the u
parameters, but the callback structure passed in thecall_data parameter is of type
XmFileSelectionBoxCallbackStruct . The structure is declared as follows:

typedef struct {
int reason;
XEvent *event;
XmString value;
int length;
XmString mask;
int mask_length;
XmString dir;
int dir_length;
XmString pattern;
int pattern_length;

} XmFileSelectionBoxCallbackStruct;

The value of thereason field is an integer value that specifies the reason that the callb
routine was invoked. The possible values are the same as those for a SelectionDialo

XmCR_OK XmCR_APPLY XmCR_CANCEL
XmCR_HELP XmCR_NO_MATCH

Thevalue field contains the item that the user selected from the files list or typed into
selection text entry area. The value corresponds to theXmNdirSpec resource and it does
not necessarily have to match an item in the directories or files lists.Themask field
corresponds to theXmNdirMask resource; it represents a combination of the ent
pathname specification in the filter. Thedir and pattern fields represent the two
components that make up the mask. All of these fields are compound strings; they c
converted to character strings usingXmStringUnparse() .*

File Searching
You can force a FileSelectionDialog to reinitialize the directory and file lists by calli
XmFileSelectionDoSearch() . This routine reads the directory filter and scans th
specified directory, which is useful if you set the mask directly. The function takes
following form:

void XmFileSelectionDoSearch (XmFileSelectionBoxWidget widget ,
XmString dirmask)

When the routine is called, the widget invokes its directory search procedure and se
text in the filter text entry area to thedirmask parameter. Calling

* XmStringGetLtoR () is deprecated from Motif 2.0 onwards.
188 Motif Programming Manual

Chapter 6: Selection Dialogs

the

rding
your

ther

list.

ction.
f
ctory

must

the
er

it in

sider
iles
n in

at are
how
XmFileSelectionDoSearch() has the same effect as setting the filter and selecting
Filter button.

By default, the FileSelectionDialog searches the directory specified in the mask acco
to its internal searching algorithm. You can replace this file searching procedure with
own routine by specifying a callback routine for theXmNfileSearchProc resource. This
resource is not a callback list, so you do not install it by callingXtAddCallback() . Since
the resource is just a single procedure, you specify it as a value like you would any o
resource, as shown in the following code fragment:

extern void my_search_proc(Widget, XtPointer, XtPointer);
XtVaSetValues (file_selection_dialog,

XmNfileSearchProc, my_search_proc, NULL);

If you specify a search procedure, it is used to generate the list of filenames for the files
A file search routine takes the following form:

void (* XmSearchProc) (Widget widget , XtPointer search_data)

The widget parameter is the actual FileSelectionBox widget andsearch_data is a
pointer to a callback structure of typeXmFileSelectionBoxCallbackStruct . This
structure is just like the one used in the callback routines discussed in the previous se
Do not be concerned with the value of thereason field in this situation because none o
the routines along the way use the value. The search function should scan the dire
specified by thedir field of thesearch_data parameter. Thepattern should be used
to filter the files within the directory. You can get the complete filter from themask field.

After the search procedure has determined the new list of files that it is going to use, it
set theXmNfileListItems andXmNfileListItemCount resources to store the list into
the List widget used by the FileSelectionDialog. The routine must also set
XmNlistUpdated resource toTrue to indicate that it has indeed done something, wheth
or not any files are found. The function can also set theXmNdirSpec resource to reflect
the full file specification in the selection text entry area, so that if the user selects theOK
button, the specified file is used. Although this step is optional, we recommend doing
case the old value is no longer valid.

To understand why it may be necessary to have your own file search procedure, con
how you would customize a FileSelectionDialog so that it only displays the writable f
in an arbitrary directory. This customization might come in handy for a save operatio
an electronic mail application, where the user invokes aSaveaction that displays a
FileSelectionDialog that lists the files in which the user can save messages. Files th
not writable should not be displayed in the dialog. Example 6-4 shows an example of
a file search procedure can be used to implement this type of dialog.*

* XtVaAppInitialize () is deprecated in X11R6.XmStringGetLtoR () is deprecated in Motif 2.0: preferXm-
StringUnparse ().
Motif Programming Manual 189

Chapter 6: Selection Dialogs
Example 6-4. The file_sel.c program

/* file_sel.c -- file selection dialog displays a list of all the writable
** files in the directory described by the XmNmask of the dialog.
** This program demonstrates how to use the XmNfileSearchProc for
** file selection dialog widgets.
*/
#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/FileSB.h>
#include <Xm/DialogS.h>
#include <Xm/PushBG.h>
#include <Xm/PushB.h>
#include <X11/Xos.h>
#include <sys/stat.h>

void do_search(Widget XtPointer, XtPointer);
void new_file_cb(Widget, XtPointer, XtPointer);
/* routine to determine if a file is accessible, a directory,
** or writable. Return -1 on all errors or if the file is not
** writable. Return 0 if it's a directory or 1 if it's a plain
** writable file.
*/
int is_writable (char *file)
{

struct stat s_buf;
/* if file can't be accessed (via stat()) return. */
if (stat (file, &s_buf) == -1)

return -1;
else if ((s_buf.st_mode & S_IFMT) == S_IFDIR)

return 0; /* a directory */
else if (!(s_buf.st_mode & S_IFREG) || access (file, W_OK) == -1)

/* not a normal file or it is not writable */
return -1;

/* legitimate file */
return 1;

}

/* main() -- create a FileSelectionDialog
*/
main (int argc, char *argv[])
{

Widget toplevel, dialog;
XtAppContext app;
extern void exit(int);
Arg args[5];
int n = 0;
XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

XtSetArg (args[n], XmNfileSearchProc, do_search); n++;
dialog = XmCreateFileSelectionDialog (toplevel, "Files", args, n);
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
190 Motif Programming Manual

Chapter 6: Selection Dialogs
/* if user presses OK button, call new_file_cb() */
XtAddCallback (dialog, XmNokCallback, new_file_cb, NULL);
/* if user presses Cancel button, exit program */
XtAddCallback (dialog, XmNcancelCallback, (void (*)()) exit, NULL);
XtManageChild (dialog);
XtAppMainLoop (app);

}

/* a new file was selected -- check to see if it's readable and not
** a directory. If it's not readable, report an error. If it's a
** directory, scan it just as though the user had typed it in the mask
** Text field and selected "Search".
*/
void new_file_cb (Widget widget, XtPointer client_data,

XtPointer call_data)
{

char *file;
XmFileSelectionBoxCallbackStruct *cbs = (XmFileSelectionBoxCallbackStruct

*) call_data;
/* get the string typed in the text field in char * format */
if (!(file = (char *) XmStringUnparse (cbs->value,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL)))

return;
if (*file != '/') {

/* if it's not a directory, determine the full pathname
** of the selection by concatenating it to the "dir" part
*/
char *dir, *newfile;
if (dir = XmStringUnparse (cbs->dir,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL)) {

newfile = XtMalloc (strlen (dir) + 1 + strlen (file) + 1);
sprintf (newfile, "%s/%s", dir, file);
XtFree (file);
XtFree (dir);
file = newfile;

}
}
switch (is_writable (file)) {

case 1: puts (file); /* or do anything you want */ break;
case 0: {

/* a directory was selected, scan it */
XmString str = XmStringCreateLocalized (file);
XmFileSelectionDoSearch (widget, str);
XmStringFree (str);
break;

}
case -1:

/* a system error on this file */
Motif Programming Manual 191

Chapter 6: Selection Dialogs
perror (file);
}
XtFree (file);

}

/* do_search() -- scan a directory and report only those files that
** are writable. Here, we let the shell expand the (possible)
** wildcards and return a directory listing by using popen().
** A *real* application should -not- do this; it should use the
** system's directory routines: opendir(), readdir() and closedir().
*/
void do_search (Widget widget, /* file selection box widget */

XtPointer search_data, XtPointer call_data)
{

char *mask, buf[BUFSIZ], *p;
XmString names[256]; /* maximum of 256 files in dir */
int i = 0;
FILE *pp, *popen();
XmFileSelectionBoxCallbackStruct *cbs = (XmFileSelectionBoxCallbackStruct

*) search_data;
if (!(mask = (char *) XmStringUnparse (cbs->mask,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL)))

return; /* can't do anything */
sprintf (buf, "/bin/ls %s", mask);
XtFree (mask);
/* let the shell read the directory and expand the filenames */
if (!(pp = popen (buf, "r")))

return;
/* read output from popen() -- this will be the list of files */
while (fgets (buf, sizeof buf, pp)) {

if (p = index (buf, '\n'))
*p = 0;

/* only list files that are writable and not directories */
if (is_writable (buf) == 1 &&

(names[i] = XmStringCreateLocalized (buf))) i++;
}
pclose (pp);
if (i) {

XtVaSetValues (widget,
XmNfileListItems, names,
XmNfileListItemCount, i,
XmNdirSpec, names[0],
XmNlistUpdated, True,
NULL);

while (i > 0)
XmStringFree (names[--i]);

} else
XtVaSetValues (widget,

XmNfileListItems, NULL,
XmNfileListItemCount, 0,
XmNlistUpdated, True,
192 Motif Programming Manual

Chapter 6: Selection Dialogs

ble
case
are

lls
ile

the

If the
ction

rrors
the

istic
how
king

us to
ns, it
ction
le to
tory

ure is
ent

tory
NULL);
}

The program simply displays a FileSelectionDialog that only lists the files that are writa
by the user. The directories listed may or may not be writable. We are not testing that
here as it is handled by another routine that deals specifically with directories, which
discussed in the next section. TheXmNfileSearchProc is set todo_search() , which
is our own routine that creates the list of files for the files List widget. The function ca
is_writable() to determine if a file is accessible and if it is a directory or a regular f
that is writable.

The callback routine for theOK button is set tonew_file_cb() through the
XmNokCallback resource. This routine is called when a new file is selected in from
files list or new text is entered in the selection text entry area and theOK button is pressed.
The specified file is evaluated usingis_writable() and acted on accordingly. If it is a
directory, the directory is scanned as if it had been entered in the filter text entry area.
file cannot be read, an error message is printed. Otherwise, the file is a legitimate sele
and, for demonstration purposes, the filename is printed tostdout .

Obviously, a real application would do something more appropriate in each case; e
would be reported using ErrorDialogs and legitimate values would be used by
application. An example of such a program is given in Chapter 18,Text Widgets, asfile_
browser.c. This program is an extension of Example 6-4 that takes a more real
approach to using a FileSelectionDialog. Of course, the intent of that program is to s
how Text widgets work, but its use of dialogs is consistent with the approach we are ta
here.

Directory Searching

The FileSelectionDialog also provides a directory searching function that is analogo
the file searching function. While file searching may be necessary for some applicatio
is less likely that customized directory searching will be as useful, since the default a
taken by the toolkit should cover all common usages. However, since it is impossib
second-guess the requirements of all applications, Motif allows you to specify a direc
searching function through theXmNdirSearchProc resource.

The procedure is used to create the list of directories. The method used by the proced
virtually identical to the one used for files, except that the routine must set differ
resources. The routine must set theXmNdirListItems and XmNdirListItemCount
resources to store the list of directories in the List widget. The value forXmNlistUpdated
must be set just as it was for the file selection routine andXmNdirectoryValid must also
be set to eitherTrue or False . If the directory cannot be read,XmNdirectoryValid is
set toFalse to prevent theXmNfileSearchProc from being called. In this way, the file
searching procedure is protected from getting invalid directories from the direc
searching procedure.
Motif Programming Manual 193

Chapter 6: Selection Dialogs

a
his
and/

arch,

arch

he

rch
The Search Process

In order to fully customize the directory and file searching functions in
FileSelectionDialog, it is important to understand exactly how the dialog works. T
material is advanced and is intended for programmers who need to write advanced file
or directory searching routines. When the user or the application invokes a directory se
the FileSelectionDialog performs the following tasks:

1. The List widgets are unmapped to give the user immediate feedback that
something is happening. So, if a file and/or directory search takes along
time, the user has a visual cue that the application is not waiting for input.

2. All of the items are deleted from the List widgets.

3. The widget calls its qualify search procedure to construct a proper directory
mask, base directory, and file search pattern based on the text in the filter
text entry area. The procedure creates a callback structure of the type Xm-
FileSelectionBoxCallbackStruct for use by the directory and file search
routines.

4. The XmNdirSearchProc function is called with the callback structure con-
structed by the qualify search procedure. The directory search routine
checks to be sure that it can search the specified directory and if it can, it
creates the list of directories for the dialog. If the directory cannot be
searched, the routine sets XmNdirectoryValid to False .

5. The XmNfileSearchProc function is called if XmNdirectoryValid has been
set to True . This routine creates the list of files for the dialog. If XmNdirec-
toryValid has been set to False , the file list remains empty.

Just as for the directory and file search routines, you can write your own qualify se
procedure and install it as the value for theXmNqualifySearchProc resource. The
routine takes the following form:

void (* XmQualifyProc) (Widget widget ,
XtPointer input_data ,
XtPointer output_data)

Thewidget parameter is the actual FileSelectionBox widget;input_data andoutput_
data are pointers to callback structures of typeXmFileSelectionBoxCallback-
Struct . input_data contains the directory information that needs to be qualified. T
routine uses this information to fill in theoutput_data callback structure that is then
passed to the directory and file search procedures.

TheXmNfileTypeMask resource indicates the types of files for which a particular sea
routine should be looking. The resource can be set to one of the following values:

XmFILE_REGULAR XmFILE_DIRECTORY XmFILE_ANY_TYPE
194 Motif Programming Manual

Chapter 6: Selection Dialogs

rch

lkit.
rent

that
tions,
how
If you are using the same routine for both theXmNdirSearchProc and the
XmNfileSearchProc , you can query this resource to determine the type of file to sea
for.

Summary
This chapter described the different types of selection dialogs provided by the Motif too
These dialogs implement some common functionality that is needed by many diffe
applications. This chapter builds on the material in Chapter 5,Introduction to Dialogs,
which introduced the concept of dialogs and discussed the basic mechanisms
implement them. While the dialogs are designed to be used as single-entity abstrac
they can be customized to provide additional functionality as necessary. We describe
to customize the dialogs and how to create your own dialogs in Chapter 7.
Motif Programming Manual 195

Chapter 6: Selection Dialogs
196 Motif Programming Manual

otif

such
not
reate
Chapter 1

In this chapter:
• Modifying Motif Dialogs
• Designing New Dialogs
• Building a Dialog
• Generalizing the Action A
• Using a TopLevelShell fo

Dialog
• Positioning Dialogs
• Summary

This chapter describes how
dialogs or by creating entirely

In this chapter we examine
dialogs exists when those pr
specialized enough for your a
Motif Programming Manual
rea
r a

7

if
to a

oblem
ut or
ser-
otif?

n and
how

esign

y use
dow
nt to

ter
y
g or
can

ined
ager
Custom Dialogs
to create new types of dialogs, either by customizing M
 new dialogs.

methods for creating your own dialogs. The need for
ovided by Motif are too limited in functionality or are
pplication. Sometimes it is not clear when you need to c

your own dialog. In some situations, you may find that a Motif dialog would be just fine
only they did this one little thing. Fortunately, you can often make small adjustments
predefined Motif dialog, rather than building an entirely new dialog box from scratch.

There are some issues to consider before you decide how you want to approach the pr
of developing custom dialogs. For example, do you want to use your own widget layo
is the layout of one of the predefined dialogs sufficient? Do you have specialized u
interface appearance and functionality needs that go beyond what is provided by M
The answers to these questions affect the design of your dialogs. The discussio
examples provided in this chapter address both scenarios. We provide information on
to create dialogs that are based on the predefined Motif dialogs, as well as how to d
completely new dialogs.

Before we get started, we should mention that creating your own dialogs makes heav
of manager widgets, such as the Form, BulletinBoard, RowColumn, and PanedWin
widgets. While we use and describe the manager widgets in context, you may wa
consult Chapter 8,Manager Widgets, for specific details about these widgets.

Modifying Motif Dialogs
We begin by discussing the simpler case of modifying existing Motif dialogs. In Chap
5, Introduction to Dialogs, we showed you how to modify a dialog to some extent b
changing the default labels on the buttons in the action area or by unmanagin
desensitizing certain components in the dialog. What we did not mention is that you
also add new components to a dialog box to expand its functionality. All of the predef
Motif dialog widgets let you add children. In this sense, you can treat a dialog as a man
197

Chapter 7: Custom Dialogs

ide

have
e
ost a
ve the
or get

four
vide
ialog
widget. Motif allows you to add multiple children to an existing dialog, so you can prov
additional controls, action area buttons, and even a MenuBar.

Modifying MessageDialogs
At the end of Chapter 5, we described a scenario where an application might want to
more than three action area buttons in a MessageDialog. If the user has selected thQuit
button in a text editor but has not saved her changes, an application might want to p
dialog that asks about saving the changes before exiting. The user could want to sa
changes and exit, not save the changes and exit anyway, cancel the exit operation,
help.

The MessageDialog supports three action area buttons, so creating a dialog with
buttons requires designing a custom dialog. The MessageDialog allows you to pro
additional action area buttons. Example 7-1 demonstrates how to create a QuestionD
with four action area buttons.*

Example 7-1. The question.c program

/* question.c - create a QuestionDialog with four action buttons */

#include <Xm/MessageB.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, pb;
void pushed(Widget, XtPointer, XtPointer);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

pb = XmCreatePushButton (toplevel, "Button", NULL, 0);
XtAddCallback (pb, XmNactivateCallback, pushed, NULL);
XtManageChild (pb);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget dialog, no_button;
void dlg_callback(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;
XmString m;
XmString yes = XmStringCreateLocalized ("Yes");

* XtVaAppInitialize () is deprecated in X11R6.
198 Motif Programming Manual

Chapter 7: Custom Dialogs

alog.
ialog

back
ks
XmString no = XmStringCreateLocalized ("No");

m = XmStringCreateLocalized ("Do you want to update your changes?");
XtSetArg (args[n], XmNautoUnmanage, False); n++;
XtSetArg (args[n], XmNmessageString, m); n++;
XtSetArg (args[n], XmNokLabelString, yes); n++;
dialog = XmCreateQuestionDialog (w, "notice", args, n);
XtAddCallback (dialog, XmNokCallback, dlg_callback, NULL);
XtAddCallback (dialog, XmNcancelCallback, dlg_callback, NULL);
XtAddCallback (dialog, XmNhelpCallback, dlg_callback, NULL);
XmStringFree (m);
XmStringFree (yes);
XtSetArg(args[0], XmNlabelString, no);
no_button = XmCreatePushButton (dialog, "no", args, 1);
XtAddCallback (no_button, XmNactivateCallback, dlg_callback, NULL);
XtManageChild (no_button);
XtManageChild (dialog);

}

void dlg_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

switch (cbs->reason) {
case XmCR_OK : /* FALLTHROUGH */
case XmCR_CANCEL : XtUnmanageChild (w); break;
case XmCR_ACTIVATE : XtUnmanageChild (XtParent (w)); break;
case XmCR_HELP : puts ("Help selected"); break;

}
}

The dialog box from the program is shown in Figure 7-1.

The extra button is added to the dialog by creating a PushButton as a child of the di
We are treating the MessageDialog just like any other manager widget. The MessageD
inserts any additional PushButton children into the action area after theOK button, which
is why we added aNobutton. If you add more than one button, they are all put after theOK
button, in the order that you create them. We have also changed the label of theOK button
so that it is now theYes button.

Since theNobutton is not part of the standard MessageDialog, we have to set the call
routine on itsXmNactivateCallback . For the rest of the buttons, we use the callbac

Figure 7-1: Output of the question program
Motif Programming Manual 199

Chapter 7: Custom Dialogs

ns. If
lear
is

ts. If
l. The
ork

dified

create
tton,

s

then
with

alog.
nlike
ss of

n
o that
u add
tton

adding

g, you
defined by the dialog. The dialog callback routine,dlg_callback (), has to handle the
various callbacks in different ways. By checking thereason field of the callback structure,
the routine can determine which button was selected. For theYesandCancelbuttons, the
routine unposts the dialog by unmanaging the MessageDialog. For theNobutton, we need
to be a bit more careful about popping down the right widget. Since thewidget in this case
is the PushButton, we need to callXtParent () to get the MessageDialog.

The MessageDialog also supports the addition of other children besides PushButto
you add a MenuBar child, it is placed across the top of the dialog, although it is not c
why you would want a MenuBar in a MessageDialog. Any other type of widget child
considered the work area. The work area is placed below the message text if it exis
there is a symbol, but no message, the work area is placed to the right of the symbo
MessageDialog only supports the addition of one work area; the layout of multiple w
area children is undefined.

The XmNdialogType resource can take the valueXmDIALOG_TEMPLATE. This value
creates a TemplateDialog, which is basically an empty MessageDialog that can be mo
by the programmer. By default, the dialog only contains a Separator child*. By setting
various resources on a TemplateDialog when it is created, you can cause the dialog to
other standard children. If you set a string or callback resource for an action area bu
the button is created. If you set theXmNmessageString resource, the message i
displayed in the standard location. If you set theXmNsymbolPixmap resource, the
specified symbol appears in its normal location. If you don’t set a particular resource,
that child is not created, which means that you cannot modify the resource later
XtSetValues (), set a callback for the child withXtAddCallback (), or retrieve the child
throughXtNameToWidget ().

Modifying SelectionDialogs
The Motif SelectionDialog supports the same types of modifications as the MessageDi
You can provide additional action area buttons, a work area child, and a MenuBar. U
the MessageDialog, the first widget that is added is taken as the workarea, regardle
whether it is a PushButton or a MenuBar.†If you want to add a PushButton to the actio
area of a SelectionDialog, you need to add a fake unmanaged work area widget first, s
the PushButton is placed in the action area, rather than used as the work area. After yo
a work area, if you add a MenuBar, it is placed along the top of the dialog, and PushBu

* There is a persistent bug such that attempting to unmanage the Separator (for whatever reason) before
any other children to the TemplateDialog causes a segmentation fault.

† The fact that the first child is always taken to be the work area is considered a bug. As a result of the bu
need to be careful about the order in which you add children to a SelectionDialog.
200 Motif Programming Manual

Chapter 7: Custom Dialogs

d

iple

ram
r

et to
tton
ntrols
children are inserted after theOK button. The position of the work area child is controlle
by theXmNchildPlacement resource, which can take the following values:

XmPLACE_ABOVE_SELECTION XmPLACE_BELOW_SELECTION
XmPLACE_TOP

The SelectionDialog only supports the addition of one work area; the layout of mult
work area children is undefined.

Consider providing additional controls in a PromptDialog like the one used in the prog
prompt_dlgfrom Chapter 6,Selection Dialogs. In this program, the dialog prompts the use
for a new label for the PushButton that activated the dialog. By adding another widg
the dialog, we can expand its functionality to prompt for either a label name or a bu
color. The user enters either value in the same text input area and the RadioBox co
how the text is evaluated. Example 7-2 shows the new program.*

Example 7-2. The modify_btn.c program

/* modify_btn.c -- demonstrate how a default Motif dialog can be
** modified to support additional items that extend the usability
** of the dialog itself. This is a modification of the prompt_dlg.c
** program.
*/

#include <Xm/SelectioB.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, rc, button;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit and create toplevel shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
/* RowColumn managed both PushButtons */
rc = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
/* Create two pushbuttons -- both have the same callback */
button = XmCreatePushButton (rc, "PushMe 1", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed, NULL);
XtManageChild (button);
button = XmCreatePushButton (rc, "PushMe 2", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed, NULL);
XtManageChild (button);

* XtVaAppInitialize () is considered deprecated in X11R6.XmSelectionBoxGetChild () is deprecated in
Motif 2.0. The Toggle value in Motif 2.0 and later is an enumerated type, not a Boolean.XmStringGetLtoR ()
is deprecated from Motif 2.0: preferXmStringUnparse ().
Motif Programming Manual 201

Chapter 7: Custom Dialogs
XtManageChild (rc);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() --the callback routine for the main app's pushbuttons.
** Create a dialog that prompts for a new button name or color.
** A RadioBox is attached to the dialog. Which button is selected
** in this box is held as an int (0 or 1) in the XmNuserData resource
** of the dialog itself. This value is changed when selecting either
** of the buttons in the ToggleBox and is queried in the dialog's
** XmNokCallback function.
*/
void pushed (Widget pb, XtPointer client_data, XtPointer call_data)
{

Widget dialog, toggle_box;
XmString t, btn1, btn2;
void read_name(Widget, XtPointer, XtPointer);
void toggle_callback(Widget, XtPointer, XtPointer);
void destroy_callback(Widget, XtPointer, XtPointer);
Arg args[5];
int n = 0;

/* Create the dialog -- the PushButton acts as the DialogShell's
** parent (not the parent of the PromptDialog). The "userData"
** is used to store the value
*/
t = XmStringCreateLocalized ("Enter New Button Name:");
XtSetArg (args[n], XmNselectionLabelString, t); n++;
XtSetArg (args[n], XmNautoUnmanage, False); n++;
XtSetArg (args[n], XmNuserData, 0); n++;
dialog = XmCreatePromptDialog (pb, "notice_popup", args, n);
XmStringFree (t); /* always destroy compound strings when done */
/* When the user types the name, call read_name()... */
XtAddCallback (dialog, XmNokCallback, read_name, pb);
/* If the user selects cancel, just destroy the dialog */
XtAddCallback (dialog, XmNcancelCallback, destroy_callback, NULL);
/* No help is available... */
XtUnmanageChild (XtNameToWidget (dialog, “Help”));
/* Create a toggle box -- callback routine is toggle_callback() */
btn1 = XmStringCreateLocalized ("Change Name");
btn2 = XmStringCreateLocalized ("Change Color");
toggle_box = XmVaCreateSimpleRadioBox (dialog,

"radio_box", 0, toggle_callback,
XmVaRADIOBUTTON, btn1, 0, NULL, NULL,
XmVaRADIOBUTTON, btn2, 0, NULL, NULL,
NULL);

XtManageChild (toggle_box);
XtManageChild (dialog);

}

/*
** This is passed the prompt when called. We destroy the shell parent.
*/
202 Motif Programming Manual

Chapter 7: Custom Dialogs
void destroy_callback (Widget prompt, XtPointer client_data,
XtPointer call_data)

{
XtDestroyWidget (XtParent (prompt));

}

/* callback for the items in the toggle box -- the "client data" i
** the item number selected. Since the function gets called whenever
** either of the buttons changes from true to false or back again,
** it will always be called in pairs -- ignore the "False" settings.
** When cbs->set is true, set the dialog's label string accordingly.
*/
void toggle_callback (Widget toggle_box, XtPointer client_data,

XtPointer call_data)
{

Widget dialog = XtParent (XtParent (toggle_box));
XmString str;
int n = (int) client_data;
XmToggleButtonCallbackStruct *cbs;

cbs = (XmToggleButtonCallbackStruct *) call_data;

if (cbs->set == XmUNSET)
return; /* wait for the one that toggles "on" */

if (n == 0)
str = XmStringCreateLocalized ("Enter New Button Name:");

else
str = XmStringCreateLocalized ("Enter Text Color:");

XtVaSetValues (dialog, XmNselectionLabelString, str,
/* reset the user data to reflect new value */
XmNuserData, n,
NULL);

XmStringFree (str);
}

/* read_name() --the text field has been filled in. Get the userData
** from the dialog widget and set the PushButton's name or color.
*/
void read_name (Widget dialog, XtPointer client_data, XtPointer call_data)
{

char *text;
int n;
Widget push_button = (Widget) client_data;
XmSelectionBoxCallbackStruct *cbs =

(XmSelectionBoxCallbackStruct *) call_data;
/* userData: n == 0 -> Button Label, n == 1 -> Button Color */
XtVaGetValues (dialog, XmNuserData, &n, NULL);
if (n == 0)

XtVaSetValues (push_button, XmNlabelString, cbs->value, NULL);
else {

/* convert compound string into regular text string */
text = (char *) XmStringUnparse (cbs->value,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
Motif Programming Manual 203

Chapter 7: Custom Dialogs

the
utton
back

n the
the
The
ent

as a
ture
cture

the

size,
XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL);

XtVaSetValues (push_button,
XtVaTypedArg, XmNforeground, XmRString, text,
strlen (text) + 1, NULL);

XtFree (text); /* must free text gotten from XmStringUnparse() */
}

}

The new dialog is shown in Figure 7-2.

We add a RadioBox as the work area child of the PromptDialog. The ToggleButtons in
RadioBox indicate whether the input text is supposed to change the label of the PushB
or its text color. To determine which of these attributes to change, we use the call
routinetoggle_callback ().

Rather than storing the state of the RadioBox in a global variable, we store the value i
XmNuserData resource of the dialog widget. Using this technique, we can retrieve
value any time we wish and minimize the number of global variables in the program.
XmNuserData resource is available for all Motif widgets except shells, so it is a conveni
storage area for arbitrary values. The type of value thatXmNuserData takes is any type
whose size is less than or equal to the size of an XtPointer, which is typically defined
char pointer. As a result, storing an int works just fine. If you want to store a data struc
in this resource, you need to store a pointer to the structure. The size or type of the stru
is irrelevant, since pointers are the same size.*

When the user enters new text and presses RETURN or activates theOK button,read_
name() is called. This callback routine gets theXmNuserData from the dialog widget. If
the value is 0, the label of the PushButton is reset using theXmNlabelString resource.
Since the callback routine provides the text in compound string format, it is already in

* You might run into problems with unusual architectures where pointers of different types are not the same
like DOS.

Figure 7-2: Output of the modify_btn program
204 Motif Programming Manual

Chapter 7: Custom Dialogs

e

the

rsion
nd

gs. If
r own

To
Motif
it to
re

4,

n use

e each
correct format for the label. If theXmNuserData is 1, then the text describes a color nam
for the PushButton.

Rather than converting the string into a color explicitly, we use theXtVaTypedArg feature
of XtVaSetValues () to do the conversion for us. This feature converts a value to
format needed by the specified resource. TheXmNforeground resource takes a variable
of type Pixel as a value. The conversion works provided there is an underlying conve
function to support it.* Motif does not supply a conversion function to change a compou
string into a Pixel value, but there is one for converting a C string into a Pixel. We convert
the compound string into a C string usingXmStringUnparse () and then set the
foreground color as follows:

XtVaSetValues (push_button, XtVaTypedArg, XmNforeground, XmRString, text,
strlen (text) + 1, NULL);

So far, we’ve described the possibilities for both MessageDialogs and SelectionDialo
the layouts that are possible do not meet your needs, you should consider building you
dialogs from scratch.

Designing New Dialogs
In this section, we introduce the methods for building a dialog entirely from scratch.
create a new dialog, you need to follow basically the same steps that are used by the
convenience routines, which we described in Chapter 5. We’ve modified the list a b
reflect the flexibility that you have in controlling the kind of dialog that you make. Here a
the steps that you need to follow:

1. Choose a shell widget that best fits the needs of your dialog. You may con-
tinue to use a DialogShell if you like.

2. Choose an appropriate manager widget to control the layout of the compo-
nents of the dialog. This manager is a child of the shell widget. The man-
ager widget you choose greatly affects how the dialog is laid out. You do not
have to use a BulletinBoard or Form widget, but you can if you like.†

3. Create the control area, which may include any of the Motif primitive or
manager widgets. This step is the one that gives you the most flexibility, as
you have complete control over the contents and layout of the control area.

* For more information on conversion functions, how to write them, or how to install your own, see VolumeX
Toolkit Intrinsics Programming Manual.

† If you do want to use a DialogShell with either a Form or a BulletinBoard widget as the manager, you ca
one of the Motif convenience routines:XmCreateBulletinBoardDialog () or XmCreateFormDialog ().
These routines give you a starting point for creating a custom dialog. However, in this chapter, we creat
of the widgets explicitly, so that you have a complete sense of what goes into a dialog.
Motif Programming Manual 205

Chapter 7: Custom Dialogs

an
, as

a top-
ogs
splay
. The

ut in
ice.
p of
awn
may
the

order,
get.
nShell
arate

lable
ith
icate
get
dow

d has

place.
ugh

: all
in any
4. Create an action area with PushButtons such as OK, Cancel, and Help. Since
you are creating the control area yourself, you cannot use XmNokCallback
and the other resources specific to the predefined Motif dialogs. Instead,
you use the callback resources appropriate for the widgets that you use in
the dialog.

5. Pop up the shell created in the first step.

The Shell
In Chapter 4,The Main Window, we demonstrated the purpose of a main window in
application and the kinds of widgets that you use in a top-level window. Dialog boxes
introduced in Chapter 5, are thought of as transient windows that act as satellites to
level shell. A transient dialog should use a DialogShell widget. However, not all dial
are transient. A dialog may act as a secondary application window that remains on di
for an extended period of time. This usage is especially common in large applications
MainWindow widget can even be used in a dialog box*. For dialogs of this type, you may
want to use a TopLevelShell, or a SessionShell.†

Choosing the appropriate shell widget for a dialog depends on the activities carried o
the dialog, so it is difficult to provide rules or even heuristics to guide you in your cho
As discussed in Chapter 5, a DialogShell cannot be iconified, it is always placed on to
the shell widget that owns the parent of the dialog, and it is always destroyed or withdr
from the screen if its parent is destroyed or withdrawn. These three characteristics
influence your decision to use a DialogShell. A SessionShell or a TopLevelShell, on
other hand, is always independent of other windows, so you can change its stacking
iconify it separately, and not worry about it being withdrawn because of another wid
The main difference between an SessionShell and a TopLevelShell is that a Sessio
is designed to start a completely new widget tree, as if it were a completely sep
application. It is recommended that an application only have one SessionShell.‡

For some applications, you may want a shell with characteristics of several of the avai
shell classes. Unfortunately, it is difficult to intermix the capabilities of a DialogShell w
those of a SessionShell or a TopLevelShell because it involves doing quite a bit of intr
window manager interaction. Having ultimate control over the activities of a shell wid
requires setting up a number of event handlers on the shell and monitoring certain win

* Creating multiple MainWindow widgets in a single application has some problems associated with it, an
not found to be entirely robust.

† In X11R6, the simple ApplicationShell is considered deprecated: you should use the SessionShell in its
SessionShell is derived from ApplicationShell. Programs using an ApplicationShell will still work, altho
their participation in X11R6 Session Management is limited.

‡ Multiple Application Shells (or derived classes) in a single application can be difficult to handle correctly
sorts of focus issues can arise. There is poor guidance on the use of multiple ApplicationShell widgets
case. Where the application shells occupy multiple screens, the issues are much less problematic.
206 Motif Programming Manual

Chapter 7: Custom Dialogs

k of

ow to

her

ell is
te the
p shell
t be
herits

shell
area

n area.
ically,
s the
s the

log,
dow
and
property event state changes. Aside from being very complicated, you run the ris
breaking Motif compliance. See Chapter 20,Interacting with the Window Manager, for
details on how you might handle this situation.

Once you have chosen the shell widget that you want to use, you need to decide h
create it. A DialogShell can be created using the routinesXtCreatePopupShell () or
XtVaCreatePopupShell (), or the Motif toolkit convenience routine,
XmCreateDialogShell (). A SessionShell or a TopLevelShell can be created using eit
of the popup shell routines,XtAppCreateShell () or XtVaAppCreateShell (). The
difference between the two types of routines involves whether the newly-created sh
treated like a popup shell or as a more permanent window on the desktop. If you crea
shell as a popup shell, you need to select an adequate parent. The parent for a popu
must be an initialized and realized widget. It can be any kind of widget, but it may no
a gadget because the parent must have a window. A dialog that uses a popup shell in
certain attributes from its parent. For example, if the parent is insensitive (XmNsensitive
is set toFalse), the entire dialog is insensitive as well.

The Manager Child
The manager widget that you choose for a dialog is the only managed child of the
widget, which means that the widget must contain both the control area and the action
of the dialog and manage the relationship between them. Recall that theMotif Style Guide
suggests that a dialog be composed of two main areas: the control area and the actio
Both of these areas extend to the left and right sides of a dialog and are stacked vert
with the control area on the top. The action area usually does not fluctuate in size a
shell is resized, while the control area may be resized in any way. Figure 7-3 illustrate
general layout of a dialog.

Motif dialog widgets handle this layout automatically. When you create your own dia
you are responsible for managing the layout. You could consider using the PanedWin
widget as the manager widget for a dialog. The PanedWindow supports both vertically

Control Area

Action Area
(Constant Height)

(Height may

Figure 7-3: Layout of a dialog

fluctuate)
Motif Programming Manual 207

Chapter 7: Custom Dialogs

s
t for a
ontrol

des a

e a
cial

y out
of a
to
to

so you

the
of a

ger
to
ed to

rform
ying
ation

ween
you
and
horizontally stacked windows*, each of which may or may not be resizable, which allow
you to create the suggested layout. If you use a PanedWindow as the manager widge
dialog, it can manage other managers that act as the control and action areas. The c
area can be resizable, while the action area is not. The PanedWindow also provi
separator between the panes, which fulfills theStyle Guiderecommendation that there be a
Separator widget between the control and action areas.

Of course you can use whatever manager widget you like for a dialog. If you us
BulletinBoard or a Form widget, you may be able to take advantage of the spe
interaction these widgets have with a DialogShell. The RowColumn widget can also la
its children vertically, so you could use one to manage the control and action areas
dialog. The difficulty with using a RowColumn involves resizing, in that there is no way
tell the widget to keep the bottom partition a constant height while allowing the top
fluctuate as necessary. The same problem can also arise with other manager widgets,
need to be sure that the resizing behavior is appropriate.

The Control Area
The control area of a dialog box contains the widgets that provide the functionality of
dialog, such as Labels, ToggleButtons, and List widgets. Creating the control area
dialog is entirely application-defined. You can use any of the Motif primitive and mana
widgets in the control area to implement the functionality of the dialog. The ability
design your own control area is the main reason to create your own dialog as oppos
using one of the predefined Motif dialogs.

The Action Area
The action area of a dialog contains PushButtons whose callback routines actually pe
the action of the dialog box. Constructing the action area for a dialog involves specif
labels and callback routines for the buttons and determining the best way to get inform
from the control area of the dialog. TheMotif Style Guidedefines a number of common
dialog box actions. The common actions are designed to provide consistency bet
different Motif applications. You are not required to use the common actions, but
should consider them before creating your own arbitrary actions. The button labels
their corresponding actions are shown in the following list.

Yes
Indicates an affirmative response and causes the dialog to be dismissed.

No
Indicates a negative response and causes the dialog to be dismissed.

* Horizontal orientation for the PanedWindow was officially supported in Motif 2.0.
208 Motif Programming Manual

Chapter 7: Custom Dialogs

an be

ge
or
OK
Applies any changes reflected in the control area, performs any related ac-
tions, and causes the dialog box to be dismissed.

Close
Closes the dialog box without performing any action.

Apply
Applies any changes reflected in the control area, performs any related ac-
tions, and leaves the dialog open for further interaction.

Retry
Tries the task in progress again. This action is commonly found in dialog
boxes that report errors.

Stop
Stops the task in progress at the next possible breaking point. This action
is often found in dialog boxes that indicate that the application is “busy.”

Pause
Pauses the task in progress. This action is used in combination with
Resume.

Resume
Resumes the task in progress. This action is used in combination with
Pause.

Reset
Resets the controls in the work area to the values they had at the time the
dialog was originally opened.

Cancel
Resets the controls in the work area and causes the dialog to be dismissed.

Help
Provides help for the dialog box.

The following heuristics can help in designing the action area for a dialog box:

• Lay out the action area as a single horizontal row at the bottom of the dialog.

• Set the action area apart from the rest of the dialog using a Separator.

• Use single-word button labels.

• Choose command-style verbs over nouns when possible. Since some words c
interpreted in more than one way, be careful to avoid ambiguity.

• Affirmative actions should be placed farthest to the left (in a left-to-right langua
environment), followed by negative actions, followed by cancelling actions. F
example,Yes should always be placed to the left ofNo.
Motif Programming Manual 209

Chapter 7: Custom Dialogs

ht

look
of the

by
the

ge
e

p the
lt that

and
e the
y be
text
• Help, if available, should always be placed farthest to the right (in a left-to-rig
language environment).

Depending on your application, you may want to create your own actions and over
some of these guidelines. Figure 7-4 shows a custom dialog that demonstrates some
issues involved in designing an action area.

In this dialog, theHelp andClosebuttons are the only ones with a label recommended
Motif. Since the other common actions did not effectively represent the actions of
dialog, we chose our own labels. TheFind... andSearch list...buttons popup further dialogs
without closing the window.

We do not use theOK action in the dialog because it doesn’t work with the desired usa
of the dialog. By definition,OK should perform the action and dismiss the dialog. Here w
have in effect two actions: perform a search according to the current criteria, and popu
results of previous searches. In neither case is the current dialog dismissed. It was fe
neitherOK norApply were appropriate in these circumstances.

Building a Dialog
Now that we’ve explained the design process for a dialog, let’s create a real dialog
identify each of the steps in the process. Consider the problem of providing help. Whil
Motif InformationDialog is adequate for brief help messages, a customized dialog ma
more appropriate for displaying large amounts of text. Our custom dialog displays the
in a scrolling region which is capable of handling arbitrarily large amounts of data.

Figure 7-4: A custom dialog
210 Motif Programming Manual

Chapter 7: Custom Dialogs

drop.

ys the
m, but
ternal
Example 7-3 shows a program that uses a main application window as a generic back
The MainWindow widget contains a MenuBar that has two menus:File andHelp. TheHelp
menu contains several items that, when selected, pop up a dialog window that displa
associated help text. The text that we provide happens to be predefined in the progra
you could incorporate information from other sources, such as a database or an ex
file.*

Example 7-3. The help_text.c program

/* help_text.c:
** Create a simple main window that contains a sample (dummy) work
** area and a menubar. The menubar contains two items: File and Help.
** The items in the Help pulldown call help_cb(), which pops up a
** home-made dialog that displays predefined help texts. The purpose
** of this program is to demonstrate how one might approach the
** problem displaying a large amount of text in a dialog box.
*/
#include <stdio.h>
#include <ctype.h>
#include <Xm/DialogS.h>
#include <Xm/MainW.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/Text.h>
#include <Xm/PushBG.h>
#include <Xm/LabelG.h>
#include <Xm/PanedW.h>

/* The following help text information is a continuous stream of characters
** that will all be placed in a single ScrolledText object. If a specific
** newline is desired, you must do that yourself. See "index_help" below.
*/
String context_help[] = {

"This is context-sensitive help. Well, not really, but such",
"help text could easily be generated by a real help system.",
"All you really need to do is obtain information from the user",
"about the widget from which he needs help, or perhaps prompt",
"for other application-specific contexts.",
NULL};

String window_help[] = {
"Each of the windows in your application should have an",
"XmNhelpCallback associated with it so you can monitor when",
"the user presses the Help key over any particular widget.",
"This is another way to provide context-sensitive help.",
"The MenuBar should always have a Help entry at the far right",
"that provides help for most aspects of the program, including",
"the user interface. By providing different levels of help",
"indexing, you can provide multiple stages of help, making the",

* XtVaAppInitialize () is deprecated in X11R6.
Motif Programming Manual 211

Chapter 7: Custom Dialogs
"entire help system easier to use.",
NULL};

String index_help[] = {
"This is a small demonstration program, so there is very little",
"material to provide an index. However, an index should contain",
"a summary of the type of help available. For example, we have:\n",
" Help On Context\n",
" Help On Windows\n",
" This Index\n",
"\n",
"Higher-end applications might also provide a tutorial.",
NULL};

String *help_texts[] = {context_help, window_help, index_help};

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, rc, main_w, menubar, w, label_g;
void help_cb(Widget, XtPointer, XtPointer);
void file_cb(Widget, XtPointer, XtPointer);
XmString str1, str2, str3;
Widget *cascade_btns;
int num_btns;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
/* the main window contains the work area and the menubar */
main_w = XmCreateMainWindow (toplevel, "main_w", NULL, 0);
/* Create a simple MenuBar that contains two cascade buttons */
str1 = XmStringCreateLocalized ("File");
str2 = XmStringCreateLocalized ("Help");
menubar = XmVaCreateSimpleMenuBar (main_w, "main_w",

XmVaCASCADEBUTTON, str1, 'F',
XmVaCASCADEBUTTON, str2, 'H',
NULL);
XmStringFree (str1);

XmStringFree (str2);
/* create the "File" pulldown menu -- callback is file_cb() */
str1 = XmStringCreateLocalized ("New");
str2 = XmStringCreateLocalized ("Open");
str3 = XmStringCreateLocalized ("Quit");
XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, str1, 'N', NULL, NULL,
XmVaPUSHBUTTON, str2, 'O', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, str3, 'Q', NULL, NULL,
NULL);

XmStringFree (str1);
XmStringFree (str2);
XmStringFree (str3);
212 Motif Programming Manual

Chapter 7: Custom Dialogs
/* create the "Help" menu -- callback is help_cb() */
str1 = XmStringCreateLocalized ("On Context");
str2 = XmStringCreateLocalized ("On Window");
str3 = XmStringCreateLocalized ("Index");
w = XmVaCreateSimplePulldownMenu (menubar, "help_menu", 1, help_cb,

XmVaPUSHBUTTON, str1, 'C', NULL, NULL,
XmVaPUSHBUTTON, str2, 'W', NULL, NULL,
XmVaPUSHBUTTON, str3, 'I', NULL, NULL,
NULL);

XmStringFree (str1);
XmStringFree (str2);
XmStringFree (str3);
/* Identify the Help Menu for the MenuBar */
XtVaGetValues (menubar, XmNchildren, &cascade_btns,

XmNnumChildren, &num_btns, NULL);
XtVaSetValues (menubar, XmNmenuHelpWidget, cascade_btns[num_btns-1],

NULL);
XtManageChild (menubar);
/* the work area for the main window -- just create dummy stuff */
rc = XmCreateRowColumn (main_w, "rc", NULL, 0);
str1 = XmStringCreateLocalized (

"\n This is an Empty\nSample Control Area\n");
XtSetArg (args[0], XmNlabelString, str1);
label_g = XmCreateLabelGadget (rc, "label", args, 1);
XtManageChild (label_g);
XmStringFree (str1);
XtManageChild (rc);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback for all the entries in the File pulldown menu. */
void file_cb (Widget w, XtPointer client_data, XtPointer call_data)
{

int item_no = (int) client_data;
if (item_no == 2)

/* the Quit menu button */
exit (0);

printf ("Item %d (%s) selected\n", item_no + 1, XtName (w));
}

/* climb widget tree until we get to the top. Return the Shell */
Widget GetTopShell (Widget w)
{

while (w && !XtIsWMShell (w))
w = XtParent (w);

return w;
}

#include "info.xbm"
/* bitmap data used by our dialog */
/* callback for all the entries in the Help pulldown menu.
** Create a dialog box that contains control and action areas.
Motif Programming Manual 213

Chapter 7: Custom Dialogs
*/
void help_cb (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget help_dialog, pane, text_w, form, sep, widget, label;
void DestroyShell(Widget, XtPointer, XtPointer);
Pixmap pixmap;
Pixel fg, bg;
Arg args[10];
int n = 0;
int i;
char *p, buf[BUFSIZ];
int item_no = (int) client_data;
Dimension h;
/* Set up a DialogShell as a popup window. Set the delete
** window protocol response to XmDESTROY to make sure that
** the window goes away appropriately. Otherwise, it's XmUNMAP
** which means it'd be lost forever, since we're not storing
** the widget globally or statically to this function.
*/
i = 0;
XtSetArg (args[i], XmNdeleteResponse, XmDESTROY); i++
help_dialog = XmCreateDialogShell (GetTopShell(w), "Help", args, i);

/* Create a PanedWindow to manage the stuff in this dialog. */
/* PanedWindow won't let us set these to 0! */
XtSetArg (args[0], XmNsashWidth, 1);
/* Make small so user doesn't try to resize */
XtSetArg (args[1], XmNsashHeight, 1);
pane = XmCreatePanedWindow (help_dialog, "pane", args, 2);
/* Create a RowColumn in the form for Label and Text widgets.
** This is the control area.
*/
form = XmCreateForm (pane, "form1", NULL, 0);
XtVaGetValues (form, /* once created, we can get its colors */

XmNforeground, &fg,
XmNbackground, &bg,
NULL);

/* create the pixmap of the appropriate depth using the colors
** that will be used by the parent (form).
*/
pixmap = XCreatePixmapFromBitmapData (XtDisplay (form),

RootWindowOfScreen (XtScreen (form)),
(char *) info_bits, info_width, info_height,
fg, bg,
DefaultDepthOfScreen (XtScreen (form)));

/* Create a label gadget using this pixmap */
n = 0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
label = XmCreateLabelGadget (form, "label", args, n);
XtManageChild (label);
214 Motif Programming Manual

Chapter 7: Custom Dialogs
/* prepare the text for display in the ScrolledText object
** we are about to create.
*/
for (p = buf, i = 0; help_texts[item_no][i]; i++) {

p += strlen (strcpy (p, help_texts[item_no][i]));
if (!isspace (p[-1]))

/* spaces, tabs and newlines are spaces. */
p++ = ' '; / lines are concatenated together, insert space */

}
--p = 0; / get rid of trailing space... */
n = 0;
XtSetArg (args[n], XmNscrollVertical,True); n++;
XtSetArg (args[n], XmNscrollHorizontal,False); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
XtSetArg (args[n], XmNvalue, buf); n++;
XtSetArg (args[n], XmNrows, 5); n++;
text_w = XmCreateScrolledText (form, "help_text", args, n);
/* Attachment values must be set on the Text widget's PARENT,
** the ScrolledWindow. This is the object that is positioned.
*/
XtVaSetValues (XtParent (text_w),

XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, label,
XmNtopAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
NULL);

XtManageChild (text_w);
XtManageChild (form);
/* Create another form to act as the action area for the dialog */
XtSetArg (args[0], XmNfractionBase, 5);
form = XmCreateForm (pane, "form2", args, 1);
/* The OK button is under the pane's separator and is
** attached to the left edge of the form. It spreads from
** position 0 to 1 along the bottom (the form is split into
** 5 separate grids via XmNfractionBase upon creation).
*/
widget = XmCreatePushButtonGadget (form, "OK", NULL, 0);
XtVaSetValues (widget,

XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 1,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 2,
XmNshowAsDefault, True,
XmNdefaultButtonShadowThickness, 1,
NULL);

XtManageChild (widget);
XtAddCallback (widget, XmNactivateCallback, DestroyShell,

(XtPointer) help_dialog);
Motif Programming Manual 215

Chapter 7: Custom Dialogs
/* This is created with its XmNsensitive resource set to False
** because we don't support "more" help. However, this is the
** place to attach it to if there were any more.
*/
widget = XmCreatePushButtonGadget (form, "More", NULL, 0);
XtVaSetValues (widget,

XmNsensitive, False,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 3,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 4,
XmNshowAsDefault, False,
XmNdefaultButtonShadowThickness, 1,
NULL);

XtManageChild (widget);
/* Fix the action area pane to its current height -- never let it resize */
XtManageChild (form);
XtVaGetValues (widget, XmNheight, &h, NULL);
XtVaSetValues (form, XmNpaneMaximum, h, XmNpaneMinimum, h, NULL);
/* This also pops up the dialog, as it is the child of a DialogShell */
XtManageChild (pane);

}

/* The callback function for the "OK" button. Since this is not a
** predefined Motif dialog, the "widget" parameter is not the dialog
** itself. That is only done by Motif dialog callbacks. Here in the
** real world, the callback routine is called directly by the widget
** that was invoked. Thus, we must pass the dialog as the client
** data to get its handle. (We could get it using GetTopShell(),
** but this way is quicker, since it's immediately available.)
*/
void DestroyShell (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Widget shell = (Widget) client_data;
XtDestroyWidget (shell);

}

216 Motif Programming Manual

Chapter 7: Custom Dialogs

reate

ed

for
ion,

o
his

the
of
The output of the program is shown in Figure 7-5.

The function help_cb() is the callback routine that is invoked by all of theHelpmenu items.
This routine follows the steps that we outlined earlier to create the dialog box.

The Shell
Since the dialog is a transient dialog, we use a DialogShell widget for the shell. We c
the shell as follows:

i = 0;
XtSetArg (args[i], XmNdeleteResponse, XmDESTROY); i++;
help_dialog = XmCreateDialogShell (GetTopShell (w), "Help", args, i);

Instead of using the Motif convenience function, we could have us
XtVaCreatePopupShell (), instead, as shown in the following code fragment:

help_dialog = XtVaCreatePopupShell ("Help", xmDialogShellWidgetClass,
GetTopShell (w),
XmNdeleteResponse, XmDESTROY, NULL);

Both methods return a DialogShell. TheXmNdeleteResponse resource is set to
XmDESTROYbecause we want theClose item from the window menu in the window
manager’s titlebar for the shell to destroy the shell and its children. The default value
this resource isXmUNMAP; had we wanted to reuse the same dialog upon each invocat
we would have usedXmUNMAP and retained a handle to the dialog widget.

The name of the dialog isHelp, since that is the first parameter in the call t
XtVaCreatePopupShell (). Resource specifications in a resource file that pertain to t
dialog should useHelp as the widget name, as shown below:

*Help*foreground: green

The string displayed in the title bar of a dialog defaults to the name of the dialog. Since
name of the dialog isHelp, the title defaults to the same value. However, this method

Figure 7-5: Output of help_text program
Motif Programming Manual 217

Chapter 7: Custom Dialogs

e file.

e

urce

Shell,
with
ad to
gh
s the

a and
, in a
placed
ze, we
sues
the

ized

le the
et the
alue.

lar
setting the title does not prevent the value from being changed by the user in a resourc
For example, the following specification changes the title:

*Help.title: Help Dialog

The title can also be set using theXmNtitle resource, as shown in the following cod
fragments:*

help_dialog = XtVaCreatePopupShell ("Help", xmDialogShellWidgetClass, parent,
XmNtitle, "Help Dialog", NULL);

i = 0;
XtSetArg (args[i], XmNtitle, “Help Dialog”); i++;
help_dialog = XmCreateDialogShell (parent, “Help”, args, i);

When the title is hard-coded in the application, any resource specifications in a reso
file are ignored.

The Manager Child
The next task is to create a manager widget that acts as the sole child of the Dialog
since shell widgets can have only one managed child. This section deals heavily
manager widget issues, so if you have problems keeping up, you should look ahe
Chapter 8,Manager Widgets. However, the main point of the section is to provide enou
context for you to understand Example 7-3. We are using a PanedWindow widget a
child of the DialogShell. The PanedWindow is created as follows:

...
XtSetArg (args[0], XmNsashWidth, 1);
XtSetArg (args[1], XmNsashHeight, 1);
pane = XmCreatePanedWindow (help_dialog, "pane", help_dialog, args, 2);

The PanedWindow manages two Form widget children, one each for the control are
the action area. These children are also called the PanedWindow’s panes. Normally
PanedWindow, the user can resize the panes by moving the control sashes that are
between the panes. Because the action area is not supposed to grow or shrink in si
don’t want to allow the user to adjust the sizes of the panes. There are really two is
involved here: the user might try to resize the panes individually or she might resize
entire dialog, which would cause the PanedWindow itself to resize them.

You can prevent the PanedWindow from resizing the action area when it is itself res
by setting the pane constraint resourceXmNskipAdjust to True. However, this technique
still allows the user to resize the individual panes, which means that you need to disab
control sashes. The best way to prevent both undesirable resize possibilities is to s
action area pane constraints maximum and minimum allowed heights to the same v

* XmNtitle is defined identically toXtNtitle , which is an Xt resource, which means that the value is a regu
character string, not a compound string.
218 Motif Programming Manual

Chapter 7: Custom Dialogs

r pane,
d. To
alue.

rror),

dren
s and
and

, as

th is
ts: a
on.

ing

o we
This

es, so
These settings should cause the PanedWindow to disable the sashes for that particula
but due to a bug in the PanedWindow widget class, the sashes are rarely disable
compensate, we try to make the sashes invisible by setting their sizes to a minimum v
Unfortunately, the PanedWindow won’t let you set the size of a sash to 0 (a design e
so we set the values forXmNsashWidth andXmNsashHeight to 1.*

The PanedWindow widget is created unmanaged usingXmCreatePanedWindow (). As
pointed out in Chapter 8, manager widgets should not be managed until all of their chil
have been created and managed. Using this order allows the children’s desired size
positions to be specified before the manager widget tries to negotiate other sizes
positions.

The Control Area
The Form widget is the control area, so it is created as a child of the PanedWindow
shown in the following fragment:

form = XmCreateForm (pane, "form1", NULL, 0);

As far as the PanedWindow is concerned, the Form widget is a single child whose wid
stretched to the left and right edges of the shell. Within the Form, we add two widge
Label widget that contains the help pixmap and a ScrolledText for the help informati

In order to create the Label, we must first create the pixmap it is going to use. The follow
code fragment shows how we create the pixmap and then create the Label:

XtVaGetValues (form, XmNforeground, &fg, XmNbackground, &bg, NULL);
pixmap = XCreatePixmapFromBitmapData (XtDisplay (form),

RootWindowOfScreen (XtScreen (form)),
bitmap_bits,
bitmap_width,
bitmap_height,
fg,
bg,
DefaultDepthOfScreen (XtScreen (form)));

n = 0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
label = XmCreateLabelGadget (form, "label", args, n);
XtManageChild (label);

We cannot create the pixmap until we know the foreground and background colors, s
retrieve these colors from the Form, since it has a valid window and colormap.

* The only other problem that might arise is that keyboard traversal still allows the user to reach the sash
you may want to remove them from the traversal list by setting theirXmNtraversalOn resources toFalse .
This issue is described in detail in Chapter 8.
Motif Programming Manual 219

Chapter 7: Custom Dialogs

s the
to
t

Form
urces

top,
uses

n the

reates
nd a
The
the
t the
the

ap
approach works for either monochrome or color screens. We use these values a
foreground and background for the pixmap we create in the call
XCreatePixmapFromBitmapData ().* The bits for the bitmap, the width, and the heigh
are predefined in the X bitmap file included earlier in the program (info.xbm). The Label
uses the pixmap by setting theXmNlabelType and XmNlabelPixmap resources (see
Chapter 12,Labels and Buttons, for more information on these resources).

The attachment resources we specified for the Label are constraint resources for the
widget that describe how the Form should lay out its children. These constraint reso
are ignored by the Label widget itself. See Chapter 8,Manager Widgets, for a complete
description of how constraint resources are handled by widgets. In this case, the
bottom, and left sides of the Label are all attached to the edge of the Form, which ca
the Label to position itself relative to the Form.

Next, we create a ScrolledText compound object to display the help text, as shown i
following fragment:

n = 0;
XtSetArg (args[n], XmNscrollVertical, True); n++;
XtSetArg (args[n], XmNscrollHorizontal, False); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
XtSetArg (args[n], XmNvalue, buf); n++;
XtSetArg (args[n], XmNrows,5); n++;
text_w = XmCreateScrolledText (form, "help_text", args, n);
XtVaSetValues (XtParent (text_w),

XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, label,
XmNtopAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
NULL);

XtManageChild (text_w);

In order to useXmCreateScrolledText (), we must use the old-styleXtSetArg ()
method of setting the resources that are passed to the function. The routine actually c
two widgets that appear to be a single interface object. A ScrolledWindow widget a
Text widget are created so that the Text widget is a child of the ScrolledWindow.
toolkit returns a handle to the Text widget, but since the ScrolledWindow widget is
direct child of the Form, we set the constraint resources on the ScrolledWindow, no
Text widget. The top, right, and bottom sides of the ScrolledWindow are attached to

* We could have usedXmGetPixmap () to create a pixmap, but this routine does not allow us to load a pixm
directly from bitmap data, as we have done here. For us to useXmGetPixmap (), the file that contains the bitmap
data would have to exist at run-time, or we would have to load the bitmap data directly into a staticXImage . For
more information on this technique, see Section 3.4.5 in Chapter 3,Overview of the Motif Toolkit.
220 Motif Programming Manual

Chapter 7: Custom Dialogs

ays

the
harm
the

Text

s
f the
elp

dren

ction
close
ed
nal

g it).

erally
cross
Form, while the left side is attached to the Label widget, so that the two widgets are alw
positioned next to each other.

We could have passed these resource/value pairs in theargs list, but then the resources
would have been set on both the ScrolledWindow widget and the Text widget. Since
attachment constraints would be ignored by the Text widget, there would be no real
in setting them on both widgets. However, it is better programming style to set
resources directly on the ScrolledWindow. Details on the Text widget and the Scrolled
object can be found in Chapter 18,Text Widgets. Chapter 10,ScrolledWindows and
ScrollBars, discusses the ScrolledWindow widget and its resources.

The text for the widget is set using theXmNvalue resource. The value for this resource i
the appropriate help text taken from the help_texts array declared at the beginning o
program. We set theXmNeditable resource to False so that the user cannot edit the h
text.

The Text and Label widgets are the only two items in the Form widget. Once these chil
are created and managed, the Form can be managed usingXtManageChild ().

The Action Area
At this point, the control area of the dialog has been created, so it is time to create the a
area. In our example, the action area is pretty simple, as the only action needed is to
the dialog. We use theOK button for this action. For completeness, we have also provid
aMorebutton to support additional or extended help. Since we don’t provide any additio
help, we set this button insensitive (although you can extend this example by providin

The action area does not have to be contained in a separate widget, although it is gen
much easier to do so. We use a Form widget in order to position the buttons evenly a
the width of the dialog. We create the Form as follows:

XtSetArg (args[0], XmNfractionBase, 5);
form = XmCreateForm (pane, "form2", args, 1);
Motif Programming Manual 221

Chapter 7: Custom Dialogs

is

We
ually,
orm.

or
be

Since
uch.

fault
he

not
ey-

ts
The XmNfractionBase resource of the Form widget is set to five, so that the Form
broken down into five equal units, as shown in Figure 7-6.

Position zero is the left edge of the form and position five is the right edge of the form.
chose five because it gave us the best layout aesthetically. The region is divided up eq
so you can think of the sections as percentages of the total width (or height) of the F
By using this layout method, we don’t have to be concerned with the width of the Form
of the DialogShell itself, since we know that the placement of the buttons will always
proportional. We create theOK button as shown in the following code fragment:

widget = XmCreatePushButtonGadget (form, "OK", NULL, 0);
XtVaSetValues (widget,

XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 1,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 2,
XmNshowAsDefault, True,
XmNdefaultButtonShadowThickness, 1,
NULL);

The left and right sides of the button are placed at positions one and two, respectively.
this button is the default button for the dialog, we want the button to be displayed as s
We setXmNshowAsDefault to True, andXmNdefaultButtonShadowThickness to 1.
The value for theXmNdefaultButtonShadowThickness resource is a pixel value that
specifies the width of an extra three-dimensional border that is placed around the de
button to distinguish it from the other buttons. An alternative to specifying t
XmNshowAsDefault resource is to set theXmNdefaultButton resource on the
containing Form to the value of the PushButton widget*. For example,

* Setting theXmNdefaultButton resource is generally to be preferred, although if the Form concerned is
the child of the containing Shell, the Button may not initially show the required visuals until it gains the k
board focus.

0 1 2 3 4 5

Figure 7-6: The XmNfractionBase resource divides the form into equal uni

Positions
222 Motif Programming Manual

Chapter 7: Custom Dialogs

the

This
from

elp

action
ttons,
et the
e

e, but
XtVaSetValues (form, XmNdefaultButton, push_button, NULL);

If XmNshowAsDefault is False , the button is not shown as the default, regardless of
value of any default shadow thickness.*

Because the dialog is not reused, we want the callback for theOK button to destroy the
DialogShell. We use theXmNactivateCallback of the PushButton to implement the
functionality. The callback routine isDestroyShell (), which is shown below:

void DestroyShell (Widget widget, XtPointer client_data,
XtPointer call_data)

{
Widget shell = (Widget) client_data;
XtDestroyWidget (shell);

}

Since the dialog is not a predefined Motif dialog, thewidget parameter to the callback
routine is not the dialog, but the PushButton that caused the callback to be invoked.
difference is subtle and it is often overlooked by programmers who are breaking away
the predefined dialogs to build their own dialogs. We pass the DialogShell,help_dialog ,
as client data to the callback routine, so that the callback can destroy the widget.

TheMorebutton is not used in the application, since we do not provide any additional h
for the dialog. We create the button as follows:

widget = XmCreatePushButtonGadget (form, "More", NULL, 0);
XtVaSetValues (widget,

XmNsensitive, False,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 3,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 4,
XmNshowAsDefault, False,
XmNdefaultButtonShadowThickness, 1,
NULL);

In this case, theXmNshowAsDefault resource is set toFalse . We have also set
XmNsensitive to False so that the widget is insensitive to user input.

Once the buttons in the action area have been created, we need to fix the size of the
area. We manage the Form and then we retrieve the height of one of the action area bu
so that we can use the value as the minimum and maximum height of the pane. We s
XmNpaneMaximumandXmNpaneMinimum constraint resources on the Form, so that th
PanedWindow sets the action area to a constant height.

* The XmNshowAsDefault resource can also take a numeric value that indicates the shadow thickness to us
its value is only interpreted in this way ifXmNdefaultButtonShadowThickness is set to 0. This function-
ality is for backwards compatibility with Motif 1.0 and should not be used.
Motif Programming Manual 223

Chapter 7: Custom Dialogs

d, the

of

ains
ized

n area
e that

nge
may
e the

er of
tton

of a
ts or
ghout
ame
ther.

own
bstracts

eate

is to
ttons,
The

llet-
ethod
Once the control area and the action area have been created and manage
PanedWindow is managed usingXtManageChild (), which has the side effect of popping
up the parent DialogShell* . See Chapter 5, for a complete discussion of the posting
dialogs.

Generalizing the Action Area
While dialogs can vary in many respects, the structure of the action area usually rem
consistent for all dialogs. Most large programs are going to make use of many custom
dialogs. In the general case, you do not want to rewrite the code to generate an actio
for each special case. It is much easier and more efficient to write a generalized routin
creates an action area for any dialog.

Whenever we generalize any procedure, we first identify how the situation may cha
from one case to the next. For example, not all action areas have only two buttons; you
have any number from one to, say, ten. As a result, you need to be able to chang
number of partitions in the Form widget to an arbitrary value depending on the numb
actions in the dialog. The positions to which the left and right sides of each action bu
are attached also need to be adjusted.

Some known quantities in this equation are that the action area must be at the bottom
dialog and it must contains PushButtons. While the PushButtons may be either widge
gadgets, you should probably choose one or the other and use them consistently throu
your application. In general, all of the buttons in the action area should be from the s
class, and all of the action areas in an application should be consistent with one ano

Each button in an action area has its own label, its own callback routine, and its
associated client data. To create a general action area, we need a data structure that a
this information. The ActionAreaItem structure is defined as follows:

typedef struct {
char *label; /* PushButton's Label */
void (*callback)(); /* pointer to a callback routine */
XtPointer data; /* client data for the callback routine */

} ActionAreaItem;

This data structure contains all of the information that we need to know in order to cr
an action area; the rest of the information is known or it can be derived.

Now we can write a routine that creates an action area. The purpose of the function
create and return a composite widget that contains the specified number of PushBu
where the buttons are arranged horizontally and evenly spaced.

* In Motif 1.2, the special behavior to automatically popup a DialogShell relied upon the child being a Bu
inBoard or derivative for proper operation. This is no longer the case in Motif 2.x: the ChangeManaged() m
of the DialogShell is less sensitive to a particular child class.
224 Motif Programming Manual

Chapter 7: Custom Dialogs

ing
r an
CreateActionArea () routine is used in Example 7-4. This program does not do anyth
substantial, but it does present a generalized architecture for creating dialogs fo
application.*

Example 7-4. The action_area.c program

/* action_area.c -- demonstrate how CreateActionArea() can be used
** in a real application. Create what would otherwise be identified
** as a PromptDialog, only this is of our own creation. As such,
** we provide a TextField widget for input. When the user presses
** Return, the OK button is activated.
*/
#include <Xm/DialogS.h>
#include <Xm/PushBG.h>
#include <Xm/PushB.h>
#include <Xm/LabelG.h>
#include <Xm/PanedW.h>
#include <Xm/Form.h>
#include <Xm/RowColumn.h>
#include <Xm/TextF.h>

typedef struct {
char *label;
void (*callback)();
XtPointer data;

} ActionAreaItem;

static void do_dialog(Widget, XtPointer, XtPointer);
static void close_dialog(Widget, XtPointer, XtPointer);
static void activate_cb(Widget, XtPointer, XtPointer);
static void ok_pushed(Widget, XtPointer, XtPointer);
static void clear_pushed(Widget, XtPointer, XtPointer);
static void help(Widget, XtPointer, XtPointer);

main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
button = XmCreatePushButton (toplevel, "Push Me", NULL, 0);
XtManageChild (button);
XtAddCallback (button, XmNactivateCallback, do_dialog, NULL);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback routine for "Push Me" button. Actually, this represents

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 225

Chapter 7: Custom Dialogs
** a function that could be invoked by any arbitrary callback. Here,
** we demonstrate how one can build a standard customized dialog box.
** The control area is created here and the action area is created in
** a separate, generic routine: CreateActionArea().
*/
static void do_dialog (Widget w, XtPointer client_data,

XtPointer call_data)
{

Widget dialog, pane, rc, text_w, action_a, label_g;
XmString string;
Arg args[6];
int n;
Widget CreateActionArea(Widget, ActionAreaItem *, int);
static ActionAreaItem action_items[] = {

{"OK",ok_pushed,NULL},
{"Clear", clear_pushed, NULL},
{"Cancel", close_dialog, NULL},
{"Help",help, "Help Button"},

};
/* The DialogShell is the Shell for this dialog. Set it up so
** that the "Close" button in the window manager's system menu
** destroys the shell (it only unmaps it by default).
*/
n = 0;
/* give arbitrary title in wm */
XtSetArg (args[n], XmNtitle, “Dialog Shell”); n++;
/* system menu "Close" action */
XtSetArg (args[n], XmNdeleteResponse, XmDESTROY); n++;
dialog = XmCreateDialogShell (XtParent (w), "dialog", args, n);
/* now that the dialog is created, set the Cancel button's
** client data, so close_dialog() will know what to destroy.
*/
action_items[2].data = (XtPointer) dialog;
/* Create the paned window as a child of the dialog. This will
** contain the control area and the action area
** (created by CreateActionArea() using the action_items above).
*/
n = 0;
XtSetArg (args[n], XmNsashWidth, 1); n++;
XtSetArg (args[n], XmNsashHeight, 1); n++;
pane = XmCreatePanedWindow (dialog, "pane", args, n);
/* create the control area which contains a
** Label gadget and a TextField widget.
*/
rc = XmCreateRowColumn (pane, "control_area", NULL, 0);
string = XmStringCreateLocalized ("Type Something:");
n = 0;
XtSetArg (args[n], XmNlabelString, string); n++;
label_g = XmCreateLabelGadget (rc, "label", args, n);
XmStringFree (string);
XtManageChild (label_g);
text_w = XmCreateTextField (rc, "text-field", NULL, 0);
XtManageChild (text_w);
/* RowColumn is full -- now manage */
226 Motif Programming Manual

Chapter 7: Custom Dialogs
XtManageChild (rc);
/* Set the client data for the "OK" and "Cancel" buttons */
action_items[0].data = (XtPointer) text_w;
action_items[1].data = (XtPointer) text_w;
/* Create the action area. */
action_a = CreateActionArea (pane, action_items,

XtNumber (action_items));
/* callback for Return in TextField. Use action_a as client data */
XtAddCallback (text_w, XmNactivateCallback, activate_cb,

(XtPointer) action_a);
XtManageChild (pane);

}

/* The next four functions are the callback routines for the buttons
** in the action area for the dialog created above. Again, they are
** simple examples, yet they demonstrate the fundamental design approach.
*/
static void close_dialog (Widget w, XtPointer client_data,

XtPointer call_data)
{

Widget shell = (Widget) client_data;
XtDestroyWidget (shell);

}

/* The "ok" button was pushed or the user pressed Return */
static void ok_pushed (Widget w, XtPointer client_data,

XtPointer call_data)
{

Widget text_w = (Widget) client_data;
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
char *text = XmTextFieldGetString (text_w);
printf ("String = %s\n", text);
XtFree (text);

}

static void clear_pushed (Widget w, XtPointer client_data,
XtPointer call_data)

{
Widget text_w = (Widget) client_data;
XmAnyCallbackStruct*cbs = (XmAnyCallbackStruct *) call_data;
/* cancel the whole operation; reset to NULL. */
XmTextFieldSetString (text_w, "");

}

static void help (Widget w, XtPointer client_data, XtPointer call_data)
{

String string = (String) client_data;
puts (string);

}

/* When Return is pressed in TextField widget, respond by getting
** the designated "default button" in the action area and activate
** it as if the user had selected it.
*/
Motif Programming Manual 227

Chapter 7: Custom Dialogs
static void activate_cb (Widget text_w, XtPointer client_data,
XtPointer call_data)

{
XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Widget dflt, action_area = (Widget) client_data;

/* get the "default button" from the action area... */
XtVaGetValues (action_area, XmNdefaultButton, &dflt, NULL);
if (dflt) /* sanity check -- this better work */

/* make the default button think it got pushed using
** XtCallActionProc(). This function causes the button
** to appear to be activated as if the user pressed it.
*/
XtCallActionProc (dflt, "ArmAndActivate", cbs->event, NULL, 0);

}

#define TIGHTNESS 20
Widget CreateActionArea (Widget parent, ActionAreaItem *actions,

int num_actions)
{

Widget action_area, widget;
int i;
action_area = XmCreateForm (parent, "action_area", NULL, 0);
XtVaSetValues (action_area,

XmNfractionBase, TIGHTNESS*num_actions - 1,
XmNleftOffset, 10,
XmNrightOffset, 10,
NULL);

for (i = 0; i < num_actions; i++) {
widget = XmCreatePushButton (action_area, actions[i].label,

NULL, 0);
XtVaSetValues (widget,

XmNleftAttachment,
i? XmATTACH_POSITION: XmATTACH_FORM,

XmNleftPosition,TIGHTNESS*i,
XmNtopAttachment,XmATTACH_FORM,
XmNbottomAttachment,XmATTACH_FORM,
XmNrightAttachment,

i != num_actions - 1 ?
XmATTACH_POSITION :

XmATTACH_FORM,
XmNrightPosition, TIGHTNESS * i + (TIGHTNESS - 1),
XmNshowAsDefault,i == 0,
XmNdefaultButtonShadowThickness, 1,
NULL);

if (actions[i].callback)
XtAddCallback (widget, XmNactivateCallback, actions[i].callback,

(XtPointer) actions[i].data);
XtManageChild (widget);
if (i == 0) {

/* Set the action_area's default button to the first widget
** created (or, make the index a parameter to the function
** or have it be part of the data structure). Also, set the
** pane window constraint for max and min heights so this
228 Motif Programming Manual

Chapter 7: Custom Dialogs

ontrol
tField

utput

the
ual

to be

side of
f the

s.

using
for

the
** particular pane in the PanedWindow is not resizable.
*/
Dimension height, h;
XtVaGetValues (action_area, XmNmarginHeight, &h, NULL);
XtVaGetValues (widget, XmNheight, &height, NULL);
height += 2 * h;
XtVaSetValues (action_area,

XmNdefaultButton, widget,
XmNpaneMaximum, height,
XmNpaneMinimum, height,
NULL);

}
}
XtManageChild (action_area);
return action_area;

}

The application uses a PushButton to create and pop up a customized dialog. The c
area is composed of a RowColumn widget that contains a Label gadget and a Tex
widget. The action area is created usingCreateActionArea (). The actions and the
number of actions are specified in theactions andnum_actions parameters. We use a
Form widget to lay out the actions. We give the Form the nameaction_area, since it is
descriptive and it makes it easy for the user to specify the area in a resource file. The o
of the program in shown in Figure 7-7.

In order to distribute the PushButtons evenly across the action area, we use
XmNfractionBase resource of the Form widget to segment the widget into eq
portions. The value of the resource is based on the value of theTIGHTNESSdefinition,
which controls the spacing between buttons. A higher value causes the PushButtons
closer together, while a lower value spaces them further apart. We use the value20 for
purely aesthetic reasons. As each button is created, its attachments are set. The left
the first button and right side of the last button are attached to the left and right edges o
Form, respectively, while all of the other left and right edges are attached to position

The callback routine and associated client data for each button are added
XtAddCallback (). The first button in the action area is specified as the default button
the dialog. TheXmNdefaultButton resource indicates which button is designated as

Figure 7-7: Output of the action_area program
Motif Programming Manual 229

Chapter 7: Custom Dialogs

The
to

es that
parent
have

ite

tion
s. As
Bar,
only

area is
tains
hell)
default button for certain actions that take place in the control area of the dialog.
XmNactivateCallback of the TextField widget in the control area uses the resource
activate the default button when the user presses the RETURN key in the TextField.

TheCreateActionArea () function also setsXmNpaneMaximumandXmNpaneMinimum
constraint resources on the action area. These are PanedWindow constraint resourc
are used to specify the height of the action area. The assumption, of course, is that the
of the action area is a PanedWindow. If that is not true, these resource specifications
no effect.

Using a TopLevelShell for a Dialog
You don’t have to use a DialogShell widget to implement a dialog. In fact, it is qu
common to use a TopLevelShell or even a SessionShell* in cases where the particular
functionality is an important part of a larger application. For example, an e-mail applica
has a variety of functions that range from reading messages to composing new one
shown in Figure 7-8, you can have a separate TopLevelShell, complete with a Menu
that looks and acts like a separate application, but is still considered a dialog, since it is
a sub-part of the whole application.

As you can see, this dialog uses the same elements as other dialogs. The control
complete with a ScrolledText region and other controls, while the action area con
action buttons. The principal difference between this dialog (which uses a TopLevelS

* The ApplicationShell is considered deprecated in X11R6.
230 Motif Programming Manual

Chapter 7: Custom Dialogs

hell

d or
this
ards,
area

ases
with
ou

f a
ld is
hell
the

or a
ary
ing
e a
and a dialog implemented with a DialogShell is that this dialog that uses a TopLevelS
may be iconified separately from the other windows in the program.

When you need to implement a dialog with a TopLevelShell, you should not regar
implement it as a popup dialog. But for the most part, there is little difference from
approach and the method discussed for regular dialogs. You may still use BulletinBo
Forms, and RowColumns to manage the inner controls. You still need an action
(provided you want to look and act like a dialog), and you still need to handle the c
where the dialog is popped up and down. You can create the TopLevelShell
XtVaAppCreateShell (). The shell is automatically mapped onto the screen when y
call XtPopup (). You may also want to callXMapRaised () on the shell, in case it is already
popped up but is not at the top of the window hierarchy.

In direct contrast to the DialogShell widget, managing the immediate child o
TopLevelShell does not cause the dialog to pop up automatically. Even if that chi
subclassed from the BulletinBoard widget, this type of behavior only happens if the s
is a DialogShell widget. Because you are using a TopLevelShell, you cannot rely on
special communication that happens between a DialogShell and child widgets.

If you want to use one of the standard Motif dialogs, such as a MessageDialog
FileSelectionDialog, in a shell widget that can be iconified separately from its prim
window shell, you can put the dialog in a TopLevelShell. Create the shell us
XtVaAppCreateShell () and then use one of the Motif convenience routines to creat

Figure 7-8: An editor dialog from a workbench application
Motif Programming Manual 231

Chapter 7: Custom Dialogs

The

the
s of

e

the
as
MessageBox or a FileSelectionBox, rather than the corresponding dialog widget.
following code fragment shows an example of this usage:

shell = XtVaAppCreateShell (NULL, "Class", topLevelShellWidgetClass, dpy,
XtNtitle, "Dialog Shell Title", NULL);

dialog = XmCreateMessageBox (shell, "MessageDialog", NULL, 0);
XtAddCallback (dialog, XmNokCallback, callback_func, NULL);
XtAddCallback (dialog, XmNcancelCallback, callback_func, NULL);
XtAddCallback (dialog, XmNhelpCallback, help_func, NULL);

Positioning Dialogs
In all of the dialog examples that you have seen so far, the toolkit has handled
positioning of the dialog. For dialogs that use the DialogShell widget with a subclas
BulletinBoard as the immediate child, theXmNdefaultPosition resource controls this
behavior. If the resource isTrue , the dialog is centered relative to the parent of th
DialogShell and placed on top of the parent. If the resource is set toFalse , the application
is responsible for positioning the dialog. It is easy to position a dialog using
XmNmapCallback resource that is supported by all of the Motif manager widgets,
shown in Example 7-5.*

Example 7-5. The map_dlg.c program

/* map_dlg.c -- Use the XmNmapCallback to automatically position
** a dialog on the screen. Each time the dialog is displayed, it
** is mapped down and to the right by 200 pixels in each direction.
*/
#include <Xm/MessageB.h>
#include <Xm/PushB.h>
/* main() --create a pushbutton whose callback pops up a dialog box */
main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

button = XmCreatePushButton (toplevel, "Push Me", NULL, 0);
XtAddCallback (button, XmNactivateCallback, pushed,

(XtPointer) "Hello World");
XtManageChild (button);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

* XtVaAppInitialize () is deprecated in X11R6.
232 Motif Programming Manual

Chapter 7: Custom Dialogs

tion.
alog,

fined

n
r the

s

/* callback function for XmNmapCallback. Position dialog in 200 pixel
** "steps". When the edge of the screen is hit, start over.
*/
static void map_dialog (Widget dialog, XtPointer client_data,

XtPointer call_data)
{

static Position x, y;
Dimension w, h;
XtVaGetValues(dialog, XmNwidth, &w, XmNheight, &h, NULL);
if ((x + w) >= WidthOfScreen (XtScreen (dialog)))

x = 0;
if ((y + h) >= HeightOfScreen (XtScreen (dialog)))

y = 0;
XtVaSetValues (dialog, XmNx, x, XmNy, y, NULL);
x += 200;
y += 200;

}
/* pushed() --the callback routine for the main app's pushbutton.
** Create and popup a dialog box that has callback functions for
** the Ok, Cancel and Help buttons.
*/
void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget dialog;
Arg arg[5];
int n = 0;
char *message = (char *) client_data;

XmString t = XmStringCreateLocalized (message);
XtSetArg (arg[n], XmNmessageString, t); n++;
XtSetArg (arg[n], XmNdefaultPosition, False); n++;
dialog = XmCreateMessageDialog (w, "notice", arg, n);
XmStringFree (t);
XtAddCallback (dialog, XmNmapCallback, map_dialog, NULL);
XtManageChild (dialog);

}

Each time the dialog is mapped to the screen, themap_dialog () routine is invoked. The
routine merely places the dialog at a location that is 200 pixels from its previous posi
Obviously, this example is meant to demonstrate the technique of positioning a di
rather than providing any useful functionality. TheXmNwidth , XmNheight , XmNx, and
XmNyresources are retrieved from the DialogShell widget since the dialog is a prede
Motif dialog. Similarly, the position of the DialogShell is set by callingXtVaSetValues ()
using the same resources.

If you are using a SessionShell* or a TopLevelShell, rather than a DialogShell, the positio
of the dialog is subject to various resources that are controlled by the user and/o
window manager. For example, if the user is usingmwm, she can set the resource
interactivePlacement , which allows her to position the shell interactively. While it i

* The ApplicationShell is considered deprecated in X11R6.
Motif Programming Manual 233

Chapter 7: Custom Dialogs

ry to
ser’s
by
ater
w

code
g at

to an
you
put
log

it

te of

olkit

shell
of its
hese

state.

and
pters
ould

dialogs
logs,
acceptable for an application to control the placement of a DialogShell, it should not t
control the placement of a TopLevelShell or a SessionShell because that is the u
domain. However, if you feel you must, you can position any shell widget directly
setting itsXmNxandXmNyresources to the desired position when the shell is created or l
usingXtVaSetValues (). The Motif toolkit passes the coordinate values to the windo
manager and allows it to position the dialog at the intended location.

This issue is an important dilemma in user-interface design. If you are going to hard-
the position of a dialog on the screen, you probably do not want to position the dialo
that location each time that it is popped up. Imagine that you pop up a dialog, move it
uncluttered area on your screen, interact with it for a while, and then pop it down. If
use the dialog again, you would probably like it to reappear in the location where you
it previously. The best way to handle this dilemma is to avoid doing any of your own dia
placement, with the possible exception of the first time that a dialog is popped up.

Whether or not you want to position a dialog when it is displayed, you may still find
useful to be informed about when a dialog is popped up or down. TheXmNmapCallback
is not the best tool for this purpose, since it is not called each time the popped-up sta
the dialog changes. TheXmNpopupCallback andXmNpopdownCallback callbacks are
meant for this purpose. These resources are defined and implemented by X To
Intrinsics for all shell widgets. TheXmNpopupCallback is invoked each timeXtPopup ()
is called on a shell widget, while theXmNpopdownCallback is called forXtPopdown ().

People often get confused by the terminology of a dialog being popped down and a
being iconified. Remember that whether or not a shell is popped up is independent
iconic state. Although a DialogShell cannot be iconified separately, other shells can. T
shells may also be popped up and down usingXtPopup () andXtPopdown () independent
of their iconic state.XtPopup () causes a shell to be deiconified, whileXtPopdown ()
causes the dialog and its icon to be withdrawn from the screen, regardless of its iconic
The subject of window iconification is discussed in Chapter 20,Interacting with the
Window Manager.

Summary
Obviously, it is impossible to cover all of the possible scenarios of how dialogs can
should be used in an application. If nothing else, you should come away from the cha
on dialogs with a general feeling for the design approach that we encourage. You sh
also understand the steps that are necessary to create and use both predefined Motif
and customized dialogs. For a final look at some particularly thorny issues in using dia
see Chapter 27, Advanced Dialog Programming.
234 Motif Programming Manual

ager
the
Chapter 1

In this chapter:
• Types of Manager Widge
• Creating Manager Widge
• The BulletinBoard Widget
• The Form Widget
• The RowColumn Widget
• The Frame Widget
• The PanedWindow Widge
• Keyboard Traversal
• Summary

This chapter provides detai
widgets. Examples explore
BulletinBoard, Form, and Ro
Motif Programming Manual
ts
ts

t

8

they
get
ge is
nd the
ther
gets
abase.

, this

they
this
ll of

raint

. The
each
dgets,
Manager Widgets

led descriptions of the various classes of Motif man
the various methods of positioning children within

wColumn widgets.

As their name implies, manager widgets manage other widgets, which means that
control the size and location (geometry) and input focus policy for one or more wid
children. The relationship between managers and the widgets that they mana
commonly referred to as the parent-child model. The manager acts as the parent a
other widgets are its children. Since manager widgets can also be children of o
managers, this model produces the widget hierarchy, which is a framework for how wid
are laid out visually on the screen and how resources are specified in the resource dat

While managers are used and explained in different contexts throughout this book
chapter discusses the details of the different manager widget classes. Chapter 3,Overview
of the Motif Toolkit, discusses the general concepts behind manager widgets and how
fit into the broader application model. You are encouraged to review the material in
and other chapters for a wider range of examples, since it is impossible to deal with a
the possibilities here. For an in-depth discussion of the X Toolkit Composite and Const
widget classes, from which managers are subclassed, see Volume 4,X Toolkit Intrinsics
Programming Manual.

Types of Manager Widgets
The Manager widget class is a metaclass for a number of functional subclasses
Manager widget class is never instantiated; the functionality it provides is inherited by
of its subclasses. In this chapter, we describe the general-purpose Motif manager wi
which are introduced below:

BulletinBoard
The BulletinBoard is the most basic of the manager widgets. The geometry
management is, as the class name implies, like a bulletin board. A child is
pinned up on the BulletinBoard in a particular location and remains there
235

Chapter 8: Manager Widgets
until it moves itself or someone else moves it. The BulletinBoard widget
does not impose any layout policy on its children, but it does support key-
board traversal. The BulletinBoard is a superclass for more sophisticated
and useful managers. The BulletinBoard is also designed to be used as the
container for dialog boxes, so it has translation tables and callback routines
for this purpose. The predefined Motif dialogs use the BulletinBoard widg-
et class to handle all of their input mechanisms; each dialog widget class
handles its own geometry management. See Chapter 5, Introduction to Dia-
logs, for a complete discussion of dialogs.

Form
The Form widget is subclassed from the BulletinBoard. The Form extends
the capabilities of the BulletinBoard by introducing a sophisticated geom-
etry management policy that involves both absolute and relative position-
ing and sizing of its children. For example, a Form may lay out its children
in a grid-like manner, anchoring the edges of each child to specific positions
on the grid, or it may attach the children to one another in a chain-like
fashion.

RowColumn
The RowColumn widget lays out its children in rows and columns. Resourc-
es control the number of rows or columns and the packing of widgets into
those rows and columns. The Motif toolkit uses the RowColumn internally
to implement many objects that are not implemented as individual widg-
ets, such as PopupMenus, PulldownMenus, MenuBars, RadioBoxes, and
CheckBoxes. There are a number of RowColumn resources that are specific
to these objects.

Frame
The purpose of the Frame widget is to provide a visible, three-dimensional
border for objects such as RowColumns or Labels that do not provide a bor-
der for themselves. The Frame widget may have two children: a work area
child and a label child. The Frame sizes itself just big enough to contain its
children.

PanedWindow
The PanedWindow manages its children in a vertically or horizontally*

tiled format. In a vertical orientation, the widget takes its width from the
widest widget in its list of children. When horizontally oriented, the Pan-
edWindow takes its height from the height of the tallest child. The Paned-
Window also provides control sashes or grips that enable the user to adjust
the individual heights of the PanedWindow’s children. Constraint resourc-

* Horizontal layout was introduced in Motif 2.0.
236 Motif Programming Manual

Chapter 8: Manager Widgets
es for the PanedWindow allow each child to specify its desired maximum
and minimum height and whether it may be resized.

DrawingArea
Although the DrawingArea widget is subclassed from the Manager widget
class, it is not generally used in the way that conventional managers are
used. The widget does not do any drawing itself, and it doesn’t define any
keyboard or mouse behavior, although it does provide callbacks for user in-
put. It is basically a free-form widget that can be used for application-spe-
cific purposes. The widget provides callback resources to handle keyboard,
mouse, exposure, and resize events. While the DrawingArea widget can
have children, it does not manage them in any defined way. Since the
DrawingArea widget is typically used for application drawing, rather than
for managing other widgets, it is discussed separately in Chapter 11, The
Drawing Area.

ScrolledWindow
The ScrolledWindow widget provides a viewing area into another widget.
The user can adjust the viewing area using ScrollBars that are attached to
the ScrolledWindow. The ScrolledWindow can handle scrolling automati-
cally, so that the application does not have to do any work. The widget also
has an application-defined mode, which allows an application to control all
of the aspects of scrolling. Since the operation of the ScrolledWindow is tied
to the operation of ScrollBars, the two widgets are discussed together in
Chapter 10, ScrolledWindows and ScrollBars.

MainWindow
The MainWindow widget is subclassed from the ScrolledWindow widget.
The MainWindow is the standard layout manager for the main application
window in a Motif application. The widget is designed to lay out a Menu-
Bar, a work area, ScrollBars, a command area, and a message area. Since
the MainWindow is central to many Motif applications, it is discussed sep-
arately in Chapter 4, The Main Window.

Scale
The Scale widget displays a slider object that has a specific value in a range
of values. The user can adjust the value of the widget by moving the slider.
The Scale creates and manages its own widgets. In Motif 1.2, the only sen-
sible children that you could add to a Scale were Label widgets that repre-
sent tick marks, and these would have to be laid out by the programmer.
However, in Motif 2.0, the function XmScaleSetTicks () was introduced
which automatically places marks at calculated positions along the Scale
edge. The widget class is therefore not meant to be a general-purpose man-
ager, so it is described separately in Chapter 16, The Scale Widget.
Motif Programming Manual 237

Chapter 8: Manager Widgets

Motif
sed in

ence
to be
idgets

nager

the
both

s over
ed.
etry
d.

r as a
a set

ing
of

either
own

eeds to
t when
hich

If the
idget

ou re-

er
y-real-
-real-
a child
ance

hildren.
e, even
The MessageBox, SelectionBox, FileSelectionBox, and Command widgets are also
manager widgets. These widgets are used for predefined Motif dialogs and are discus
Chapter 5,Introduction to Dialogs, Chapter 6,Selection Dialogs, and Chapter 7,Custom
Dialogs.

Creating Manager Widgets
A manager widget may be created and destroyed like any other widget. The main differ
between using a manager and other widgets involves when the widget is declared
managed in the creation process. We normally suggest that you create manager w
using the appropriate convenience function orXtVaCreateWidget() , rather than using
XtVaCreateManagedWidget() , and then manage it later usingXtManageChild() . To
understand why this technique can be important, you need to understand how a ma
widget manages its children.

A manager widget manages its children by controlling the sizes and positions of
children. The process of widget layout only happens when the child and the parent are
in the managed state. If a child is created as an unmanaged widget, the parent skip
that widget when it is determining the layout until such time as the child is manag
However, if a manager widget is not itself managed, it does not perform geom
management on any of its children regardless of whether those children are manage*

To demonstrate the problems that you are trying to avoid, consider creating a manage
managed widget before any of its children are created. The manager is going to have
of PushButtons as its children. When the first child is added us
XtVaCreateManagedWidget() , the manager widget negotiates the size and position
the PushButton. Depending on the type of manager widget being used, the parent
changes its size to accommodate the new child or it changes the size of the child to its
size. In either case, these calculations are not necessary because the geometry n
change as more buttons are added. The problem becomes complicated by the fact tha
the manager’s size changes, it must also negotiate its new size with its own parent, w
causes that parent to negotiate with its parent all the way up to the highest-level shell.
new size is accepted, the result goes back down the widget tree with each manager w

* To be precise, a manager does not actually manage its children until it is both managed and realized. If y
alize all of your widgets at once, by callingXtRealizeWidget () on the top-level widget of the application,
as described in Chapter 2,The Motif Programming Model,it should not make a difference whether a manag
is managed before or after its children are created. However, if you are adding widgets to a tree of alread
ized widgets, the principles set forth in this section are important. If you are adding children to an already
ized parent, the child is automatically realized when it is managed. If you are adding a manager widget as
of a realized widget, you should explicitly manage all children before managing the parent. The perform
implications can be quite severe otherwise, and can be exponential to the number of already managed c
The code examples all explicitly manage the child before the parent to demonstrate the correct techniqu
though the application shell may not as yet be realized.
238 Motif Programming Manual

Chapter 8: Manager Widgets

lmost

nager
rent
t, the
e row
nds
been

en are
using
n
ests,
t tree.

tion,
g

nt to
nciple
ed as

ren as
hildren
ly
, and

le is
dren.
et as
ch that
is not
en. We

resent
s and
board
nager
resizing itself on the way down. Repeating this process each time a child is added a
certainly affects performance.

Because of the different geometry management methods used by the different ma
widgets, there is the possibility that all of this premature negotiation can result in a diffe
layout than you intended. For example, as children are added to a RowColumn widge
RowColumn checks to see if there is enough room to place the new child on the sam
or column. If there isn’t, then a new row or column is created. This behavior depe
heavily on whether the RowColumn is managed and also on whether its size has
established by being realized. If the manager parent is not managed when the childr
added, the whole process can be avoided, yet you still have the convenience of
XtVaCreateManagedWidget() for all of the widget children should you so wish. Whe
the manager is itself managed, it queries its children for their size and position requ
calculates its own size requirements, and communicates that size back up the widge

For best results, you should use the appropriate Motif convenience func
XtCreateWidget () or XtVaCreateWidget() to create manager widgets, reservin
XtVaCreateManagedWidget() for primitive widgets. Creating a primitive widget as an
unmanaged widget serves no purpose, unless you explicitly want the widget’s pare
ignore it for some reason. If you are adding another manager as a child, the same pri
applies; you should also create it as an unmanaged widget until all its children are add
well. The idea is to descend as deeply into the widget tree and create as many child
possible before managing the manager parents as you ascend back up. Once all the c
have been added,XtManageChild() can be called for the managers so that they on
have to negotiate with their parents once, thus saving time, improving performance
probably producing better results.

Despite all we’ve just said, realize that the entire motivating factor behind this princip
to optimize the method by which managers negotiate sizes and positions of their chil
If a manager only has one child, it does not matter if you create the manager widg
managed or not. Also, the geometry management constraints of some widgets are su
no negotiation is required between the parent and the children. In these situations, it
necessary to create the manager as an unmanaged widget, even though it has childr
will explain these cases as they arise.

In the rest of this chapter, we examine the basic manager widget classes and p
examples of how they can be used. While geometry management is the most obviou
widely used aspect of the widget class, managers are also responsible for key
traversal, gadget display, and gadget event handling. Many of the resources of the Ma
metaclass are inherited by each of its subclasses for handling these tasks.
Motif Programming Manual 239

Chapter 8: Manager Widgets

oard
by
the

port
ly for

B key
they

ernal

rned
let’s
n be
an

ager
the

quite

is

ssible
The BulletinBoard Widget
The BulletinBoard is the most basic of the manager widget subclasses. The BulletinB
widget does not enforce position or size policies on its children, so it is rarely used
applications as a general geometry manager for widgets. The BulletinBoard is
superclass for the Form widget and all of the predefined Motif dialog widgets. To sup
these roles, the BulletinBoard has a number of resources that are used specifical
communicating with DialogShells.

The BulletinBoard has callback resources forFocusIn , FocusOut , and MapNotify
events. These callbacks are invoked when the user moves the mouse or uses the TA
to traverse the widget hierarchy. The events do not require much visual feedback and
only require application-specific callback routines when an application needs to set int
states based on the events. TheXmNfocusCallback andXmNmapCallback resources
are used extensively by DialogShells.

Despite the low profile of the BulletinBoard as a manager widget, there is a lot to be lea
from it, since the principles also apply to most other manager widgets. In this spirit,
take a closer look at the BulletinBoard widget and examine the different things that ca
done with it as a manager widget. If you want to use a BulletinBoard directly in
application, you must include the file <Xm/BulletinB.h>. The following code fragment
shows the two recommended ways to create a BulletinBoard:

Widget bboard = XtVaCreateWidget ("name", xmBulletinBoardWidgetClass, parent ,
resource-value-list , NULL);

/* Create children */
...
XtManageChild (bboard);

Widget bboard = XmCreateBulletinBoard (parent, “name”,
resource-value-array ,
resource-value-count);

/* Create children */
...
XtManageChild (bboard);

Theparent parameter is the parent of the BulletinBoard, which may be another man
widget or a shell widget. You can specify any of the resources that are specific to
BulletinBoard, but unless you are using the widget as a dialog box, your choices are
limited.

Resources
Of the few BulletinBoard resources not tied to DialogShells, the only visual one
XmNshadowType. When used in conjunction with theXmNshadowThickness resource,
you can control the three-dimensional appearance of the widget. There are four po
values forXmNshadowType:
240 Motif Programming Manual

Chapter 8: Manager Widgets

e

in
he
s not

ely,

must
As a
et
for
size
be
XmSHADOW_IN XmSHADOW_OUT
XmSHADOW_ETCHED_IN XmSHADOW_ETCHED_OUT

The default value forXmNshadowThickness is 0, except when the BulletinBoard is the
child of a DialogShell, in which case the default value is1. In either case, the value can b
changed by the application or by the user.

The XmNbuttonRenderTable * resource may be set to a render table as described
Chapter 24,Render Tables. This render table is used for each of the button children of t
BulletinBoard, when the button does not specify its own render table. If the resource i
specified, its value is taken from theXmNbuttonRenderTable of the nearest ancestor
which holds theXmQTspecifyRenderTable Trait. BulletinBoard, VendorShell, and
MenuShell hold this Trait. Similarly, the XmNlabelRenderTable and
XmNtextRenderTable resources can be set for Label and Text widgets, respectiv
that are direct children of the BulletinBoard.

Geometry Management
Since the BulletinBoard does not provide any geometry management by default, you
be prepared to manage the positions and sizes of the widgets within a BulletinBoard.
result, you must set theXmNxandXmNyresources for each child. You may also have to s
theXmNwidth andXmNheight resources if you need consistent or predetermined sizes
the children. In order to maintain the layout, you must add an event handler for re
(ConfigureNotify) events, so that the new sizes and positions of the children can
calculated. Example 8-1 shows the use of an event handler with the BulletinBoard.†

Example 8-1. The corners.c program

/* corners.c -- demonstrate widget layout management for a
** BulletinBoard widget. There are four widgets each labelled
** top-left, top-right, bottom-left and bottom-right. Their
** positions in the bulletin board correspond to their names.
** Only when the widget is resized does the geometry management
** kick in and position the children in their correct locations.
*/
#include <Xm/BulletinB.h>
#include <Xm/PushB.h>

char *corners[] = { "Top Left", "Top Right",
"Bottom Left", "Bottom Right" };

static void resize(Widget, XEvent *, String *, Cardinal *);

main (int argc, char *argv[])

* The XmFontList is obsolete as of Motif 2.0, and is replaced by theXmRenderTable . XmNbuttonFontList ,
XmNlabelFontList , andXmNtextFontList are deprecated, and the resourcesXmNbuttonRenderTable ,
XmNlabelRenderTable , XmNtextRenderTable are preferred respectively.

† XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 241

Chapter 8: Manager Widgets
{
Widget toplevel, bboard, button;
XtAppContext app;
XtActionsRec rec;
int i;

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit and create toplevel shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
/* Create your standard BulletinBoard widget */
bboard = XmCreateBulletinBoard (toplevel, "bboard", NULL, 0);
/* Set up a translation table that captures "Resize" events
** (also called ConfigureNotify or Configure events). If the
** event is generated, call the function resize().
*/
rec.string = "resize";
rec.proc = resize;
XtAppAddActions (app, &rec, 1);
XtOverrideTranslations (bboard,

XtParseTranslationTable ("<Configure>: resize()"));
/* Create children of the dialog -- a PushButton in each corner. */
for (i = 0; i < XtNumber (corners); i++) {

button = XmCreatePushButton (bboard, corners[i], NULL, 0);
XtManageChild (button);

}
XtManageChild (bboard);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* resize(), the routine that is automatically called by Xt upon the
** delivery of a Configure event. This happens whenever the widget
** gets resized.
*/
static void resize (Widget w, /* Widget that resized */

XEvent *event,
String args[], /* unused */
Cardinal *num_args) /* unused */

{
WidgetList children;
Dimension w_width, w_height;
short margin_w, margin_h;
XConfigureEvent *cevent = (XConfigureEvent *) event;
int width = cevent->width;
int height = cevent->height;

/* get handle to BulletinBoard's children and marginal spacing */
XtVaGetValues (w, XmNchildren, &children, XmNmarginWidth, &margin_w,

XmNmarginHeight, &margin_h, NULL);
/* place the top left widget */
XtVaSetValues (children[0], XmNx, margin_w,

XmNy, margin_h, NULL);
/* top right */
242 Motif Programming Manual

Chapter 8: Manager Widgets

ince
t only
fter a

ized
. We
XtVaGetValues (children[1], XmNwidth, &w_width, NULL);
XtVaSetValues (children[1], XmNx, width - margin_w - w_width,

XmNy, margin_h, NULL);
/* bottom left */
XtVaGetValues (children[2], XmNheight, &w_height, NULL);
XtVaSetValues (children[2], XmNx, margin_w,

XmNy, height - margin_h - w_height,
NULL);

/* bottom right */
XtVaGetValues (children[3], XmNheight, &w_height,

XmNwidth, &w_width, NULL);
XtVaSetValues (children[3], XmNx, width - margin_w - w_width,

XmNy, height - margin_h - w_height,
NULL);

}

The program uses four widgets, labelledTop Left, Top Right, Bottom Left, andBottom
Right. The positions of the buttons in the BulletinBoard correspond to their names. S
the widgets are not positioned when they are created, the geometry managemen
happens when the widget is resized. Figure 8-1 shows the application before and a
resize event.

When a resize event occurs, X generates aConfigureNotify event. This event is
interpreted by Xt and the translation table of the widget corresponding to the res
window is searched to see if the application is interested in being notified of the event
have indicated interest in this event by callingXtAppAddActions() and
XtOverrideTranslations() , as shown below:

XtActionsRec rec;
...
rec.string = "resize";

expand window

Figure 8-1: Output of the corners program before and after a resize event
Motif Programming Manual 243

Chapter 8: Manager Widgets

at are

ed

d. Xt

g

the

d to the
ning
We
alled,

the
are
how
for

e

rec.proc = resize;
XtAppAddActions (app, &rec, 1);
XtOverrideTranslations (bboard,

XtParseTranslationTable ("<Configure>: resize()"));

As described in Volume 4,X Toolkit Intrinsics Programming Manual, a translation table
pairs a sequence of one or more events with a sequence of one or more functions th
called when the event sequence occurs. In this case, the event is aConfigureNotify
event and the function isresize() . Translations are specified as strings and then pars
into an internal format with the functionXtParseTranslationTable() . The routine
creates an internal structure of events and the functions to which they correspon
provides the table for translating event strings such as<Configure> to the actual
ConfigureNotify event, but Xt cannot convert the stringresize() to an actual
function unless we provide a lookup table.TheXtActionsRec type performs this task.
The structure is defined as follows:

typedef struct {
Stringstring;
XtActionProcproc;

} XtActionsRec;

The action list is initialized to map the stringresize to the actual functionresize()
using XtAppAddActions() . We install the translation table on the widget usin
XtOverrideTranslations() so that when aConfigureNotify event occurs, the
resize() function is called.

Theresize() function takes four arguments. The first two arguments are a pointer to
widget in which the event occurred and the event structure. Theargs and num_args
parameters are ignored because we did not specify any extra parameters to be passe
function when we installed it. Since the function is called as a result of the event happe
on the BulletinBoard widget, we know that we are dealing with a composite widget.
also know that there is only one event type that could have caused the function to be c
so we cast theevent parameter accordingly.

The task of the function is to position the children so that there is one per corner in
BulletinBoard. We get a handle to all of the children of the BulletinBoard. Since we
going to place the children around the perimeter of the widget, we also need to know
far from the edge to place them. This distance is taken from the values
XmNmarginWidth andXmNmarginHeight . All three resource values are retrieved in th
following call:

XtVaGetValues (w, XmNchildren, &children,
XmNmarginWidth, &margin_w,
XmNmarginHeight, &margin_h,
NULL);
244 Motif Programming Manual

Chapter 8: Manager Widgets

ithin
t, but

plan
site
ffect
also
),
lues

Label
f the
This
ating
. Of
g its
ve to
est of
imple

the
n be
as in

s that
ions

g the
The remainder of the function simply places the children at the appropriate positions w
the BulletinBoard. The routine uses a very simple method for geometry managemen
it does demonstrate the process.

The general issue of geometry management for composite widgets is not trivial. If you
on doing your own geometry management for a BulletinBoard or any other compo
widget, you should be very careful to consider all the resources that could possibly a
layout. In our example, we considered the margin width and height, but there is
XmNallowOverlap , XmNborderWidth (which is a general Core widget resource
XmNshadowThickness (a general manager widget resource) and the same va
associated with the children of the BulletinBoard.

There are also issues about what to do if a child decides to resize itself, such as if a
widget gets wider. In this case, you must first evaluate what the geometry layout o
widgets would be if you were to grant the Label permission to resize itself as it wants.
evaluation is done by asking each of the children how big they want to be and calcul
the hypothetical layout. The BulletinBoard either accepts or rejects the new layout
course, the BulletinBoard may have to make itself bigger too, which requires askin
parent for a new size, and so on. If the BulletinBoard cannot resize itself, then you ha
decide whether to force other children to be certain sizes or to reject the resize requ
the child that started all the negotiation. Geometry management is by no means a s
task; it is explained more completely in Volume 4,X Toolkit Intrinsics Programming
Manual.

The Form Widget
The Form widget is subclassed from the BulletinBoard class, so it inherits all of
resources that the BulletinBoard has to offer. Accordingly, the children of a Form ca
placed at specific x, y coordinates and geometry management can be performed
Example 8-1. However, the Form provides additional geometry management feature
allow its children to be positioned relative to one another and relative to specific locat
in the Form.

In order to use a Form, you must include the file <Xm/Form.h>. A Form is created in a
similar way to other manager widgets, either through a convenience routine or usin
general purpose Xt mechanisms, as shown below:

Widget form = XtVaCreateWidget ("name", xmFormWidgetClass, parent, resource-
value-list , NULL);

/* create children */
XtManageChild (form);

Widget form = XmCreateForm (parent, “name”, resource-value-array , resource-
value-count);

/* create children */
XtManageChild (form);
Motif Programming Manual 245

Chapter 8: Manager Widgets

ces are
. The
hing
ed to
the
, and

rtant.
s in

wo
from
side
ent
f the

e
r

ch
Form Attachments
Geometry management in a Form is done using attachment resources. These resour
constraint resources, which means that they are specified for the children of the Form
resources provide various ways of specifying the position of a child of a Form by attac
each of the four sides of the child to another entity. The side of a widget can be attach
another widget, to a fixed position in the Form, to a flexible position in the Form, to
Form itself, or to nothing at all. These attachments can be considered hooks, rods
anchor points, as shown in Figure 8-2.

In this figure, there are three widgets. The sizes and types of the widgets are not impo
What is important is the relationship between the widgets with respect to their position
the Form.Widget 1 is attached to the top and left sides of the Form by creating t
attachments. The top side of the widget is hooked to the top of the Form. It can slide
side to side, but it cannot be moved up or down (just like a shower curtain). The left
can slide up and down, but not to the right or to the left. Given these two attachm
constraints, the top and left sides of the widget are fixed. The right and bottom edges o
widget are not attached to anything, but other widgets are attached to those edges.

The left side ofWidget 2is attached to the right side ofWidget 1. Similarly, the top side of
Widget 2is attached to the top side ofWidget 1. As a result, the top and left sides of th
widget cannot be moved unlessWidget 1moves. The same kind of attachments hold fo
Widget 3. The top side of this widget is attached to the bottom ofWidget 1and its left side
is attached to the left side ofWidget 1. Given these constraints, no matter how large ea

Figure 8-2: Attachments in a Form

Widget 2

Widget 3Widget 1
246 Motif Programming Manual

Chapter 8: Manager Widgets

f the

ving
tive

use
the

s not

he
tself.
d to
of the widgets may be, or how the Form may be resized, the positional relationship o
widgets is maintained.

In general, you must attach at least two adjacent edges of a widget to keep it from mo
unpredictably. If you only attach one edge of a widget, you are only specifying rela
position: both opposing sides must be attached for potential resize behavior.

The following resources represent the four sides of a widget:

XmNtopAttachment XmNbottomAttachment
XmNrightAttachment XmNleftAttachment

For example, if we want to specify that the top of a widget is attached to something, we
the XmNtopAttachment resource. Each of the four resources can be set to one of
following values:

XmATTACH_FORM XmATTACH_OPPOSITE_FORM
XmATTACH_WIDGET XmATTACH_OPPOSITE_WIDGET
XmATTACH_NONE
XmATTACH_SELF XmATTACH_POSITION

XmATTACH_FORM

When an attachment is set toXmATTACH_FORM, the specified side is attached to the Form
as shown in Figure 8-3. If the resource that has this value isXmNtopAttachment , then the
top side of the widget is attached to the top of the Form. The top attachment doe
guarantee that the widget will not move from side to side. IfXmNbottomAttachment is
also set toXmATTACH_FORM, the bottom of the widget is attached to the bottom side of t
Form. With both of these attachments, the widget is resized to the height of the Form i
The same would be true for the right and left edges of the widget if they were attache
the Form.

XmATTACH_OPPOSITE_FORM

When an attachment is set toXmATTACH_OPPOSITE_FORM, the specified side of the
widget is attached to the opposite side of the Form. For example, ifXmNtopAttachment

Figure 8-3: XmNtopAttachment set to XmATTACH_FORM

Widget 1
Motif Programming Manual 247

Chapter 8: Manager Widgets

m
next

e it
ource

her
the

hows

gets
sa.

ure 8-

ith
is set toXmATTACH_OPPOSITE_FORM, the top side of the widget is attached to the botto
side of the Form. This value must be used with a negative offset value (discussed in the
section) or the widget is placed off of the edge of the Form and it is not visible. Whil
may seem confusing, this value is the only one that can be applied to an attachment res
that allows you to specify a constant offset from the edge of a Form.

XmATTACH_WIDGET

The XmATTACH_WIDGETvalue indicates that the side of a widget is attached to anot
widget. The other widget must be specified using the appropriate resource from
following list:

XmNtopWidget XmNbottomWidget
XmNleftWidget XmNrightWidget

The value for one of these resources must be the widget ID. For example, Figure 8-4 s
how to attach the right side ofWidget 1to the left side ofWidget 2. This attachment method
is commonly used to chain together a series of adjacent widgets. Chaining wid
horizontally does not guarantee that the widgets will be aligned vertically, or vice ver

XmATTACH_OPPOSITE_WIDGET

The XmATTACH_OPPOSITE_WIDGETvalue is just like XmATTACH_WIDGET, except
that the widget is attached to the same edge of the specified widget, as shown in Fig
5. In this case, the right side ofWidget 1is attached to the right side ofWidget 3. This
attachment method allows you to align the edges of a group of widgets. As w

Widget 2Widget 1

Figure 8-4: XmNrightAttachment set to XmATTACH_WIDGET

XmNrightAttachment :

XmNrightWidget: Widget 2XmATTACH_WIDGET
248 Motif Programming Manual

Chapter 8: Manager Widgets

is
hed
, then
ess a
ting

xed
f the
XmATTACH_WIDGET, the other widget must be specified usingXmNtopWidget ,
XmNbottomWidget , XmNleftWidget , orXmNrightWidget .

XmATTACH_NONE

XmATTACH_NONEspecifies that the side of a widget is not attached to anything, which
the default value*. This case could be represented by a dangling hook that is not attac
to anything. If the entire widget moves because another side is attached to something
this side gets dragged along with it so that the widget does not need resizing. Unl
particular side of a widget is attached to something, that side of the widget is free-floa
and moves proportionally with the other parts of the widget.

XmATTACH_POSITION

When the side of a widget is attached usingXmATTACH_POSITION, the side is anchored to
a relative position in the Form. This value works by segmenting the Form into a fi
number of equally-spaced horizontal and vertical positions, based on the value o

* This is true for any individual edge. However, a widget which has no attachments specified onanyside will have
an implicitXmATTACH_FORM attachment on the top and left edges assigned by the containing Form.

Figure 8-5: XmNrightAttachment set to XmATTACH_OPPOSITE_WIDGET

Widget 1

Widget 3

20

0 5 10 15 25 3520 30

Widget 1

Widget 3

The right
sides are
aligned

XmNrightAttachment:
XmATTACH_OPPOSITE_WIDGET

XmNrightWidget: Widget 3

Form
Motif Programming Manual 249

Chapter 8: Manager Widgets

the

s
n
side
e

e four
nger
rrect
tly by
XmNfractionBase resource. The position of the side must be specified using
appropriate resource from the following list:

XmNtopPosition XmNbottomPosition
XmNleftPosition XmNrightPosition

See Section 8.4.3 for a complete discussion of position attachments.

XmATTACH_SELF

When an attachment is set toXmATTACH_SELF, the side of the widget is attached to it
initial position in the Form. You position the widget initially by specifying its x,y locatio
in the Form. After the widget has been placed in the Form, the attachment for the
reverts toXmATTACH_POSITION, with the corresponding position resource set to th
relative position of the x,y coordinate in the Form.

Some Examples

Now that we have explained the concept of Form attachments, we can reimplement th
corners example from the previous section. Unlike in the previous version, we no lo
need a resize procedure to calculate the positions of the widgets. By specifying the co
attachments, as shown in Example 8-2, the widgets are placed and managed correc
the Form when it is resized.*

Example 8-2. The form_corners.c program

/* form_corners.c -- demonstrate form layout management. Just as
** in corners.c, there are four widgets each labelled top-left,
** top-right, bottom-left and bottom-right. Their positions in the
** form correspond to their names. As opposed to the BulletinBoard
** widget, the Form manages this layout management automatically by
** specifying attachment types for each of the widgets.
*/
#include <Xm/PushB.h>
#include <Xm/Form.h>

char *corners[] = {"Top Left", "Top Right", "Bottom Left", "Bottom Right"};

main (int argc, char *argv[])
{

Widget toplevel, form, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);
form = XmCreateForm (toplevel, "form", NULL, 0);
/* Attach the edges of the widgets to the Form. Which edge of

* XtVaAppInitialize() is considered deprecated in X11R6.
250 Motif Programming Manual

Chapter 8: Manager Widgets

ary to
each

other.
t in

ple
** the widget that's attached is relative to where the widget is
** positioned in the Form. Edges not attached default to having
** an attachment type of XmATTACH_NONE.
*/
button = XmCreatePushButton (form, corners[0], NULL, 0);
XtVaSetValues (button, XmNtopAttachment, XmATTACH_FORM, XmNleftAttachment,

XmATTACH_FORM, NULL);
XtManageChild (button);
button = XmCreatePushButton (form, corners[1], NULL, 0);
XtVaSetValues (button, XmNtopAttachment, XmATTACH_FORM,

XmNrightAttachment, XmATTACH_FORM, NULL);
XtManageChild (button);
button = XmCreatePushButton (form, corners[2], NULL, 0);
XtVaSetValues (button, XmNbottomAttachment, XmATTACH_

FORM,XmNleftAttachment, XmATTACH_FORM, NULL);
XtManageChild (button);
button = XmCreatePushButton (form, corners[3], NULL, 0);
XtVaSetValues (button, XmNbottomAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM, NULL);
XtManageChild (button);
XtManageChild (form);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

In this example, two sides of each widget are attached to the Form. It is not necess
attach the other sides of the widgets to anything else. If we attach the other sides to
other, the widgets would have to be resized so that they could stretch to meet each
With the specified attachments, the output of the program looks just like the outpu
Figure 8-1.

A more complex example of Form attachments is shown in Example 8-3. This exam
implements the layout shown in Figure 8-2*

Example 8-3. The attach.c program

/* attach.c -- demonstrate how attachments work in Form widgets. */
#include <Xm/PushB.h>
#include <Xm/Form.h>

main (int argc, char *argv[])
{

Widgettoplevel, parent, one, two, three;
XtAppContextapp;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
parent = XmCreateForm (toplevel, "form", NULL, 0);
one = XmCreatePushButton (parent, "One", NULL, 0);

* XtVaAppInitialize() is considered deprecated in X11R6.
Motif Programming Manual 251

Chapter 8: Manager Widgets

of the

t be
e need
two = XmCreatePushButton (parent, “Two”, NULL, 0);
three = XmCreatePushButton (parent, “Three”, NULL, 0);
XtVaSetValues (one,

XmNtopAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_FORM,
NULL);

XtVaSetValues (two,
XmNleftAttachment, XmATTACH_WIDGET,
/* attach top to same y coordinate as top of "one" */
XmNleftWidget, one,
XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET,
XmNtopWidget, one,
NULL);

XtVaSetValues (three,
XmNtopAttachment, XmATTACH_WIDGET,
/* attach left to same x coordinate as left of "one" */
XmNtopWidget, one,
XmNleftAttachment, XmATTACH_OPPOSITE_WIDGET,
XmNleftWidget, one,
NULL);

XtManageChild (one);
XtManageChild (two);
XtManageChild (three);
XtManageChild (parent);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The example uses three PushButton gadgets inside of a Form widget. The output
program is shown in Figure 8-6.

You should notice that the widgets are packed together quite tightly, which might no
how you expected them to appear. In order to space the widgets more reasonably, w
to specify some distance between them using attachment offsets.

Expand Window

Figure 8-6: Output of the attach program
252 Motif Programming Manual

Chapter 8: Manager Widgets

y are
s of a

e left

ing the

ac-
Attachment Offsets
Attachment offsets control the spacing between widgets and the objects to which the
attached. The following resources represent the attachment offsets for the four side
widget:

XmNleftOffset XmNrightOffset
XmNtopOffset XmNbottomOffset

Figure 8-7 shows the graphic representation of attachment offsets.

By default, offsets are set to0 (zero), which means that there is no offset*, as shown in the
output for Example 8-3. To make the output more reasonable, we need only to set th
offset between widgetsOneandTwoand the top offset to between widgetsOneandThree.
The resources values can be hard-coded in the application or set in a resource file, us
following specification:

*form.One.leftOffset: 10
*form.One.topOffset: 10
*form.Two.leftOffset: 10

* Not strictly true: if no offset is specified, the value depends upon the FormXmNhorizontalSpacing andXm-
NverticalSpacing resources, which are zero by default. An explicit offset of zero overrides any Form sp
ing resources. See Section 8.4.4.

Widget

Figure 8-7: Attachment offsets

XmNtopOffset

XmNrightOffset

XmNbottomOffset

XmNleftOffset XmNtopAttachment

XmNright-
Attachment

XmNbottomAttachment

XmNleftAttachment
Motif Programming Manual 253

Chapter 8: Manager Widgets

ely,

also

ffsets
esired

e user
ally
each
d to
when
ed to
ent:
*form.Three.topOffset: 10

Our choice of the value10 was arbitrary. The widgets are now spaced more appropriat
as shown in Figure 8-8.

While the layout of the widgets can be improved by setting offset resources, it is
possible to disrupt the layout. Consider the following resource specifications:

*form*leftOffset: 10
*form*topOffset: 10

While it might seem that these resource values are simply a terser way to specify the o
shown earlier, Figure 8-9 makes it clear that these specifications do not produce the d
effect.

An application should hard-code whatever resources may be necessary to prevent th
from setting values that would make the application non-functional or aesthetic
unappealing. Offset resource values can be tricky because they apply individually to
side of each widget in a Form. The problem with the resource specifications use
produce Figure 8-9 is that the offsets are being applied to each side of every widget,
some of the alignments need to be precise. In order to prevent this problem, we ne
hard-code the offsets for particular attachments, as shown in the following code fragm

two = XmCreatePushButton (parent, "Two", NULL, 0);
XtVaSetValues (two, XmNleftAttachment, XmATTACH_WIDGET,

XmNleftWidget, one,
XmNtopAttachment,XmATTACH_OPPOSITE_WIDGET,
XmNtopWidget, one,
XmNtopOffset, 0,
NULL);

three = XmCreatePushButton (parent, "Three", NULL, 0);
XtVaSetValues (three,XmNtopAttachment, XmATTACH_WIDGET,

XmNtopWidget, one,
XmNleftAttachment, XmATTACH_OPPOSITE_WIDGET,

Figure 8-8: Output of the attach program with offset resources set to 10

Figure 8-9: Output of the attach program with inappropriate offset resources
254 Motif Programming Manual

Chapter 8: Manager Widgets

ith are
urce
use

hat

s in a

in

t is
are

at are
into

st
and
XmNleftWidget, one,
XmNleftOffset, 0,
NULL);

The use of zero-length offsets guarantees that the widgets they are associated w
aligned exactly with the widgets to which they are attached, regardless of any reso
specifications made by the user. A general rule of thumb is that whenever you
XmATTACH_OPPOSITE_WIDGET, you should also set the appropriate offset to zero so t
the alignment remains consistent.

In some situations it is necessary to use negative offsets to properly arrange widget
Form. The most common example of this situation occurs when using theXmATTACH_
OPPOSITE_FORM attachment . Unless you use a negative offset, as shown
Figure 8-10, the widgets are placed off the edge of the Form and are not visible.

Position Attachments
Form positions provide another way to position widgets within a Form. The concep
similar to the hook and rod principle described earlier, but in this case the widgets
anchored on at positions that are based on imaginary longitude and latitude lines th
used to segment the Form into equal pieces. The resource used to partition the Form
segments isXmNfractionBase . Although the name of this resource may sugge
complicated calculations, you just need to know that the Form is divided horizontally

Figure 8-10:XmNleftAttachment of XmATTACH_OPPOSITE_WIDGET

Widget 1
XmNbottomOffset: (-5)

Widget 1

Form

195

205

200

210

215

220

195

205

200

210

215

220

with negative offset
Motif Programming Manual 255

Chapter 8: Manager Widgets

8-11

e size
ntly
r of
ribe

fying
lue

e the
vertically into the number of partitions represented by its value. For example, Figure
shows how a Form is partitioned ifXmNfractionBase is set to5.

As you can see, there are an equal number of horizontal and vertical partitions, but th
of the horizontal partitions is not the same as the size of the vertical partitions. It is curre
not possible to set the number of horizontal partitions separately from the numbe
vertical ones, although it is possible to work around this shortcoming, as we will desc
shortly.

Widgets are placed at the coordinates that represent the partitions by speci
XmATTACH_POSITIONfor the attachment resource and by specifying a coordinate va
for the corresponding position resource. The position resources areXmNtopPosition ,
XmNbottomPosition , XmNleftPosition , andXmNrightPosition . For example, if
we wanted to attach the top and left sides of a PushButton to position 1, we could us
following code fragment:

button = XmCreatePushButton (form, "name", NULL, 0);
XtVaSetValues (button, XmNtopAttachment, XmATTACH_POSITION,

XmNtopPosition, 1,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 1,

Figure 8-11: Form with XmNfractionBase set to 5

0 1 2 3 4 5
0

1

2

3

4

5

One

Two

0 1 2 3 4 5
0

1

2

3

4

5

Two

One

0 1 2 3 4 5
0

1

2

3

4

5

One

Two
256 Motif Programming Manual

Chapter 8: Manager Widgets

re not
, the
ent

yout,
NULL);

The right and bottom attachments are left unspecified, so those edges of the widget a
explicitly positioned by the Form. If attachments had been specified for these edges
widget would have to be resized by the Form in order to satisfy all the attachm
constraints.

One obvious example of using position attachments is to create a tic-tac-toe board la
as is done in Example 8-4.*

Example 8-4. The ticktactoe.c program

/* tictactoe.c -- demonstrate how fractionBase and XmATTACH_POSITIONs
** work in Form widgets.
*/
#include <Xm/PushB.h>
#include <Xm/Form.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, parent, w;
int x, y, n;
Arg args[10];
/* callback for each PushButton */
extern void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
n = 0;
XtSetArg (args[n], XmNfractionBase, 3); n++;
parent = XmCreateForm (toplevel, "form", args, n);

for (x = 0; x < 3; x++)
for (y = 0; y < 3; y++) {

n = 0;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNtopPosition, y); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNleftPosition, x); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, x+1); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNbottomPosition, y+1); n++;
w = XmCreatePushButton (parent, " ", args, n);
XtAddCallback (w, XmNactivateCallback, pushed, NULL);
XtManageChild (w);

}

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 257

Chapter 8: Manager Widgets

ment
intain
rm.

ed to
range

that
ion

use
sition
were
s of
to 11
XtManageChild (parent);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void pushed (Widget w, /* PushButton that got activated */
XtPointer client_data, /* unused */
XtPointer call_data)

{
char buf[2];
XmString str;
XmPushButtonCallbackStruct*cbs =

(XmPushButtonCallbackStruct *) call_data;

/* Shift key gets an O. (xbutton and xkey happen to be similar) */
if (cbs->event->xbutton.state & ShiftMask)

buf[0] = '0';
else

buf[0] = 'X';
buf[1] = 0;
str = XmStringCreateLocalized (buf);
XtVaSetValues (w, XmNlabelString, str, NULL);
XmStringFree (str);

}

The output of this program is shown in Figure 8-12.

As you can see, the children of the Form are equally sized because their attach
positions are segmented equally. If the user resizes the Form, all of the children ma
their relationship to one another. The PushButtons simply grow or shrink to fill the fo

One common use of positional attachments is to lay out a number of widgets that ne
be of equal size and equal spacing. For example, you might use this technique to ar
the buttons in the action area of a dialog. Chapter 7,Custom Dialogs, provides a detailed
discussion of how to arrange buttons in this manner.

There may be situations where you would like to attach widgets to horizontal positions
do not match up with how you’d like to attach their vertical positions. Since the fract
base cannot be set differently for the horizontal and vertical orientations, you have to
the least common multiple as the fraction base value. For example, say you want to po
the tops and bottoms of all of your widgets to the 2nd and 4th positions, as if the Form
segmented vertically into 5 parts. But, you also want to position the left and right edge
those same widgets to the 3rd, 5th, 7th, and 9th positions, as if it were segmented in

Figure 8-12: Output of the tictactoe program
258 Motif Programming Manual

Chapter 8: Manager Widgets

for
nd
5th

. The
een

ffset
l for a

in
to

nt

ldren
size

ager
ut by
ents
dle
ls and
ch

If the
hed to
aller
parts. You would have to apply some simple arithmetic and set the value
XmNfractionBase to 55 (5x11). The top and bottom edges would be set to the 22
(2x11) and 44th (4x11) positions and the left and right edges would be set to the 1
(3x5), 25th (5x5), 35th (7x5), and 45th (9x5) positions.

Additional Resources
There are a few other useful Form resources that we have not covered so far
XmNhorizontalSpacing resource can be used to specify the distance betw
horizontally adjacent widgets, whileXmNverticalSpacing specifies the distance
between vertically adjacent widgets. These values only apply when the left and right o
values are not specified, so they are intended to be used as global offset values globa
Form. The following resource specification:

*horizontalSpacing: 10

is equivalent to:

*leftOffset: 10
*rightOffset: 10

TheXmNrubberPositioning resource specifies the default attachments for widgets
the Form. The default value ofFalse indicates that the top and left edges are attached
the form by default. IfXmNrubberPositioning is set to True , the top and left
attachments are set toXmATTACH_POSITIONby default. If theXmNtopAttachment or
XmNleftAttachment resource is explicitly set for a widget, then the default attachme
has no effect.

TheXmNresizable resource is another constraint resource that can be set on the chi
of a Form widget. This resource indicates whether or not the Form tries to grant re
requests from the child.

Nested Forms
Some widget layouts are difficult to create using a single Form widget. Since a man
widget can contain other managers, it is often possible to generate the desired layo
using a Form within a Form. One common problem is that there are no Form attachm
available to align two widgets horizontally if they have different heights. We need a mid
attachment resource, but one doesn’t exist. For example, if you have a series of Labe
Text widgets that you want to pair off and stack vertically, it would be nice to align ea
pair of widgets at their mid sections.

To solve this problem, we can place each Label-Text widget pair in a separate Form.
top and bottom edges of the widgets are attached to the Form, the widgets are stretc
satisfy the constraints, which means that they are aligned horizontally. All of these sm
Motif Programming Manual 259

Chapter 8: Manager Widgets

s an
Form widgets can be placed inside of a larger Form widget. Example 8-5 show
implementation of this idea.*

Example 8-5. The text_form.c program

/* text_form.c -- demonstrate how attachments work in Form widgets
* by creating a text-entry form type application.
*/
#include <Xm/LabelG.h>
#include <Xm/Text.h>
#include <Xm/Form.h>

char *prompts[] = {"Name:", "Phone:", "Address:",
"City:", "State:", "Zip Code:"};

main (int argc, char *argv[])
{

Widget toplevel, mainform, subform, last_subform, label, text;
XtAppContext app;
char buf[32];
int i;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
mainform = XmCreateForm (toplevel, "mainform", NULL, 0);
last_subform = NULL;
for (i = 0; i < XtNumber (prompts); i++) {

subform = XmCreateForm (mainform, "subform", NULL, 0);
XtVaSetValues (subform,
/* first one should be attached for form */

XmNtopAttachment, last_subform ? XmATTACH_WIDGET :
XmATTACH_FORM,

/* others are attached to the previous subform */
XmNtopWidget, last_subform,
XmNleftAttachment, XmATTACH_FORM,
XmNrightAttachment,XmATTACH_FORM,
NULL);

/* Note that the label here contains a colon from the prompts
** array above. This makes it impossible for external resources
** to be set on these widgets. Here, that is intentional, but
** be careful in the general case.
*/
label = XmCreateLabelGadget (subform, prompts[i], NULL, 0);
XtVaSetValues (label,

XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_FORM,
XmNalignment, XmALIGNMENT_BEGINNING,
NULL);

XtManageChild (label);

* XtVaAppInitialize () is considered deprecated in X11R6.
260 Motif Programming Manual

Chapter 8: Manager Widgets

Text
order
ere

can
nage

the
tal
out,
ent

affect
sprintf (buf, "text_%d", i);
text = XmCreateText (subform, buf, NULL, 0);
XtVaSetValues (text,

XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNrightAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, label,
NULL);

XtManageChild (text);
XtManageChild (subform);
last_subform = subform;

}
/* Now that all the forms are added, manage the main form */
XtManageChild (mainform);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of the program is shown in Figure 8-13.

Notice that the Labels are centered vertically with respect to their corresponding
widgets. This arrangement happened because each Label was stretched vertically in
to attach it to the top and bottom of the respective Form. Of course, if the Labels w
higher than the Text widgets, the Text widgets would be stretched instead.

Later, we’ll show another version of this program that gives better results. As you
imagine, there are many different ways for a Form, or any other manager widget, to ma
the geometry of its children to produce the same layout. Later, when we discuss
RowColumn widget, we will show you another solution to the problem of horizon
alignment. It is important to remember that there is no right or wrong way to create a lay
as long as it works for your application. However, you should be very careful to experim
with resizing issues as well as with resources that can beset by the user that might
widget layout, such as fonts and strings.

Figure 8-13: Output of the text_form program
Motif Programming Manual 261

Chapter 8: Manager Widgets

its
in the
The

t is
kely
lkit
n this
such
jacent

reful
tion
it as a
can

as

e
ode

for
to be
Common Problems
With a Form widget, you can specify a virtually unlimited number of attachments for
children. The dependencies inherent in these attachments can lead to various errors
layout of the widgets. One common problem involves circular dependencies.
following code fragment shows a very simple example of a circular dependency:

w1 = XmCreateLabel (form, "w1", NULL, 0);
w2 = XmCreateLabel (form, "w2", NULL, 0);
XtVaSetValues (w1, XmNrightAttachment, XmATTACH_WIDGET,

XmNrightWidget, w2,
NULL);

XtVaSetValues (w2, XmNleftAttachment, XmATTACH_WIDGET,
XmNleftWidget, w1,
NULL);

In this example, the left widget is attached to the right widget and the right widge
attached to the left one. If you do mistakenly specify a circular dependency, it is unli
that it will be as obvious as this example. Fortunately, in most cases, the Motif too
catches circular dependencies and displays an error message if one is found. Whe
situation occurs, you need to reconsider your widget layout and try to arrange things
that the relationship between widgets is less complex. One rule to remember is that ad
widgets should generally only be attached in one direction.

When you attach the side of a widget to another widget in a Form, you need to be ca
about how you specify the attached widget. If you specify this widget in the applica
code, you need to make sure that the widget has been created before you specify
resource value. Alternatively, the toolkit provides a name-to-widget converter, so you
also specify widget IDs in a resource file. (See Volume 4,X Toolkit Intrinsics
Programming Manual for information about resource converters.)

Another common problem arises with certain Motif compound objects, such
ScrolledList and ScrolledTextobjects. XmCreateScrolledText() and
XmCreateScrolledList() return the corresponding Text or List widget, but it is th
parent of this widget that needs to be positioned within a Form. The following c
fragment shows an example of positioning a ScrolledList incorrectly:

form = XmCreateForm (parent, "form", NULL, 0);
list = XmCreateScrolledList (form, "scrolled_list", NULL, 0);
XtVaSetValues (list, /* <- WRONG */

XmNleftAttachment, XmATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM,
NULL);

Since the List is a child of the ScrolledWindow, not the Form, specifying attachments
the List has no effect on the position of the List in the Form. The attachments need
specified on the ScrolledWindow, as shown in the following code fragment:

XtVaSetValues (XtParent (list),
262 Motif Programming Manual

Chapter 8: Manager Widgets

idget
m can
oblem
a
the

ter 13,

st be
and
y to
licitly.
, you
ent

and
ped

bind
not

most
ticular
s or
e the
one
et

dren
to
nus,
umn
ence
ey are
using
e. The
XmNleftAttachment, XmATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM,
NULL);

If you specify attachments for two opposing sides of a widget, the Form resizes the w
as needed, so that the default size of the widget is ignored. In most cases, the For
resize the widget without a problem. However, one particular case that can cause a pr
is a List widget that has itsXmNvisibleItemCount resource set. This resource implies
specific size requirement, so that when the List is laid out in the Form widget,
negotiation process between the Form and the List may not be resolved. See Chap
The List Widget, for a complete discussion of the List widget.

Attachments in Form widgets can be delicate specifications, which means that you mu
specific and, above all, complete in your descriptions of how widgets should be aligned
positioned. Since resources can be set from many different places, the only wa
guarantee that you get the layout you want is to hard-code these resource values exp
Even though it is important to allow the user to specify as many resources as possible
do not want to compromise the integrity of your application. Attachments and attachm
offsets are probably not in the set of resources that should be user-definable.

Although attachments can be delicate, they also provide a powerful, convenient,
flexible way to lay out widgets within a Form, especially when the widgets are grou
together in some abstract way. Attachments make it easy to chain widgets together, to
them to the edge of a Form, and to allow them to be fixed on specific locations. You do
need to use a single attachment type exclusively; it is perfectly reasonable, and in
cases necessary, to use a variety of different types of attachments to achieve a par
layout. If you specify too few attachments, you may end up with misplaced widget
widgets that drift when the Form is resized, while too many attachments may caus
Form to be too inflexible. In order to determine the best way to attach widgets to
another, you may find it helpful to a draw picture first, with all of the hooks and offs
values considered.

The RowColumn Widget
The RowColumn widget is a manager widget that, as its name implies, lays out its chil
in a row and/or column format. The widget is also used internally by the Motif toolkit
implement a number of special objects, such as the Motif menus, including PopupMe
PulldownMenus, MenuBars, and OptionMenus. Many of the resources for the RowCol
widget are used to control different aspects of these objects. The Motif conveni
functions for creating these objects set most of these resources automatically, so th
generally hidden from the programmer. The resources are not useful when you are
the RowColumn as a simple manager widget anyway, so we do not discuss them her
header file <Xm/RowColumn.h> is required if you are using this widget.
Motif Programming Manual 263

Chapter 8: Manager Widgets

n

ver
r the
uld
using

. See

s fine
mn
urces.
In

hout
TheXmNrowColumnType resource controls how a particular instance of the RowColum
is used. The resource can be set to the following values:

XmWORK_AREA XmMENU_BAR XmPULLDOWN
XmMENU_POPUP XmMENU_OPTION

The default value isXmWORK_AREA; this value is also the one that you should use whene
you want to use a RowColumn widget as a manager. The rest of the values are fo
different types of Motif menus. If you want to create a particular menu object, you sho
use the appropriate convenience function, rather than try to create the menu yourself
a RowColumn directly. We discuss menu creation in Chapter 4,The Main Window, and
Chapter 20,Interacting with the Window Manager. The RowColumn widget is also used
to implement RadioBoxes and CheckBoxes, which are collections of ToggleButtons
Chapter 12,Labels and Buttons, for more information on these objects.

The RowColumn is useful for generic geometry management because it requires les
tuning than is necessary for a Form or a BulletinBoard widget. Although the RowColu
has a number of resources, you can create a usable layout without specifying any reso
In this case, the children of the RowColumn are automatically laid out vertically.
Example 8-6, we create several PushButtons as children of a RowColumn, wit
specifying any RowColumn resources.*

Example 8-6. The rowcol.c program

/* rowcol.c -- demonstrate a simple RowColumn widget. Create one
** with 3 pushbutton gadgets. Once created, resize the thing in
** all sorts of contortions to get a feel for what RowColumns can
** do with its children.
*/
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>

main (int argc, char *argv[])
{

Widget toplevel, rowcol, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
rowcol = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
button = XmCreatePushButton (rowcol, "One", NULL, 0);
XtManageChild (button);
button = XmCreatePushButton (rowcol, "Two", NULL, 0);
XtManageChild (button);
button = XmCreatePushButton (rowcol, "Three", NULL, 0);
XtManageChild (button);
XtManageChild (rowcol);

* XtVaAppInitialize () is considered deprecated in X11R6.
264 Motif Programming Manual

Chapter 8: Manager Widgets

ss of
er of
few
e
nted

e file.

, the
ion

ingle
and

ly, so
should
ects
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

What makes the RowColumn widget unique is that it automates much of the proce
widget layout and management. If you display the application and resize it in a numb
ways, you can get a better feel for how the RowColumn works. Figure 8-14 shows a
configurations of the application; the first configuration is the initial layout of th
application. As you can see, if the application is resized just so, the widgets are orie
horizontally rather than vertically.

The orientation of the widgets in a RowColumn is controlled by theXmNorientation
resource. The default value of the resource isXmVERTICAL. If we want to arrange the
widgets horizontally, we can set the resource toXmHORIZONTAL. The orientation can be
hard-coded in the application, or we can specify the value of the resource in a resourc
The following resource specification sets the orientation to horizontal:

*RowColumn.orientation: horizontal

Alternatively, we can specify the resource on the command line as follows:

% rowcol -xrm "*orientation: horizontal"

Figure 8-15 shows the output of Example 8-6 with a horizontal orientation. As before
figure shows a few different configurations of the application, with the first configurat
being the initial one.

If you use a RowColumn widget to manage more objects than can be arranged in a s
row or column, you can specify that the widgets should be arranged in both rows
columns. You can also specify whether the widgets should be packed together tight
that the rows and columns are not necessarily the same size, or whether the objects
be placed in identically-sized boxes. As with the Form and BulletinBoard widgets, obj

Figure 8-14: Output of the rowcol program

Figure 8-15: Output of the rowcol program with a horizontal orientation
Motif Programming Manual 265

Chapter 8: Manager Widgets

mn
sual

he
zed

the
rces.

d in a

g a
paced
can also be placed at specific x,y locations in a RowColumn widget. The RowColu
widget does not provide a three-dimensional border, so if you want to provide a vi
border for the widget, you should create it as a child of a Frame widget.

Rows and Columns
The RowColumn widget can be quite flexible in terms of how it lays out its children. T
advantage of this flexibility is that all of its child widgets are arranged in an organi
fashion, regardless of their widget types. The widgets remain organized when
RowColumn is resized and in spite of constraints imposed by other widgets or by resou
One disadvantage of the flexibility is that sometimes the children need to be arrange
specific layout so that the user interface is intuitive.

Example 8-7 shows how to lay out widgets in a spreadsheet-style format usin
RowColumn. This layout requires that each of the widgets be the same size and be s
equally in a predetermined number of rows and columns.*

Example 8-7. The spreadsheet.c program

/* spreadsheet.c -- This demo shows the most basic use of the RowColumn
** It displays a table of widgets in a row-column format similar to a
** spreadsheet. This is accomplished by setting the number ROWS and
** COLS and setting the appropriate resources correctly.
*/
#include <Xm/LabelG.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>

#define ROWS 8
#define COLS 10

main (int argc, char *argv[])
{

Widget toplevel, parent, child;
XtAppContext app;
char buf[16];
int i, j;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
parent = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
XtVaSetValues (parent, XmNpacking, XmPACK_COLUMN,

XmNnumColumns, COLS,
XmNorientation, XmVERTICAL,
NULL);

/* simply loop through the strings creating a widget for each one */
for (i = 0; i < COLS; i++)

* XtVaAppInitialize() is considered deprecated in X11R6.
266 Motif Programming Manual

Chapter 8: Manager Widgets

e

nd the
f the

mn,

The

lumn

any

tes as
for (j = 0; j < ROWS; j++) {
sprintf (buf, "%d-%d", i+1, j+1);
if (i == 0 || j == 0)

child = XmCreateLabelGadget (parent, buf, NULL, 0);
else

child = XmCreatePushButton (parent, "", NULL, 0);
XtManageChild (child);

}

XtManageChild (parent);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of this example is shown in Figure 8-16.

The number of rows is specified by theROWSdefinition and the number of columns is
specified byCOLS. In order to force the RowColumn to lay out its children in th
spreadsheet format, we set theXmNpacking , XmNnumColumns, and XmNorientation
resources.

The value forXmNpacking is set toXmPACK_COLUMN, which specifies that each of the
cells should be the same size. The heights and widths of the widgets are evaluated a
largest height and width are used to determine the size of the rows and columns. All o
widgets are resized to this size. If you are mixing different widget types in a RowColu
you may not want to useXmPACK_COLUMNbecause of size variations.XmPACK_COLUMNis
typically used when the widgets are exactly the same, or at least similar in nature.
default value ofXmPACK_TIGHTfor XmNpacking allows each widget to keep its specified
size and packs the widgets into rows and columns based on the size of the RowCo
widget.

Since we are packing the widgets in a row/column format, we need to specify how m
columns (or rows) we are using by setting the value ofXmNnumColumnsto the number of
columns. In this case, the program definesCOLS to be 10, which indicates that the
RowColumn should pack its children such that there are 10 columns. The widget crea
many rows as necessary to provide enough space for all of the child widgets.

Figure 8-16: Output of the spreadsheet program
Motif Programming Manual 267

Chapter 8: Manager Widgets

s

ple,

ation
one

can

de the
, you

ever,
dds

8-5
two
d by

in

enus,
Whether XmNnumColumnsspecifies the number of columns or the number of row
depends on the orientation of the RowColumn. In this program,XmNorientation is set
to XmVERTICAL to indicate that the value ofXmNnumColumnsspecifies the number of
columns to use. IfXmNorientation is set to XmHORIZONTAL, XmNnumColumns
indicates the number of rows. If we wanted to use a horizontal orientation in our exam
we would setXmNnumColumnsto ROWSandXmNorientation to XmHORIZONTAL. The
orientation also dictates how children are added to the RowColumn; when the orient
is vertical, children are added vertically so that each column is filled up before the next
is started.*

In our example, we explicitly set the value ofXmNorientation to the default value of
XmVERTICAL. If we do not hard-code this resource, an external resource specification
reset it. Since the orientation and the value forXmNnumColumnsneed to be consistent, you
should always specify these resources together. Whether you choose to hard-co
resources, to use the fallback mechanism, or to use a specification in a resource file
should be sure that both of the resources are specified in the same place.

In the spreadsheet example, we can use either a horizontal or vertical orientation. How
orientation may be significant in other situations, since it affects how the RowColumn a
its children. For example, if we want to implement the text-entry form from Example
using a RowColumn, the order of the widgets is important. In this case, there are
columns and the number of rows depends on the number of text entry fields provide
the application. We specify the orientation of the RowColumn asXmHORIZONTALand set
XmNnumColumns to the number of entries provided by the application, as shown
Example 8-8.†

Example 8-8. The text_entry.c program

/* text_entry.c -- This demo shows how the RowColumn widget can be
** configured to build a text entry form. It displays a table of
** right-justified Labels and Text widgets that extend to the right
** edge of the Form.
*/
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <Xm/Text.h>

char *text_labels[] = {"Name:", "Phone:", "Address:",
"City:", "State:", "Zip Code:"};

main (int argc, char *argv[])
{

* If you need to insert a child in the middle of an existing RowColumn layout, you can use theXmNposition-
Index constraint resource to specify the position of the child. Since this resource is used most often with m
it is discussed in Chapter 19,Menus.

† XtVaAppInitialize () is considered deprecated in X11R6.
268 Motif Programming Manual

Chapter 8: Manager Widgets

et to
ly

t of
Widget toplevel, rowcol, child;
XtAppContext app;
char buf[8];
int i;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);
rowcol = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
XtVaSetValues (rowcol, XmNpacking, XmPACK_COLUMN,

XmNnumColumns, XtNumber (text_labels),
XmNorientation, XmHORIZONTAL,
XmNisAligned, True,
XmNentryAlignment, XmALIGNMENT_END,
NULL);

/* simply loop through the strings creating a widget for each one */
for (i = 0; i < XtNumber (text_labels); i++) {

child = XmCreateLabelGadget (rowcol, text_labels[i],NULL, 0);
XtManageChild (child);
sprintf (buf, "text_%d", i);
child = XmCreateText (rowcol, buf, NULL, 0);
XtManageChild (child);

}
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of this example is shown in Figure 8-17.

The labels for the text fields are initialized by thetext_labels string array. When the
RowColumn is created, it is set to a horizontal orientation and the number of rows is s
the number of items intext_labels . As you can see, the output of this program is slight
different from the output for thetext_form example.

The example uses theXmNisAligned andXmNentryAlignment resources to control the
positioning of the Labels in the RowColumn.These resources control the alignmen
widgets that are subclasses of Label and LabelGadget. WhenXmNisAligned is True (the
default), the alignment is taken from theXmNentryAlignment resource. The possible

Figure 8-17: Output of the text_entry program
Motif Programming Manual 269

Chapter 8: Manager Widgets

be
to
ren.
r

The
n
ource

et or
. For
and a

get

you
useful

that
epted.

ound
for

cally.

ser-
nt to
alignment values are the same as those that can be set for the Label’sXmNalignment
resource:

XmALIGNMENT_BEGINNING XmALIGNMENT_CENTER XmALIGNMENT_END

By default, the text is left justified. While the alignment of the Labels could also
specified using theXmNalignment resource for each widget, it is convenient to be able
set the alignment for the RowColumn and have it propagate automatically to its child
In our example, we useXmALIGNMENT_ENDto right justify the Labels so that they appea
to be attached to the Text widgets.

There is an additional resource for controlling the alignment of various children.
XmNentryVerticalAlignment resource controls the vertical positioning of childre
that are subclasses of Label, LabelGadget, and Text. The possible values for this res
are:

XmALIGNMENT_BASELINE_BOTTOM XmALIGNMENT_BASELINE_TOP
XmALIGNMENT_CENTER XmALIGNMENT_CONTENTS_BOTTOM
XmALIGNMENT_CONTENTS_TOP

In the example, we do not specify this resource because the default value,XmALIGNMENT_
CENTER, produces the layout that we want.

Homogeneous Children
The RowColumn can be set up so that it only manages one particular type of widg
gadget. In many cases, this feature facilitates layout and callback management
example, a MenuBar consists entirely of CascadeButtons that all act the same way
RadioBox contains only ToggleButtons. TheXmNisHomogeneous resource indicates
whether or not the RowColumn should only allow one type of widget child. The wid
class that is allowed to be managed is specified by theXmNentryClass resource.
XmNisHomogeneous can be set at creation-time only. Once a RowColumn is created,
cannot reset this resource, although you can always get its value. These resources are
for ensuring consistency; if you attempt to add a widget as a child of a RowColumn
does not permit that widget class, an error message is printed and the widget is not acc

The Motif toolkit uses these mechanisms to ensure consistency in certain comp
objects, to prevent you from doing something like adding a List widget to a MenuBar,
example. In this case, theXmNentryClass is set toxmCascadeButtonWidgetClass .
As another example, whenXmNradioBehavior is set, the RowColumn only allows
ToggleButton widgets and gadgets to be added. TheXmCreateRadioBox() convenience
function creates a RowColumn widget with the appropriate resources set automati
(See Chapter 12,Labels and Buttons.)

You probably do not need to useXmNisHomogeneous unless you are providing a
mechanism that is exported to other programmers. If you are writing an interactive u
interface builder or a program that creates widgets by scanning text files, you may wa
270 Motif Programming Manual

Chapter 8: Manager Widgets

lumn

on is

put.

re
acks
ned
ther

he
ack
mn

the

acks

e
the
back
have

cture.
ck
e

ensure that new widgets are of a particular type before they are added to a RowCo
widget. In such cases, you may want to useXmNisHomogeneous andXmNentryClass .
Unless there is some way for a user to dynamically create widgets while an applicati
running, these resources are not particularly useful.

Callbacks
The RowColumn does not provide any specific callback routines that react to user in
While there are no callbacks forFocusIn andFocusOut events, the widget does have
XmNmapCallback and XmNunmapCallback callback resources. These callbacks a
invoked when the window for the RowColumn is mapped and unmapped. The callb
are similar to those for the BulletinBoard, but since the RowColumn is not desig
specifically to be a child of a DialogShell, the routines are invoked regardless of whe
the parent of the RowColumn is a DialogShell.

TheXmNentryCallback is the only other callback that is associated specifically with t
RowColumn widget. This callback resource makes it possible to install a single callb
function that acts as the activation callback for each of the children of a RowColu
widget. The routine specified for theXmNentryCallback overrides the
XmNactivateCallback functions for any PushButton or CascadeButton children and
XmNvalueChangedCallback functions for ToggleButtons. TheXmNentryCallback is
a convenience to the programmer; if you use it, you don’t have to install separate callb
for each widget in the RowColumn.XmNentryCallback functions must be installed
before children are added to the RowColumn, so be sure you callXtAddCallback()
before you create any child widgets.

The callback procedure takes the standard form of anXtCallbackProc . Thecall_data
parameter is anXmRowColumnCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Widget widget;
char *data;
char *callbackstruct;

} XmRowColumnCallbackStruct;

The reason field of this data structure is set toXmCR_ACTIVATEwhen the
XmNentryCallback is invoked. The event indicates the event that caused th
notification. The entry callback function is called regardless of which widget within
RowColumn was activated. Since an entry callback overrides any previously-set call
lists for PushButtons, CascadeButtons, and ToggleButtons, the parameters that would
been passed to these callback routines are provided in the RowColumn callback stru
The widget field specifies the child that was activated, the widget-specific callba
structure is placed in thecallbackstruct field, and the client data that was set for th
widget is passed in thedata field.
Motif Programming Manual 271

Chapter 8: Manager Widgets

rmal
Example 8-9 shows the installation of an entry callback and demonstrates how the no
callback functions are overridden.*

Example 8-9. The entry_cb.c program

/* entry_cb.c -- demonstrate how the XmNentryCallback resource works
** in RowColumn widgets. When a callback function is set for this
** resource, all the callbacks for the RowColumn's children are reset
** to point to this function. Their original functions are no longer
** called had they been set in favor of the entry-callback function.
*/
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>

char *strings[] = {"One", "Two", "Three", "Four", "Five", "Six", "Seven",
"Eight", "Nine", "Ten"};

void called (Widget widget, XtPointer client_data, XtPointer call_data)
{

XmRowColumnCallbackStruct *cbs =
(XmRowColumnCallbackStruct *) call_data;

Widget pb = cbs->widget;
printf ("%s: %d\n", XtName (pb), cbs->data);

}

static void never_called (Widget widget, XtPointer client_data,
XtPointer call_data)

{
puts ("This function is never called");

}

main (int argc, char *argv[])
{

Widget toplevel, parent, w;
XtAppContext app;
int i;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
parent = XmCreateRowColumn (toplevel, "rowcolumn", NULL, 0);
XtAddCallback (parent, XmNentryCallback, called, NULL);

/* simply loop through the strings creating a widget for each one */
for (i = 0; i < XtNumber (strings); i++) {

w = XmCreatePushButtonGadget (parent, strings[i], NULL, 0);
/* Call XtAddCallback() to install client_data only! */
XtAddCallback (w, XmNactivateCallback, never_called,

(XtPointer) (i+1));
XtManageChild (w);

}

* XtVaAppInitialize () is considered deprecated in X11R6.
272 Motif Programming Manual

Chapter 8: Manager Widgets

ll to

the

nted
nd

ey are

12,

hree-
hild
e for
e.

rated
nt of
hree-
XtManageChild (parent);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The RowColumn is created and itsXmNentryCallback is set tocalled() . This routine
ignores theclient_data parameter, as none is provided. However, we do use thedata
field of the callback structure because this is the data that is specified in the ca
XtAddCallback() for each of the children. We install thenever_called() routine for
each PushButton and pass the position of the button in the RowColumn as theclient_
data . Even though the entry callback overrides the activate callback, theclient_data
is preserved.

Our example is a bit contrived, so it may seem pointless to callXtAddCallback() for
each PushButton and specify anXmNentryCallback as well. The most compelling
reason for using an entry callback is that you may want to provide client data for
RowColumn as a whole, as well as for each child widget.

Remember that the RowColumn widget is also used for a number of objects impleme
internally by the Motif toolkit, such as the Motif menu system, RadioBoxes, a
CheckBoxes. Many of the resources for the widget are specific to these objects, so th
not discussed here. For more information on menus, see Chapter 4,The Main Window, and
Chapter 19,Menus; for information on RadioBoxes and CheckBoxes, see Chapter
Labels and Buttons.

The Frame Widget
The Frame is a simple manager widget; the purpose of the Frame is to draw a t
dimensional border around its child. The widget can have two children: a work area c
and a title child. The Frame shrink wraps itself around its work area child, adding spac
a title if one is specified. The children are responsible for setting the size of the Fram

The Frame is useful for grouping related control elements, so that they are sepa
visually from other elements in a window. The Frame is commonly used as the pare
RadioBoxes and CheckBoxes, since the RowColumn widget does not provide a t
Motif Programming Manual 273

Chapter 8: Manager Widgets

es to

ing

Frame

ating

child

et to

e

. The
itle
dimensional border. Figure 8-18 shows a portion of a dialog box that uses Fram
segregate three groups of ToggleButtons.

To use Frame widgets in an application, you must include the file <Xm/Frame.h>. Creating
a Frame widget is just like creating any other manager widget, as shown in the follow
code fragment:

Widget frame = XmCreateFrame (parent, "name", resource-value-array ,
resource-value-count);

Since the Frame performs only simple geometry management, you can also create a
widget as managed usingXtVaCreateManagedWidget() and not worry too much about
a performance loss. The Frame widget is an exception to the guidelines about cre
manager widgets that we presented earlier in the chapter.

The principal resource used by the Frame widget isXmNshadowType. This resource
specifies the style of the three-dimensional border that is placed around the work area
of the Frame. The value may be any of the following:

XmSHADOW_IN XmSHADOW_OUT
XmSHADOW_ETCHED_IN XmSHADOW_ETCHED_OUT

If the parent of the Frame is a shell widget, the default value for XmNshadowType is s
XmSHADOW_OUTand the value forXmNshadowThickness is set to 1. Otherwise, the
default shadow type isXmSHADOW_ETCHED_INand the thickness is 2. Of course, thes
values may be overridden by the application or the user.

The Frame provides some constraint resources that can be specified for its children
XmNframeChildType * resource indicates whether the child is the work area or the t
child for the Frame. The default value isXmFRAME_WORKAREA_CHILD. To specify that a
child is the title child, use the valueXmFRAME_TITLE_CHILD.

* XmNchildType is deprecated as of Motif 2.0.

Figure 8-18: Frame widgets used to provide borders
274 Motif Programming Manual

Chapter 8: Manager Widgets

ntal

e
are:

t are
The XmNchildHorizontalAlignment and XmNchildHorizontalSpacing
resources control the horizontal positioning of the title. The possible values for horizo
alignment are:

XmALIGNMENT_BEGINNING XmALIGNMENT_END XmALIGNMENT_CENTER

The XmNchildVerticalAlignment resource specifies the vertical positioning of th
title child relative to the top shadow of the Frame. The possible values for this resource

XmALIGNMENT_BASELINE_BOTTOM XmALIGNMENT_BASELINE_TOP
XmALIGNMENT_CENTER XmALIGNMENT_WIDGET_TOP
XmALIGNMENT_WIDGET_BOTTOM

Example 8-10 demonstrates many of the different shadow and alignment styles tha
possible with the Frame widget.*

Example 8-10. The frame.c program

/* frame.c -- demonstrate the Frame widget by creating
** four Labels with Frame widget parents.
*/
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <Xm/Frame.h>

main (int argc, char *argv[])
{

Widget toplevel, rowcol, frame, label;
XtAppContext app;
Arg args[10];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit and create TopLevel shell widget */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
/* Make a RowColumn to contain all the Frames */
n = 0;
XtSetArg (args[n], XmNspacing, 5); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcolumn", args, n);

/* Some informative labelling */
label = XmCreateLabelGadget (rowcol, "Frame Types:", NULL, 0);
XtManageChild (label);

/* Create different Frames each containing a unique shadow type */
/* First frame: Shadow in */
n = 0;
XtSetArg (args[n], XmNshadowType, XmSHADOW_IN); n++;
frame = XmCreateFrame (rowcol, "frame1", args, n);

* XtVaAppInitialize () s considered deprecated in X11R6.XmNchildType is deprecated as of Motif 2.0, and
XmNframeChildType is preferred.
Motif Programming Manual 275

Chapter 8: Manager Widgets
label = XmCreateLabelGadget (frame, "XmSHADOW_IN", NULL, 0);
XtManageChild (label);
n = 0;
XtSetArg (args[n], XmNframeChildType, XmFRAME_TITLE_CHILD); n++;
XtSetArg (args[n], XmNchildVerticalAlignment, XmALIGNMENT_CENTER); n++;
label = XmCreateLabelGadget (frame, "XmALIGNMENT_CENTER", args, n);
XtManageChild (label);
XtManageChild (frame);

/* Second frame: Shadow out */
n = 0;
XtSetArg (args[n], XmNshadowType, XmSHADOW_OUT); n++;
frame = XmCreateFrame (rowcol, "frame2", args, n);
label = XmCreateLabelGadget (frame, "XmSHADOW_OUT", NULL, 0);
XtManageChild (label);

n = 0;
XtSetArg (args[n], XmNframeChildType, XmFRAME_TITLE_CHILD); n++;
XtSetArg (args[n], XmNchildVerticalAlignment,

XmALIGNMENT_BASELINE_TOP); n++;
label = XmCreateLabelGadget (frame, "XmALIGNMENT_BASELINE_TOP",

args, n);
XtManageChild (label);
XtManageChild (frame);

/* Third frame: Etched in */
n = 0;
XtSetArg (args[n], XmNshadowType, XmSHADOW_ETCHED_IN); n++;
frame = XmCreateFrame (rowcol, "frame3", args, n);
label = XmCreateLabelGadget (frame, "XmSHADOW_ETCHED_IN", NULL, 0);
XtManageChild (label);

n = 0;
XtSetArg (args[n], XmNframeChildType, XmFRAME_TITLE_CHILD); n++;
XtSetArg (args[n], XmNchildVerticalAlignment, XmALIGNMENT_WIDGET_TOP);
n++;
label = XmCreateLabelGadget (frame, "XmALIGNMENT_WIDGET_TOP", args, n);
XtManageChild (label);
XtManageChild (frame);

/* Fourth frame: Etched out */
n = 0;
XtSetArg (args[n], XmNshadowType, XmSHADOW_ETCHED_OUT); n++;
frame = XmCreateFrame (rowcol, "frame4", args, n);
label = XmCreateLabelGadget (frame, "XmSHADOW_ETCHED_OUT", NULL, 0);
XtManageChild (label);

n = 0;
XtSetArg (args[n], XmNframeChildType, XmFRAME_TITLE_CHILD); n++;
XtSetArg (args[n], XmNchildVerticalAlignment,

XmALIGNMENT_WIDGET_BOTTOM); n++;
label = XmCreateLabelGadget (frame, "XmALIGNMENT_WIDGET_BOTTOM",

args, n);
XtManageChild (label);
276 Motif Programming Manual

Chapter 8: Manager Widgets

or the

the
this

plies

t.
es to
wants
ips) to
the

et
ized

and
w is
XtManageChild (frame);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of this example is shown in Figure 8-19.

The program creates four Frame widgets. Each Frame has two Label children, one f
work area and one for the title. Each Frame uses a different value for theXmNshadowType
andXmNchildVerticalPlacement resources, where these values are indicated by
text of the Labels. Although we have used a Label as the work area child of a Frame in
example, it is not a good idea to put a border around a Label. The shadow border im
selectability, which can confuse the user.

The PanedWindow Widget
The PanedWindow widget lays out its children in a horizontal or vertically-tiled forma*

The idea behind the PanedWindow is that the user can adjust the individual pan
provide more or less space as needed on a per-child basis. For example, if the user
to see more text in a Text widget, he can use the control sashes (sometimes called gr
resize the area for the Text widget. For a horizontal PanedWindow, set
XmNorientation resource toXmHORIZONTAL; a vertical pane hasXmNorientation set
to XmVERTICAL, which is the default . When the user moves the sash, the widg
above or below (or, for horizontal layout, to the left or right) the one being resized is res
smaller to compensate for the size change.

In a vertical layout, the width of the widget expands to that of its widest managed child
all of the other children are resized to match that width. The height of the PanedWindo

* Horizontal orientation is available from Motif 2.0.

Figure 8-19: Output of the frame program
Motif Programming Manual 277

Chapter 8: Manager Widgets

d the

aged
sum

ded.
ld

r file
ets,

icate
of

rtical
set to the sum of the heights of all of its children, plus the spacing between them an
size of the top and bottom margins.

In a horizontal layout, the height of the widget depends on the height of its tallest man
child. Similarly to the vertical case, the width of the PanedWindow depends upon the
of the managed child widths, plus spacing and left/right margins.

By default, children are arranged in the PanedWindow in the order in which they are ad
You can set theXmNpositionIndex constraint resource to control the position of a chi
in a PanedWindow if you do not want to use the default order.

An application that wants to use the PanedWindow widget must include the heade
<Xm/PanedW.h>. An instance of the widget may be created as usual for manager widg
as shown in the following code fragment:

Widget paned_w = XmCreatePanedWindow (parent, "name", resource-value-array,
resource-value-count);

...
XtManageChild (paned_w);

The PanedWindow widget provides constraint resources that allow its children to ind
their preferred maximum and minimum sizes. Example 8-11 shows a pair
PanedWindows, each containing three widgets. One PanedWindow is in a ve
orientation, the other is horizontal.*

Example 8-11. The paned_win1.c program

/* paned_wind1.c -- two possible orientations of a PanedWindow.
** In the vertical PanedWindow, there are two Label widgets that are
** positioned above and below a Text widget.
** The Labels' minimum and maximum
** sizes are set to 25 and 45 respectively, preventing those
** panes from growing beyond those bounds. The Text widget has its
** minimum size set to 35 preventing it from becoming so small that
** its text cannot be read.
** In the horizontal orientation, the Label’s minimum are set to 60
** to prevent the label from being truncated
*/
#include <Xm/Label.h>
#include <Xm/PanedW.h>
#include <Xm/Text.h>

Widget CreatePaneGroup (Widget parent, unsigned char orientation)
{

Widget pane, child;
XmString xms;
Arg args[6];
int n = 0;

* XtVaAppInitialize () is considered deprecated in X11R6. The PanedWindow resourceXmNorientation
is only properly supported from Motif 2.0 onwards.
278 Motif Programming Manual

Chapter 8: Manager Widgets
XtSetArg (args[n], XmNorientation, orientation); n++;
pane = XmCreatePanedWindow (parent, “pane”, args, n);

n = 0;
if (orientation == XmVERTICAL) {

XtSetArg (args[n], XmNpaneMinimum, 25); n++;
XtSetArg (args[n], XmNpaneMaximum, 45); n++;

}
else {

XtSetArg (args[n], XmNpaneMinimum, 60); n++;
}
child = XmCreateLabel (pane, “Hello”, args, n);
XtManageChild (child);

n = 0;
XtSetArg (args[n], XmNpaneMinimum, 35); n++;
XtSetArg (args[n], XmNrows, 5); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNvalue,

“This is a test of the PanedWindow widget”); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
child = XmCreateText (pane, “text”, args, n);
XtManageChild (child);

n = 0;
if (orientation == XmVERTICAL) {

XtSetArg (args[n], XmNpaneMinimum, 25); n++;
XtSetArg (args[n], XmNpaneMaximum, 45); n++;

}
else {

XtSetArg (args[n], XmNpaneMinimum, 60); n++;
}
child = XmCreateLabel (pane, “Goodbye”, args, n);
XtManageChild (child);

return pane;
}

main (int argc, char *argv[])
{

Widget toplevel, pane;
XtAppContextapp;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
pane = CreatePaneGroup (toplevel, (arg c > 1 ? XmHORIZONTAL : XmVERTICAL));
XtManageChild (pane);
XtRealizeWidget (toplevel);
XtAppMainLoop(app);

}

Motif Programming Manual 279

Chapter 8: Manager Widgets

get.

hrink
size
t does
ls

s the
pty

ion.
In the vertical layout, the two Label widgets are positioned above and below a Text wid
The minimum and maximum sizes of the Labels are set to25 and45 pixels respectively,
using the resourcesXmNpaneMinimum and XmNpaneMaximum. No matter how the
PanedWindow or any of the other widgets are resized, the two Labels cannot grow or s
vertically beyond these bounds. The Text widget, however, only has a minimum
restriction, so it maybe resized as tall or as short as the user prefers, provided that i
not get smaller than the35-pixel minimum. Similar constraints are placed on the Labe
and Text in the horizontally oriented PanedWindow: theXmNpaneMinimumof each Label
is set to 60 to prevent the user truncating the label string. The program create
PanedWindow in the horizontal layout if the program parameter list is arbitrarily not em
(argc> 1). Figure 8-20 shows the horizontal and vertical configurations of this applicat

XmNorientation

XmNorientation

XmVERTICAL

XmHORIZONTAL

Figure 8-20: Horizontal and vertical PanedWindows
280 Motif Programming Manual

Chapter 8: Manager Widgets

Sash.

lves

oses
d to be
high
pear
and

idget

type
must
the

8-12
Figure 8-21 shows how the PanedWindow behaves when a child is resized using the

Pane Constraints
One problem with setting the maximum and minimum resources for a widget invo
determining exactly what those extents should be. The maximum size of45 for the Label
widgets in Example 8-11 is an arbitrary value that was selected for demonstration purp
only. If other resources had been set on one of the Labels such that the widget neede
larger, the application would definitely look unbalanced. For example, an extremely
resolution monitor might require the use of unusually large fonts in order for text to ap
normal. There are two choices available at this point. One is to specify the maximum
minimum values in a resolution-independent way and the other is to ask the Label w
itself what height it wants to be.

Specifying resolution-independent dimensions requires you to carefully consider the
of application you are creating. When you specify resolution-independent values, you
specify the values in either millimeters, inches, points, or font units. The value of
XmNunitType Manager resource controls the type of units that are used. Example
demonstrates the use of resolution-independent dimensions.*

Example 8-12. The unit_types.c program

/* unit_types.c --the same as paned_win1.c except that the

* XtVaAppInitialize () is considered deprecated in X11R6.

Variable
Height

Constant
Height

Constant
Height

Variable
Height

Move Sash

Figure 8-21: Output of paned_win1 program
Motif Programming Manual 281

Chapter 8: Manager Widgets

. This
** Labels' minimum and maximum sizes are set to 1/4 inch and
** 1/2 inch respectively. These measurements are retained
** regardless of the pixels-per-inch resolution of the user's
** display.
*/
#include <Xm/Label.h>
#include <Xm/PanedW.h>
#include <Xm/Text.h>

main (int argc, char *argv[])
{

Widget toplevel, pane, child;
XtAppContext app;
Arg args[6];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNunitType, Xm1000TH_INCHES); n++;
pane = XmCreatePanedWindow (toplevel, "pane", args, n);

n= 0;
XtSetArg (args[n], XmNpaneMinimum, 250); n++; /* quarter inch */
XtSetArg (args[n], XmNpaneMaximum, 500); n++; /* half inch */
child = XmCreateLabel (pane, "Hello",args, n);
XtManageChild (child);

n = 0;
XtSetArg (args[n], XmNrows, 5); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNpaneMinimum, 250); n++; /* quarter inch */
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNvalue,

"This is a test of the paned window widget."); n++;
child = XmCreateText (pane, "text", args, n);
XtManageChild (child);

n = 0;
XtSetArg (args[n], XmNpaneMinimum, 250); n++; /* quarter inch */
XtSetArg (args[n], XmNpaneMaximum, 500); n++; /* half inch */
child = XmCreateLabel (pane, "Goodbye", args, n);
XtManageChild (child);

XtManageChild (pane);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The second technique that we can use is to query the Label widgets about their heights
technique requires the use of the Xt functionXtQueryGeometry() , as shown in Example
8-13.*
282 Motif Programming Manual

Chapter 8: Manager Widgets
Example 8-13. The paned_win2.c program

/* paned_wind2.c --there are two label widgets that are positioned
** above and below a Text widget. The labels' desired heights are
** queried using XtQueryGeometry() and their corresponding maximum
** and minimum sizes are set to the same value. This effectively
** prevents those panes from being resized. The Text widget has its
** minimum size set to 35 preventing it from becoming so small that
** its text cannot be read.
*/
#include <Xm/Label.h>
#include <Xm/PanedW.h>
#include <Xm/Text.h>

main (int argc, char *argv[])
{

Widget toplevel, pane, label, text;
XtWidgetGeometry size;
XtAppContext app;
Arg args[8];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
pane = XmCreatePanedWindow (toplevel, "pane", NULL, 0);

label = XmCreateLabel (pane, "Hello", NULL, 0);
XtManageChild (label);
size.request_mode = CWHeight;
XtQueryGeometry (label, NULL, &size);
XtVaSetValues (label, XmNpaneMaximum, size.height,

XmNpaneMinimum, size.height, NULL);
printf ("hello's height: %d\n", size.height);

n = 0;
XtSetArg (args[n], XmNrows, 5); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNresizeWidth, False); n++;
XtSetArg (args[n], XmNresizeHeight, False); n++;
XtSetArg (args[n], XmNpaneMinimum, 35); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNvalue, "This is a test of the paned widget."); n++;
text = XmCreateText (pane, "text", args, n);
XtManageChild (text);

label = XmCreateLabel (pane, "Goodbye", NULL, 0);
XtManageChild (label);
size.request_mode = CWHeight;
XtQueryGeometry (label, NULL, &size);
XtVaSetValues (label, XmNpaneMaximum, size.height, XmNpaneMinimum, size.

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 283

Chapter 8: Manager Widgets

he

want
e

ed,
e set

d to

urces
o
es, the
for
, the
thetic.
not
r sizes
use
height, NULL);
printf ("goodbye's height: %d\n", size.height);

XtManageChild (pane);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

XtQueryGeometry() asks a widget what size it would like to be. This routine takes t
following form:

XtGeometryResult XtQueryGeometry (Widget widget ,
XtWidgetGeometry * intended ,
XtWidgetGeometry * preferred_return)

Since we do not want to resize the widget, we pass NULL for theintended parameter.
We are not interested in the return value of the function, since the information that we
is returned in the preferred_return parameter. This parameter is of typ
XtWidgetGeometry , which is defined as follows:

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height, border_width;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

We tell the widget what we want to know by setting therequest_mode field of thesize
variable that we pass to the routine. Therequest_mode field is checked by thequery_
geometry function within the called widget. Depending on which bits that are specifi
the appropriate fields are set within the returned data structure. In Example 8-13, w
request_mode to CWHeight , which tells the Label widget’squery_geometry method
to return the desired height in the height field of the data structure. If we had wante
know the width as well, we could have setrequest_mode as follows:

size.request_mode = (CWHeight | CWWidth);

In this case, thewidth andheight fields would be filled in by the Label widget.

Once we have the Label’s desired height, we can set the constraint reso
XmNpaneMaximumandXmNpaneMinimumto the height of the Label. By making these tw
values the same, the pane associated with the Label cannot be resized. In most cas
XtQueryGeometry() method can be used reliably to determine proper values
minimum and maximum pane extents. Setting extents is useful, since without them
user can adjust a PanedWindow so that the size of a widget is unreasonable or unaes
If you are setting the extents for a scrolled object (ScrolledText or ScrolledList), you do
need to be as concerned about the maximum extent, since these objects handle large
appropriately. Minimum states are certainly legitimate though. For example, you could
the height of a font as a minimum extent for Text or a List.
284 Motif Programming Manual

Chapter 8: Manager Widgets

can
g and

e not

hat
sible
need

ld not
lude

.

ndow

ion
gh an
oard.

ss

user

ust as
e can
ich

. The
roups
h the
The PanedWindow widget can be useful for building your own dialogs because you
control the size of the action area. The action area is always at the bottom of the dialo
its size should never be changed. See Chapter 7,Custom Dialogs, for a complete discussion
of how a PanedWindow can be used in in this manner.

Sashes
The Sashes in a PanedWindow widget are in fact widgets, even though they ar
described or defined publicly. While theMotif Style Guidesays that the Sash is part of the
PanedWindow widget, the Motif toolkit defines the object privately, which means t
technically the Sash is not supported and it may change in the future. However, it is pos
to get a handle to a Sash if you absolutely need one. In order to retrieve a Sash, you
to include the header file <Xm/SashP.h>. The fact that the file ends in an upper caseP
indicates that it is a private header file, which means that an application program shou
include it. However, there is no public header file for the Sash widget, so unless you inc
the private header file, you cannot access the Sashes in a PanedWindow.

If you retrieve all of the children from a PanedWindow usingXtVaGetValues() on the
XmNchildren resource, you can use theXmIsSash() macro to locate the Sash children
This macro is defined as follows:

#define XmIsSash (w) XtIsSubclass (w, xmSashWidgetClass)

AlthoughXtIsSubclass() is a public function,xmSashWidgetClass is not declared
publicly. One reason that you might want to get handles to the Sashes in a PanedWi
is to turn off keyboard traversal to the Sashes, as described in the next section.

Keyboard Traversal
TheMotif Style Guidespecifies methods by which the user can interact with an applicat
without using the mouse. These methods provide a way for the user to navigate throu
application and activate user-interface elements on the desktop using only the keyb
Such activity is known askeyboard traversaland is based on the Common User Acce
(CUA) interface specifications from Microsoft Windows and Presentation Manager.

These specifications make heavy use of the TAB key to move between elements in a
interface; related interface controls are grouped into what are calledtab groups. Some
examples of tab groups are a set of ToggleButtons or a collection of PushButtons. J
only one shell on the screen can have the keyboard focus, only one widget at a tim
have the input focus. When keyboard activity occurs in a window, the toolkit knows wh
tab group is current and directs the input focus to the active item within that group.

The user can move from one item to the next within a tab group using the arrow keys
user can move from one tab group to the next using the TAB key. To traverse the tab g
in the reverse direction, the user can use SHIFT-TAB. The CTRL key can be used wit
Motif Programming Manual 285

Chapter 8: Manager Widgets

f the

inside
c-toe

set to
b
ment
home

of an
first
In this

. But
The
ting
y the
nisms

s a
as tab
le, the
arrow
rrow

and
TAB key in a Text widget to differentiate between a traversal operation and the use o
TAB key for input. The SPACEBAR activates the item that has the keyboard focus.

To illustrate the keyboard traversal mechanisms, let’s examinetictactoe.cfrom Example 8-
4. This program contains one tab group, the Form widget. Because the PushButtons
of it are elements in the tab group, the user can move between the items in the tic-ta
board using the arrow keys on the keyboard, as illustrated in Figure 8-22.

Pressing the TAB key causes the input focus to be directed to the next tab group and
the first item in the group, which is known as thehomeelement. Since there is only one ta
group in this application, the traversal mechanism moves the input focus to the first ele
in the same group. Thus, pressing the TAB key in this program always causes the
item to become the current input item.

The conceptual model of the tab group mechanism corresponds to the user’s view
application. With tab groups, the widget tree is flattened out into two simple layers: the
layer contains tab groups and the second layer contains the elements of those groups.
model, there is no concept of managers and children or any sort of widget hierarchy
as you know, an application is based on a very structured widget hierarchy.
implementation of tab groups is based on lists of widget pointers that refer to exis
widgets in the widget tree. These lists, known as navigation groups, are maintained b
VendorShell and MenuShell widgets and are accessed by the input-handling mecha
of the Motif toolkit.

Each widget class in the Motif toolkit is initialized either as a tab group itself or a
member of a tab group. Manager widgets, Lists, and Text widgets are usually tagged
groups, since they typically contain sub-elements that can be traversed. For examp
elements in a List can be traversed using the arrow keys on the keyboard; the up
moves the selection to the previous element in the List widget. In a Text widget, the a
keys move the insertion cursor. The other primitive widgets, such as PushButtons

Figure 8-22: Keyboard traversal for the tictactoe program
286 Motif Programming Manual

Chapter 8: Manager Widgets

e not
rse to
utton
only
as a

s the
group
This

o do
der to
ult

nagers
er’s
itive
all of

board

ould
f the
still
rrent
ter
ay

s not
their
oard
otif
are
your

get

he
ll of
ToggleButtons, are usually tagged as tab group members. Output-only widgets ar
tagged at all and are excluded from the tab group mechanism, since you cannot trave
an output-only widget.These default settings are not permanent. For example, a PushB
or a ToggleButton can be a tab group, although this setting is uncommon and should
be done when you have a special reason for forcing the widget to be recognized
separate tab group.

When the TAB key is pressed, the next tab group in the list of tab groups become
current tab group. Since manager widgets are normally tab groups, the order of tab
traversal is typically based on the order in which the manager widgets are created.
entire process is automated by the Motif toolkit, so an application does not have t
anything unless it wants to use a different system of tab groups for some reason.In or
maintain Motif compliance, we recommend that you avoid interfering with the defa
behavior.

We are discussing keyboard traversal in the chapter on manager widgets because ma
play the most visible role in keyboard traversal from the application programm
perspective. Managers, by their nature, contain other widgets, which are typically prim
widgets that act as tab group members. Furthermore, manager widgets must handle
the input events for gadgets, so there is a great deal of functionality that supports key
traversal written into the Manager widget class.

Before we discuss the details of dealing with tab groups, there are a few things we sh
mention. The implementation of tab groups has changed from earlier versions o
toolkit; to maintain backwards compatibility, remnants of the older implementation are
resident in the current implementation, which may cause some confusion in the cu
API. The technology of keyboard traversal is still being improved. Although la
implementations may not change the existing API, new versions of the toolkit m
optimize the process substantially. Since the current implementation of tab groups i
perfect, some people want to change the default behavior and control it entirely on
own. We do not recommend this approach. You should avoid interfering with the keyb
traversal mechanisms, as it will make it easier to maintain compatibility with other M
applications and it won’t require any changes for new versions of the toolkit. If you
going to modify the operation of keyboard traversal, you should be careful and test
changes thoroughly.

Turning Traversal Off
You can prevent a widget from participating in keyboard traversal by removing the wid
from the traversal list. To remove a widget from the traversal list, set itsXmNtraversalOn
resource toFalse . If the widget is a member of a tab group, it is simply removed from t
list and the user cannot traverse to it. If the widget is a tab group, it is removed and a
its elements are also all removed.
Motif Programming Manual 287

Chapter 8: Manager Widgets

l list
c-toe

e new

tine

would
it is

ld get
otif

ects.
Let’s experiment with tab group members by modifyingtictactoe.c . We can modify
thepushed() callback routine to remove the selected PushButton from the traversa
when it is selected. If the keyboard is used to traverse and select the items on the tic-ta
board, the toolkit automatically skips over those that have already been selected. Th
callback routine is shown in Example 8-14.*

Example 14. The pushed() routine

void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{

char buf[2];
XmString str;
int letter;

XmPushButtonCallbackStruct *cbs =
(XmPushButtonCallbackStruct *) call_data;

XtVaGetValues (w, XmNuserData, &letter, NULL);
if (letter) {

XBell (XtDisplayOfObject (w), 50);
return;

}
/* Shift key gets an O. (xbutton and xkey happen to be similar) */
if (cbs->event->xbutton.state & ShiftMask)

letter = buf[0] = '0';
else

letter = buf[0] = 'X';
buf[1] = 0;
str = XmStringCreateLocalized (buf);
XtVaSetValues (w, XmNlabelString, str,

XmNuserData, letter,
XmNshadowThickness, 0,
XmNtraversalOn,False,
NULL);

XmStringFree (str);
}

The user can still click on a previously-selected item with the mouse button, but the rou
causes an error bell to sound in this situation.

Output-only widgets, like Labels and Separators, always have theirXmNtraversalOn
resource initialized toFalse . In most cases, setting the value toTrue would be annoying
to the user, since these objects cannot respond to keyboard input anyway. The user
have to traverse many unimportant widgets to get to a desired item. However,
commonly overlooked that a Label can have aXmNhelpCallback routine associated with
it. If the keyboard traversal mechanism allows the user to traverse to Labels, he cou
help on them by pressing the HELP or F1 keys. It may be considered a design flaw in M
that a non-mouse-driven interface is not supported for getting help for these obj

* XtVaAppInitialize () is considered deprecated in X11R6.
288 Motif Programming Manual

Chapter 8: Manager Widgets

help

t the
t, it is
run
ext,
g to
using
on to

in a

ust as
urning
ash
ser to
that

er
f its
ify in

that
e, be
o the
ot be

s a

oard.

lue
the
a

n one
However, this situation is not generally a problem, since most people do not try to get
on Labels and most programmers do not install help for them.

A general problem that people tend to have with the PanedWindow widget is tha
Sashes are included in the traversal list. Since the PanedWindow is a manager widge
a tab group, which means that all of its children are members of the tab group. If you
the program from Example 8-13 and use the TAB key to move from one widget to the n
you’ll find that the traversal also includes the Sash widgets. Many users find it annoyin
traverse to Sashes, since it is more likely that they want to skip the Sashes when
keyboard traversal, rather than use them to resize any of the panes. While it is comm
resize panes, people usually do so using the mouse, not the keyboard.

It is possible to turn off Sash traversal using the following resource specification
resource file:

*XmSash.traversalOn: False

There are some applications that might actually have to be used without a mouse, j
there are some users who prefer to use the keyboard, so you should be careful about t
off keyboard traversal for the Sashes in a PanedWindow widget. If you do turn off S
traversal, we recommend that you document the behavior and provide a way for the u
control this behavior. For example, you could provide an application-specific resource
controls whether or not Sashes can be traversed using the keyboard.

As noted earlier,XmNtraversalOn can be set on tab groups (which tend to be manag
widgets) as well as tab group members. If traversal is off for a tab group, none o
members can be traversed. If keyboard traversal is something that you need to mod
your application, you should probably hard-codeXmNtraversalOn values directly into
individual widgets as you create them. Turning off traversal is typically not something
is done on a per-widget-class basis. When you turn traversal off in application cod
careful to make sure that there is no reason that a user would want to traverse t
particular widgets because once you hard-code the resource values, they cann
modified by the user in a resource file.

Modifying Tab Groups
TheXmNnavigationType resource controls whether a widget is a tab group itself or i
member of a tab group. When this resource is set toXmNONE, the widget is not a tab group,
so it defaults to being a member of one. As a member, itsXmNtraversalOn resource
indicates whether or not the user can direct the input focus to the widget using the keyb
This value is the default for most primitive widgets. When the resource is set toXmTAB_
GROUP, the widget is a tab group itself, so it is included in keyboard navigation. This va
is the default for managers, Lists, and Text widgets. By modifying the default value of
XmNnavigationType resource for a widget, you can specify that a primitive widget is
tab group. As a result, the user traverses to the widget using the TAB key rather tha
Motif Programming Manual 289

Chapter 8: Manager Widgets

e

oups
otif

r.

even

To
e the

mer

vent
sed in
or
sics
ks up
this
ne on

first
that
nt up

ing
event.
input
versal
of the arrow keys. For example, you can modifytictactoe.c by setting the
XmNnavigationType to XmTAB_GROUP for each PushButton.

There are two other values forXmNnavigationType that are used for backwards
compatibility with old Motif 1.0 versions of the toolkit. In this version of the toolkit, ther
is an application calledXmAddTabGroup() to make a widget a tab group. Calling
XmAddTabGroup() is equivalent to settingXmNnavigationType to XmEXCLUSIVE_
TAB_GROUP. If this value is set on a widget, new widgets are no longer added as tab gr
automatically. An exclusive tab group is much the same as a normal tab group, but M
recognizes this special value and ignores all widgets that have the newerXmTAB_GROUP
value set. You can think of this value as setting exclusivity on the tab group behavio

The valueXmSTICKY_TAB_GROUPcan also be used forXmNnavigationType . If this
value is used on a widget, the widget is included automatically in keyboard traversal,
if another widget has its navigation type set toXmEXCLUSIVE_TAB_GROUPor if
XmAddTabGroup() has been called.

You can ignore these two values for all intents and purposes. You should useXmNONEand
XmTAB_GROUPto control whether or not a widget is a tab group or a member of one.
control whether the widget is part of the whole keyboard traversal mechanism, us
XmNtraversalOn resource.XmEXCLUSIVE_TAB_GROUP, XmSTICKY_TAB_GROUP, and
XmAddTabGroup() should be considered deprecated as far as the application program
is concerned.

Handling Event Translations
In order for manager widgets to implement keyboard traversal, they have their own e
translation tables that specify what happens when certain events occur. As discus
Chapter 2,The Motif Programming Model, a translation table specifies a series of one
more events and an action that is invoked if the event occurs. The X Toolkit Intrin
handles event translations automatically; when the user presses the TAB key, Xt loo
the event<Key> Tab in the table and invokes the corresponding action procedure. In
case, the procedure changes the input focus from the current tab group to the next o
the list.

This mechanism is dependent on the window hierarchy of the widget tree. Events are
delivered to the widget associated with the window where the event took place. If
widget (or its window) does not handle the type of event delivered, it passes the eve
the window tree to its parent, which then has the option of dealing with the event. Assum
that the parent is a manager widget of some kind, it now has the option to process the
If the event is a keyboard traversal event, the appropriate action routine moves the
focus. The default event translations that manager widgets use to handle keyboard tra
are currently specified as follows:

<Key>osfBeginLine: ManagerGadgetTraverseHome()
290 Motif Programming Manual

Chapter 8: Manager Widgets

rows

board
ger
ions,
the

the
tton

get.
get,

ssed,
et.
priate

his

ut that
vents.
dget.
<Key>osfUp: ManagerGadgetTraverseUp()
<Key>osfDown: ManagerGadgetTraverseDown()
<Key>osfLeft: ManagerGadgetTraverseLeft()
<Key>osfRight: ManagerGadgetTraverseRight()
Shift ~Meta ~Alt <Key>Tab: ManagerGadgetPrevTabGroup()
~Meta ~Alt <Key>Tab: ManagerGadgetNextTabGroup()
<EnterWindow>: ManagerEnter()
<LeaveWindow>: ManagerLeave()
<FocusOut>: ManagerFocusOut()
<FocusIn>: ManagerFocusIn()

The OSF-specific keysyms are vendor-defined, which means that the directional ar
must be defined by the user’s system at run-time. Values like<Key>osfUp and<Key>
osfDown may not be the same as<Key>Up and<Key>Down.

The routines that handle keyboard traversal are prefixed byManagerGadget . Despite
their names, these functions are not specific to gadgets; they are used to handle key
traversal for all of the children in the manager. If a primitive widget inside of a mana
widget specifies an event translation that conflicts with one of the manager’s translat
the primitive widget can interfere with keyboard traversal. If the primitive widget has
input focus, the user cannot use the specified event to move the input focus with
keyboard. The following code fragment shows how the translation table for a PushBu
can interfere with the keyboard traversal mechanism in its parent:

Widget pb;
XtActionRec action;
extern XtAppContext app_context;
extern Widget parent;
extern void do_tab(Widget, XEvent *, String *, Cardinal *);

actions.string = "do_tab";
actions.proc = do_tab;
XtAppAddActions (app_context, &actions, 1);

pb = XmCreatePushButton (parent, "name", resource-value-array ,
resource-value-coumt);

XtOverrideTranslations (pb, XtParseTranslationTable ("<Key>Tab: do_tab"));

The translation table is merged into the existing translations for the PushButton wid
This translation table does not interfere with the translation table in the manager wid
but it does interfere with event propagation to the manager. When the TAB key is pre
the action routinedo_tab() is called and the event is consumed by the PushButton widg
The event is not propagated up to the manager widget so that it can perform the appro
keyboard traversal action. The work around for this problem is to havedo_tab() process
the keyboard traversal action on its own, in addition to performing its own action. T
technique is discussed in the next section.

Since a manager can also contain gadgets, the manager widget must also handle inp
is destined for gadgets. Since gadgets do not have windows, they cannot receive e
Only the manager widget that is the parent of a gadget can receive events for the ga
Motif Programming Manual 291

Chapter 8: Manager Widgets

lf of

the
input
ve to
cus.

g
an be
at you
Area
ction
action
and

t the
vokes

oup,
mple
The manager widget has the following additional translations to handle input on beha
gadgets:

<Key>osfActivate: ManagerParentActivate()
<Key>osfCancel: ManagerParentCancel()
<Key>osfSelect: ManagerGadgetSelect()
<Key>osfHelp: ManagerGadgetHelp()
~Shift ~Meta ~Alt <Key>Return: ManagerParentActivate()
~Shift ~Meta ~Alt <Key>space: ManagerGadgetSelect()
<Key>: ManagerGadgetKeyInput()
<BtnMotion>: ManagerGadgetButtonMotion()
<Btn1Down>: ManagerGadgetArm()
<Btn1Down>,<Btn1Up>: ManagerGadgetActivate()
<Btn1Up>: ManagerGadgetActivate()
<Btn1Down>(2+): ManagerGadgetMultiArm()
<Btn1Up>(2+): ManagerGadgetMultiActivate()
<Btn2Down>: ManagerGadgetDrag()

Unlike with keyboard traversal translations, widget translations cannot interfere with
manager translations that handle events destined for gadgets. If a widget had the
focus, the user’s actions cannot be destined for a gadget, since the user would ha
traverse to the gadget first, in which case the manager would really have the input fo

In Chapter 10,The DrawingArea Widget, we discuss the problems involved in handlin
input events on the DrawingArea widget. The problems arise because the widget c
used for interactive drawing, as well as serve as a manager. There may be events th
want to process in your application, but they could also be processed by the Drawing
itself. The problem is really a semantic one, as there is no way to determine which a
procedure should be invoked for each event if the DrawingArea has a manager-based
and the application defines its own action. For more information on translation tables
action routines, see Chapter 2,The Motif Programming Model, and Volume 4,The X
Toolkit Intrinsics Programming Manual.

Processing Traversal Manually
At times, an application may want to move the input focus as a result of something tha
user has done. For example, you might have an action area where each PushButton in
a callback function and then sets the input focus to the home item in the tab gr
presumably to protect the user from inadvertently selecting the same item twice. Exa
8-15 demonstrates how this operation can be accomplished.*

Example 8-15. The proc_traverse.c program

/* proc_traverse.c -- demonstrate how to process keyboard traversal
** from a PushButton's callback routine. This simple demo contains
** a RowColumn (a tab group) and three PushButtons. If any of the

* XtVaAppInitialize () is considered deprecated in X11R6.
292 Motif Programming Manual

Chapter 8: Manager Widgets
** PushButtons are activated (selected), the input focus traverses
** to the "home" item.
*/

#include <Xm/PushB.h>
#include <Xm/RowColumn.h>

main (int argc, char *argv[])
{

Widget toplevel, rowcol, pb;
XtAppContext app;
Arg args[2];
void do_it(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNorientation, XmHORIZONTAL);
rowcol = XmCreateRowColumn (toplevel, "rowcolumn", args, 1);

pb = XmCreatePushButton (rowcol, "OK", NULL, 0);
XtManageChild (pb);

pb = XmCreatePushButton (rowcol, "Cancel", NULL, 0);
XtAddCallback (pb, XmNactivateCallback, do_it, NULL);
XtManageChild (pb);

pb = XmCreatePushButton (rowcol, "Help", NULL, 0);
XtAddCallback (pb, XmNactivateCallback, do_it, NULL);
XtManageChild (pb);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback for pushbuttons */
void do_it (Widget widget, XtPointer client_data, XtPointer call_data)
{

/* do stuff here for PushButton widget */
XmProcessTraversal(widget, XmTRAVERSE_HOME);

}

Motif Programming Manual 293

Chapter 8: Manager Widgets

m. In
t

n calls
to

rrent
w tab

ab
ating
this

his

last
The
D
e

hin
f the

e next
up
The three frames in Figure 8-23 show the movement of keyboard focus in the progra
the figure, the current input focus is on theCancelbutton; when it is selected, the inpu
focus is changed to theOK button.

The callback routine associated with the PushButtons does whatever it needs and the
XmProcessTraversal() to change the input item to the home item, which happens
be theOK button. This function can be used when an application needs to set the cu
item in the tab group to another widget or gadget or it can be used to traverse to a ne
group. The function takes the following form:

Boolean XmProcessTraversal (Widget widget , int direction)

The function returnsFalse if the VendorShell associated with the widget has no t
groups, the input focus policy doesn’t make sense, or if there are other extenu
circumstances that would be considered unusual. It is unlikely that you’ll ever have
problem.

The direction parameter specifies where the input focus should be moved. T
parameter can take any of the following values:*

XmTRAVERSE_CURRENT XmTRAVERSE_NEXT
XmTRAVERSE_PREV XmTRAVERSE_HOME
XmTRAVERSE_UP XmTRAVERSE_DOWN
XmTRAVERSE_LEFT XmTRAVERSE_RIGHT

XmTRAVERSE_GLOBALLY_FORWARD XmTRAVERSE_GLOBALLY_BACKWARD
XmTRAVERSE_NEXT_TAB_GROUP XmTRAVERSE_PREV_TAB_GROUP

All but the last four values are for traversing to items within the current tab group; the
two are for traversing to the next or previous tab group relative to the current one.
values XmTRAVERSE_GLOBALLY_FORWARDand XmTRAVERSE_GLOBALLY_BACKWAR
primarily exist in order to implement the XmDisplay object resourc
XmNenableButtonTab †. In this scheme, navigation using the arrow keys proceeds wit
a tab group as normal, except that if the end (or beginning, if traversing backwards) o
group is reached, navigation does not cycle round the group members but jumps to th
(or preceding) tab group. The interpretation of “forwards” and “backwards” in a gro

* XmTRAVERSE_GLOBALLY_FORWARDandXmTRAVERSE_GLOBALLY_BACKWARDare available from Motif 2.0
onwards.

† XmNenableButtonTab is available from Motif 2.0 onwards.

Figure 8-23: Output of the proc_traversal program
294 Motif Programming Manual

Chapter 8: Manager Widgets

e
g the

m
your
eed
make

s not
does,

eate
t get
to the
is no

the
ons
e

oard
s,
et.
t

have
es
t you
port
om
depends upon theXmNlayoutDirection * resource: if this isXmRIGHT_TO_LEFT, the
natural interpretation of “forwards” and “backwards” is reversed.

In Example 8-16, the call toXmProcessTraversal() forces the home element to be th
current item in the current tab group. For a more sophisticated example of manipulatin
input focus, see Section 18.5.1 in Chapter 18,Text Widgets. One problem with
XmProcessTraversal() is that you can only move in a relative direction from the ite
that has the input focus. This functionality is sufficient in most cases, since the logic of
application should not rely on the user following any particular input sequence. If you n
to traverse to a specific widget regardless of the current item, in most cases you can
the following call:

XmProcessTraversal (desired_widget , XmTRAVERSE_CURRENT);

This calling sequence specifies that thedesired_widget takes the input focus, but only
if the shell that contains the widget already has the keyboard focus. If the shell doe
have the focus, nothing happens until the shell obtains the keyboard focus. When it
thedesired_widget should have the input focus.

Under certain conditions, this function may appear not to work. For example, if you cr
a dialog and want to set the input focus to one of its subwidgets, you may or may no
this to happen, depending on whether or not the dialog has been realized and mapped
screen and whether or not keyboard focus has been accepted. Unfortunately, there
general solution to this problem because the Motif toolkit isn’t very robust about
programmer changing input focus out from under it. You cannot call generic X functi
like XSetInputFocus() to force a widget to take input focus or you will undermin
Motif’s attempt at monitoring and controlling the input policy on its own.

There are some functions that make it easier for an application to try to control keyb
traversal. TheXmGetFocusWidget() routine returns the widget that has the input focu
while XmGetTabGroup() returns the widget that is the tab group for the specified widg
You can also callXmIsTraversable() to determine whether or not a particular widge
is eligible to receive the input focus.

Summary
Manager widgets are the backbone of an application. Without them, primitive widgets
no way of controlling their size, layout, and input focus. While the Motif toolkit provid
many different manager widget classes, you may find that there are some things tha
cannot do with them. Experienced toolkit programmers have found that it is possible to
Constraint class widgets from other toolkits to the Motif toolkit, by subclassing them fr
the generic Manager widget class. This topic is beyond the scope of this book.

* XmNlayoutDirection is available from Motif 2.0 onwards.
Motif Programming Manual 295

Chapter 8: Manager Widgets

ome
hapter

ment.
This chapter introduces the Motif manager widgets, but it does not discuss in detail s
of the basic issues of geometry management. If the basic concepts presented in this c
are still somewhat foreign to you, see Volume 4,The X Toolkit Intrinsics Programming
Manual, for a more in-depth discussion of composite widgets and geometry manage
296 Motif Programming Manual

he
the

ation
Chapter 1

In this chapter:
• Creating a Container
• Creating IconGadgets
• Container Resources
• IconGadget Resources
• Container Constraints
• Container Callbacks
• Container Functions
• Summary
• Exercises

The Container was possibly
Container is a Constraint M
IconGadget. The idea is tha
Motif Programming Manual
9

mats
ree,
ch
thus

he

erived
lay a
splay
ay of
ional
il of
may
t with
ified
Containers and
IconGadgets

the most complex widget introduced into Motif 2. T
anager widget which is designed to work alongside

t IconGadgets are meant to pictorially represent applic
objects in some abstract way, and the Container lays them out in a variety of for
appropriate to the underlying data model. The Container can lay out its children in T
Multi-column Table, Grid, or Free-Floating formats; it is possible to dynamically swit
layout in order to provide alternative presentations of the objects which it contains, and
the widget is an approximation to a Model-View-Controller (MVC) component for t
Motif widget set.

IconGadgets are derived from the Gadget class, as the name suggests. Although not d
from the LabelGadget class, they are similar to LabelGadgets in that they can disp
Label string and an image Pixmap, the difference being that the IconGadget can di
these simultaneously. It is also possible to associate with an IconGadget an arr
compound strings which represents additional information about the object. This addit
information is known as Detail, and the Container widget knows how to lay the Deta
its various IconGadget children out so that it is all arranged in columns. Each column
be assigned a heading label, much like a Table. Figure 9-1 shows a Container widge
IconGadget children laid out in the Detail style. The column headers are simply spec
through Container resources.

Figure 9-1: A Container in Detail layout, with IconGadget children
297

Chapter 9: Containers and IconGadgets

urces,
the
re 9-

hapter

pecify
dget

nd a
sage
h is
9-2
mall

. The
en: a

the
y

ject
tail
using
rrent

dgets
Since the Container and IconGadget widget classes fully support Render Table reso
and since the Detail information is held in the form of compound strings, each of
columns and column headers could appear in distinct colors and fonts, although Figu
1 does not make use of this feature. Render Tables are discussed in more detail in C
24.

IconGadgets support not one but two image Pixmap resources: the programmer can s
a large and a small image, and then switch between the two views of the IconGa
dynamically. This could be used for displaying both a representative thumbnail a
detailed picture of the application object which the IconGadget represents. A typical u
of the small image display is when the IconGadget is placed in a Container whic
configured to lay out its children in a Tree (or more properly, Outline) format. Figure
has such an example, which is a simplified file system browser. In this example only s

images are required in order to represent the general type of the objects concerned
Tree layout is effected through simple constraints placed on the IconGadget childr
given IconGadget A is placed as a child of IconGadget B if theXmNentryParent
constraint of A has the value B. The order of children can be controlled using
XmNpositionIndex constraint, although the Container will lay them out in child order b
default.

The Detail column format is not restricted to a particular view of the application ob
relationships. That is, it is possible to combine a Tree layout with multi-column De
information. Since the relationships between the application objects is expressed
Container constraints on each of the IconGadget children, this is independent of the cu
Container layout style. For example, Figure 9-3 shows a Container where the IconGa

Figure 9-2: A Container in the Outline layout style
298 Motif Programming Manual

Chapter 9: Containers and IconGadgets

tail.

, the
yle is
dren

rid
d the
dget
any
the

table

out
user

mple
each

ng is
d any
are laid out in a Tree format because theirXmNentryParent constraints are set, with the
extra IconGadget information still visible because the Container layout style is set to De

The remaining Container layout to consider is known as the Spatial style. In this style
Container does not attempt to attach Detail to the IconGadget children. The Spatial st
really two styles, which is configured by further resources. Either the IconGadget chil
are simply placed at the coordinates specified by theirXmNx, XmNyresources, very much
like a BulletinBoard, or the IconGadget children are laid out in a Grid formation. In the G
formation, the layout is considered to consist of cells in a rectangular arrangement, an
IconGadget children are aligned within the cells, although it is possible for an IconGa
to span multiple cells. Only one IconGadget may occupy any given cell, however, at
one time. The Grid arrangement behaves very much like a RowColumn in that if
Container is resized, the IconGadgets are automatically laid out to maintain a sui
rectangular arrangement in the space available.

The difference to a BulletinBoard or RowColumn is that the Container in the Spatial lay
style supports dynamic selection and drag-and-drop of the IconGadget children: the
can move the IconGadget children around the Container using the mouse. A si
application using the Spatial style would be an Icon Box, or a Tool launch site, where
IconGadget represents pictorially a separate tool.

Figure 9-4 shows such an application in a free-format arrangement - the only positioni
by the x, y coordinate resources of each IconGadget as the Container is initialized, an

Figure 9-3: A Container in Detail layout, with IconGadgets in a Tree format
Motif Programming Manual 299

Chapter 9: Containers and IconGadgets

dgets

into a
may

ction
an

rband

o be
the

not
the
movement which the user makes of each IconGadget thereafter. This time, the IconGa
are configured to display the large images.

Figure 9-5 is also in the Spatial style, except that the same data has been configured
Grid format. The x, y coordinates of the IconGadget children is ignored, and the user

only move IconGadgets into empty cells of the grid.

The Container in Spatial layout supports single, multiple, browse, and extended sele
of the IconGadget children. Selection can be effected either by directly clicking on
IconGadget, or by drawing a rectangle around the items to be selected. The rubbe
rectangle which the user describes using the mouse is formally known as amarquee. An
alternative selection method is to simply swipe the mouse over the IconGadget t
selected. The style of selection preferred is controlled through
XmNselectionTechnique resource. Note that the user may onlymoveContainer items
if the layout style is Spatial.

Notification of selection is through callbacks of the Container: the IconGadget does
support any callback resources of its own. The Container supports both

Figure 9-4: A Container in Spatial layout using coordinate placement

Figure 9-4: A Container in Spatial layout using Grid placement
300 Motif Programming Manual

Chapter 9: Containers and IconGadgets

the
f

and
best

has

in the
e

iner
ion
can

ty to

hich
of the
XmNconvertCallback and XmNdestinationCallback resources, and so fully
participates in the Uniform Transfer Model, which is described in Chapter 23.

Creating a Container
Applications that wish to use the Container need to include the file <Xm/Container.h>. This
file defines the types and functions associated with the widget, as well as defining
widget class namexmContainerWidgetClass . A Container can be created in either o
the ways shown in the following code fragment:

Widget container = XmCreateContainer (parent , name, resource-value-array ,
resource-value-count)

Widget container = XtCreateWidget ("name", xmContainerWidgetClass, parent ,
resource-value-list , NULL);

The Container can potentially contain a very large number of IconGadget children,
some of the layout algorithms which it applies are quite complex, and so it is probably
not to create the widget in a managed state (XtCreateManagedWidget()) otherwise
performance may suffer. See Chapter 8,Manager Widgets, for a discussion of when
widgets should be created in the managed or unmanaged state.

Theparent of the Container can be any Shell or Manager widget. Once the Container
been instantiated, the next step is to add IconGadget children.

Creating IconGadgets
The data types and functions associated with the IconGadget object are defined
header file <Xm/IconG.h>, which should be included in any Application which uses th
gadget. The header file also defines the gadget classxmIconGadgetClass . The following
code fragment illustrates how to create an IconGadget:

Widget icon = XmCreateIconGadget (parent , name, resource-value-array ,
resource-value-count)

Widget icon = XtCreateWidget ("name", xmIconGadgetClass, parent ,
resource-value-list , NULL);

Theparent of an IconGadget can be any Manager widget, although only the Conta
widget has sufficient knowledge of the IconGadget to display any Detail informat
associated with the object, or to provide IconGadget selection. The IconGadget
successfully be used outside the Container context if all that you require is the abili
display a label and a Pixmap simultaneously.

Container Resources
The resources of the Container can be logically divided into four groups; those w
control the general layout of the IconGadget children, those related to visual aspects
Motif Programming Manual 301

Chapter 9: Containers and IconGadgets

l the

.

ng the

urce,

once
pt

lue
ing

e
the

splay
the

nce
f the

the

n the
ll
Container, those associated with any Detail to be displayed, and those which contro
selection mechanisms.

Layout Resources
The general layout policy of the Container is controlled through theXmNlayoutType
resource, which has the following possible values:

XmOUTLINE XmSPATIAL XmDETAIL

The default value isXmSPATIAL, which results in the BulletinBoard or Grid-style layout
The Tree layout is specified through the valueXmOUTLINE, and the IconGadget Detail is
made visible using the valueXmDETAIL. TheXmDETAILlayout may also logically appear
as a Tree if the relationship between the IconGadget children has been specified usi
XmNentryParent constraint. This is described in Section 9.5 below.

Spatial Layout

In a Spatial layout, the specific Container layout algorithm depends upon a further reso
XmNspatialStyle . If the XmNspatialStyle is XmNONE, layout depends only upon the
XmNx, XmNyvalues of the IconGadget children. IfXmNspatialStyle is XmGRID, the
Container is laid out in a grid of same-sized cells, and an IconGadget may occupy only
cell. If the spatial style isXmCELLS, the Container is also laid out in same-sized cells, exce
that this time an IconGadget may span multiple cells.

How the IconGadget is placed within a cell depends upon theXmNspatialSnapModel
resource.The valueXmCENTERcenters the IconGadget within the cell. The resource va
XmSNAP_TO_GRIDpositions the IconGadget at the upper left or right of the cell, depend
upon any specifiedXmNlayoutDirection . The valueXmNONEplaces the IconGadget
within the cell using theXmNx, XmNy resources of the object, provided that thes
coordinates fall within the bounds of the cell - otherwise the IconGadget is laid out in
cell as though the value isXmSNAP_TO_GRID.

The size of a logical cell is specified using theXmNsmallCellHeight ,
XmNsmallCellWidth , XmNlargeCellHeight , andXmNlargeCellWidth resources.
Which of these is operative depends upon whether the Container is configured to di
IconGadgets using the large or small Pixmap of the object. This is described in
following Section 9.3.2,Visual Resources. The Container in the spatial style is like a
RowColumn in that it creates a logically rectangular arrangement of cells. The differe
is that for a RowColumn you have to specify the number of columns and not the size o
cells.

The manner in which the IconGadget children fill the cells depends upon
XmNspatialIncludeModel . If the value isXmFIRST_FIT , the cells are filled in the
order that they are free, although this may be in a right to left sense depending upo
XmNlayoutDirection . The valueXmAPPENDplaces an IconGadget into the first free ce
302 Motif Programming Manual

Chapter 9: Containers and IconGadgets

t is

dget.

new
w

R
e
is
ion
out

f the

h

in a

ps -

f the

fault

ge or

lues
ch
after the last filled cell.XmFIRST_FIT andXmAPPENDmay well have the same effect when
the Container is first displayed, but will have different behavior if a new IconGadge
added after the user has moved the existing objects around. The valueXmCLOSESTplaces
an IconGadget into the nearest free cell to the x, y coordinates specified for the IconGa

Lastly on the subject of Spatial layout, theXmNspatialResizeModel controls the way
in which the Container attempts to grow when there is insufficient space to contain a
IconGadget child. The valueXmGROW_BALANCEDcauses the Container to request both ne
width and height from its parent as required. The other possible values,XmGROW_MAJO
and XmGROW_MINOR, depend for their interpretation on the value of th
XmNlayoutDirection resource. The major dimension is width if the layout policy
horizontally oriented, and height if the policy is vertically oriented. The minor dimens
is the reverse: height for a horizontal layout, width for the vertical. Assuming that the lay
policy is horizontally aligned, thenXmGROW_MAJORwill cause the Container only to ask
for more width from its parent. The default isXmGROW_MINOR.

Outline Layout

Whether or not to create a PushButtonGadget used for folding/unfolding portions o
outline Tree is controlled through theXmNoutlineButtonPolicy resource. The default
value,XmOUTLINE_BUTTON_PRESENT, creates the button for every container item whic
has logical children, specified by the constraint resourceXmNentryParent . Folding
buttons can be disabled by specifying the valueXmOUTLINE_BUTTON_ABSENT.

Connecting lines and indentation between portions of the Tree can be configured
number of ways. The resourceXmNoutlineLineStyle can be used to completely disable
line drawing - so that indentation is the only clue of the logical parent/child relationshi
by specifying the valueXmNO_LINE. The default value,XmSINGLE, draws a single line
between related Container items. The indentation level, and thus indirectly the length o
lines, depends upon theXmNoutlineIndentation resource. The line length is also
partially controlled by theXmNoutlineColumnWidth resource, which specifies preferred
width of the first column. The default value, zero, causes the Container to deduce a de
value based upon the width of the widest item and theXmNoutlineIndentation
specification.

Visual Resources
The Container can specify whether the IconGadget children are forced to display lar
small Pixmaps through theXmNentryViewType resource. The default value,XmANY_
ICON, leaves the decision to each individual Container item. However, the va
XmLARGE_ICONand XmSMALL_ICONcan be used to override the settings on ea
IconGadget in order to give a consistent logical size to all the Container items.
Motif Programming Manual 303

Chapter 9: Containers and IconGadgets

rance
e

the
r
the
a

the
the
r 25.

cified

pound
over

first
t

der
es
sence
f

is as
A.

gin.
hen
4.
is
tainer

m the
The Container has two Pixmap resources associated with it which control the appea
of the fold/unfold buttons when displaying an Outline layout. Th
XmNexpandedStatePixmap resource specifies the unfolded state image, and
resourceXmNcollapsedStatePixmap specifies the folded image. The default image fo
the folded state is a sideways pointing arrow, the direction of which depends upon
XmNlayoutDirection resource. The default for the collapsed (folded) state is
downwards pointing arrow.

In common with all other widgets in the Motif set, the Container supports
XmNrenderTable resource, which controls the rendering of compound strings in
widget. Render Tables are described fully in Chapter 24, Compound Strings in Chapte

Detail Resources
The heading labels which appear at the top of each column of the Container are spe
through the XmNdetailColumnHeading and XmNdetailColumnHeadingCount
resources. These resources specify an array of compound strings. Each separate com
string in the array forms a distinct column header. The first column header is placed
the IconGadget children themselves.

By default, the order of compound strings in theXmNdetailColumnHeading resource
corresponds to the order in which the logical columns appear in the Detail. That is, the
compound string in theXmNdetailColumnHeading array appears above the firs
column, and so forth. But this need not be the case. The resourcesXmNdetailOrder and
XmNdetailOrderCount specify an array of Cardinal values which represents the or
of the columns. If this is notNULL, then column ordering depends on the index valu
specified. For example, suppose we have three heading labels, A, B, and C. In the ab
of anyXmNdetailOrder , the headings will appear A, B, C from left to right at the top o
the Container. If however we construct a list of Cardinal values, 2, 3, 1, and apply th
theXmNdetailOrder value, then the column headings will appear in the order B, C,

By default, the Container works out for itself where each column of the Detail is to be
It is possible to override the internal algorithm by constructing a Tab List, and t
specifying this as theXmNdetailTabList resource. Tab Lists are described in Section 2
3 of Chapter 24,Render Tables, although in this unique instance the required Tab List
used outside the context of a Render Table. Possibly confusing is the fact that the Con
and IconGadget also support theXmNrenderTable resource, however both the
IconGadget and the Container use theXmNdetailTabList value when calculating the
column header layout, although in the case of the IconGadget the value is fetched fro
Container parent.
304 Motif Programming Manual

Chapter 9: Containers and IconGadgets

ay

f
ildren
alue

ugh
d

ffect.
ch
tion
ng the

ult is

s

the

lects

that
e

Selection Resources
TheXmNselectionPolicy resource specifies the way in which IconGadget children m
be selected in the Container. The possible values are:

XmSINGLE_SELECT XmBROWSE_SELECT
XmMULTIPLE_SELECT XmEXTENDED_SELECT

The default is XmEXTENDED_SELECT, which allows for a discontiguous range o
IconGadget children to be selected. Discontiguous in this context means that the ch
are not necessarily contained within adjacent cells in the Spatial layout. The v
XmMULTIPLE_SELECT forces selection from adjacent cells.

The way in which multiple selection is performed using a marquee is configured thro
the XmNselectionTechnique resource. If an IconGadget must be wholly containe
within the marquee rectangle for selection to take place, the valueXmMARQUEEshould be
specified. If the value isXmMARQUEE_EXTEND_START, it is sufficient for the starting
coordinates of the marquee to fall within the IconGadget bounds for selection to take e
The valueXmMARQUEE_EXTEND_BOTHincludes in the selected set any IconGadget whi
falls partially within either the start or the end coordinates of the marquee. If selec
should take place only if the mouse directly passes over an IconGadget when describi
marquee, the valueXmTOUCH_OVERshould be specified. Lastly,XmTOUCH_ONLYonly
selects items which fall between the marquee start and end coordinates. The defa
XmTOUCH_OVER.

The set of selected objects for the Container is described by theXmNselectedObjects
and XmNselectedObjectCount resources. These specify an array of Widget ID
corresponding to the selected IconGadgets.

The way in which selection callbacks are invoked depends upon
XmNautomaticSelection resource. If the value isXmAUTO_SELECT, callbacks are
invoked every time and immediately that an item is selected. The valueXmNO_AUTO_
SELECT delays callback invocation until the user has finished her current action.

Whether the Container takes control of the Primary Selection when the user se
IconGadget children depends upon theXmNprimaryOwnership resource. The possible
values are:

XmOWN_NEVER XmOWN_ALWAYS
XmOWN_MULTIPLE XmOWN_POSSIBLE_MULTIPLE

The default value isXmOWN_POSSIBLE_MULTIPLE, which indicates that Primary
Selection is owned if multiple selection is possible (theXmNselectionPolicy is
XmMULTIPLE_SELECTor XmEXTENDED_SELECT). XmOWN_MULTIPLEis similar, except
that ownership takes place only if multiple selection has occurred. The difference is
XmOWN_POSSIBLE_MULTIPLEwould allow ownership of the selection even if a singl
Motif Programming Manual 305

Chapter 9: Containers and IconGadgets

lues

basis,

cts of
only
an

of

nting
the
four

adget
ugh

rce

the

ge,
gle di-
IconGadget is selected (although the selection policy allows for more). The other va
have a natural interpretation.

Lastly, the color of a selected IconGadget can be specified using theXmNselectColor
resource, which takes a Pixel as its value. Since this is specified on a Container-wide
it is not possible to control the selection color of IconGadget children separately.

IconGadget Resources
The IconGadget has two logical sets of resources: those which control the visual aspe
the gadget, and those which specify the Detail information. The Detail resources are
operative in the context of a Container - no other Motif widget knows how to lay out
IconGadget Detail.

Visual Resources

The label of the IconGadget is specified using theXmNlabelString resource: this is a
compound string. If the value isNULL, the IconGadget label is derived from the name
the widget as passed to the widgets create routine.*

The image which the IconGadget displays is specified in two halves: a Pixmap represe
the foreground image, and a Pixmap controlling the background Mask. Since
IconGadget in fact supports two logical images - small and a large - there are therefore
resources to consider. These are the resourcesXmNsmallIconPixmap ,
XmNsmallIconMask , XmNlargeIconPixmap , and XmNlargeIconMask . The Mask
resources should only have a depth of 1 - they should be bitmaps. Since the IconG
only displays one image at a time, the choice of large or small icon is controlled thro
the XmNviewType resource, which has the possible valuesXmLARGE_ICON(the default)
orXmSMALL_ICON. This may be overridden by a Container parent if the Container resou
XmNentryViewType is not set toXmANY_ICON.

TheXmNalignment resource specifies the relative alignment of the image and label of
IconGadget. Possible values are:

XmALIGNMENT_BEGINNING XmALIGNMENT_CENTER XmALIGNMENT_END

* If, however, the value is anemptycompound string (no text components), the widget displays only the ima
not both image and label. This can be achieved by creating a simple compound string consisting of a sin
rection component.
306 Motif Programming Manual

Chapter 9: Containers and IconGadgets

ource
rces.

the
the

array
ow to

l
etail

een
hild

e
the
The vertical distance between the image and the label is controlled through the res
XmNspacing . Figure 9-5 shows the effect of setting the alignment and spacing resou

In common with other widgets in the Motif set, the IconGadget supports
XmNrenderTable resource which controls the appearance of compound strings in
object. Render Tables are covered in detail in Chapter 24.

Detail Resources

The resourcesXmNdetail andXmNdetailCount specify an array of compound strings
which represents the Detail of the IconGadget. Each entry in the compound string
represents a single column entry in the Container parent. Only the Container knows h
lay IconGadget detail out - the resource has no effect in any other parent context.

Container Constraints
There are three constraint resources defined by the Container:XmNentryParent ,
XmNoutlineState , andXmNpositionIndex . The constraints have no effect in a Spatia
layout - they are used to specify the logical Tree arrangement for Outline and D
layouts.

TheXmNentryParent resource is used to specify the parent-child relationships betw
IconGadget children in the Container. An IconGadget A is considered to be a logical c
of IconGadget B if theXmNentryParent constraint resource of A has the value B. If th
value isNULL, the IconGadget is considered to be a root object, and is not indented in
layout.

XmALIGNMENT_BEGINNING

XmALIGNMENT_CENTER

XmALIGNMENT_END

XmALIGNMENT_CENTER,
XmNspacing = 20

Figure 9-5: The effect of IconGadget alignment and spacing resources
Motif Programming Manual 307

Chapter 9: Containers and IconGadgets

an

the
of

A and

rom
out
tem
o
for
The XmNoutlineState resource controls whether a given IconGadget is visible in
Outline or Detail layout - the valueXmCOLLAPSEDhides the object,XmEXPANDEDdisplays
it.

The order in which IconGadgets are laid out is controlled through
XmNpositionIndex resource. This is not the same thing as specifying the level
indentation, as specified through theXmNentryParent . The XmNpositionIndex
resource sorts children at the same level of indentation. For example, suppose objects
B both have the sameXmNentryParent value. A will appear first in the Container if the
XmNpositionIndex constraint is less than that of B.

Example 9-1 is a simple application which constructs a partial view of the file system f
the current working directory. It does this by creating a Container in the Outline lay
style, and adds file system entries in the form of IconGadget children. The file sys
structure is specified throughXmNentryParent resources. The program is not meant t
be a full working application, but a demonstration of how the Tree structure is specified
an Outline layout. Output from the program is identical in effect to that of Figure 9-2.

Example 9-1. The outline.c program

/* outline.c -- demonstrate the container and icon gadget
** in an outline layout
*/

#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <Xm/Container.h>
#include <Xm/IconG.h>
#include <Xm/ScrolledW.h>
#include <Xm/XmosP.h>
#include <sys/stat.h>
#include <dirent.h>

static Pixmap small_folder_icon = XmUNSPECIFIED_PIXMAP;
static Pixmap small_folder_mask = XmUNSPECIFIED_PIXMAP;
static Pixmap small_file_icon = XmUNSPECIFIED_PIXMAP;
static Pixmap small_file_mask = XmUNSPECIFIED_PIXMAP;

/*
** Adds one level of directory entries to the Container, using
** parent_entry as the XmNentryParent value
*/
static void add_directory(char *path,

Widget parent_entry,
Widget container)

{
DIR *dir;
struct dirent *entry;
Arg args[8];
int n;
308 Motif Programming Manual

Chapter 9: Containers and IconGadgets
/* Loop through the directory entries */
dir = opendir (path);

while ((entry = readdir (dir)) != NULL) {
char name[256];
struct stat sb;

/* Get the file details. Note: no real error checking */
(void) sprintf (name, “%s/%s”, path, entry->d_name);

if (stat (name, &sb) == 0) {
XmString s;
Widget item;
int isDirectory;

if ((strcmp (entry->d_name, “.”) == 0) ||
(strcmp (entry->d_name, “..”) == 0)) {

continue;
}

s = XmStringCreateLocalized (entry->d_name);

isDirectory = ((sb.st_mode & S_IFDIR) != 0);

/* Create the IconGadget */
n = 0;
XtSetArg (args[n], XmNlabelString, s); n++;

if (isDirectory) {
XtSetArg (args[n], XmNsmallIconPixmap, small_folder_icon);
n++;
XtSetArg (args[n], XmNsmallIconMask, small_folder_mask);
n++;

}
else {

XtSetArg (args[n], XmNsmallIconPixmap, small_file_icon);
n++;
XtSetArg (args[n], XmNsmallIconMask, small_file_mask);
n++;

}

/* This gives the Tree its structure */
XtSetArg (args[n], XmNentryParent, parent_entry); n++;

item = XmCreateIconGadget (container, “icon”, args, n);
XtManageChild (item);

/* Recurse to subdirectories */
/* This item becomes the new XmNentryParent */
if (entry->d_name[0] != ‘.’) {

if (isDirectory) {
add_directory (name, item, container);

}
}

Motif Programming Manual 309

Chapter 9: Containers and IconGadgets
}
}

(void) closedir (dir);
}

/* Utility: set up a path to find bitmaps and pixmaps */
static char *GetBitmapPath (Display *display, char *file)
{

char *bmPath = (char *) 0;
char *name = (char *) 0;
Boolean user_path = False;
SubstitutionRec subs;

subs.substitution = file;

bmPath = (char *) _XmOSInitPath (file, “XBMLANGPATH”, &user_path);

if (user_path) subs.match = ‘B’;
else subs.match = ‘P’;

name = XtResolvePathname (display, “bitmaps”, file, NULL, bmPath, &subs, 1,
NULL);

if (bmPath) {
/* Some XtResolvePathname() return non-heap copy of parameter */
/* This causes serious memory corruption if freed inadvertently */

if (name != bmPath) {
XtFree (bmPath);

}
}

return name;
}

/* Utility: load a Pixmap file for the IconGadget image */
static Pixmap GetPixmap (Widget widget, char *file)
{

Screen *screen = XtScreen (widget);
char *path = GetBitmapPath (XtDisplay (widget), file);

return XmGetPixmap (screen,
path,
BlackPixelOfScreen (screen),
WhitePixelOfScreen (screen));

}

/* Utility: load a Bitmap file for the IconGadget image mask */
static Pixmap GetBitmap (Widget widget, char *file)
{

Pixmap pixmap = XmUNSPECIFIED_PIXMAP;
unsigned int width;
unsigned int height;
310 Motif Programming Manual

Chapter 9: Containers and IconGadgets
int hotx;
int hoty;
char *path = GetBitmapPath (XtDisplay (widget), file);

XReadBitmapFile (XtDisplay (widget), XtWindow (widget), path, &width,
&height, &pixmap, &hotx, &hoty);

return pixmap;
}

main (int argc, char *argv[])
{

Widget toplevel, form, scrolled_win, container;
XtAppContext app;
int n;
Arg args[8];

XtSetLanguageProc (NULL, NULL, NULL);

/* Create the top-level shell and two RowColumns */
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

XtVaSetValues (toplevel,
XmNtitle, “XmContainer - Outline Layout”, NULL);

form = XmCreateForm (toplevel, “form”, NULL, 0);

n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
scrolled_win = XmCreateScrolledWindow (form, “scrolled_win”, args, n);

/* Create the Container */

n = 0;
XtSetArg (args[n], XmNwidth, 600); n++;
XtSetArg (args[n], XmNheight, 500); n++;
XtSetArg (args[n], XmNlayoutType, XmOUTLINE); n++;
XtSetArg (args[n], XmNentryViewType, XmSMALL_ICON); n++;
container = XmCreateContainer (scrolled_win, “container”, args, n);

XtManageChild (container);
XtManageChild (scrolled_win);
XtManageChild (form);
XtRealizeWidget (toplevel);

/* Read in the icons and their masks */
/* The bitmaps require a window, therefore must be done post-realize */
small_folder_icon = GetPixmap (container, “folder_small.xbm”);
small_file_icon = GetPixmap (container, “file_small.xbm”);
Motif Programming Manual 311

Chapter 9: Containers and IconGadgets

ll be
dget.

dget

ack of

ular

The
le
The
of
small_folder_mask = GetBitmap (container, “folder_small_mask.xbm”);
small_file_mask = GetBitmap (container, “file_small_mask.xbm”);

/* Load the Icon Gadgets */
add_directory(“.”, NULL, container);

XtAppMainLoop (app);
}

Container Callbacks
The Container supports a number of callback resources: not all callback types wi
invoked in all contexts since some callbacks depend upon the layout policy of the wi

Firstly, the Container, supporting as it does the dragging and dropping of IconGa
children, defines the XmNconvertCallback and XmNdestinationCallback
resources, which are fully described in Chapter 23,Uniform Transfer Model. They will not
otherwise be discussed here.

Outline Callbacks

In Outline layout style, the Container calls theXmNoutlineChangedCallback
whenever an item in the Tree changes from a collapsed or expanded state. Each callb
this type is passed a pointer to anXmContainerOutlineCallbackStruct data
structure, which is defined as follows:

typedef struct
{

int reason;
XEvent *event;
Widget item;
unsigned char new_outline_state;

} XmContainerOutlineCallbackStruct;

The reason element will be eitherXmCR_COLLAPSEDor XmCR_EXPANDED, depending
upon the new state of the IconGadgetitem . Thenew_outline_state element will be
eitherXmCOLLAPSEDor XmEXPANDED, logically matching thereason element. However,
thenew_outline_state element can be changed by the programmer to force a partic
state for the changeditem .

Selection Callbacks

There are two selection callbacks supported by the Container.
XmNdefaultActionCallback is invoked whenever an IconGadget item is doub
clicked on using the mouse, or if the user presses the ACTIVATE key over the item.
XmNselectionCallback is invoked if the user selects an item otherwise. Both types
312 Motif Programming Manual

Chapter 9: Containers and IconGadgets

e

e is

nd a
ted
callback are passed a pointer to anXmContainerSelectCallbackStruct structure,
which is specified as follows:

typedef struct
{

int reason;
XEvent *event;
WidgetList selected_items;
int selected_item_count;
unsigned char auto_selection_type;

} XmContainerSelectCallbackStruct;

The reason element will reflect the current selection policy: it will be either the valu
XmCR_SINGLE_SELECT, XmCR_BROWSE_SELECT, XmCR_MULTIPLE_SELECT, orXmCR_
EXTENDED_SELECT.

The set of selected Container IconGadget children is specified by theselected_items
andselected_item_count elements.

If automatic selection is operative, theauto_selection_type element specifies the
current user action state: it will be eitherXmAUTO_BEGIN(the user has started a new
selection),XmAUTO_CANCEL(the user cancels the current selection action),XmAUTO_
CHANGE(a new item has been added to the selected set),XmAUTO_MOTION(a new item has
been added by a button drag action), orXmAUTO_NO_CHANGE(the user action has not
modified the current selected set). If automatic selection is inoperative, the valu
XmAUTO_UNSET.

Example 9-2 extends the code of Example 9-1 to include both Detail information a
selection callback which prints out the file system path for the currently selec
IconGadget.

Example 9-2. The detail.c program

/* detail.c -- demonstrate the container and icon gadget
** in Detail layout, with a selection callback printing
** out the selected IconGadget data
*/

#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <Xm/Container.h>
#include <Xm/IconG.h>
#include <Xm/ScrolledW.h>
#include <Xm/XmosP.h>
#include <sys/stat.h>
#include <dirent.h>
#include <time.h>

static char *column_headings[] = { “Name”, “Size”, “Modified” };

static Pixmap large_folder_icon = XmUNSPECIFIED_PIXMAP;
Motif Programming Manual 313

Chapter 9: Containers and IconGadgets
static Pixmap small_folder_icon = XmUNSPECIFIED_PIXMAP;
static Pixmap large_folder_mask = XmUNSPECIFIED_PIXMAP;
static Pixmap small_folder_mask = XmUNSPECIFIED_PIXMAP;
static Pixmap large_file_icon = XmUNSPECIFIED_PIXMAP;
static Pixmap small_file_icon = XmUNSPECIFIED_PIXMAP;
static Pixmap large_file_mask = XmUNSPECIFIED_PIXMAP;
static Pixmap small_file_mask = XmUNSPECIFIED_PIXMAP;

/* Create the Icongadget children at a given level in the
** file system. This time, Detail is added about the files.
*/
static void add_directory(char *path,

Widget parent_entry,
Widget container)

{
DIR *dir;
struct dirent *entry;
Arg args[12];
int n;

/* Loop through the directory entries */
dir = opendir (path);

while ((entry = readdir (dir)) != NULL) {
char name[256];
struct stat sb;

/* Get the file details. Note: no real error checking */
(void) sprintf (name, “%s/%s”, path, entry->d_name);

if (stat (name, &sb) == 0) {
XmString s;
XmStringTable details;
char buf[20];
Widget item;
int isDirectory;

if ((strcmp (entry->d_name, “.”) == 0) ||
(strcmp (entry->d_name, “..”) == 0)) {

continue;
}

s = XmStringCreateLocalized (entry->d_name);

isDirectory = ((sb.st_mode & S_IFDIR) != 0);

/* Create the details array */
details = (XmStringTable) XtMalloc(2 * sizeof (XmString *));

(void) sprintf (buf, “%d”, sb.st_size);
details[0] = XmStringCreateLocalized (buf);
details[1] = XmStringCreateLocalized (

(char *) ctime(&sb.st_mtim.tv_sec));
314 Motif Programming Manual

Chapter 9: Containers and IconGadgets
/* Create the IconGadget */
n = 0;
XtSetArg (args[n], XmNlabelString, s); n++;

if (isDirectory) {
XtSetArg (args[n], XmNlargeIconPixmap, large_folder_icon);
n++;

}
else {

XtSetArg (args[n], XmNlargeIconPixmap, large_file_icon);
n++;

}

if (isDirectory) {
XtSetArg (args[n], XmNlargeIconMask, large_folder_mask);
n++;

}
else {

XtSetArg (args[n], XmNlargeIconMask, large_file_mask);
n++;

}

if (isDirectory) {
XtSetArg (args[n], XmNsmallIconPixmap, small_folder_icon);
n++;

}
else {

XtSetArg (args[n], XmNsmallIconPixmap, small_file_icon);
n++;

}

if (isDirectory) {
XtSetArg (args[n], XmNsmallIconMask, small_folder_mask);
n++;

}
else {

XtSetArg (args[n], XmNsmallIconMask, small_file_mask);
n++;

}

XtSetArg (args[n], XmNentryParent, parent_entry); n++;
XtSetArg (args[n], XmNdetail, details); n++;
XtSetArg (args[n], XmNdetailCount, 2); n++;

item = XmCreateIconGadget (container, “icon”, args, n);
XtManageChild (item);

XmStringFree(details[0]);
XmStringFree(details[1]);
XtFree ((char *) details);

/* Recurse to subdirectories */
if (entry->d_name[0] != ‘.’) {

if (isDirectory) {
Motif Programming Manual 315

Chapter 9: Containers and IconGadgets
add_directory (name, item, container);
}

}
}

}

(void) closedir (dir);
}

/* For brevity, these are copied from Example 9-1 */
extern char *GetBitmapPath (Display *display, char *file);
extern Pixmap GetPixmap (Widget widget, char *file);
extern Pixmap GetBitmap (Widget widget, char *file);

/* Construct a file system path from the selected IconGadget */
/* This is crude, but it works. Optimization is a reader exercise */
static char *GetPath (Widget w, char *sofar)
{

static char buffer[512];
char temp[512], *leaf;
Widget parent = NULL;
XmString xms;

if (sofar == NULL) {
(void) strcpy (buffer, ““);

}

if (w == NULL) {
return buffer;

}

(void) strcpy (temp, buffer);

XtVaGetValues (w, XmNentryParent, &parent, XmNlabelString, &xms, NULL);

leaf = (char *) XmStringUnparse (xms, NULL,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL);

(void) sprintf (buffer,
“%s%s%s”, leaf, (sofar ? “/” : ““), temp);

XtFree (leaf);

return GetPath (parent, buffer);
}

/* The selection callback: simply prints out
** the selected IconGadget file system path
*/
static void select_callback (Widget w,

XtPointer client_data,
316 Motif Programming Manual

Chapter 9: Containers and IconGadgets
XtPointer call_data)
{

XmContainerSelectCallbackStruct *cptr;
int i;
char *path;

cptr = (XmContainerSelectCallbackStruct *) call_data;

for (i = 0; i < cptr->selected_item_count; i++) {
printf (“Selected: %s\n”,

GetPath (cptr->selected_items[i], NULL));
}

}

main (int argc, char *argv[])
{

Widget toplevel, form, scrolled_win, container;
XtAppContext app;
int i, n, count;
Arg args[12];
XmStringTable column_headings_table;

XtSetLanguageProc (NULL, NULL, NULL);
/* Create the top-level shell and two RowColumns */
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

XtVaSetValues (toplevel,
XmNtitle, “XmContainer - Detail Layout”, NULL);

form = XmCreateForm (toplevel, “form”, NULL, 0);

n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
scrolled_win = XmCreateScrolledWindow (form, “scrolled_win”, args, n);

/* Create the Container */
count = XtNumber (column_headings);
column_headings_table = (XmStringTable) XtMalloc(

count * sizeof (XmString *));
for (i = 0; i < count; i++)

column_headings_table[i] =
XmStringCreateLocalized (column_headings[i]);

n = 0;
XtSetArg (args[n], XmNwidth, 600); n++;
XtSetArg (args[n], XmNheight, 500); n++;
XtSetArg (args[n], XmNdetailColumnHeading, column_headings_table);
n++;
XtSetArg (args[n], XmNdetailColumnHeadingCount, count); n++;
Motif Programming Manual 317

Chapter 9: Containers and IconGadgets

Tree

ring
It is
hese

and
the
XtSetArg (args[n], XmNlayoutType, XmDETAIL); n++;
XtSetArg (args[n], XmNentryViewType, XmSMALL_ICON); n++;
XtSetArg (args[n], XmNselectionPolicy, XmSINGLE_SELECT); n++;
container = XmCreateContainer (scrolled_win, “container”, args, n);

/* Register a Selection Callback for the Container */
XtAddCallback (container,

XmNselectionCallback, select_callback, NULL);

/* Reclaim Memory which the widgets have copied */
for (i = 0; i < count; i++)

XmStringFree (column_headings_table[i]);
XtFree ((char *) column_headings_table);

XtManageChild (container);
XtManageChild (scrolled_win);
XtManageChild (form);
XtRealizeWidget (toplevel);

/* Read in the icons and their masks */
/* The bitmaps require a window, therefore must be done post-realize */
large_folder_icon = GetPixmap (container, “folder_large.xbm”);
small_folder_icon = GetPixmap (container, “folder_small.xbm”);
large_file_icon = GetPixmap (container, “file_large.xbm”);
small_file_icon = GetPixmap (container, “file_small.xbm”);

large_folder_mask = GetBitmap (container, “folder_large_mask.xbm”);
small_folder_mask = GetBitmap (container, “folder_small_mask.xbm”);
large_file_mask = GetBitmap (container, “file_large_mask.xbm”);
small_file_mask = GetBitmap (container, “file_small_mask.xbm”);

add_directory(“.”, NULL, container);

XtAppMainLoop (app);
}

The example output is logically the same as Figure 9-3, although the contents of the
will naturally depend upon your file system.

Container Functions
The Container support utilities fall into two groups: those concerned with transfer
Container selected items to and from the Clipboard, and general purpose utilities.
probably best to start in the reverse order and describe the utility functions first, as t
are generally the more useful for typical application programming.

Forcing Container Layout

The convenience functionXmContainerRelayout () forces the widget to recalculate the
layout of all its IconGadget children. This only takes effect if the layout style is Spatial,
if the Container is managed. The routine could be used if some kind of sorting of
318 Motif Programming Manual

Chapter 9: Containers and IconGadgets

tine

te
lso

of a
g the
em,
tine
ts

y
he
r

ard.
IconGadget children has taken place, either by respecifying theXmNx, XmNycoordinates of
each or through manipulation of theXmNpositionIndex resource. The routine has the
following functional signature:

void XmContainerRelayout (Widget container)

XmContainerRelayout () does not cause geometry management side effects: the rou
will not result in the Container requesting size changes from its parent in turn.

Sorting Container Items

After a set of Container items has theirXmNpositionIndex resource modified, the
routineXmContainerReorder () can be used to force the Container to internally upda
its knowledge of the layout. If the layout style is Detail or Outline, the Container will a
refresh the display. Note thatXmContainerRelayout () is required for an update to the
Spatial style - XmContainerReorder () has no effect on this layout style.
XmContainerReorder() has the following specification:

void XmContainerReorder (Widget container ,
WidgetList items ,
int item_count)

The function simply reorders theitems in the layout of the givencontainer according
to theXmNpositionIndex of each, using a quicksort algorithm.

Fetching Container Items

Given an arbitrary Container item in a Detail or Outline layout, presumably as a result
selection operation, we can deduce the logical parent of that item simply by inspectin
XmNentryParent constraint. If however we wanted to know the logical children of the it
there is no resource which will provide the required information. This is where the rou
XmContainerGetItemChildren () is useful. The routine returns the list of IconGadge
whoseXmNentryParent resource points at a given item, and it is defined as follows:

int XmContainerGetItemChildren (Widget container ,
Widget icon_gadget ,
WidgetList * item_children)

The set of logical children of theicon_gadget is returned at the address specified b
icon_children . The routine allocates memory for this, and it is the responsibility of t
programmer to reclaim the memory usingXtFree () at an appropriate point. The numbe
of items in the array is returned by the function.

Container Clipboard Routines

There are five routines defined for copying and pasting container items into the clipbo
They are XmContainerCut (), XmContainerCopy (), XmContainerCopyLink (),
XmContainerPaste (), andXmContainerPasteLink (). They are defined as follows:
Motif Programming Manual 319

Chapter 9: Containers and IconGadgets

ne

lly
tion
il in

ainer:
bove
user

ard.

he
tion
rstand
s the
et can
r the
the
Boolean XmContainerCut (Widget container , Time timestamp);
Boolean XmContainerCopy (Widget container , Time timestamp)
Boolean XmContainerCopyLink (Widget container , Time timestamp)
Boolean XmContainerPaste (Widget container)
Boolean XmContainerPasteLink (Widget container)

In each case, thetimestamp parameter should simply be specified using the routi
XtLastTimestampProcessed ().

The routines are fully integrated with the Uniform Transfer Model - they do not actua
cut or copy data to and from the clipboard, but internally invoke convert and destina
callbacks to perform these tasks. The Uniform Transfer Model is covered in deta
Chapter 23.

A typical usage of these routines is where an Edit menu has been defined for the Cont
the cut/copy/paste actions of the menu entries will be a simple interface onto the a
functions, and is appropriate if the programmer is presenting an interface where the
can edit a Tree or reorder a Detail layout by moving items around through the clipbo

Summary
The Container is the most flexible layout Manager in Motif. It offers multiple views of t
same data by allowing the programmer to switch layout dynamically. The selec
mechanisms whereby the Container reports actions in the widget are simple to unde
and easy to program. By separating the functionality whereby the Container perform
layout and selection and the IconGadget represents the application object, the widg
be considered as an approximation to a Model-View-Controller architecture. Whethe
application data needs to be viewed in Tabular, Tree, Grid, or free-floating format,
Container provides the necessary layout.

Exercises
The following exercises expand upon concepts presented in this chapter.

1. Modify the program of Example 9-2 to display file ownership, permissions,
and other status information amongst the Detail. Remember to expand the
column headings for the Container. Add options to the program to allow the
user to display or hide particular columns of detail, and to change the order
of the columns.

2. Add new images to the program to represent different types of file: binary,
source files, objects. Add a default action callback, and make the callback
spawn an appropriate action for the selected object: binaries could be exe-
cuted, source files edited.
320 Motif Programming Manual

n to
ed
Chapter 1

In this chapter:
• The ScrolledWindow Desi
• Creating a ScrolledWindo
• Working Directly With Scr
• Implementing True Applic

defined Scrolling
• Working With Keyboard T

in ScrolledWindows
• Summary
• Exercises

This chapter describes the
application-defined scrolling,
by the ScrolledWindow widge
Motif Programming Manual
gn Model
w
ollBars
ation-

raversal

10
sual
t are

ext
The

large
gets.

ver,
on two
her

cepts

ting
ates

widget
s to
riate

tion
s the
ScrolledWindows
and ScrollBars

ins and outs of scrolling. It pays particular attentio
which is often required when the simple scrolling provid
t is insufficient.

The ScrolledWindow widget provides a viewing area into another, usually larger, vi
object. The viewport may be adjusted by the user through the use of ScrollBars tha
attached to the ScrolledWindow. The Motif MainWindow, ScrolledList, and ScrolledT
objects use ScrolledWindows to implement scrolling for their respective contents.
ScrolledWindow can also be used independently to provide a viewport into another
object, such as a DrawingArea or a manager widget that contains a large group of wid
All of these scenarios are explored in this chapter.

The ScrolledWindow Design Model
The user always interacts with a ScrolledWindow through ScrollBars. Internally, howe
there are several ways to implement what the user sees. These methods are based
different scrolling models: automatic scrolling and application-defined scrolling. In eit
case, the application gives the ScrolledWindow awork windowthat contains the visual data
to be viewed. Although the two models are different, they share many of the same con
and features.

In automatic scrolling mode, the ScrolledWindow operates entirely on its own, adjus
the viewport as necessary in response to ScrollBar activity. The application simply cre
the desired data, such as a Label widget that contains a large pixmap, and makes that
the work window for the ScrolledWindow. When the user operates the ScrollBar
change the visible area, the ScrolledWindow adjusts the Label so that the approp
portion is visible. This design is demonstrated in Chapter 4,The Main Window, and Chapter
11,The DrawingArea.

With application-defined scrolling, the ScrolledWindow operates under the assump
that the work window is not complete. The widget assumes that another entity, such a
321

Chapter 10: ScrolledWindows and ScrollBars

and
, the
sary
ith

hen
two

lly.

is
hen
riate
in

ed
application or the internals of another widget, controls the data within the work window
that the data may change dynamically as the user scrolls. In order to control scrolling
application must control all aspects of the ScrollBars. This level of control is neces
when it is impossible or impractical for an application to provide the ScrolledWindow w
a sufficiently large work window (or the data for it) at any one time.

The Automatic Scrolling Model
Most of the time, the ScrolledWindow widget is used in automatic scrolling mode. W
it is used in this mode, the ScrolledWindow contains at most three internal widgets:
ScrollBars and aclip window* . The ScrolledWindow creates these widgets automatica
The work area is an external widget (specified by theXmNworkWindow resource) that is
clipped by the clip window. This work window is a child of the ScrolledWindow that
provided by the application; it is not created automatically by the ScrolledWindow. W
the user interacts with the ScrollBars, the work window is adjusted so that the approp
part is visible through the clip window. The general design of the ScrolledWindow
automatic scrolling mode is illustrated in Figure 10-1.

* In Motif 1.2, the clip window is implemented as a DrawingArea. In Motif 2.x, the clip window is a specializ
sub-class of the DrawingArea., calledxmClipWindowWidgetClass There is no public header file for the
subclass.

Figure 10-1: Design of an automatic ScrolledWindow

ScrollBars

Clip Window

Work Window
322 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

per
ow,
work
e
ars
the

ich

ely
his
lace

the

d the

he
for

the
ork
ode.

ixel
also

the
.

the
and
user.
the

you
ples.

sic
the
ge

ed-
The work window can be almost any widget, but there can be only one work window
ScrolledWindow. If you want to have more than one widget inside of a ScrolledWind
you can place all of the widgets in a manager widget and make that manager the
window. The clip window is always the size of the viewport portion of th
ScrolledWindow, which is the size of the ScrolledWindow minus the size of the ScrollB
and any borders and margins. The clip window is not adjusted in size unless
ScrolledWindow is resized. The clip window is always positioned at the origin, wh
means that you cannot useXtMoveWidget() or change itsXmNx and XmNyresources to
reposition it in the ScrolledWindow. The internals of the ScrolledWindow are sol
responsible for changing the view in the clip window, although you can affect t
behavior. While you can get a handle to the clip window, you must not remove it or rep
it with another window.

Be warned: the ScrolledWindow internally reparents the work window to be a child of
clip window. A call of XtParent () on the work window is not going to return the
ScrolledWindow even though you specify the ScrolledWindow as parent when you ad
work area.

The Application-defined Scrolling Model
In the application-defined scrolling model, which is the default model, t
ScrolledWindow always makes itself the same size as the work window. Just as
automatic scrolling, the application must provide the work window as a child of
ScrolledWindow. The main reason to use application-defined scrolling is if the w
window contains more data than can possibly be loaded in the automatic scrolling m
An application may also require different scrolling behavior than the default pixel-by-p
increments provided by the automatic scrolling mode. Application-defined scrolling is
the best option when the contents of the work window changes dynamically and
application does not want to rely on the ScrolledWindow to scroll new data into view

The disadvantage of application-defined scrolling is that the application, not
ScrolledWindow, is responsible for the ScrollBars. The application must create
manage the ScrollBars, as well as respond to the scrolling actions initiated by the
Since what is displayed in the clip window and the work window are identical,
ScrolledWindow widget does not bother to create a clip window*. However, there are still
some limitations as to what the ScrolledWindow can support. It is important that
understand the limitations before designing your application, so let’s look at two exam

A Text widget that displays the contents of an arbitrarily large file provides a clas
example of application-defined scrolling. Under the automatic scrolling model,
application might have to provide the ScrolledWindow with a work window that is lar

* A call of XtParent () on the work window in the application-defined scrolling model does return the Scroll
Window because the work area isnot reparented.
Motif Programming Manual 323

Chapter 10: ScrolledWindows and ScrollBars

lable
and

be for
clip
its
lling

o the
sion

ply
he List
List

y the

nd is
pport
rge
pter.

ntains
for

from
indow.

t can
play
in a

fined
t that
imize
never
e, so
yed

e to

he
ed

rom
uce
n not
ugh
size of
ome
enough to render thousands of lines of text, so that all of the text is immediately avai
to the user. An object of such proportions is prohibitive for reasonable performance
resource consumption. Since the work window cannot be as large as it would need to
automatic scrolling, it might as well be as small as possible, which is the size of the
window. When the Text widget is a child of a ScrolledWindow, the Text widget creates
own ScrollBars and attaches callback routines to them so that it can be notified of scro
actions.When the user scrolls, the Text widget changes the text in the work window t
text that corresponds to the new region that just scrolled into view. The user has the illu
that scrolling is taking place, but in reality, the data in the work window has sim
changed, thereby saving a great deal of overhead in system and server resources. T
widget uses the same method when it is the child of a ScrolledWindow. The Text and
widgets are the only examples of application-defined scrolling that are supported b
current implementation of the ScrolledWindow.

There is another scenario in which a large amount of data is retrieved dynamically a
not all available at the same time. Even though the ScrolledWindow does not really su
this scenario, you should be familiar with the situation, since it may come up in a la
application. There are some possible work arounds that we’ll discuss later in the cha
Let’s say that the Pacific Gas and Electric Company has an online database that co
all of the pipeline information for California and that an operator wants to view the data
San Francisco county. To display this information, the application must read the data
the database and convert that data into an image that can be presented in a ScrolledW

Although the database cannot get all the information for the whole county all at once, i
get more information than the window can display. Let’s say that the window can dis
10% of the county and the database can return information on 20% of the county
reasonable amount of time. The application needs to use the application-de
mechanisms because 100% of the data is not available for automatic scrolling. The fac
more than what can be displayed is available just means that the application could opt
performance by avoiding unnecessary retrieval of data from the database whe
scrolling takes place. The application could reuse the existing work window as a cach
that if the user scrolls by an amount that is small enough, the work window is redispla
in a way similar to the automatic scrolling mechanism. The application would still hav
control this behavior manually, though.

Unfortunately, the ScrolledWindow does not support this type of behavior. T
ScrolledWindow always expands to the size of its work window in application-defin
scrolling mode. In other words, you cannot have a work window that is a different size f
the clip window. This situation leaves you with several design decisions. You could red
the amount of data obtained from a database query, throw away excess informatio
used in your display, or make the viewport of an automatic ScrolledWindow large eno
for each query. In any case, the best approach is to use some method that makes the
the work window the same as the clip window. While this requirement may present s
324 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

nds

s of
se,

ines
the

less,
in

d the
and

uch
ation
atic

er
hile

ore

ts.

de

ated
size.

be
havior
are

he
hat is
logistical problems with the design of your application, we’ll discuss some work arou
for the situation later in the chapter.

In the two preceding examples, we have defined two fundamentally similar method
scrolling: semi-automatic scrolling and true application-defined scrolling. In the first ca
Text and List widgets handle their own scrolling internally through special-case rout
attached to the ScrollBars. We call this method semi-automatic scrolling, since
application programmer is not responsible for the scrolling of these widgets. Neverthe
the ScrolledWindow is in the application-defined scrolling mode. This situation is
contrast to true application-defined scrolling, where you must handle the ScrollBars an
associated scrolling actions entirely on your own. This method is more intricate
requires a significant amount of code to be implemented properly.

Obviously, the automatic scrolling mechanism provided by the ScrolledWindow is m
simpler than the application-defined mechanism and it requires much less applic
intervention. However, there are some drawbacks in the implementation of autom
scrolling. Automatic ScrolledWindows only scroll in single-pixel increments. If oth
scrolling behavior is required, you must use application-defined scrolling. And w
application-defined scrolling is far more complicated, the advantage is that it provides m
flexibility in the ways that the object is scrolled.

Creating a ScrolledWindow
Creating a ScrolledWindow is no different from creating other kinds of Motif widge
Applications that wish to use ScrolledWindows must include the header file <Xm/
ScrolledW.h>. The process of creating a ScrolledWindow is shown in the following co
fragments:

Widget scroll_w = XmCreateScrolledWindow (parent, "name", resource-value-array ,
resource-value-count);

Widget scroll_w = XtCreateWidget ("name", xmScrolledWindowWidgetClass, parent,
resource-value-list , NULL);

Theparent can be a Shell or any manager widget. The ScrolledWindow could be cre
as a managed widget, since the addition of its child does not cause it to renegotiate its
(See Chapter 8,Manager Widgets, for a discussion of when manager widgets should
created as managed or unmanaged widgets.) The resource-value pairs control the be
of the ScrolledWindow, as well as its visual effects. The most important resources
XmNscrollingPolicy , XmNvisualPolicy , and XmNscrollBarDisplayPolicy .
The value for XmNscrollingPolicy can be set to eitherXmAUTOMATICor
XmAPPLICATION_DEFINED, depending on which scrolling method you want to use. T
use of other ScrolledWindow resources varies depending on the scrolling behavior t
specified.
Motif Programming Manual 325

Chapter 10: ScrolledWindows and ScrollBars

eady
ntire
ified,
ow

n

the
t a
ne of

ss it’s
the
nt
in
ork

be
ns
ase,
n set

ving
to do
Automatic Scrolling
In automatic scrolling mode, the ScrolledWindow assumes that all of the data is alr
available in the work window and that the size of the work window represents the e
size of the viewable data. Even if the data changes and the size of work window is mod
the ScrolledWindow can still manage its display automatically. The ScrolledWind
should never resize itself due to changes in the work windows, soXmNvisualPolicy is
typically set toXmCONSTANT. This value tells the ScrolledWindow not to resize itself whe
the work window grows or shrinks. IfXmNvisualPolicy is set toXmVARIABLE, the
ScrolledWindow always sizes itself to contain the entire work window, which nullifies
need for an automatic ScrolledWindow. Like any other widget, the only time tha
ScrolledWindow should change size is when the parent resizes it, presumably for o
the following reasons:

• The shell has been resized.

• The ScrolledWindow is a child of a PanedWindow that the user has resized.

• Adjacent, sibling widgets have been resized, added, removed, etc.

• Application-controlled changes in widget size have been made.

The default size of the ScrolledWindow is never the same size as the work area, unle
a coincidence*. The default size is not very useful, so you should probably specify
XmNwidth andXmNheight resources for a ScrolledWindow. A problem arises if you wa
the ScrolledWindow to initialize itself to the size of the work window and have it be
automatic scrolling mode. To make the ScrolledWindow the same size as the w
window, you must use application-defined scrolling.

For automatic scrolling, the only thing left to decide is how you want the ScrollBars to
displayed if the work window dynamically grows or shrinks. There may be situatio
where the work window is the same size as or smaller than the clip window. In this c
you may not want to display the ScrollBars, since they are not needed. If so, you ca
XmNscrollBarDisplayPolicy to XmAS_NEEDED. If you always want the ScrollBars to
be visible, whether or not they are needed, you can set the resource toXmSTATIC. Some
people prefer static ScrollBars, so that consistency is maintained in the interface; ha
ScrollBars appear and disappear frequently may be confusing. Perhaps the best thing
is to allow the user to specify theXmNscrollBarDisplayPolicy . You can always set
your preference in the application defaults file, as shown below:

*XmScrolledWindow.scrollBarDisplayPolicy: STATIC

* The internals to the ScrolledWindow widget happen to set the width and height to100 pixels, although this fact
is not officially documented by OSF.
326 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

the
he

ame
e.

and

ey
annot

and

nly
ow.
get
that

ce

e
ch is
ike
eight

le.
ay
matic
l. On
it,

atic
Application-defined Scrolling
In the application-defined scrolling mode,XmNscrollingPolicy is set to
XmAPPLICATION_DEFINED. In this case, the work window must be the same size as
clip window, so the size of the work window is set by the toolkit. As a result, t
XmNvisualPolicy resource has the value ofXmVARIABLE, which indicates that the work
window grows and shrinks with the ScrolledWindow. Since the two windows are the s
size, the ScrolledWindow doesn’t need to have a clip window, so it doesn’t create on

Because application-defined scrolling implies that you are responsible for the creation
management of the ScrollBars, the toolkit forces theXmNscrollBarDisplayPolicy to
XmSTATIC, which means that the ScrolledWindow always displays the ScrollBars if th
are managed. Since the ScrolledWindow cannot know the size of the entire data, it c
automate the visibility of the ScrollBars. If you want your application to emulate theXmAS_
NEEDEDbehavior, you must monitor the size of the ScrolledWindow and the work area
manage the ScrollBars manually.

Additional Resources
Another ScrolledWindow resource is theXmNworkWindow, which is used to identify the
widget that acts as the ScrolledWindow’s work window. A ScrolledWindow can have o
one work window and a work window can be associated with only one ScrolledWind
In other words, you cannot assign the same widget ID to multiple ScrolledWindows to
multiple views into the same object. There are ways of achieving this effect, though,
will become apparent as we go through the chapter.

TheXmNclipWindow resource specifies the widget ID for the clip window. This resour
is read-only, so it is illegal to set the clip window manually or to reset it toNULL. For
practical purposes, this resource should be left alone. TheXmNverticalScrollBar and
XmNhorizontalScrollBar resources specify the widget IDs of the ScrollBars in th
ScrolledWindow. These resources allow you to set and retrieve the ScrollBars, whi
useful for monitoring scrolling actions and setting up application-defined scrolling. L
any other manager, the ScrolledWindow also has resources that control the margin h
and width and other visual attributes.

An Automatic ScrolledWindow Example
Automatic scrolling is the simpler of the two types of scrolling policies availab
Fortunately, it is also the more common of the two. You shouldn’t let this simplicity sw
you too much, though, as it is a common design error for programmers to use the auto
scrolling mechanisms for designs that are better suited to the application-defined mode
the other hand, if you merely want to monitor scrolling without necessarily controlling
you can install your own callback routines on the ScrollBars in an autom
ScrolledWindow, as we’ll describe in the next section
Motif Programming Manual 327

Chapter 10: ScrolledWindows and ScrollBars

and
of

ch as

Text

t are
y a
In automatic mode, a ScrolledWindow automatically creates its own ScrollBars
handles their callback procedures to position the work window in the clip window. All
the examples that use ScrolledWindows in the rest of the chapters in this book (su
those in Chapter 4,The Main Window, and Chapter 11,The DrawingArea Widget) use the
automatic scrolling mode. The only exceptions are the ScrolledList and Scrolled
objects, but the List and Text widgets handle application-defined scrolling internally.

Example 10-1 shows a large panel of Labels, ToggleButtons, and Text widgets tha
arranged in a collection of Form and RowColumn widgets and managed b
ScrolledWindow widget.*

Example 10-1. The getusers.c program

/* getusers.c -- demonstrate a simple ScrolledWindow by showing
** how it can manage a RowColumn that contains a vertical stack of
** Form widgets, each of which contains a Toggle, two Labels and
** a Text widget. The program fills the values of the widgets
** using various pieces of information from the password file.
** Note: there are no callback routines associated with any of the
** widgets created here -- this is for demonstration purposes only.
*/
#include <Xm/PushBG.h>
#include <Xm/LabelG.h>
#include <Xm/ToggleB.h>
#include <Xm/ScrolledW.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/Text.h>
#include <pwd.h>

typedef struct {
String login;
int uid;
String name;
String homedir;

} UserInfo;

/* use getpwent() to read data in the password file to store
** information about all the users on the system. The list is
** a dynamically grown array, the last of which has a NULL login.
*/

UserInfo *getusers(void)
{

/* extern struct *passwd getpwent(); */
extern char *strcpy();
struct passwd *pw;
UserInfo *users = NULL;
int n;

* XtVaAppInitialize() is considered deprecated in X11R6.
328 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars
setpwent();

/* getpwent() returns NULL when there are no more users */
for (n = 0; pw = getpwent(); n++) {

/* reallocate the pointer to contain one more entry. You may choose
** to optimize by adding 10 entries at a time, or perhaps more?
*/
users = (UserInfo *) XtRealloc ((char *) users,

(n+1) * sizeof (UserInfo));
users[n].login = strcpy (XtMalloc (strlen (pw->pw_name)+1),

pw->pw_name);
users[n].name = strcpy (XtMalloc (strlen (pw->pw_gecos)+1),

pw->pw_gecos);
users[n].homedir = strcpy (XtMalloc (strlen (pw->pw_dir)+1),

pw->pw_dir);
users[n].uid = pw->pw_uid;

}

/* allocate one more item and set its login string to NULL */
users = (UserInfo *) XtRealloc ((char *) users,

(n+1) * sizeof (UserInfo));
users[n].login = NULL;
endpwent();

return users; /* return new array */
}

main (int argc, char *argv[])
{

Widget toplevel, sw, main_rc, form, toggle, child;
XtAppContext app;
UserInfo *users;
Arg args[10];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* Create a 500x300 scrolled window. This value is arbitrary,
** but happens to look good initially. It is resizable by the user.
*/
n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 300); n++;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
sw = XmCreateScrolledWindow (toplevel, "scrolled_w", args, n);

/* RowColumn is the work window for the widget */
main_rc = XmCreateRowColumn (sw, "main_rc", NULL, 0);

/* load the users from the passwd file */
if (!(users = getusers())) {

perror ("Can't read user data info");
Motif Programming Manual 329

Chapter 10: ScrolledWindows and ScrollBars
exit (1);
}

/* for each login entry found in the password file, create a
** form containing a toggle button, two labels and a text widget.
*/
while (users->login) {

/* NULL login terminates list */
char uid[8];

form = XmCreateForm (main_rc, ““, NULL, 0);

n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, 15); n++;
child = XmCreateToggleButton (form, users->login, args, n);
XtManageChild (child);

sprintf (uid, "%d", users->uid);
n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_END); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNleftPosition, 15); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, 20); n++;
child = XmCreateLabelGadget (form, uid, args, n);
XtManageChild (child);

n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNleftPosition, 20); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, 50); n++;
child = XmCreateLabelGadget (form, users->name, args, n);
XtManageChild (child);

/* Although the home directory is readonly, it may be longer
** than expected, so don't use a Label widget. Use a Text widget
** so that left-right scrolling can take place.
*/
n = 0;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNleftPosition, 50); n++;
330 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

of
u
d to

quent

n
ts, as

olely
. The
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNvalue, users->homedir); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
child = XmCreateText (form, users->homedir, args, n);
XtManageChild (child);

XtManageChild (form);
users++;

}

XtManageChild (main_rc);
XtManageChild (sw);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Those of you who are familiar with UNIX programming techniques should find the use
getpwent() andendpwent() quite familiar. If you are not aware of these functions, yo
should consult the documentation for your UNIX system. In short, they can be use
return information about the contents of the password file (typically/etc/passwd), which
contains information about all of the users on the system. The first call togetpwent()
opens the password file and returns a data structure describing the first entry. Subse
calls return consecutive entries. When the entries have been exhausted,getpwent()
returnsNULLandendpwent() closes the password file. In Example 10-1, the informatio
from the password file is represented using ToggleButtons, Labels, and Text widge
shown in Figure 10-2.

The components in the program do not have any functionality; the program is used s
to demonstrate how panels of arbitrary widgets can be displayed in a ScrolledWindow

Figure 10-2: Output of thegetusers program
Motif Programming Manual 331

Chapter 10: ScrolledWindows and ScrollBars

lar
d a
are
. See

ere
ith a
the

ent
use
efault
trol
n the

tion.
of

bels,
the
ments
y are
to do

atic

and
f a

t with
r

as
lBar
on
tic

p to
llBar
widget hierarchy is irrelevant to the operation of the ScrolledWindow. In this particu
case, the ScrolledWindow is a child of the top-level shell. We could have use
MainWindow widget in place of a ScrolledWindow; these two components
interchangeable because the MainWindow is subclassed from the ScrolledWindow
Chapter 4,The Main Window, for more details on how the MainWindow widget fits into
the design of an application.

We used arbitrary values for the width and height of the ScrolledWindow; they w
chosen because they seemed to work best. If you are using a ScrolledWindow w
number of other widgets in an interface, you do not need to specify an initial size for
ScrolledWindow. Since the ScrolledWindow is extremely flexible, you can allow its par
or its siblings to control its size. ScrolledWindows work well with PanedWindows beca
they can be adjusted easily. However, the ScrolledWindow does not have a sensible d
size, so you should provide an initial geometry if the ScrolledWindow is going to con
its own size. In this case, the size that you choose for the widget should be based o
aesthetics of the data that is being displayed.

In the example, the child of the ScrolledWindow is themain_rc widget, which is a
RowColumn that contains all of the children that represent the password file informa
After getusers() is called, the program loops through each item in the array
UserInfo structures and creates a Form widget that contains a ToggleButton, two La
and a Text widget. All of the Forms are stacked vertically on top of one another in
RowColumn.Once complete, the user can scroll around and access any of the ele
without the application having to support any of the scrolling mechanisms because the
completely automated by the toolkit. In most cases, an application does not need
anything other than what we described in this section to take advantage of autom
scrolling.

Working With ScrollBars
The ScrollBar is the backbone of the ScrolledWindow. Although the ScrollBar is a st
alone widget that can be created and manipulated without being the child o
ScrolledWindow, we are not going to discuss this usage because it is not consisten
the Motif Style Guide . The kinds of things that you can do with a ScrollBa
individually are no more interesting than the sorts of things that you can do with them
children of ScrolledWindows, anyway. We are going to discuss how to control a Scrol
directly from an application in the context of a ScrolledWindow widget. This informati
is useful if you want to monitor scrolling, if you want to fine-tune the way that automa
scrolling is handled, or if you want to implement application-defined scrolling.

Before we begin, it is important to understand that the ScrollBar doesnot handle scrolling
itself. The widget merely reports scrolling actions through its callback routines. It is u
the internals of an application or a widget to install callback procedures on the Scro
332 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

y in
play
y, you
re 10-
nts a

rolls.
t the
olled
nto

the
unit
st to
e is
ork.
gth.

est
ttom
ays
t’s
ar
.

clip
he

an
alue
that adjust the work window appropriately. The ScrollBar manages its own displa
accordance with scrolling actions, so you do not need to update the ScrollBar’s dis
unless the underlying data of the object being scrolled changes. To change the displa
can set resources that are associated with the different elements of the ScrollBar. Figu
3 illustrates the design of a ScrollBar and identifies its elements. This figure represe
vertical ScrollBar; a ScrollBar can also be oriented horizontally.

The appearance and behavior of a ScrollBar is directly related to the object that it sc
The relationship between the ScrollBar and the object it scrolls is proportional, so tha
size of the slider in the ScrollBar represents how much of the object that is being scr
is visible in the clip window. The size of the object being scrolled is broken down i
equally sized units; the size of the units is called theunit length. When the user clicks on
one of the incremental arrows (also called directional arrows), the ScrollBar scrolls in
direction indicated by the arrow in unit increments. It is important to realize that the
length is stored and interpreted internally by the object being scrolled; it is of no intere
the ScrollBar itself, since it does not affect the display of the ScrollBar. While this valu
not set on the ScrollBar itself, it plays a key role in understanding how ScrollBars w
All of the other resource values for the ScrollBar are measured in terms of the unit len
A Text widget might set its unit length for the vertical ScrollBar to the height of the tall
character in the widget’s font set, plus some margin for whitespace on the top and bo
of the character. As a result, vertical scrolling adjusts the window so that the text is alw
displayed without lines being partially obscured. However, it is the Text widge
responsibility to know the unit length value. The unit length for the horizontal ScrollB
unit length might be the average width of the characters in the font that is being used

The value of a ScrollBar is the offset, measured in unit lengths, of the data in the
window from the object’s origin. For example, if the top of the clip window displays t
fourth line of text in a Text widget, the ScrollBar is said to have a value of3, since it is
offset from0. Clicking and dragging the slider directly changes the ScrollBar’s value to
absolute number; clicking on either of the directional arrows changes the ScrollBar’s v

Figure 10-3: Elements of a ScrollBar

Incremental Arrow

SliderScrolling Region
Motif Programming Manual 333

Chapter 10: ScrolledWindows and ScrollBars

the

ths.
e a
ns

h. If
ined
t lose

es the

orts
for
al
ber

uld
llBar
the

olls
incrementally; clicking in the scrolling region, but not on the slider itself changes
ScrollBar’s value by page lengths. The value is measured in units, not pixels.

Theview lengthis the size of the viewable area (clip window), as measured in unit leng
The vertical ScrollBar for a Text widget that is displaying 15 lines of text would hav
view length of15. The horizontal ScrollBar’s view length would be the number of colum
that the clip window can display.

Thepage lengthis measured in unit lengths and is usually one less than the view lengt
the user scrolls the window by a page increment, the first line from the old view is reta
as the last line in the new view for visual reference because otherwise, the user migh
her orientation.

Resources
Figure 9-4 illustrates the relationship between the elements listed above and introduc
ScrollBar resources that correspond to these values.

The XmNincrement resource represents the number of units that the ScrollBar rep
having scrolled when the user clicks on its incremental arrows. The value
XmNincrement in Figure 10-4 is1 because each incremental scroll on the vertic
ScrollBar should scroll the text one line. Internally, the Text widget knows that the num
of pixels associated withXmNincrement is the height of a line. For an automatic
ScrolledWindow, it is rare to set the resource to any value other than1.

TheXmNpageIncrement resource specifies the number of units that the ScrollBar sho
report having scrolled when the user moves the ScrollBar by a page. Again, the Scro
doesn’t actually perform the scrolling, it just reports the scrolling action. However,

Figure 10-4: Conceptual relationship between a ScrollBar and the object that it scr

1
2

3

1 Length (XmNmaximum)
2 Page Length (XmNpageIncrement)
3 View Length (XmNsliderSize)

line height is (one)
unit length
(XmNincrement)

Value
(XmNvalue)
334 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

the
d by

bject

t will
rce
clip

he
by

om a

-

ScrollBar does use this value to calculate the new visual position for the slider within
scrolling area and to update its display. The application can use this value, multiplie
pixels-per-unit, to determine the new data to display in the work window.

TheXmNmaximumresource is the largest size, measured in unit increments, that the o
can have. For the Text widget shown above, the value forXmNmaximumis 9.* The
XmNminimumresource is the smallest size, measured in unit increments, that the objec
ever have. TheXmNsliderSize resource corresponds to the view length. The resou
specifies the size of the clip window in unit lengths. For example, in Figure 10-4, the
window can display six lines, soXmNsliderSize is 6 .

TheXmNvalue is the number of units that the data in the clip window is offset from t
beginning of the work window. For example, if the Text widget has been scrolled down
four lines from the top, the value of the vertical ScrollBar’sXmNvalue resource would be
4.

Example 10-2 demonstrates how the vertical ScrollBar resources get their values fr
typical ScrolledText object.†

Example 10-2. The simple_sb.c program

/* simple_sb.c -- demonstrate the Scrollbar resource values from
** a ScrolledText object. This is used as an introductory examination
** of the resources used by Scrollbars.
*/
#include <Xm/ScrolledW.h>
#include <Xm/RowColumn.h>
#include <Xm/PushBG.h>
#include <Xm/Text.h>

/* print the "interesting" resource values of a scrollbar */
void get_sb (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget scrollbar = (Widget) client_data;
int increment=0, maximum=0, minimum=0;
int page_incr=0, slider_size=0, value=0;

XtVaGetValues (scrollbar, XmNincrement,&increment,
XmNmaximum, &maximum,
XmNminimum, &minimum,
XmNpageIncrement,&page_incr,
XmNsliderSize, &slider_size,
XmNvalue, &value,
NULL);

printf ("increment=%d, max=%d, min=%d, page=%d, slider=%d, value=%d\n",
increment, maximum, minimum, page_incr, slider_size, value);

* The Motif Text widget sets its horizontal ScrollBar’sXmNmaximumto the number of characters in its widest vis
ible line, rather than the widest of all of its lines.

† XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 335

Chapter 10: ScrolledWindows and ScrollBars

Text
bject.
}

main (int argc, char *argv[])
{

Widget toplevel, rowcol, text_w, pb, sb;
XtAppContext app;
Arg args[10];
int n = 0;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* RowColumn contains ScrolledText and PushButton */
rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

XtSetArg (args[n], XmNrows, 10); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNscrollHorizontal, False); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
text_w = XmCreateScrolledText (rowcol, "text_w", args, n);
XtManageChild (text_w);

/* get the scrollbar from ScrolledWindow associated with Text widget */
XtVaGetValues (XtParent (text_w), XmNverticalScrollBar, &sb, NULL);

/* provide a pushbutton to obtain the scrollbar's resource values */
pb = XmCreatePushButtonGadget (rowcol, "Print ScrollBar Values", NULL,

0);
XtAddCallback (pb, XmNactivateCallback, get_sb, sb);
XtManageChild (pb);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

This program simply displays a ScrolledText object and a PushButton. The Scrolled
object does not contain any text by default; you can cut and paste some text into the o
The graphical output of the program is displayed in Figure 10-5.

Figure 10-5: Output of the simple_sb program
336 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

rtical

of

n, the
ber of
s that
view

lip

ive

. For

hould

bout
ork
en
the

s its
the

n the

al
for
When the PushButton is activated, it retrieves some resource values from the ve
ScrollBar of the Text widget’s ScrolledWindow. These values are output tostdout. The
following output shows some possible values for the different resources:

increment=1, max=12, min=0, page=9, slider=10, value=0
increment=1, max=12, min=0, page=9, slider=10, value=1
increment=1, max=25, min=0, page=9, slider=10, value=6
increment=1, max=25, min=0, page=9, slider=10, value=12
increment=1, max=25, min=0, page=9, slider=10, value=15

The value forXmNincrement is always1, which indicates that the incremental arrow
buttons scroll the text by one unit in either direction. The value forXmNmaximumchanges
according to the number of lines of text that there are in the window. The value
XmNminimum is always0 because this object can have as few as zero lines of text.

The values forXmNsliderSize andXmNpageIncrement are10 and9, respectively. The
values never changed because the ScrolledWindow was not resized. If it had bee
slider size and page increment values would have changed to match the new num
lines displayed in the window. The page increment is one less than the number of line
can be displayed in the clip window, so that if the user scrolls by a page, the new
contains at least one of the previously-viewed lines for reference.

The value forXmNvalue varies depending on the line that is displayed at the top of the c
window. If the beginning of the text is displayed,XmNvalue is 0. As the user scrolls
through the text, the value forXmNvalue increases or decreases, but it is always a posit
value.

Incidentally, you can adjust these resource values to get some different results
example, you could set theXmNincrement resource to2 in order to modify the number of
lines that are scrolled when the user selects the incremental arrows. However, you s
not change these resources arbitrarily, as you could really confuse the user.

As mentioned at the beginning of this section, the most important thing to remember a
the ScrollBar widget is that it does not cause any actual scrolling of the object in the w
window. The widget merely reports scrolling activity through its callback routines. Wh
scrolling occurs, it is the callback routines that are responsible for modifying the data in
work window, by adjusting elements or redrawing the image. The ScrollBar update
own display according to the scrolling action. If the widget or the application that owns
callback routines fails to modify the display, the user will see an inconsistency betwee
ScrollBar display and the data in the clip window.

Orientation
Two ScrollBar resources that are closely related areXmNorientation and
XmNprocessingDirection . These resources specify the horizontal or vertic
orientation of the ScrollBar and its normal processing direction. The value
Motif Programming Manual 337

Chapter 10: ScrolledWindows and ScrollBars

lue
the
ssing
e

atural
he
to

the
slider
t, and
-only

. It is
n old-

is

t.
XmNorientation can be eitherXmHORIZONTALor XmVERTICAL. When a ScrollBar is
oriented horizontally, the normal processing direction for it is such that the minimum va
is on the left and the maximum is on the right. When the orientation is vertical,
minimum is on the bottom and the maximum is on the top. You can change the proce
direction using theXmNprocessingDirection resource. This resource can have th
following values:

XmMAX_ON_LEFT XmMAX_ON_RIGHT
XmMAX_ON_TOP XmMAX_ON_BOTTOM

These values only need to be changed when the user’s environment is such that the n
language for the locale is read from right-to-left. In this case, t
XmNscrollBarPlacement resource for the ScrolledWindow needs to be changed
match the processing direction. This resource can have the following values:

XmTOP_LEFT XmTOP_RIGHT
XmBOTTOM_LEFT XmBOTTOM_RIGHT

Visual and Input Resources
The ScrollBar is generally used as an input-output component: the slider displays
relationship between the viewport and the underlying work area, the user moves the
to move the viewport. The ScrollBar however can be used as a read-only componen
has resources to modify its visuals depending upon the required presentation. A read
ScrollBar can be effected by setting theXmNeditable resource toFalse .

Usually, a ScrollBar has a slider which moves unattached to the ends of the trough
possible to make one end of the slider attached so that the ScrollBar behaves like a
fashioned spirit thermometer. The resource to modify for this behavior
XmNslidingMode * : the default isXmSLIDER, which gives the familiar unfixed slider. A
value ofXmTHERMOMETER fixes the slider at one end.

The general appearance of the slider itself can be modified through theXmNsliderMark †

resource. The possible values are:XmETCHED_LINE, XmNONE, XmROUND_MARK,
XmTHUMB_MARK. XmNONEsimply draws a rectangle in the foreground color of the widge

* XmNslidingMode is available from Motif 2.0 onwards.

† XmNsliderMark is available from Motif 2.0 onwards.
338 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

urce

get,
Figure 10-6 shows the effect of setting this resource to the various values.

The coloration algorithm of the slider is configurable through theXmNsliderVisual *

resource. The choices are between painting in the widget’s trough color (XmTROUGH), in the
background color (XmBACKGROUND_COLOUR), in the foreground (XmFOREGROUND), or in
a shadowed background (XmSHADOWED_BACKGROUND).

The arrows at the ends of the ScrollBar can also be configured. The reso
XmNshowArrows† can be set to display arrows on either end (XmEACH_SIDE), the arrows
at the maximum end (XmMAX_SIDE), the arrows at the minimum end (XmMIN_SIDE), or no
arrows at all (XmNONE). Figure 10-7 shows the various arrangements.

Most of the visual resources mentioned in this section are utilized by the Scale wid
which internally uses a ScrollBar to display the widget value.

* XmNsliderVisual is available fro Motif 2.0 onwards.

† In Motif 1.2,XmNshowArrows is a simple Boolean: show both arrows, or neither.

XmNONE XmROUND_MARK

XmTHUMB_MARKXmETCHED_LINE

Figure 10-6: The various settings of theXmNsliderMark resource

XmEACH_SIDE

XmMIN_SIDE

XmMAX_SIDE

XmNONE

Figure 10-7: The various settings of theXmNshowArrows resource
Motif Programming Manual 339

Chapter 10: ScrolledWindows and ScrollBars

rnal
rious
nitor
t or
tion

lling,

olling
ith it.
lling
ck

as a
ason,

r-

er

r

-

na-
Callback Routines
The callback routines associated with the ScrollBar are its only links into the inte
mechanisms that actually scroll the data. You can use these callback routines in va
contexts, depending on what you want to accomplish. For example, you can mo
scrolling in an automatic or semi-automatic ScrolledWindow, such as a ScrolledTex
ScrolledList object. These two activities are identical when it comes to the implementa
of what we are about to describe. You can also implement application-defined scro
which requires intimate knowledge of the internals of the object being scrolled.

There are different parts of a ScrollBar that the user can manipulate to cause a scr
action. In fact, each part of the ScrollBar has a separate callback routine associated w
These callback routines are used both to monitor automatic (or semi-automatic) scro
and to implement application-defined scrolling. As with all Motif callbacks, the callba
routines take the form of anXtCallbackProc . All of the ScrollBar callbacks pass a
structure of typeXmScrollBarCallbackStruct for the third parameter. This structure
takes the following form:

typedef struct {
int reason;
XEvent *event;
int value;
int pixel;

} XmScrollBarCallbackStruct;

Thereason field specifies the scrolling action performed by the user. Each callback h
corresponding reason that indicates the action. Table 10-1 lists the callback name, re
and scrolling action for each ScrollBar callback resource.

Table 1-1. Callback Resources for the ScrollBar Widget

Resource Name Reason Action

XmNincrementCallback XmCR_INCREMENT Top or right directional arrow
clicked

XmNdecrementCallback XmCR_DECREMENT Bottom or left directional a
row clicked

XmNpageIncrementCallback XmCR_PAGE_INCREMENT Area above or right of slid
clicked

XmNpageDecrementCallback XmCR_PAGE_DECREMENT Area below or left of slide
clicked

XmNtoTopCallback XmCR_TO_TOP Top or right directional arrow
CTRL-clicked

XmNtoBottomCallback XmCR_TO_BOTTOM Bottom or left directional ar
row CTRL-clicked

XmNdragCallback XmCR_DRAG Slider dragged

XmNvalueChangedCallback XmCR_VALUE_CHANGED Value changed (see expla
tion)
340 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

ends
r

ny of
the

re
user

his

the

ess

f the
ely.
nge
The scrolling action that invokes the various increment and decrement callbacks dep
on the value of theXmNprocessingDirection resource; the table shows the actions fo
a left-to-right environment. TheXmNvalueChangedCallback is invoked when the user
releases the mouse button after dragging the slider. The callback is also invoked for a
the other scrolling actions if the corresponding callback resource is not set, with
exception of theXmNdragCallback . This feature is convenient for cases where you a
handling your own scrolling and you are not concerned with the type of scrolling the
invoked.

Thevalue field of the callback structure indicates the new position of the ScrollBar. T
value can range fromXmNminimumto XmNmaximum. Thepixel field indicates thex or y
coordinate of the mouse location relative to the origin of the ScrollBar for
XmNtoTopCallback , XmNtoBottomCallback , andXmNdragCallback routines. The
origin is the top of a vertical ScrollBar or the left side of a horizontal ScrollBar, regardl
of the value ofXmNprocessingDirection .

Example 10-3 demonstrates how a callback routine can be hooked up to each o
callback resources to allow you to monitor the scrolling in a List widget more precis
For Text and List widgets, you really should not be using the callback routines to cha
the default scrolling behavior.*

Example 10-3. The monitor_sb.c program

/* monitor_sb.c -- demonstrate the ScrollBar callback routines by
** monitoring the ScrollBar for a ScrolledList. Functionally, this
** program does nothing. However, by tinkering with the Scrolled
** List and watching the output from the ScrollBar's callback routine,
** you'll see some interesting behavioral patterns. By interacting
** with the *List* widget to cause scrolling, the ScrollBar's callback
** routine is never called. Thus, monitoring the scrolling actions
** of a ScrollBar should not be used to keep tabs on exactly when
** the ScrollBar's value changes!
*/
#include <Xm/List.h>

/* print the interesting resource values of a scrollbar */
void scroll_action (Widget scrollbar, XtPointer client_data,

XtPointer call_data)
{

XmScrollBarCallbackStruct *cbs =
(XmScrollBarCallbackStruct *) call_data;

printf ("cbs->reason: %s, cbs->value = %d, cbs->pixel = %d\n",
cbs->reason == XmCR_DRAG? "drag" :
cbs->reason == XmCR_VALUE_CHANGED? "value changed" :
cbs->reason == XmCR_INCREMENT? "increment" :
cbs->reason == XmCR_DECREMENT? "decrement" :

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 341

Chapter 10: ScrolledWindows and ScrollBars
cbs->reason == XmCR_PAGE_INCREMENT? "page increment" :
cbs->reason == XmCR_PAGE_DECREMENT? "page decrement" :
cbs->reason == XmCR_TO_TOP? "top" :
cbs->reason == XmCR_TO_BOTTOM? "bottom" : "unknown",
cbs->value, cbs->pixel);

}

main (int argc, char *argv[])
{

Widget toplevel, list_w, sb;
XtAppContext app;
char *items = "choice0, choice1, choice2, choice3, choice4, \

choice5, choice6, choice7, choice8, choice9, \
choice10, choice11, choice12, choice13, \
choice14";

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL, 0);
list_w = XmCreateScrolledList (toplevel, "list_w", NULL, 0);
XtVaSetValues (list_w,

/* Rather than convert the entire list of items into an array
** of compound strings, let's just let Motif's type converter
** do it and save lots of effort (although not much time).
*/
XtVaTypedArg, XmNitems, XmRString, items, strlen (items)+1,
XmNitemCount, 15,
XmNvisibleItemCount, 5,
NULL);

XtManageChild (list_w);

/* get the scrollbar from ScrolledWindow associated with Text widget */
XtVaGetValues (XtParent (list_w), XmNverticalScrollBar, &sb, NULL);

XtAddCallback (sb, XmNvalueChangedCallback, scroll_action, NULL);
XtAddCallback (sb, XmNdragCallback, scroll_action, NULL);
XtAddCallback (sb, XmNincrementCallback, scroll_action, NULL);
XtAddCallback (sb, XmNdecrementCallback, scroll_action, NULL);
XtAddCallback (sb, XmNpageIncrementCallback, scroll_action, NULL);
XtAddCallback (sb, XmNpageDecrementCallback, scroll_action, NULL);
XtAddCallback (sb, XmNtoTopCallback, scroll_action, NULL);
XtAddCallback (sb, XmNtoBottomCallback, scroll_action, NULL);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

342 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

e 10-

ser’s
user

t the
the

eive
rolling

The
you
like

k to
ys a
ll of
ality

the
large

his
The program displays a simple ScrolledList that contains 15 entries, as shown in Figur
8.

The entries in the List are not important; the way that the ScrollBar reacts to the u
interaction is what is interesting. The following output shows what happens when the
scrolls the List:

cbs->reason: increment, cbs->value = 1, cbs->pixel = 0
cbs->reason: page increment, cbs->value = 5, cbs->pixel = 0
cbs->reason: drag, cbs->value = 6, cbs->pixel = 46
cbs->reason: drag, cbs->value = 7, cbs->pixel = 50
cbs->reason: value changed, cbs->value = 7, cbs->pixel = 50
cbs->reason: decrement, cbs->value = 6, cbs->pixel = 0
cbs->reason: top, cbs->value = 0, cbs->pixel = 11

If you use the keyboard to select elements or scroll around in the list, you’ll notice tha
callbacks for the ScrollBar are not invoked because the List widget is taking all of
keyboard events from the ScrollBar. Like any other widget, the ScrollBar can rec
keyboard events, and it even has translations to map certain key sequences to sc
actions. However, the List widget setsXmNtraversalOn to False for the ScrollBar, so
that the List can process its own keyboard actions, some of which scroll the window.
Text widget does the same thing with its ScrollBars. As a result, there is a limit to what
can accomplish by monitoring ScrollBar actions on semi-automatic scrolling objects
List and Text widgets.

Implementing True Application-defined
Scrolling

In this section, we pull together what we’ve learned in this chapter and put it to wor
implement application-defined scrolling. We are going to use an example that displa
large number of individual bitmaps in a ScrolledWindow, so that the user can view a
the bitmaps by scrolling the window. The intent is to make the appearance and function
of the ScrolledWindow mimic the automatic scrolling mode as much as possible.

There are actually several ways to go about writing this program, depending on
constraints that we impose. The simplest method is to render each bitmap into one
pixmap and use that pixmap as theXmNlabelPixmap for a Label widget. The Label
widget can then be used as the work window for an automatic ScrolledWindow. T

Figure 10-8: Output of the monitor_sb program
Motif Programming Manual 343

Chapter 10: ScrolledWindows and ScrollBars

t the
ction
port
ed.

cell-

gets
l unit
unit
the
t, so

f our
olling
need
port
ixels

is
he
ram
ized.
ea in
ied
hat
can
are

le
auses
the

o the
es so
solve
design is similar to most of the other examples of ScrolledWindows used throughou
book. However, we want to add a constraint such that each incremental scrolling a
causes the display to shift by one bitmap cell, so that the top and left sides of the view
always show a full bitmap. In other words, no partially-displayed bitmaps are allow
Furthermore, when the user drags the slider, we want the display to scroll in
increments, not pixel-by-pixel.

The constraints that we just described define the behavior that the List and Text wid
use for their own displays. Like those widgets, our example program has a conceptua
size that is represented by the object being scrolled. For the Text and List widgets, the
size is the height and width of the font used by the entries. For our bitmap viewer,
heights and widths of the bitmaps vary more dramatically than the characters in a fon
for consistency, the unit size is set to the largest of all of the bitmaps. The design o
program is based on the same principles used by the ScrolledWindow’s automatic scr
method. Only in this case, we are going to do the work ourselves. The reason that we
to use application-defined scrolling is that the automatic scrolling method cannot sup
the scrolling constraints described above; there is no way to change the number of p
per scrolling unit with an automatic ScrolledWindow.

In our implementation, the work window is a DrawingArea widget whose size
constrained by the size of the viewport in the ScrolledWindow. Initially, t
ScrolledWindow sizes itself to the size of the DrawingArea widget, but once the prog
is running, the size of the DrawingArea is changed by the ScrolledWindow as it is res
The bitmaps are rendered into a large pixmap, which is rendered into the DrawingAr
connection with scrolling actions. The offset of the pixmap and how much of it is cop
into the DrawingArea is controlled by the application, following the same algorithm t
the ScrolledWindow uses in automatic scrolling mode. The only difference is that we
adjust for the pixels-per-unit value, whereas the automatic ScrolledWindow is only aw
of single-pixel units.

Proper scrolling is not a particularly difficult problem to solve, as it only involves simp
arithmetic. The real problem is handling the case where the user or the application c
the ScrolledWindow to resize, since this action changes all of the variables in
calculation. When resizing happens, the ScrolledWindow passes that resizing ont
DrawingArea widget, which must recalculate its size and update the ScrollBar resourc
that the display and the graphic representation match. Basically, the program has to
four independent problems:

1. Read the bitmaps and load them into a sufficiently large pixmap.

2. Create the ScrolledWindow, a DrawingArea widget, and two ScrollBars;
the program must initialize each of these widgets’ resources so that the ra-
tio between their sizes and the size of the pixmap is consistent.

3. Set up a callback routine for the ScrollBars to respond to scrolling actions.
344 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

neral
lly, a
gant
ugh

code
4. Provide a callback routine for the DrawingArea widget’s XmNresizeCall-
back that updates all of the widgets’ resources according to the new ratio
between the widgets and the pixmap.

Although each of these problems has a simple solution, when combined the ge
solution becomes quite complex. Rather than trying to solve each problem individua
well-designed application integrates the solutions to the problems into a single, ele
design. Example 10-4 demonstrates our implementation of the bitmap viewer. Altho
the program is quite long, you can follow along with the comments embedded in the
to understand what is going on.*

Example 10-4. The app_scroll.c program

/* app_scroll.c - Displays bitmaps specified on the command line. All
** bitmaps are drawn into a pixmap, which is rendered into a DrawingArea
** widget, which is used as the work window for a ScrolledWindow. This
** method is only used to demonstrate application-defined scrolling for
** the motif ScrolledWindow. Automatic scrolling is much simpler, but
** does not allow the programmer to impose incremental scrolling units.
**
** Bitmaps are displayed in an equal number of rows and columns if possible.
**
** Example:
** app_scroll /usr/X11R6/include/X11/bitmaps/*
*/

#include <stdio.h>
#include <strings.h>
#include <Xm/ScrolledW.h>
#include <Xm/DrawingA.h>
#include <Xm/ScrollBar.h>

#ifdef max /* just in case--we don't know, but these are commonly set */
#undef max /* by arbitrary unix systems. Also, we cast to int! */
#endif

/* redefine "max" and "min" macros to take into account "unsigned" values */
#define max(a,b) ((int)(a)>(int)(b)?(int)(a):(int)(b))
#define min(a,b) ((int)(a)<(int)(b)?(int)(a):(int)(b))

/* don't accept bitmaps larger than 100x100.. This value is arbitrarily
** chosen, but is sufficiently large for most images. Handling extremely
** large bitmaps would eat too much memory and make the interface awkward.
**/

#define MAX_WIDTH 100
#define MAX_HEIGHT 100
typedef struct {

* XtVaAppInitialize () is considered deprecated in X11R6.XmScrolledWindowSetAreas () is deprecated
in Motif 2.0.
Motif Programming Manual 345

Chapter 10: ScrolledWindows and ScrollBars
char *name;
int len; /* strlen(name) */
unsigned int width, height;
Pixmap bitmap;

} Bitmap;

/* get the integer square root of n -- used to calculate an equal
** number of rows and columns for a given number of elements.
*/
int int_sqrt (register int n)
{

register int i, s = 0, t;
for (i = 15; i >= 0; i--) {

t = (s | (1L << i));
if (t * t <= n)

s = t;
}
return s;

}

/* Global variables */
Widget drawing_a, vsb, hsb;
Pixmap pixmap; /* used as the image for DrawingArea widget */
Display *dpy;
Dimension view_width = 300, view_height = 300;
int rows, cols;
unsigned int cell_width, cell_height;
unsigned int pix_hoffset, pix_voffset, sw_hoffset, sw_voffset;
void redraw(Window);

main (int argc, char *argv[])
{

extern char *strcpy();
XtAppContext app;
Widget toplevel, scrolled_w;
Bitmap *list = (Bitmap *) NULL;
GC gc;
char *p;
XFontStruct *font;
int i = 0, j = 0, k = 0, total = 0;
unsigned int bitmap_error;
Arg args[6];
void scrolled(Widget, XtPointer, XtPointer);
void expose_resize(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, argv[0], NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
dpy = XtDisplay (toplevel);
font = XLoadQueryFont (dpy, "fixed");
/* load bitmaps from filenames specified on command line */
while (*++argv) {

printf ("Loading \"%s\"...", *argv), fflush (stdout);
if (i == total) {
346 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars
total += 10; /* allocate bitmap structures in groups of 10 */
if (!(list = (Bitmap *) XtRealloc ((char *) list,

total * sizeof (Bitmap))))
XtError ("Not enough memory for bitmap data");

}
/* read bitmap file using standard X routine. Save the resulting
** image if the file isn't too big.
*/
if ((bitmap_error = XReadBitmapFile (dpy, DefaultRootWindow (dpy),

*argv, &list[i].width, &list[i].height,
&list[i].bitmap, &j, &k)) ==
BitmapSuccess) {

/* Get just the base filename (minus leading pathname)
** We save this value for later use when we caption the bitmap.
*/
if (p = rindex (*argv, '/'))

p++;
else

p = *argv;

if (list[i].width > MAX_WIDTH || list[i].height > MAX_HEIGHT) {
printf ("%s: bitmap too big\n", p);
XFreePixmap (dpy, list[i].bitmap);
continue;

}

list[i].len = strlen (p);
list[i].name = p; /* we'll be getting it later */
printf ("Size: %dx%d\n", list[i].width, list[i].height);
i++;

} else {
printf ("Couldn't load bitmap: \"%s\": ", *argv);

switch (bitmap_error) {
case BitmapOpenFailed : puts ("Open failed."); break;
case BitmapFileInvalid : puts ("Bad file format."); break;
case BitmapNoMemory : puts ("Not enough memory.");
break;

}
}

}

if ((total = i) == 0) {
puts ("Couldn't load any bitmaps.");
exit (1);

}
printf ("Total bitmaps loaded: %d\n", total);
/* calculate size for pixmap by getting the dimensions of each. */
printf ("Calculating sizes for pixmap..."),fflush (stdout);
for (i = 0; i < total; i++) {

if (list[i].width > cell_width) cell_width = list[i].width;
if (list[i].height > cell_height) cell_height = list[i].height;
/* the bitmap's size is one thing, but its caption may exceed it */
if ((j = XTextWidth (font, list[i].name,
Motif Programming Manual 347

Chapter 10: ScrolledWindows and ScrollBars
list[i].len)) > cell_width)
cell_width = j;

}
/* compensate for font in vertical dimension; add a 6 pixel padding */
cell_height += 6 + font->ascent + font->descent;
cell_width += 6;
cols = int_sqrt (total);
rows = (total + cols-1)/cols;
printf ("Creating pixmap area of size %dx%d (%d rows, %d cols)\n",

cols * cell_width, rows * cell_height, rows, cols);

/* Create a single, 1-bit deep pixmap */
if (!(pixmap = XCreatePixmap (dpy, DefaultRootWindow (dpy),

cols * cell_width + 1,
rows * cell_height + 1, 1)))

XtError ("Can't Create pixmap");
if (!(gc = XCreateGC (dpy, pixmap, NULL, 0)))

XtError ("Can't create gc");
XSetForeground (dpy, gc, 0); /* 1-bit deep pixmaps use 0 as background
*/
/* Clear the pixmap by setting the entire image to 0's */
XFillRectangle (dpy, pixmap, gc, 0, 0,

cols * cell_width, rows * cell_height);
XSetForeground (dpy, gc, 1); /* Set the foreground to 1 (1-bit deep) */
XSetFont (dpy, gc, font->fid); /* print bitmap filenames (captions) */

/* Draw the grid lines between bitmaps */
for (j = 0; j <= rows * cell_height; j += cell_height)

XDrawLine (dpy, pixmap, gc, 0, j, cols * cell_width, j);
for (j = 0; j <= cols * cell_width; j += cell_width)

XDrawLine (dpy, pixmap, gc, j, 0, j, rows*cell_height);
/* Draw each of the bitmaps into the big picture */
for (i = 0; i < total; i++) {

int x = cell_width * (i % cols);
int y = cell_height * (i / cols);
XDrawString (dpy, pixmap, gc, x + 5, y + font->ascent,

list[i].name, list[i].len);
XCopyArea (dpy, list[i].bitmap, pixmap, gc, 0, 0, list[i].width,

list[i].height, x + 5,
y + font->ascent + font->descent);

/* Once we copy it into the big picture, we don't need the bitmap */
XFreePixmap (dpy, list[i].bitmap);

}
XtFree ((char *) list); /* don't need the array of structs anymore */
XFreeGC (dpy, gc); /* nor do we need this GC */

/* Create automatic Scrolled Window */
i = 0;
XtSetArg (args[i], XmNscrollingPolicy, XmAPPLICATION_DEFINED); i++;
XtSetArg (args[i], XmNvisualPolicy, XmVARIABLE); i++;
scrolled_w = XmCreateScrolledWindow (toplevel, "scrolled_w", args, i);

/* Create a drawing area as a child of the ScrolledWindow.
** The DA's size is initialized (arbitrarily) to view_width and
348 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars
** view_height. The ScrolledWindow will expand to this size.
*/
i = 0;
XtSetArg (args[i], XmNwidth, view_width); i++;
XtSetArg (args[i], XmNheight, view_height); i++;
drawing_a = XmCreateDrawingArea (scrolled_w, "drawing_a", args, i);
XtAddCallback (drawing_a, XmNexposeCallback, expose_resize, NULL);
XtAddCallback (drawing_a, XmNresizeCallback, expose_resize, NULL);
XtManageChild (drawing_a);

/* Application-defined ScrolledWindows won't create their own
** ScrollBars. So, we create them ourselves as children of the
** ScrolledWindow widget. The vertical ScrollBar's maximum size is
** the number of rows that exist (in unit values). The horizontal
** ScrollBar's maximum width is represented by the number of columns.
*/
i = 0;
XtSetArg (args[i], XmNorientation, XmVERTICAL); i++;
XtSetArg (args[i], XmNmaximum, rows); i++;
XtSetArg (args[i], XmNsliderSize,

min (view_height / cell_height, rows));
i++;
XtSetArg (args[i], XmNpageIncrement,

max ((view_height / cell_height) - 1, 1));
i++;
vsb = XmCreateScrollBar (scrolled_w, "vsb", args, i);
XtManageChild (vsb);

if (view_height / cell_height > rows)
sw_voffset = (view_height - rows * cell_height) / 2;

i = 0;
XtSetArg (args[i], XmNorientation, XmHORIZONTAL); i++;
XtSetArg (args[i], XmNmaximum, cols); i++;
XtSetArg (args[i], XmNsliderSize,

min (view_width / cell_width, cols));
i++;
XtSetArg (args[i], XmNpageIncrement,

max ((view_width / cell_width) - 1, 1));
i++;
hsb = XmCreateScrollBar (scrolled_w, "hsb", args, i);
XtManageChild (hsb);

if (view_width / cell_width > cols)
sw_hoffset = (view_width - cols * cell_width) / 2;

/* Allow the ScrolledWindow to initialize itself accordingly...*/
XtVaSetValues (scrolled_w, XmNhorizontalScrollBar, hsb,

XmNverticalScrollBar, vsb,
XmNworkWindow, drawing_a,
NULL);

/* use same callback for both ScrollBars and all callback reasons */
XtAddCallback (vsb, XmNvalueChangedCallback,

scrolled, (XtPointer) XmVERTICAL);
Motif Programming Manual 349

Chapter 10: ScrolledWindows and ScrollBars
XtAddCallback (hsb, XmNvalueChangedCallback,
scrolled, (XtPointer) XmHORIZONTAL);

XtAddCallback (vsb, XmNdragCallback,
scrolled, (XtPointer) XmVERTICAL);

XtAddCallback (hsb, XmNdragCallback,
scrolled, (XtPointer) XmHORIZONTAL);

XtManageChild (scrolled_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* React to scrolling actions. Reset position of ScrollBars; call redraw()
** to do actual scrolling. cbs->value is ScrollBar's new position.
*/
void scrolled (Widget scrollbar, XtPointer client_data,

XtPointer call_data)
{

int orientation = (int) client_data; /* XmVERTICAL or XmHORIZONTAL */
XmScrollBarCallbackStruct *cbs =

(XmScrollBarCallbackStruct *) call_data;

if (orientation == XmVERTICAL) {
pix_voffset = cbs->value * cell_height;
if (((rows * cell_height) - pix_voffset) > view_height)

XClearWindow (dpy, XtWindow (drawing_a));
} else {

pix_hoffset = cbs->value * cell_width;
if (((cols * cell_width) - pix_hoffset) > view_width)

XClearWindow (dpy, XtWindow (drawing_a));
}
redraw (XtWindow (drawing_a));

}

/* This function handles both expose and resize (configure) events.
** For XmCR_EXPOSE, just call redraw() and return. For resizing,
** we must calculate the new size of the viewable area and possibly
** reposition the pixmap's display and position offsets. Since we
** are also responsible for the ScrollBars, adjust them accordingly.
*/
void expose_resize (Widget drawing_a, XtPointer client_data,

XtPointer call_data)
{

Dimension new_width, new_height, oldw, oldh;
Boolean do_clear = False;
XmDrawingAreaCallbackStruct*cbs =

(XmDrawingAreaCallbackStruct *) call_data;

if (cbs->reason == XmCR_EXPOSE) {
redraw (cbs->window);
return;

}
oldw = view_width;
oldh = view_height;
350 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars
/* Unfortunately, the cbs->event field is NULL, so we have to have
** get the size of the drawing area manually. A mis-design of
** the DrawingArea widget--not a bug (technically).
*/
XtVaGetValues (drawing_a, XmNwidth, &view_width,

XmNheight, &view_height, NULL);
/* Get the size of the viewable area in "units lengths" where
** each unit is the cell size for each dimension. This prevents
** rounding error for the pix_voffset and pix_hoffset values later.
*/
new_width = view_width / cell_width;
new_height = view_height / cell_height;
/* When the user resizes the frame bigger, expose events are generated,
** so that's not a problem, since the expose handler will repaint the
** whole viewport. However, when the window resizes smaller, no
** expose event is generated. The window does not need to be
** redisplayed if the old viewport was smaller than the pixmap.
** (The existing image is still valid--no redisplay is necessary.)
** The window WILL need to be redisplayed if:
** 1) new view size is larger than pixmap (pixmap needs to be centered).
** 2) new view size is smaller than pixmap, but the OLD view size was
** larger than pixmap.
*/
if ((int) new_height >= rows) {

/* The height of the viewport is taller than the pixmap, so set
** pix_voffset = 0, so the top origin of the pixmap is shown,
** and the pixmap is centered vertically in viewport.
*/
pix_voffset = 0;
sw_voffset = (view_height - rows * cell_height)/2;
/* Case 1 above */
do_clear = True;
/* scrollbar is maximum size */
new_height = rows;

} else {
/* Pixmap is larger than viewport, so viewport will be completely
** redrawn on the redisplay. (So, we don't need to clear window.)
** Make sure upper side has origin of a cell (bitmap).
*/
pix_voffset = min (pix_voffset, (rows-new_height) * cell_height);
sw_voffset = 0; /* no centering is done */
/* Case 2 above */
if (oldh > rows * cell_height)

do_clear = True;
}
XtVaSetValues (vsb, XmNsliderSize, max (new_height, 1),

XmNvalue, pix_voffset / cell_height,
XmNpageIncrement, max (new_height-1, 1),
NULL);

/* identical to vertical case above */
if ((int) new_width >= cols) {

/* The width of the viewport is wider than the pixmap, so set
** pix_hoffset = 0, so the left origin of the pixmap is shown,
** and the pixmap is centered horizontally in viewport.
Motif Programming Manual 351

Chapter 10: ScrolledWindows and ScrollBars
*/
pix_hoffset = 0;
sw_hoffset = (view_width - cols * cell_width)/2;
/* Case 1 above */
do_clear = True;
/* scrollbar is maximum size */
new_width = cols;

} else {
/* Pixmap is larger than viewport, so viewport will be completely
** redrawn on the redisplay. (So, we don't need to clear window.)
** Make sure left side has origin of a cell (bitmap).
*/
pix_hoffset = min (pix_hoffset, (cols-new_width)*cell_width);
sw_hoffset = 0;
/* Case 2 above */
if (oldw > cols * cell_width)

do_clear = True;
}
XtVaSetValues (hsb, XmNsliderSize, max (new_width, 1),

XmNvalue, pix_hoffset / cell_width,
XmNpageIncrement, max (new_width-1, 1),
NULL);

if (do_clear) {
/* XClearWindow() doesn't generate an ExposeEvent */
/* all 0's means the whole window */
XClearArea (dpy, cbs->window, 0, 0, 0, 0, True);

}
}

void redraw (Window window)
{

static GC gc; /* static variables are *ALWAYS* initialized to NULL */
if (!gc) {

/* !gc means that this GC hasn't yet been created. */
/* We create our own gc because the other one is based on a 1-bit
** bitmap and the drawing area window might be color (multiplane).
** Remember, we're rendering a multiplane pixmap, not the original
** single-plane bitmaps!
*/
gc = XCreateGC (dpy, window, NULL, 0);
XSetForeground (dpy, gc,

BlackPixelOfScreen (XtScreen (drawing_a)));
XSetBackground (dpy, gc,

WhitePixelOfScreen (XtScreen (drawing_a)));
}

if (DefaultDepthOfScreen (XtScreen (drawing_a)) > 1)
XCopyPlane (dpy, pixmap, window, gc, pix_hoffset, pix_voffset,

view_width, view_height, sw_hoffset, sw_voffset, 1L);
else

XCopyArea (dpy, pixmap, window, gc, pix_hoffset, pix_voffset,
view_width, view_height, sw_hoffset, sw_voffset);

}

352 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

wing

save
the

ap is
X11

tents

The

time.
lative
ated

ing
The bitmaps to be displayed are specified on the command line, as shown in the follo
command:

% app_scroll /usr/X11R6/include/X11/bitmaps/*

The output of this command is shown in Figure 10-9.

The program begins by loading the bitmaps into an array ofBitmap structures that are
specially designed for this application. Since each bitmap can have a different size, we
all of the information about them for comparison after they are all loaded. At that time,
largest bitmap is found and its size is used as the cell size for the viewer. The pixm
created with a single-plane (a bitmap), since color is not used to render the standard
bitmaps when they are created. This pixmap is used as a virtual work window; its con
are rendered into the real DrawingArea work window.

After the bitmaps are loaded, the ScrolledWindow and DrawingArea are created.
DrawingArea hasXmNexposeCallback andXmNresizeCallback callbacks installed
so that the pixmap can be rendered or repositioned within the DrawingArea at any
Resizing does not change the pixmap, but it may cause its origin to be repositioned re
to the DrawingArea widget. We create the ScrollBars explicitly, since they are not cre
automatically whenXmNscrollingPolicy is set toXmAPPLICATION_DEFINED. The
ScrollBars are created as children of the ScrolledWindow, as shown in the follow
fragment:

XtSetArg (args[i], XmNorientation, XmVERTICAL); i++;
XtSetArg (args[i], XmNmaximum, rows); i++;
XtSetArg (args[i], XmNsliderSize,

min (view_height / cell_height, rows));

Figure 10-9: Output of the app_scroll program
Motif Programming Manual 353

Chapter 10: ScrolledWindows and ScrollBars

s

the
s no

bles
ered,

rea
ns
on-
i++;
XtSetArg (args[i], XmNpageIncrement,

max ((view_height / cell_height) - 1, 1));
i++;
vsb = XmCreateScrollBar (scrolled_w, "vsb", args, i);
XtManageChild (vsb);

if (view_height / cell_height > rows)
sw_voffset = (view_height - rows * cell_height) / 2;

The ScrollBars are initialized so that theXmNmaximumvalues are set to the number of row
and columns in the pixmap. Similarly,XmNsliderSize is set to the number of bitmap
cells that can fit in the viewport in the horizontal and vertical dimensions. Internally,
application knows how many pixels each scrolling unit represents, since there i
ScrollBar resource for this value. The variablessw_hoffset andsw_voffset are used
when the pixmap is smaller than the actual ScrolledWindow. In this case, the varia
indicate the origin of the pixmap in the DrawingArea, so that the pixmap appears cent
as shown in Figure 10-10.

The call to XtVaSetValues() specifying the XmNhorizontalScrollBar ,
XmNverticalScrollBar , and XmNworkWindow resources initializes the
ScrolledWindow appropriately. This function assigns the ScrollBars and the DrawingA
widget to internal variables within the ScrolledWindow, so that the widget functio
properly. While this call is opaque for automatic scrolling, it must be done for applicati
defined scrolling.

The ScrollBars are assigned a callback routine for theXmNvalueChangedCallback and
XmNdragCallback callbacks. Thescrolled() routine handles all of the scrolling

Figure 10-10: Output of the app_scroll program when
the viewport is larger than the pixmap
354 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

ar to

the
sets
r by

the

ion

ed to

using

hat
cts
p is

ld be
ing a

e
rea
the

d
p is

the
.

an
ntire

the

e six
the

the
actions, including incremental and page scrolling, that cause the value of the ScrollB
change. We pass the valuesXmHORIZONTALandXmVERTICALasclient_data , so that
the routine knows which of the two ScrollBars invoked it. The routine determines
portion of the pixmap that should be rendered in the DrawingArea by calculating off
into the pixmap. These offsets are calculated by multiplying the value of the ScrollBa
the pixels-per-unit value for the pixmap.

Finally, the top-level widget is realized and the main loop is started. At this point,
DrawingArea is realized, so theXmNexposeCallback is activated, which causes the
DrawingArea to draw itself and display the first image of the pixmap. The funct
expose_resize() handles both theExpose andConfigureNotify (resize) events.
The function determines which event was delivered by checking thereason field of the
callback structure passed to the function. When the DrawingArea is resized, we ne
adjust a number of resources so that the pixmap is scrolled properly. ForExpose events,
no recalculation of variables is necessary, so all we need to do is redraw the display
redraw() .

The position at which the pixmap is rendered into the DrawingArea’s window is somew
complicated to calculate. If the pixmap is larger than the clip window, the clip window a
as a view into the pixmap, so only a portion of the pixmap can be seen. If the pixma
smaller than the clip window, the entire pixmap can be seen, so the pixmap shou
centered in the middle of the viewable area. The application controls this behavior us
number of global variables.

The view_width and view_height variables represent the dimensions of th
ScrolledWindow, which are also the dimensions of the DrawingArea window. The a
specified by these values is the area of the pixmap that is going to be copied into
window. Thepix_hoffset and pix_voffset variables represent the horizontal an
vertical offsets into the pixmap when it is rendered into the DrawingArea. If the pixma
larger than the clip window, these values are calculated in thescrolled() callback
routine when the user performs a scrolling action. If the pixmap is smaller than
DrawingArea, these values are set to0 because the origin of the pixmap is always visible
Thesw_hoffset andsw_voffset variables are used when the pixmap is smaller th
the DrawingArea. The values indicate the offsets into the DrawingArea where the e
pixmap is rendered so that it appears centered in the viewport.

The redraw() routine depends on these variables being set. In order to maintain
values, the application monitors the sizeof the DrawingArea. When aConfigureNotify
event occurs on the DrawingArea, theexpose_resize() callback routine is invoked.
The routine gets the new dimensions of the DrawingArea so that it can update th
variables mentioned above. Normally, we can get the new dimensions directly from
event field of the callback structure. However, the DrawingArea widget invokes
XmNresizeCallback from within the Resize() method, instead of from an action
routine, so the callback does not have an XEvent structure associated with it.* Since the
Motif Programming Manual 355

Chapter 10: ScrolledWindows and ScrollBars

ables.
to set

the

tered
set

the

its

s, we
be

the
ow

igger
rrent

ort of

e
on the
erly

e

ays
tion is

sso-
,

event field of the callback structure is set toNULL, we have to get the window’s size in
another way. We useXtVaGetValues() , as shown in the following code fragment:

XtVaGetValues (drawing_a, XmNwidth, &view_width, XmNheight, &view_height,
NULL);

Once we have the dimensions, we need to recalculate the value of the other four vari
Since our variables represent pixel values, while the ScrollBar resources that we need
use an abstract unit size, we must convert between the two types of values using thecell_
width andcell_height values. The variablesnew_width andnew_height represent
the new viewport width and height in ScrollBar units.

If the new viewport height exceeds the number of rows in the pixmap, we know that
height of the viewport exceeds the height of the pixmap. In this case, the value forsw_
voffset is calculated to determine the offset that causes the pixmap to be cen
vertically in the viewport. Since the viewport needs to be completely redisplayed, we
the local variabledo_clear to True . We use this variable instead of calling
XClearWindow() directly because we may have to do it again later when we calculate
values for the horizontal ScrollBar. The value fornew_height is going to be used to set
theXmNsliderSize for the vertical ScrollBar, so we make sure that it does not exceed
XmNmaximum value.

On the other hand, if the new viewport height does not exceed the total number of row
know that the pixmap is larger than the viewport vertically. The pixmap is not going to
centered in the DrawingArea, sosw_voffset is set to0. pix_voffset is set to the
minimum of its existing value and the difference between the total number of rows and
new height of the viewport. If the viewport used to be bigger than the pixmap, but is n
smaller, we need to clear the window and do a complete redisplay. If the pixmap was b
than the viewport and it still is, then we do not need to clear the window because the cu
view is still accurate. The different between these two cases is subtle and it is the s
thing that you catch only when you test your program thoroughly.

After the calculations are performed, the application sets theXmNsliderSize ,
XmNvalue , andXmNpageIncrement resources for the vertical ScrollBar. The exact sam
calculations are done for the horizontal dimension and the same resources are set
horizontal ScrollBar. With these resources set, scrolling continues to function prop
when the DrawingArea is resized. Whenredraw() is called, it uses the global variables
to copy the relevant portion of the full pixmap directly into the DrawingArea. If th
program is running on a color screen, the routine usesXCopyPlane() because the
DrawingArea cannot create a 1-bit deep window on a color screen. (Motif widgets alw
create windows of the same depth as the screen on which they reside.) If the applica

* All widget internals have methods that are invoked automatically by the X Toolkit Intrinsics and are not a
ciated with the translation tables normally used to handle events.Resize () is one such method. See Volume 4
X Toolkit Intrinsics Programming Manual, for more information.
356 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

the
in

r

pare
uch
ajor
arge,

Text
ctly

ove

very
other
ke

hic-
es to
y, but

f the
could
that
lem
ent
run on a monochrome screen, the routine usesXCopyArea() . We determine the depth of
the screen usingDefaultDepthOfScreen() .

Incidentally, while we did not use it,XmScrollBarSetValues() could have been used
to set the resources on the ScrollBars. This function takes the following form:

void XmScrollBarSetValues (Widget widget , int value , int slider_size , int
increment , int page_increment , Boolean notify)

Thenotify parameter specifies whether you want theXmNvalueChangedCallback for
the ScrollBar to be invoked. Using this interface is probably slightly faster than using
XtVaSetValues() method, but only by a small margin, so we chose to mainta
consistency with our own style. The companion function forXmScrollBarSetValues()
is XmScrollBarGetValues() . This function retrieves the values from the ScrollBa
widget and takes the following form:

void XmScrollBarGetValues (Widget widget ;, int * value , int * slider_size , int
* increment , int * page_increment)

Before closing this section, let’s examine what the Text and List widgets do and com
it with what we have done in Example 10-4. We stated earlier that while we mimic m
of what these widgets do internally, the implementation is quite different. The m
difference is that we are fortunate enough to have all of the bitmaps loaded into a l
statically-sized pixmap that we can render at will using theredraw() function. This
function is clearly a convenience, since it simply callsXCopyArea() or XCopyPlane()
to copy the pixmap into the DrawingArea using pre-calculated internal variables. The
and List widgets do not have this luxury; they must redraw their respective data dire
into the work windows each time they need to redisplay.

If we were to implement the bitmap viewer using this technique, we would have to m
the functionality of the main for loop inmain() into redraw() and calculate the location
of each individual bitmap in the DrawingArea. This process is quite painstaking and
error-prone. If you do not take into account multiple exposures, exposure regions, and
low-level Xlib functionality, you might run into X performance issues. We didn’t even ta
these issues into account in our program. For example, ourredraw() routine completely
repaints the entire window for everyExpose event. Strictly speaking, repainting is
inefficient and may not perform adequately for all applications, especially grap
intensive ones. To avoid this problem, you could come up with a generic set of routin
handle exposures, so that of all your applications could use the same methodolog
that’s the point of a toolkit.

Let’s take another look at the PG&E scenario that we discussed at the beginning o
chapter. As you recall, the problem with that particular situation was that the database
retrieve 20% of the county (the work window), but the graphic resolution was such
only 10% of it could be displayed at one time (the viewport). The fundamental prob
with the application-defined scrolling mode is that the work window cannot be a differ
Motif Programming Manual 357

Chapter 10: ScrolledWindows and ScrollBars

the
the

ry can
d into
map
base

ports
n a
he
he
a
is

ack to
cus.
size from the viewport. However, we can work around this problem by complying with
restriction that the work window and viewport are the same size, but we can use
enlarged pixmap idea from Example 10-4 to accomplish the task. Each database que
be converted and rendered into a sufficiently large pixmap, which can then be rendere
the work window as necessary. If the scrolling is small enough, another part of the pix
can be rendered into the work window, instead of performing a completely new data
lookup.

Working With Keyboard Traversal in
ScrolledWindows

As we described in Chapter 8,Manager Widgets, manager widgets play a significant role
in handling keyboard traversal mechanisms. As a manager, the ScrolledWindow sup
keyboard traversal. However, one significant difference is that the widgets i
ScrolledWindow may not be visible at all times. There is a callback for t
ScrolledWindow that supports keyboard traversal in a ScrolledWindow. T
XmNtraverseObscuredCallback is invoked when the user attempts to traverse to
widget that is not visible in a ScrolledWindow. If there is no routine specified for th
callback, an obscured widget cannot be traversed to. An application can use the callb
cause the ScrolledWindow to make a widget visible, so that it can receive the input fo
Example 10-5 shows the use of theXmNtraverseObscuredCallback .*

Example 10-5. The traversal.c program

/* traversal.c -- demonstrate keyboard traversal in a ScrolledWindow
** using the XmNtraverseObscuredCallback.
*/
#include <Xm/PushB.h>
#include <Xm/ToggleB.h>
#include <Xm/ScrolledW.h>
#include <Xm/RowColumn.h>

main (int argc, char *argv[])
{

Widget toplevel, sw, rc, child;
XtAppContext app;
void traverse(Widget, XtPointer, XtPointer);
int i;
char name[10];
Arg args[4];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

* XtVaAppInitialize() is considered deprecated in X11R6.
358 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars

idget
i = 0;
XtSetArg (args[i], XmNscrollingPolicy, XmAUTOMATIC); i++;
sw = XmCreateScrolledWindow (toplevel, "scrolled_w", args, i);
XtAddCallback (sw, XmNtraverseObscuredCallback, traverse, NULL);

/* RowColumn is the work window for the widget */
i = 0;
XtSetArg (args[i], XmNorientation, XmHORIZONTAL); i++;
XtSetArg (args[i], XmNpacking, XmPACK_COLUMN); i++;
XtSetArg (args[i], XmNnumColumns, 10); i++;
rc = XmCreateRowColumn (sw, "rc", args, i);

for (i = 0; i < 10; i++) {
sprintf (name, "Toggle %d", i);
child = XmCreateToggleButton (rc, name, NULL, 0);
XtManageChild (child);
sprintf (name, "Button %d", i);
child = XmCreatePushButton (rc, name, NULL, 0);
XtManageChild (child);

}

XtManageChild (rc);
XtManageChild (sw);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void traverse (Widget widget, XtPointer client_data, XtPointer call_data)
{

XmTraverseObscuredCallbackStruct *cbs =
(XmTraverseObscuredCallbackStruct *) call_data;

XmScrollVisible (widget, cbs->traversal_destination, 10, 10);
}

This program creates a bunch of ToggleButtons and PushButtons in a RowColumn w
that is the work area for a ScrolledWindow. Thetraverse() routine is installed as the
XmNtraverseObscuredCallback . The call_data parameter to the callback is an
XmTraverseObscuredCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Widget traversal_destination;
XmTraversalDirection direction;

} XmTraverseObscuredCallbackStruct;

The reason field contains the valueXmCR_OBSCURED_TRAVERSAL. The traversal_
destination field specifies the widget that is to receive the input focus anddirection
specifies the direction of traversal. Thetraverse() routine callsXmScrollVisible()
to make thetraversal_destination widget visible. This routine takes the following
form:

void XmScrollVisible (Widget scrollw , Widget widget , Dimension hor_margin ,
Motif Programming Manual 359

Chapter 10: ScrolledWindows and ScrollBars

the
ram
the

data
mode
and
the
e: all
gle-
r if
use

real
n the
the

and
t to
al

s

r.
Dimension ver_margin)

The scrollw parameter specifies the ScrolledWindow widget, while thewidget
parameter specifies the widget that is to be made visible. Thehor_margin and ver_
margin arguments indicate the margins that are used if the viewport of
ScrolledWindow needs to be adjusted to make the widget visible. If you run the prog
in Example 10-5, you can use the arrow keys to traverse all of the widgets in
ScrolledWindow.

Summary
The ScrolledWindow provides a convenient interface for displaying large amounts of
when you have limited screen real estate. For most situations, the automatic scrolling
is all that you really need. In this mode, a ScrolledWindow requires very little care
feeding. By installing callback routines on the ScrollBars, you can even monitor
scrolling actions. However, there are some drawbacks to the automatic scrolling mod
of the data must be rendered into the work window widget and scrolling occurs in sin
pixel increments. If the size of the work window that you need is prohibitively large o
you need to support scrolling in other than single-pixel increments, you must
application-defined scrolling.

As demonstrated in Example 10-4, there is quite a bit of work involved in supporting
application-defined scrolling because of the different states in the relationship betwee
size of the work window and the underlying data. You must be able to support not only
underlying data, but also the way it is rendered into the work window, the ScrollBars,
all of the auxiliary variables required for the scrolling calculations. And that work is jus
support the scrolling functionality. When you introduce the complexity of a re
application, there is a greater chance of a poor design model. Thexshowbitmap.cprogram
in the Appendix A,Additional Example Programs, is fundamentally the same program a
app_scroll.c, but it has been enhanced into more of a real-world program.

Exercises
The following exercises focus on the concepts and methods described in this chapte

1. In Chapter 11, the program color_draw.cused a ScrolledWindow to support
a DrawingArea widget that allows the user to draw different colored lines.
Although this program uses an automatic ScrolledWindow, the work win-
dow is constantly updated as new lines are drawn. However, the lines are
actually drawn into a background pixmap, rather than into the drawing ar-
ea. The pixmap is copied into the DrawingArea dynamically, which gives
the illusion that the user is drawing directly into it. This method of indirec-
tion can be used to provide a way for the user to have two different views
360 Motif Programming Manual

Chapter 10: ScrolledWindows and ScrollBars
into the same pixmap. Write a program that uses two automatic Scrolled-
Windows and two DrawingArea widgets to draw into a single pixmap.

2. The getusers.cexample uses an automatic ScrolledWindow to display a
manager widget that contains many widgets and gadgets. Modify the pro-
gram to use application-defined scrolling, so that the scrolling increment
for the vertical ScrollBar is the sizeof the height of one of the Forms. The
Forms all have the same height.
Motif Programming Manual 361

Chapter 10: ScrolledWindows and ScrollBars
362 Motif Programming Manual

for
hts,
with
Chapter 1

In this chapter:
• Creating a DrawingArea

Widget
• Using DrawingArea

Callback Functions
• Using Translations on a

DrawingArea
• Using Color in a

DrawingArea
• Summary
• Exercises

This chapter describes the
interactive drawing. The chap
with numerous code example
Motif Programming Manual
11
Xlib
port
lass,

is no
use
not

the
ther
ith
. The
. Each
ves it
how
f the

lkit
key

tines
nt-
ost
free-
do
The DrawingArea
Widget

Motif DrawingArea widget, which provides a canvas
ter does not try to teach Xlib drawing, but rather it highlig
s, the difficulties that may be encountered when working

this widget. The chapter assumes some knowledge of Xlib. SeeVolume 1, Xlib
Programming Manual, for additional information.

The DrawingArea widget provides a blank canvas for interactive drawing using basic
drawing primitives. The widget does no drawing of its own, nor does it define or sup
any Motif user-interface design style. Since it is subclassed from the Manager widget c
the DrawingArea widget may also contain other widgets as children, although there
regimented layout policy. In short, the DrawingArea is a free-form widget that you can
for interactive drawing or object placement when conventional user-interface rules do
apply.

The most intuitive use of the DrawingArea is for a drawing or painting program. Here,
user can interactively draw geometric objects and paint arbitrary colors. Ano
application might used a DrawingArea widget to display a map of a country w
dynamically-drawn line segments representing the flight paths taken by aeroplanes
actual aeroplanes could be represented by PushButton widgets displaying pixmaps
aeroplane icon moves dynamically along its flight path unless the user grabs and mo
interactively in order to change the flight path. Both of these examples demonstrate
certain applications require visual or interactive interfaces that go beyond the scope o
structured interface provided by Motif.

In order to support the widest range of uses for the DrawingArea widget, the too
provides callback resources for exposure, configure (resize), and input (button and
presses) events. Each of these callbacks allows you to install very simple drawing rou
without doing substantial event-handling of your own. Unfortunately, this level of eve
handling support is usually insufficient for most robust applications. As a result, m
applications install direct event handlers or action routines to manage user input. The
form nature of the DrawingArea makes it one of the few Motif widgets where you can
363

Chapter 11: The DrawingArea Widget

tly)
ith

keep
class,
adget
ust be
ular
tain
ons,

ably
etry

nage
n. In
and
me
take

r file

. It is
a

their

set
he

is not
handle events at this level without risking non-compliance with theMotif Style Guide.
(Most Motif widgets either do not allow programmer-installed translations or (silen
accept only a few override translations for fear that you might inadvertently interfere w
Motif GUI specifications.)

If you are using a DrawingArea as a manager widget, there are two important things to
in mind: translation tables and widget layout management. As a Manager widget sub
the DrawingArea inherits certain translation and action tables that pass events to g
children and handle tab group traversal. Because of the inherited translations, you m
careful about application-specific translations that you may introduce into partic
instances of the DrawingArea. If you are planning to use the DrawingArea to con
children and to have those children follow the standard Motif keyboard traversal moti
you must be careful not to override the existing translations.

However, if you need a manager widget in the conventional sense, you should prob
choose something other than a DrawingArea widget, since the widget has no geom
management policy of its own. The DrawingArea should probably only be used to ma
children when no structured widget layout policy is needed, as in the airline applicatio
this situation, the widget assumes the dual responsibility of managing children
allowing for application-defined interaction. As a result, there are going to be so
complexities and inconveniences with event handling, since the application is trying to
advantage of both aspects of the widget simultaneously.

Creating a DrawingArea Widget
Applications that wish to create DrawingArea widgets must include the standard heade
<Xm/DrawingA.h>. To create a DrawingArea widget, you can use the following calls:

Widget drawing_a = XmCreateDrawingArea (parent, "name", resource-value-array ,
resource-value-count);

Widget drawing_a = XtCreateWidget (“name”, xmDrawingAreaWidgetClass, parent,
resource-value-list , NULL);

The parent of a DrawingArea must be either some type of Shell or a manager widget
quite common to find a DrawingArea widget as a child of a ScrolledWindow or
MainWindow, since drawing surfaces tend to be quite large, or at least dynamic in
growth potential.

If the DrawingArea widget is to have children, you might want to follow the guidelines
forth in Chapter 8,Manager Widgets, about creating the widget in an unmanaged state. T
widget can be managed with a call toXtManageChild() after its children have been
created. Here we are not going to use the widget as a traditional manager and there
going to be a great deal of parent-child interaction involving geometry management.
364 Motif Programming Manual

Chapter 11: The DrawingArea Widget

nal
tions
sive
the

part
ents
the

les
tions
et’s

ult
otif
form
ation
you
ack

ction
can

only
rsonal
less

ibility
. See

ctions.

that
a line
Using DrawingArea Callback Functions
The DrawingArea widget provides virtually no visual resources and very few functio
ones. The most important resources are those that allow you to provide callback func
for handling expose, resize, and input events. The DrawingArea is typically input-inten
and, unlike most of the other Motif widgets, requires the application to provide all of
necessary redrawing.

The callback routine for theXmNexposeCallback is invoked whenever anExpose event
is generated for the widget. In this callback function, an application must repaint all or
of the contents of the DrawingArea widget. If an application does not redraw the cont
of the widget, it appears empty, as the widget is cleared automatically. Similarly,
XmNresizeCallback is called whenever aConfigureNotify event occurs as a result
of the DrawingArea being resized. The generalizedXmNinputCallback is invoked as a
result of every keyboard and button event except button motion events.

As discussed in Chapter 2,The Motif Programming Model,callback routines are invoked
by internal action routines that are an integral part of all Motif widgets. Translation tab
are used to specify X event sequences that invoke the action routines. Action func
typically invoke the appropriate application callback functions associated with the widg
resources.

Most Motif widgets do not allow the application to override or replace their defa
translations; the input model that allows the application to conform to the M
specifications is not to be overridden by the application. However, because of the free-
nature of the DrawingArea widget, you are free to override or replace the default transl
tables used for event-handling and notification without non-compliant behavior. If
install your own translation tables, you can have your action routines invoke callb
routines as is done by the existing DrawingArea actions, or you can have your a
functions do the drawing directly. For even tighter control over event-handling, you
install event handlers at the X Toolkit Intrinsics level.

There are a number of techniques available for doing event management and we
demonstrate a few of them in this chapter. The technique you choose is a matter of pe
preference and the intended extensibility of your application. Event handlers involve
overhead, but translations are user-configurable. Either approach provides more flex
than using the default translation table and callback resources of the DrawingArea
Volume 4, X Toolkit Intrinsics Programming Manual, for a detailed discussion of
translation tables and action routines and how they are associated with callback fun

Handling Input Events
Since the callback approach to event handling is the simplest, we’ll begin by discussing
approach. Example 11-1 shows an extremely simple drawing program that associates
Motif Programming Manual 365

Chapter 11: The DrawingArea Widget

r
can

rea
allback

ager,
lback

r

its
rpose
the
s,
eed
rs the

its
drawing function with theXmNinputCallback resource. Pressing any of the pointe
buttons marks the starting point of a line; releasing the button marks the end point. You
only draw straight lines. Even though the default translation table for the DrawingA
widget selects key events and these events are passed to the callback function, the c
function itself ignores them and thus key events have no effect.

To demonstrate the complications inherent in using the DrawingArea widget as a man
the program also displays a PushButton gadget that clears the window. A single cal
function,drawing_area_callback() , uses both thereason and theevent fields of
the XmDrawingAreaCallbackStruct to determine whether to draw a line or to clea
the window.

This simple application draws directly into the DrawingArea widget; the contents of
window is not saved anywhere. The program does not support redrawing, since its pu
is strictly to demonstrate the way input handling can be managed using
XmNinputCallback . If the window is exposed due to the movement of other window
the contents of the window is not redrawn. A more realistic drawing application would n
code to handle both expose and resize actions. The current application simply clea
window on resize to further illustrate that the DrawingArea does not retain what is in
window.*

Example 11-1. The drawing.c program

/* drawing.c -- extremely simple drawing program that introduces
** the DrawingArea widget. This widget provides a window for
** drawing and some callbacks for getting input and other miscellaneous
** events. It's also a manager, so it can have children.
** There is no geometry management, though.
*/
#include <Xm/DrawingA.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>

main (int argc, char *argv[])
{

Widget toplevel, drawing_a, pb;
XtAppContext app;
XGCValues gcv;
GC gc;
void drawing_area_callback(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, XmNwidth,
400, XmNheight, 300, NULL);

/* Create a DrawingArea widget. */
drawing_a = XmCreateDrawingArea (toplevel, "drawing_a", NULL, 0);

* XtVaAppInitialize () is considered deprecated in X11R6.
366 Motif Programming Manual

Chapter 11: The DrawingArea Widget
/* add callback for all mouse and keyboard input events */
XtAddCallback (drawing_a, XmNinputCallback, drawing_area_callback,

NULL);

/* Since we're going to be drawing, we will be using Xlib routines
** and therefore need a graphics context. Create a GC and attach
** to the DrawingArea's XmNuserData to avoid having to make global
** variable. (Avoiding globals is a good design principle to follow.)
*/
gcv.foreground = BlackPixelOfScreen (XtScreen (drawing_a));
gc = XCreateGC (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)),
GCForeground, &gcv);

XtVaSetValues (drawing_a, XmNuserData, gc, NULL);

/* add a pushbutton the user can use to clear the canvas */
pb = XmCreatePushButtonGadget (drawing_a, "Clear",NULL, 0);

/* if activated, call same callback as XmNinputCallback. */
XtAddCallback (pb, XmNactivateCallback, drawing_area_callback, NULL);

XtManageChild (pb);
XtManageChild (drawing_a);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Callback routine for DrawingArea's input callbacks and the
** PushButton's activate callback. Determine which it is by
** testing the cbs->reason field.
*/
void drawing_area_callback (Widget widget, XtPointer client_data,

XtPointer call_data)
{

static Position x, y;
XmDrawingAreaCallbackStruct *cbs =

(XmDrawingAreaCallbackStruct *) call_data;
XEvent *event = cbs->event;

if (cbs->reason == XmCR_INPUT) {
/* activated by DrawingArea input event -- draw lines.
** Button Down events anchor the initial point and Button
** Up draws from the anchor point to the button-up point.
*/
if (event->xany.type == ButtonPress) {

/* anchor initial point (i.e., save its value) */
x = event->xbutton.x;
y = event->xbutton.y;

}
else if (event->xany.type == ButtonRelease) {

/* draw full line; get GC and use in XDrawLine() */
GC gc;
Motif Programming Manual 367

Chapter 11: The DrawingArea Widget

ed.

d by

(See
XtVaGetValues (widget, XmNuserData, &gc, NULL);
XDrawLine (event->xany.display, cbs->window, gc, x, y,

event->xbutton.x, event->xbutton.y);
x = event->xbutton.x;
y = event->xbutton.y;

}
}

if (cbs->reason == XmCR_ACTIVATE)
/* activated by pushbutton -- clear parent's window */
XClearWindow (event->xany.display, XtWindow (XtParent (widget)));

}

The output of the program is shown in Figure 11-1.

The callback routine that is used for theXmNinputCallback takes the form of a standard
callback routine. The DrawingArea provides aXmDrawingAreaCallbackStruct for all
of its callbacks. This structure is defined as follows:

typedef struct {
int reason;
XEvent *event;
Window window;

} XmDrawingAreaCallbackStruct;

Thereason field identifies the type of occurrence that caused the callback to be invok
For theXmNinputCallback , the value isXmCR_INPUT. Theevent field of the callback
structure describes the event that caused the callback to be invoked. Thewindow field is
the window associated with the DrawingArea widget - this is the same value returne
callingXtWindow() on the widget.

Since the event itself is passed in as part of the callback structure, we can look at thetype
field of the event for more information than is provided by the callback reason alone.

Figure 11-1: Output of the drawing program
368 Motif Programming Manual

Chapter 11: The DrawingArea Widget

d with
ail
of the

input
tton
assed

Xlib;
s
e X
g

colors,
d in
the

ake
lobal
se of
d. To
r

this

he
, the
n it
ow,
Volume 1,Xlib Programming Manual,for a detailed description ofXEvent structures and
how to use them.) In fact, since there are many possible events that can be associate
the reasonXmCR_INPUT, you have to look at the event structure if you need any det
about what actuallyhappened. Table 11-1 shows the possible event types for each
DrawingArea callbacks.

A common convention we’ve included in this program is the double use of thedrawing_
area_callback() function. This technique is known asfunction overloading, since the
same function is used by more than one source. We are using the routine as the
callback for the DrawingArea widget, as well as the activate callback for the PushBu
gadget. Whenever the PushButton is activated, the callback function is invoked and p
anXmPushButtonCallbackStruct with thereason field set toXmCR_ACTIVATE.

It is beyond the scope of this book to discuss at length or even introduce the use of
for that, see Volume 1,Xlib Programming Manual. However, there are a couple of detail
concerning the use of Xlib functions that are noteworthy. For efficiency in use of th
protocol, Xlib drawing calls typically do not carry a lot of information about the drawin
to be done. Instead, drawing characteristics such as the foreground and background
fill style, line weight, and so on, are defined in a graphics context (GC), which is cache
the X server. Any drawing function that wishes to use a particular GC must include
handle returned by a GC creation call.

If many different routines are going to use the same GC, the programmer should try to m
the handle to it generally available. The natural tendency is to declare the GC as a g
variable. However, as a program gets large, it is easy to get carried away with the u
global variables. As a result, programs tend to get over complicated and decentralize
avoid this problem, you can use theXmNuserData resource (inherited from the Manage
widget class) as a temporary holding area for arbitrary pointers and values. Since
program is small, it may not be worth the overhead of a call toXtGetValues() to avoid
a global variable. It is up to you if you want to use theXmNuserData resource; this
particular example just shows one way of avoiding global variables.

If you play with the program a little, you will soon find that you can draw right through t
PushButton gadget in the DrawingArea. Because gadgets do not have windows
DrawingArea widget indiscriminately allows you to draw through any gadget childre
may be managing. Similarly, activating the PushButton clears the DrawingArea wind

Table 1-1. Callback Reasons and Event Types

Callback Reason Event Type(s)

XmNexposeCallback XmCR_EXPOSE Expose

XmNresizeCallback XmCR_RESIZE ConfigureNotify

XmNinputCallback XmCR_INPUT ButtonPress, ButtonRelease,

KeyPress, KeyRelease
Motif Programming Manual 369

Chapter 11: The DrawingArea Widget

the
ets.
lem.

wing

two
d for

ment.
r less
vide
you

t
tional
tine.

paint

, and
nough

ver
this
ugh
ible

hat a
to an
w as
d back
but it does not repaint the PushButton. None of the manager widgets, including
DrawingArea, check if the user (or the application) is overwriting or erasing gadg
Changing the PushButton from a gadget to a widget solves the immediate prob
However, it is generally not a good idea to use a DrawingArea widget as both a dra
canvas and as a place to have user-interface elements such as PushButtons.

For conventional geometry management involving DrawingArea widgets, you have
choices. You can write your own geometry management routine (as demonstrate
BulletinBoard widgets in Section 8.3 in Chapter 8,Manager Widgets) or you can place the
DrawingArea inside another manager that does more intelligent geometry manage
The nice part about this alternative is that the other manager widgets are no more o
intelligent about graphics and repainting than the DrawingArea widget. They don’t pro
a callback forExpose events, but you can always add translations for those events, if
need them.

Redrawing a DrawingArea
In Example 11-1, when anExpose event or aResize event occurs, the drawing is no
retained and as a result the DrawingArea is always cleared. This problem was inten
for the first example because we wanted to focus on the use of the input callback rou
However, when you use the DrawingArea widget, you must always be prepared to re
whatever is supposed to be displayed in the widget at any time.

As you may already know, most X servers support a feature calledbacking store, which
saves the contents of windows, even when they are obscured by other windows
repaints them when they are exposed. When backing store is enabled and there is e
memory available for the server, X will repaint all damaged windows without e
notifying the application that anything happened. However, you should never rely on
behavior, since you never know if the X server supports backing store, or if it has eno
memory to save the contents of your windows. All applications are ultimately respons
for redrawing their windows’ contents whenever necessary.

For a painting application like that in Example 11-1, the easiest way to make sure t
window can be repainted whenever necessary is to draw both into the window and in
off screen pixmap. The contents of the pixmap can be copied back into the windo
needed. Example 11-2 demonstrates such a program. The off screen pixmap is copie
to the window with XCopyArea() to redisplay the drawing when the
XmNexposeCallback is called.*

Example 11-2. The draw2.c program

/* draw2.c -- extremely simple drawing program that demonstrates

* XtVaAppInitialize () is considered deprecated in X11R6.
370 Motif Programming Manual

Chapter 11: The DrawingArea Widget
** how to draw into an off screen pixmap in order to retain the
** contents of the DrawingArea widget. This allows us to redisplay
** the widget if it needs repainting (expose events).
*/
#include <Xm/DrawingA.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>

#define WIDTH 400 /* arbitrary width and height values */
#define HEIGHT 300
Pixmap pixmap; /* used to redraw the DrawingArea */

main (int argc, char *argv[])
{

Widget toplevel, drawing_a, pb;
XtAppContext app;
GC gc;
void drawing_area_callback(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass,
XmNwidth, WIDTH, XmNheight, HEIGHT,
NULL);

/* Create a DrawingArea widget. */
drawing_a = XmCreateDrawingArea (toplevel, "drawing_a", NULL, 0);

/* add callback for all mouse and keyboard input events */
XtAddCallback (drawing_a, XmNinputCallback, drawing_area_callback,

NULL);
XtAddCallback (drawing_a, XmNexposeCallback, drawing_area_callback,

NULL);
gc = XCreateGC (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)), 0, NULL);
XtVaSetValues (drawing_a, XmNuserData, gc, NULL);
XSetForeground (XtDisplay (drawing_a), gc,

WhitePixelOfScreen (XtScreen (drawing_a)));

/* create a pixmap the same size as the drawing area. */
pixmap = XCreatePixmap (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)),
WIDTH, HEIGHT,
DefaultDepthOfScreen (XtScreen (drawing_a)));

/* clear pixmap with white */
XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0, WIDTH,

HEIGHT);

/* drawing is now drawn into with "black"; change the gc for future */
XSetForeground (XtDisplay (drawing_a), gc,

BlackPixelOfScreen (XtScreen (drawing_a)));

/* add a pushbutton the user can use to clear the canvas */
Motif Programming Manual 371

Chapter 11: The DrawingArea Widget
pb = XmCreatePushButtonGadget (drawing_a, "Clear", NULL, 0);
XtManageChild (pb);

/* if activated, call same callback as XmNinputCallback. */
XtAddCallback (pb, XmNactivateCallback, drawing_area_callback, NULL);
XtManageChild (drawing_a);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Callback routine for DrawingArea's input and expose callbacks
** as well as the PushButton's activate callback. Determine which
** it is by testing the cbs->reason field.
*/
void drawing_area_callback (Widget widget, XtPointer client_data,

XtPointer call_data)
{

static Position x, y;
XmDrawingAreaCallbackStruct *cbs =

(XmDrawingAreaCallbackStruct *) call_data;
XEvent *event = cbs->event;
Display *dpy = event->xany.display;

if (cbs->reason == XmCR_INPUT) {
/* activated by DrawingArea input event -- draw lines.
** Button Down events anchor the initial point and Button
** Up draws from the anchor point to the button-up point.
*/
if (event->xany.type == ButtonPress) {

/* anchor initial point (i.e., save its value) */
x = event->xbutton.x;
y = event->xbutton.y;

} else if (event->xany.type == ButtonRelease) {
/* draw full line; get GC and use in XDrawLine() */
GC gc;

XtVaGetValues (widget, XmNuserData, &gc, NULL);
XDrawLine (dpy, cbs->window, gc, x, y,

event->xbutton.x, event->xbutton.y);

/* draw into the pixmap as well for redrawing later */
XDrawLine (dpy, pixmap, gc, x, y,

event->xbutton.x, event->xbutton.y);
x = event->xbutton.x;
y = event->xbutton.y;

}
}

if (cbs->reason == XmCR_EXPOSE || cbs->reason == XmCR_ACTIVATE) {
GC gc;
if (cbs->reason == XmCR_ACTIVATE) /* Clear button pushed */

widget = XtParent (widget);
/* get the DrawingArea widget */
XtVaGetValues (widget, XmNuserData, &gc, NULL);
372 Motif Programming Manual

Chapter 11: The DrawingArea Widget

raw

hrink
ing

is
ed
ata

ire
the

effect

ith
if (cbs->reason == XmCR_ACTIVATE) {/* Clear button pushed */
/* to clear a pixmap, reverse foreground and background */
XSetForeground (dpy, gc,

WhitePixelOfScreen (XtScreen (widget)));
/* ...and fill rectangle the size of the pixmap */
XFillRectangle (dpy, pixmap, gc, 0, 0, WIDTH, HEIGHT);
/* don't forget to reset */
XSetForeground (dpy, gc,

BlackPixelOfScreen (XtScreen (widget)));
}
/* Note: we don't have to use WIDTH and HEIGHT--we could pull the
** exposed area out of the event structure, but only if the reason
** was XmCR_EXPOSE... make it simple for the demo; optimize as needed.
*/
XCopyArea (dpy, pixmap, event->xany.window, gc, 0, 0,

WIDTH, HEIGHT, 0, 0);
}

}

A frequent problem encountered in using the DrawingArea widget is the need to red
after everyResize event. When you enlarge the DrawingArea window, anExpose event
is automatically generated since more of the window becomes exposed. But, if you s
the window, noExpose event is generated since no new part of the window is be
exposed.

The reason why noExpose event is generated when you shrink a DrawingArea widget
deep inside Xlib. The bit gravity of a window indicates where new bits are plac
automatically by X when a window is resized. If you resize a window larger, then the d
in the window remains in the top-left corner and the application gets aResize event and
anExpose event. TheExpose event just identifies the newly exposed area, not the ent
window. If you make the window smaller, all of the data in the window gets pushed to
top left; there is no newly exposed area, so there is noExpose event.

The solution is to make the window forget about bit gravity, so everyResize event causes
all of the bits to be cleared. As a result, theExpose event identifies the entire window as
being exposed, instead of just the newly exposed region. This technique has the side
of generating anExpose event even when the window is resized smaller.

There is no routine to set the bit gravity of a window individually. It can be set only w
XChangeWindowAttributes() , as in the following code fragment:

XSetWindowAttributes attrs;
attrs.bit_gravity = ForgetGravity;
XChangeWindowAttributes (XtDisplay (drawing_area),

XtWindow (drawing_area), CWBitGravity, &attrs);

Once you do this, the DrawingArea widget getsExpose events when you resize it to be
smaller.
Motif Programming Manual 373

Chapter 11: The DrawingArea Widget

ault
tial
you

the
the

le for
ns if
vents
s

is a
hich
entry

rect

guar-
Using Translations on a DrawingArea
As mentioned earlier, it is generally permissible to override or replace the def
translation table of the DrawingArea widget with new translations. The only poten
problem is if you plan to use the DrawingArea as a manager for other widgets and
expect it to follow the keyboard traversal mechanisms described by theMotif Style Guide.
In fact, handling keyboard traversal is pretty much all that the default translations for
DrawingArea do. For example, the following is a subset of the default translations for
DrawingArea widget:*

<Key>osfSelect: DrawingAreaInput() ManagerGadgetSelect()
<Key>osfActivate: DrawingAreaInput() ManagerParentActivate()
<Key>osfHelp: DrawingAreaInput() ManagerGadgetHelp()
<KeyDown>: DrawingAreaInput() ManagerGadgetKeyInput()
<KeyUp>: DrawingAreaInput()
<BtnMotion>: ManagerGadgetButtonMotion()
<Btn1Down>: DrawingAreaInput() ManagerGadgetArm()
<Btn1Down>,<Btn1Up>: DrawingAreaInput() ManagerGadgetActivate()

These translations show that the manager widget part of the DrawingArea is responsib
tracking events for its gadget children. It is not necessary to support these translatio
you are not going to use the DrawingArea to manage children. Most user-generated e
also invokeDrawingAreaInput() , which does not do any drawing, but simply invoke
theXmNinputCallback .

As you can see, theBtnMotion translation is not passed toDrawingAreaInput() ,
which means that theXmNinputCallback is not called for pointer motion events. When
it comes to more complex drawing than that done in Example 11-2, this omission
serious deficiency. To support rubber banding or free-hand drawing techniques, w
require pointer motion events, you must install either an event handler or a translation
to handle motion events.

The simplest approach would be to replace the translation table entry for<BtnMotion>
events. However, this is not possible, due to a bug in the X Toolkit Intrinsics. The cor
thing to do is the following:

String translations =
"<Btn1Motion>: DrawingAreaInput() ManagerGadgetButtonMotion()";

...
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", NULL, 0);
XtOverrideTranslations (drawing_a,

XtParseTranslationTable (translations));
XtAddCallback (drawing_a, XmNinputCallback, draw, NULL);

* This translation table lists only a subset of the current translations in the DrawingArea widget; there is no
antee that the translations will remain the same in future revisions of the toolkit.
374 Motif Programming Manual

Chapter 11: The DrawingArea Widget

n
ces

ns in
lation
rent
1 up
can

e to

e are
rride
ffect

steps
the

g

our
the
tion
ram

r than
same

back
for
any
With this new translation, theXmNinputCallback function (draw()) would be notified
of pointer motion while Button 1 is down.

XtOverrideTranslations() is the preferred method for installing a new translatio
into the DrawingArea widget because it is non destructive. The routine only repla
translations for which identical events are specified and leaves all other translatio
place. However, this routine does not work in this case because there is already a trans
for the Button 1 down-up sequence in the DrawingArea translation table. In the cur
implementation, once Button 1 goes down, the Xt event translator waits for the Button
event to match the partially finished translation. Therefore, no Button 1 motion events
be caught.If we want to get pointer motion events while the button is down, we hav
resort to other alternatives.

One such alternative is to replace the entire translation table, regardless of whether w
adding new entries or overriding existing ones. This is known as a destructive ove
because the existing translation table is thrown out. This action has the desired e
because the offending Button 1 translation is thrown out. However, we must then take
to re-install any other default translations that are still required. To completely replace
existing translations, theXmNtranslations resource can be set as shown in the followin
code fragment:

String translations =
"<Btn1Motion>: DrawingAreaInput() ManagerGadgetButtonMotion()";

XtTranslations parsed_translations =
XtParseTranslationTable (translations);

...
XtSetArg (args[n], XmNtranslations, parsed_translations); n++;
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", args, n);
XtAddCallback (drawing_a, XmNinputCallback, draw, NULL);

Once you go to the trouble of replacing the translation table, you may as well install y
own action functions as well. Doing so allows you to do the drawing directly from
action functions, rather than using it as an intermediate function to call an applica
callback. This direct-drawing approach is demonstrated in Example 11-3. The prog
uses pointer motion to draw lines as the pointer is dragged with the button down, rathe
when the button is pressed and released. You’ll notice that we have used much the
design as in Example 11-2, but have moved some of the code into different call
routines and have placed the DrawingArea widget into a MainWindow widget
flexibility. None of these changes are required nor do they enhance performance in
way. They merely point out different ways of providing the same functionality.*

Example 11-3. The free_hand.c program

/* free_hand.c -- simple drawing program that does freehand
** drawing. We use translations to do all the event handling

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 375

Chapter 11: The DrawingArea Widget
** for us rather than using the drawing area's XmNinputCallback.
*/
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>

/* Global variables */
GC gc;
Pixmap pixmap;
Dimension width, height;

main (int argc, char *argv[])
{

Widget toplevel, main_w, drawing_a, pb;
XtAppContext app;
XGCValues gcv;
void draw(Widget, XEvent *, String *, Cardinal *);
void redraw(Widget, XtPointer, XtPointer);
void clear_it(Widget, XtPointer, XtPointer);
XtActionsRec actions;
Arg args[10];
int n;
String translations = /* for the DrawingArea widget */

/* ManagerGadget* functions are necessary for DrawingArea widgets
** that steal away button events from normal translation tables.
*/
"<Btn1Down>: draw(down) ManagerGadgetArm()\n\
<Btn1Up>: draw(up) ManagerGadgetActivate()\n\
<Btn1Motion>: draw(motion) ManagerGadgetButtonMotion()";

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow to contain the drawing area */
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);

/* Add the "draw" action/function used by the translation table */
actions.string = "draw";
actions.proc = draw;
XtAppAddActions (app, &actions, 1);

/* Create a DrawingArea widget. Make it 5 inches wide by 6 inches tall.
** Don't let it resize so the Clear Button doesn't force a resize.
*/
n = 0;
XtSetArg (args[n], XmNtranslations,

XtParseTranslationTable (translations)); n++;
XtSetArg (args[n], XmNunitType, Xm1000TH_INCHES); n++;
XtSetArg (args[n], XmNwidth, 5000); n++; /* 5 inches */
XtSetArg (args[n], XmNheight, 6000); n++; /* 6 inches */
376 Motif Programming Manual

Chapter 11: The DrawingArea Widget
/* remain this a fixed size */
XtSetArg (args[n], XmNresizePolicy, XmRESIZE_NONE); n++;
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", args, n);

/* When scrolled, the drawing area will get expose events */
XtAddCallback (drawing_a, XmNexposeCallback, redraw, NULL);

/* convert drawing area back to pixels to get its width and height */
XtVaSetValues (drawing_a, XmNunitType, XmPIXELS, NULL);
XtVaGetValues (drawing_a, XmNwidth, &width, XmNheight, &height, NULL);

/* create a pixmap the same size as the drawing area. */
pixmap = XCreatePixmap (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)),
width, height,
DefaultDepthOfScreen (XtScreen (drawing_a)));

/* Create a GC for drawing (callback). Used a lot -- make global */
gcv.foreground = WhitePixelOfScreen (XtScreen (drawing_a));
gc = XCreateGC (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)),
GCForeground, &gcv);

/* clear pixmap with white */
XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0, width,

height);

/* drawing is now drawn into with "black"; change the gc */
XSetForeground (XtDisplay (drawing_a), gc,

BlackPixelOfScreen (XtScreen (drawing_a)));
pb = XmCreatePushButtonGadget (drawing_a, "Clear",NULL, 0);
XtManageChild (pb);

/* Pushing the clear button calls clear_it() */
XtAddCallback (pb, XmNactivateCallback, clear_it, (XtPointer) drawing_a);

XtManageChild (drawing_a);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Action procedure to respond to any of the events from the
** translation table declared in main(). This function is called
** in response to Button1 Down, Up and Motion events. Basically,
** we're just doing a freehand draw -- not lines or anything.
*/
void draw (Widget widget, XEvent *event, String *args, Cardinal *num_args)
{

static Position x, y;
XButtonEvent *bevent = (XButtonEvent *) event;

if (*num_args != 1)
XtError ("Wrong number of args!");
Motif Programming Manual 377

Chapter 11: The DrawingArea Widget
if (strcmp (args[0], "down")) {
/* if it's not "down", it must either be "up" or "motion"
** draw full line from anchor point to new point.
*/
XDrawLine (bevent->display, bevent->window, gc, x, y,

bevent->x, bevent->y);
XDrawLine (bevent->display, pixmap, gc, x, y,

bevent->x, bevent->y);
}
/* freehand is really a bunch of line segments; save this point */
x = bevent->x;
y = bevent->y;

}

/* Clear the window by clearing the pixmap and calling XCopyArea() */
void clear_it (Widget pb, XtPointer client_data, XtPointer call_data)
{

Widget drawing_a = (Widget) client_data;
XmPushButtonCallbackStruct *cbs =

(XmPushButtonCallbackStruct *) call_data;

/* clear pixmap with white */
XSetForeground (XtDisplay (drawing_a), gc,

WhitePixelOfScreen (XtScreen (drawing_a)));
XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0,

width, height);
/* drawing is now done using black; change the gc */
XSetForeground (XtDisplay (drawing_a), gc,

BlackPixelOfScreen (XtScreen (drawing_a)));
XCopyArea (cbs->event->xbutton.display, pixmap, XtWindow (drawing_a),

gc, 0, 0, width, height, 0, 0);
}

/* redraw is called whenever all or portions of the drawing area is
** exposed. This includes newly exposed portions of the widget resulting
** from the user's interaction with the scrollbars.
*/
void redraw (Widget drawing_a, XtPointer client_data, XtPointer call_data)
{

XmDrawingAreaCallbackStruct *cbs =
(XmDrawingAreaCallbackStruct *) call_data;

XCopyArea (cbs->event->xexpose.display, pixmap, cbs->window, gc, 0, 0,
width, height, 0, 0);

}

378 Motif Programming Manual

Chapter 11: The DrawingArea Widget

) for
use we
ging

tton
oked
ance
tions.
ts
n the

of
s one
only
ents
rrent
the
The output of the program is shown in Figure 11-2.

In Example 11-3, the DrawingArea widget uses the following translation string:

String translations =
"<Btn1Down>:draw(down) ManagerGadgetArm()\n\
 <Btn1Up>:draw(up) ManagerGadgetActivate()\n\
 <Btn1Motion>:draw(motion) ManagerGadgetButtonMotion()";

For each of the specified events, the translation describes two actions. Thedraw() action
is our own function that actually draws into the DrawingArea. TheManagerGadget
actions are standard DrawingArea actions (inherited from the Manager widget class
passing events to a gadget child, as described earlier. We keep them in place beca
are still using the PushButton gadget. We are not keeping the routines for mana
keyboard traversal, but simply those required to arm and activate the button.

Thedraw() action routine tests whether it has been called from a button up event, a bu
down event, or a motion event. Since the action function is passed the event that inv
it, we could simply test the type field of the event. However, this example gives us a ch
to exercise the Xt feature that supports string arguments passed to action func
Accordingly, thedraw() function determines what action to take by examining i
args[0] parameter, which contains the string passed as the single parameter i
translation table. For example,draw(up) passes the string"up" as the args[0]
parameter in response to a <Btn1Up > event.

Lines are drawn for bothButtonRelease and ButtonMotion events, but not for
ButtonPress events. A line is drawn from the last anchor point to the current location
the mouse. As the pointer moves from one point to the next, the anchor point is alway
step behind, so a line segment is drawn from that location to the current location. The
time that a line segment is not drawn is on the initial button press (and any motion ev
that occur while the button is not down). The coordinate values are relative to the cu
location of the pointer within the DrawingArea widget, no matter how it is positioned in
MainWindow.

Figure 11-2: Output of the free_hand program
Motif Programming Manual 379

Chapter 11: The DrawingArea Widget

w

the
ly.
to be
draw
lem,
used

ct to
he

e
e to

and
ult is
area

the

Motif
d as
the
n.
ering

an
adget

f
e list.
rting

self.
an
a

The draw() function draws into the window and also into a pixmap. The MainWindo
widget is configured to have itsXmNscrollingPolicy set to XmAUTOMATIC, so
ScrollBars are automatically installed over the DrawingArea when it is larger than
MainWindow, which allows the user to view different parts of the canvas interactive
Scrolling actions cause the contents of the newly exposed portions of the canvas
erased by default. Unless we provide a mechanism by which the DrawingArea can re
itself, scrolling the DrawingArea loses previously drawn contents. To handle this prob
we employ the same principle we used in Example 11-2. We install a pixmap that is
by both thedraw() andredraw() functions.

Theredraw() routine is installed as the callback function for theXmNexposeCallback .
The function merely usesXCopyArea() to copy the pixmap onto the window of the
DrawingArea. We are not concerned with the position of the DrawingArea with respe
the MainWindow in this routine. All we need to do is copy the pixmap directly into t
window. X ensures that the visible portion of the window is clipped as necessary.

In this example, theManagerGadget actions don’t do anything unless the pointer is insid
the Clear button, so the translation is relatively safe. However, you should be sur
remember that both actions are called. If you press Button 1 inside the PushButton
doodle around a bit before releasing it, the drawing is still done, even though the res
hidden by the gadget. In another application, the fact that actions for both the drawing
itself and its gadget children are both called might lead to indeterminate results.

Thedraw() action does not (and cannot) know if the gadget is also going to react to
button event. This problem does not exist with the standardDrawingAreaInput() action
routine used in the previous examples because that routine is implemented by the
toolkit and it uses its own internal mechanisms to determine if the gadget is activate
well. If the DrawingArea does process the event on the gadget,
DrawingAreaInput() action knows that it should not invoke the callback functio
However, this internal mechanism is not available outside of the widget code. Reord
the action functions does not help, since there is still no way to know, without making
educated guess, whether or not the DrawingArea acted upon an event on behalf of a g
child.

As a result of this problem,draw() starts drawing a line, even if it starts in the middle o
the PushButton, because the DrawingArea processes all of the action functions in th
If you drag the pointer out of the gadget before releasing the mouse button, the sta
point of the line is inside the gadget, but it is hidden when the gadget repaints it
However, in this particular situation, you can do some guesswork. By installing
XmNarmCallback function, you can tell whether or not the DrawingArea activated
button, and by setting an internal state variable, you can decide whether or not thedraw()
action routine should do its drawing.
380 Motif Programming Manual

Chapter 11: The DrawingArea Widget

n in
oes
s not

ce of

We
ontrol
ction

hich is
ttons,
This confusing behavior is yet another reason why it is best not to include childre
DrawingArea widgets that are intended for interactive graphics. If the DrawingArea d
not have any gadget children, installing these auxiliary actions in the translation table i
necessary.

Using Color in a DrawingArea
In this section, we expand on our previous examples by incorporating color. The choi
colors is primarily supported by a function we define calledset_color() , which takes a
widget and an arbitrary color name and sets the globalGC’s foreground color. By providing
an array of colors in the form of colored PushButtons, we’ve got a color paint program.
have removed the PushButton gadget from the DrawingArea and created a proper c
panel to the left of the DrawingArea. The program uses a RowColumn widget (see Se
8.5 in Chapter 8,Manager Widgets, to manage a set of eighteen colored PushButtons.* The
program that demonstrates these techniques is shown in Example 11-4.†

Example 11-4. The color_draw.c program

/* color_draw.c -- simple drawing program using predefined colors.*/
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>
#include <Xm/PushBG.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>
#include <Xm/ScrolledW.h>
#include <Xm/Form.h>

GC gc;
Pixmap pixmap;

/* dimensions of drawing area (pixmap) */
Dimension width, height;

String colors[] = {"Black", "Red", "Green", "Blue", "White", "Navy", "Orange",
"Yellow", "Pink", "Magenta", "Cyan", "Brown", "Grey",
"LimeGreen", "Turquoise", "Violet", "Wheat", "Purple"};

main (int argc, char *argv[])
{

Widget toplevel, main_w, sw, rc, form, drawing_a, pb;
XtAppContext app;
XGCValues g cv;
Arg args[12];
void draw(Widget, XEvent *, String *, Cardinal *);

* On a monochrome screen, the program runs, but the buttons are either black or white, depending on w
closer to the RGB values corresponding to the color names chosen. You can only draw with the black bu
since the background is already white.

† XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 381

Chapter 11: The DrawingArea Widget
void redraw(Widget, XtPointer, XtPointer);
void set_color(Widget, XtPointer, XtPointer);
void exit(int);
void clear_it(Widget, XtPointer, XtPointer);
int i, n;
XtActionsRec actions;
XtTranslations parsed_xa;
String translations = /* for the DrawingArea widget */

"<Btn1Down>: draw(down)\n\
<Btn1Up>: draw(up)\n\
<Btn1Motion>: draw(motion)";

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* Create a MainWindow to contain the drawing area */
main_w = XmCreateForm (toplevel, "main_w", NULL, 0);

/* Create a GC for drawing (callback). Used a lot -- make global */
gcv.foreground = WhitePixelOfScreen (XtScreen (main_w));
gc = XCreateGC (XtDisplay (main_w),

RootWindowOfScreen (XtScreen (main_w)),
GCForeground, &gcv);

/* Create a 3-column array of color tiles */
n = 0;
XtSetArg (args[n], XmNpacking, XmPACK_COLUMN); n++;
XtSetArg (args[n], XmNnumColumns, 3); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
rc = XmCreateRowColumn (main_w, "rc", args, n);

for (i = 0; i < XtNumber (colors); i++) {
/* Create a single tile (pixmap) for each color */
pixmap = XCreatePixmap (XtDisplay (rc),

RootWindowOfScreen (XtScreen (rc)), 16, 16,
DefaultDepthOfScreen (XtScreen (rc)));

set_color (rc, colors[i]); /* set gc's color according to name */
XFillRectangle (XtDisplay (main_w), pixmap, gc, 0, 0, 16, 16);
n = 0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
pb = XmCreatePushButton (rc, colors[i], args, n);

/* callback for this pushbutton sets the current color */
XtAddCallback (pb, XmNactivateCallback, set_color,

(XtPointer) colors[i]);
XtManageChild (pb);

}

XtManageChild (rc);

n = 0;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
382 Motif Programming Manual

Chapter 11: The DrawingArea Widget
XtSetArg (args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNtopWidget, rc); n++;
pb = XmCreatePushButton (main_w, "Quit", args, n);
XtAddCallback (pb, XmNactivateCallback, (void (*)()) exit, NULL);
XtManageChild (pb);

/* Clear button -- wait till DrawingArea is created so we can use
** it to pass as client data.
*/
n = 0;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNleftWidget, pb); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNtopWidget, rc); n++;
pb = XmCreatePushButton (main_w, "Clear", args, n);
XtManageChild (pb);

n = 0;
XtSetArg (args[n], XmNwidth, 300); n++;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
XtSetArg (args[n], XmNscrollBarDisplayPolicy, XmAS_NEEDED); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNleftWidget, rc); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
sw = XmCreateScrolledWindow (main_w, "scrolled_win", args, n);

/* Add the "draw" action/function used by the translation table
** parsed by the translations resource below.
*/
actions.string = "draw";
actions.proc = draw;
XtAppAddActions (app, &actions, 1);
/* Create a DrawingArea widget. Make it 5 inches wide by 6 inches tall.
** Don't let it resize so the Clear Button doesn't force a resize.
*/
parsed_xa = XtParseTranslationTable (translations);
n = 0;
XtSetArg (args[n], XmNunitType, Xm1000TH_INCHES); n++;
XtSetArg (args[n], XmNwidth, 5000); n++; /* 5 inches */
XtSetArg (args[n], XmNheight, 6000); n++; /* 6 inches */
/* remain this a fixed size */
XtSetArg (args[n], XmNresizePolicy, XmNONE); n++;
XtSetArg (args[n], XmNtranslations, parsed_xa); n++;
drawing_a = XmCreateDrawingArea (sw, "drawing_a", args, n);

/* When scrolled, the drawing area will get expose events */
XtAddCallback (drawing_a, XmNexposeCallback, redraw, NULL);
XtManageChild (drawing_a);

/* Pushing the clear button clears the drawing area widget */
XtAddCallback (pb, XmNactivateCallback, clear_it,

(XtPointer) drawing_a);
Motif Programming Manual 383

Chapter 11: The DrawingArea Widget
/* convert drawing area back to pixels to get its width and height */
XtVaSetValues (drawing_a, XmNunitType, XmPIXELS, NULL);
XtVaGetValues (drawing_a, XmNwidth, &width, XmNheight, &height, NULL);

/* create a pixmap the same size as the drawing area. */
pixmap = XCreatePixmap (XtDisplay (drawing_a),

RootWindowOfScreen (XtScreen (drawing_a)),
width, height,
DefaultDepthOfScreen (XtScreen (drawing_a)));

/* clear pixmap with white */
set_color (drawing_a, "White");
XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0, width,

height);

XtManageChild (sw);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Action procedure to respond to any of the events from the
** translation table declared in main(). This function is called
** in response to Button1 Down, Up and Motion events. Basically,
** we're just doing a freehand draw -- not lines or anything.
*/
void draw (Widget widget, XEvent *event, String *args, Cardinal *num_args)
{

static Position x, y;
XButtonEvent *bevent = (XButtonEvent *) event;

if (*num_args != 1)
XtError ("Wrong number of args!");

if (strcmp (args[0], "down")) {
/* if it's not "down", it must either be "up" or "motion"
** draw full line from anchor point to new point.
*/
XDrawLine (bevent->display, bevent->window, gc, x, y,

bevent->x, bevent->y);
XDrawLine (bevent->display, pixmap, gc, x, y, bevent->x,

bevent->y);
}
/* freehand is really a bunch of line segments; save this point */
x = bevent->x;
y = bevent->y;

}

/* Clear the window by clearing the pixmap and calling XCopyArea() */
void clear_it (Widget pb, XtPointer client_data, XtPointer call_data)
{

Widget drawing_a = (Widget) client_data;
XmPushButtonCallbackStruct *cbs =

(XmPushButtonCallbackStruct *) call_data;
384 Motif Programming Manual

Chapter 11: The DrawingArea Widget
/* clear pixmap with white */
XSetForeground (XtDisplay (drawing_a), gc,

WhitePixelOfScreen (XtScreen (drawing_a)));
/* this clears the pixmap */
XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0,

width, height);
/* drawing is now done using black; change the gc */
XSetForeground (XtDisplay (drawing_a), gc,

BlackPixelOfScreen (XtScreen (drawing_a)));
/* render the newly cleared pixmap onto the window */
XCopyArea (cbs->event->xbutton.display, pixmap, XtWindow (drawing_a),

gc, 0, 0, width, height, 0, 0);
}

/* redraw is called whenever all or portions of the drawing area is
** exposed. This includes newly exposed portions of the widget resulting
** from the user's interaction with the scrollbars.
*/
void redraw (Widget drawing_a, XtPointer client_data, XtPointer call_data)
{

XmDrawingAreaCallbackStruct *cbs =
(XmDrawingAreaCallbackStruct *) call_data;

XCopyArea (cbs->event->xexpose.display, pixmap, cbs->window,
gc, 0, 0, width, height, 0, 0);

}

/* callback routine for when any of the color tiles are pressed.
** This general function may also be used to set the global gc's
** color directly. Just provide a widget and a color name.
*/
void set_color (Widget widget, XtPointer client_data, XtPointer call_data)
{

String color = (String) client_data;
Display *dpy = XtDisplay (widget);
Colormap cmap = DefaultColormapOfScreen (XtScreen (widget));
XColor col, unused;

if (!XAllocNamedColor (dpy, cmap, color, &col, &unused)) {
char buf[32];
sprintf (buf, "Can't alloc %s", color);
XtWarning (buf);
return;

}
XSetForeground (dpy, gc, col.pixel);

}

Motif Programming Manual 385

Chapter 11: The DrawingArea Widget

ing to
ack

ying
asks
put

ple
oard
ould
ased

are
end
for

the
ome
The output of the program in shown in Figure 11-3.

One thing to note about the program is that the callback routine for theClear button is
passed the DrawingArea widget as the client data. This technique saves us from hav
declare a global variable, while still providing a handle to the DrawingArea in the callb
routine.

Summary
The DrawingArea widget is probably most useful when it is used as a canvas for displa
raster images, animation, or a mixture of text and graphics. It is also well-suited for t
that require interactive user input. The widget provides some rudimentary in
mechanisms in the form of callbacks that are invoked by button events.

The translation and action tables supported by the X Toolkit Intrinsics provide a sim
mechanism for notifying applications of user events such as double-mouse clicks, keyb
events, and so on. By creatively modifying the default translations and actions, you c
build a rather intricate system of action functions that produces interesting graphics b
on various forms of user input sequences.

However, what you can do with actions is simplistic given the complexities that
involved in true paint or draw applications. Applications that require a graphic front
should probably dig deeper into the lower levels of Xt for event handling and into Xlib
image rendering.

Exercises
There are a number of different possibilities you could explore in extending
DrawingArea widget. The following exercises are intended to shine the light down s
interesting paths that you can take.

Figure 11-3: Output of the color_draw program
386 Motif Programming Manual

Chapter 11: The DrawingArea Widget
1. As we have demonstrated, a DrawingArea widget needs to be able to redis-
play the contents of its window. For the programs in this chapter, we im-
plemented redisplay by duplicating in a pixmap all of the drawing done in
the window. When the window needs to be repainted, the pixmap is simply
copied into it. However, this technique does not take resizing into account.
If the draw2application is resized bigger, parts of the window are not prop-
erly redrawn because the pixmap is not resized. If you wanted to support a
canvas that can grow dynamically, you also have to resize the off-screen
pixmap. Modify draw2.cso that the pixmap resizes along with the Drawin-
gArea. You need to add a callback for XmNresizeCallback . The callback
should query the size of the DrawingArea, create a new pixmap, use XCop-
yArea() to copy the old pixmap into the new one, and destroy the old pix-
map.

2. The resource XmNcolormap can be used to set and get the colormap associ-
ated with a DrawingArea widget, using XtVaSetValues() and XtVaGet-
Values() . Modify color_draw.c to use colormap values rather than
predefined colors.

3. A paint program and a draw program differ in the way they internally rep-
resent their graphical displays. A paint program usually maintains a back-
ground pixmap as demonstrated by free_hand, whereas a draw program
stores geometric information about the shapes that are drawn. For exam-
ple, circles can be represented using a center (x, y coordinate) and a radius;
rectangles can be represented by an origin coordinate with width and
height values; and freehand drawings can be represented by a list of coor-
dinates (line segments). Entire pictures can be represented by a list of ge-
ometric shape definitions.

Modify free_hand.cor color_draw.cto use a list ofXSegment structures to represent
the lines that are drawn by the user. Instead of using a pixmap andXCopyArea() to
repaint the DrawingArea widget onExpose events, repaint the picture by calling
XDrawSegments() and using the data stored in the internal list ofXSegment struc-
tures.

4. In the previous exercise, we gave you some hints about how you might
build an interactive drawing application. For those of you who really want
to dig into this subject, you can extend the program by giving the user a
choice of geometric shapes to draw. You need to provide a user interface to
support an array of object types: arcs, circles, squares, rectangles, lines,
and freehand drawings. Based on the user’s choice, you have to maintain a
state machine that indicates how much of a geometric figure has been
drawn. Use a translation table to monitor the events that correspond to the
state machine and store the coordinates of key geometric points in internal
Motif Programming Manual 387

Chapter 11: The DrawingArea Widget
data structures. Granted, this exercise is no small feat, but it is a great way
to kill a weekend!
388 Motif Programming Manual

otif

ased
basic
color,
Chapter 1

In this chapter:
• Labels
• PushButtons
• ToggleButtons
• ArrowButtons
• DrawnButtons
• Summary
• Exercise

This chapter contains an in-de
toolkit. These widgets are the

Labels and buttons are am
applications. They are also t
resources necessary to rend
Motif Programming Manual
12
xtend
ouse
any

tons.

from
f the
lay
t as
d or

used

used
vided

effect
hapter

pound
hout
s used
oblem
Labels and Buttons
pth look at the label and button widgets provided by the M
 most commonly used primitive widgets.

ong the most widely used interface objects in GUI-b
he simplest in concept and design. Labels provide the
er and manage text or images (pixmaps) by controlling

alignment, and other visual attributes. PushButtons are subclassed from Label; they e
its capabilities by adding callback routines that respond to user interaction from the m
or keyboard. These visual and interactive features provide the cornerstone for m
widgets in the Motif toolkit, such as CascadeButtons, DrawnButtons, and ToggleBut

This chapter also discusses ArrowButtons. While the ArrowButton is not subclassed
Label like the other buttons, it does provide a subset of the interactive capabilities o
other buttons. ArrowButtons do not contain text or graphical labels; they simply disp
directional arrows that point up, down, left, or right. These widgets are meant to ac
companions to other interface objects whose values or displays can be controlle
changed incrementally by the user. An example might be four ArrowButtons that are
to represent directional movement for the display of a bitmap editor.

Although CascadeButtons are subclassed from the Label widget, they are specifically
in Motif menus and are not addressed in this chapter. The menu systems that are pro
by Motif are separate entities and are treated separately in Chapter 4,The Main Window,
and Chapter 20,Interacting with the Window Manager. Since the Motif menus use Labels
and PushButtons for menu items, these widgets have certain resources that only take
when the widgets are used in menus. These resources are not discussed in this c
either.

Labels and buttons have a wide range of uses and they are used in many of the com
objects provided by the Motif toolkit. As a result, these widgets are discussed throug
this book. This chapter provides a basic discussion of the main resources and callback
by the objects. It also provides examples of common usage and attempts to address pr
areas.
389

Chapter 12: Labels and Buttons

ction,
ually
oth

Text

t you
f an

be

bility
h to
e for
lated
ly

you

Label
The

little
vent
d, we
on,

cases
e a

ction.
ve

and

s and
ay be

ever,
 2.1.
Labels
Labels are simply props for the stage. They are not intended to respond to user intera
although a help callback can be attached in case the HELP key is pressed. It is eq
common to find Labels displaying either text or graphics, yet they cannot display b
simultaneously in the conventional sense.

Since Labels can display text, it may not always be obvious whether to use a Label or a
widget to display textual information. TheMotif Style Guidesuggests that Labels should
always be used when non editable text is displayed, even if the text is longer than wha
might think of as a label. If a Label is large, you can always place it in the work area o
automatic ScrolledWindow widget, as discussed in Chapter 10,ScrolledWindows and
ScrollBars. Even if the text is expected to change frequently, your needs can often
accommodated by a Label widget or gadget.

Another issue that affects the choice between a Label widget and a Text widget is the a
to select the text. Even if you have text that is not editable by the user, you may wis
allow the user to select all or part of the text. The Label widget acts as a drag sourc
drag and drop operations, which means that the full text of a Label can be manipu
using drag and drop.* However, this capability does not allow the user to manipulate on
part of the text. For that type of interaction, and with previous versions of the toolkit,
need to use a Text widget rather than a Label to provide selection capabilities.

Labels have a number of added visual advantages over Text widgets. The text in a
can be greyed out when it is insensitive and it can display text using multiple fonts.
Text widgets, however, do not support multiple fonts†. An insensitive Text widget also
greys out its text. Labels are also lighter-weight objects than Text widgets. There is
overhead in maintaining or displaying a Label and there is no need to handle e
processing on a Label to the same degree as for a Text widget. All things considere
would recommend using Label widgets over Text widgets for read-only informati
except where the user needs to be able to select and copy the value.

However, when it comes to interactive objects, Labels are not the best choice. In most
where you want to allow the user to click on a Label, it is more appropriate to us
PushButton or a ToggleButton, since they are designed to support user intera
Furthermore, users who are familiar with other Motif applications will not expect to ha
to interact with Labels. In short, the best thing to do with Label widgets is simple
obvious: use them to display labels.

* All of the button subclasses of Label inherit the drag source capability, so the text labels for PushButton
ToggleButtons can also be manipulated using drag and drop. From Motif 2.0, dragging from a Label m
disabled if theXmDisplay resourceXmNenableUnselectableDrag is False .

† The Motif 2.0 CSText widget had a compound text interface, and as such could display multiple fonts. How
this widget had serious performance and other problems, and was removed from the widget set in Motif
390 Motif Programming Manual

Chapter 12: Labels and Buttons

bjects
(and
rators,
y for
s menu

ack

by

wing

e to
cy, we
t the

ies on

the

oard
mend

er, a
There are a number of resources associated with Labels that are used by other Motif o
(or by widget classes that are subclassed from Label). For example, since Labels
PushButtons) are used extensively as menu items in menus, they can have accele
mnemonics, and other visual resources set to provide the appropriate functionalit
menus. These resources do not apply to Labels (and PushButtons) that are not used a
items, so we do not discuss them here.

The only callback routine for the Label widget is theXmNhelpCallback associated with
all Primitive widgets. If the user presses the HELP key on a Label widget, its help callb
is called.*

Creating a Label
Applications that use Labels must include the header file <Xm/Label.h>, which defines the
xmLabelWidgetClass type. This type is a pointer to the actual widget structure used
XtVaCreateWidget () or XtVaCreateManagedWidget() routines. Motif as usual
defines a convenience function, and thus you can create a Label in any of the follo
ways:

Widget label = XmCreateLabel (parent, "name", resource-value-array ,
resource-value-count);

...
XtManageChild (label);

Widget label = XtVaCreateWidget ("name", xmLabelWidgetClass, parent,
resource-value-list, NULL);

...
XtManageChild (label);

Widget label = XtVaCreateManagedWidget ("name", xmLabelWidgetClass, parent,
resource-value-list , NULL);

Since Labels do not have children, there is very little reason in terms of performanc
create them as unmanaged widgets first and then manage them later. For consisten
will prefer the Motif convenience functions, and subsequently manage the widget a
appropriate point.

Label gadgets are also available. Recall that a gadget is a windowless object that rel
its parent to provide it with events generated either by the system or by the user†.

The Label gadget is an entirely different class from its widget counterpart. To use
gadget variant, you must include the header file <Xm/LabelG.h> and use the

* Whether a Label receivesHelp events depends on the input policy the user is using and whether or not keyb
traversal is on. Since it may not be possible for the user to use the HELP key on Labels, we don’t recom
providing help callbacks for them.

† Gadgets in Motif 1.2 also rely on their parent for inherited visual characteristics. From Motif 2.0, howev
gadget can be painted independently of its parent.
Motif Programming Manual 391

Chapter 12: Labels and Buttons

e

s are
t for

its
mple

g a
tring,
ame
mes
xmLabelGadgetClass pointer in XtVaCreateManagedWidget() or
XtVaCreateWidget() calls, otherwise use the Motif convenience routin
XmCreateLabelGadget (), as in the following examples:

Widget label = XmCreateLabelGadget (parent, "name", resource-value-array ,
resource-value-count);

...
XtManageChild (label);

Widget label = XtVaCreateWidget ("name", xmLabelGadgetClass, parent,
resource-value-list , NULL);

...
XtManageChild (label);

Widget label = XtVaCreateManagedWidget ("name", xmLabelGadgetClass, parent,
resource-value-list , NULL);

Text Labels
A Label widget or gadget can display either text or an image. TheXmNlabelType resource
controls the type of label that is displayed; the resource can be set toXmSTRINGor
XmPIXMAP. The default value isXmSTRING, so if you want to display text in a Label, you
do not need to set this resource explicitly.

The resource that specifies the string that is displayed in a Label isXmNlabelString . The
value for this resource must be a Motif compound string; common C character string
not allowed. The following code fragment shows the appropriate way to specify the tex
a Label:

Widget label;
Arg args[...];
int n= 0;
XmString str = XmStringCreateLocalized ("A Label");

XtSetArg (args[n], XmNlabelString, str); n++;
label = XmCreateLabel (parent, "label", args, n);
XmStringFree (str);

If the XmNlabelString resource is not specified, the Label automatically converts
name into a compound string and uses that as its label. Therefore, the previous exa
could also be implemented as follows:

Widget label = XmCreateLabel (parent, "A Label", NULL, 0);

This method of specifying the label string for the widget is much simpler than usin
compound string. It avoids the overhead of creating and destroying a compound s
which is expensive in terms of allocating and freeing memory. The problem with the n
of the widget shown above is that it is illegal as a widget name. Technically, widget na
392 Motif Programming Manual

Chapter 12: Labels and Buttons

and

other
tage if
rtain
legal
ld be

ng a

This

ically
ould

atically

the
el
should only be composed of alphanumerics (letters and numbers), hyphens,
underscores. Characters such as space, dot (.), and the asterisk (*) are disallowed because
they make it impossible for the user to specify these widgets in resource files. On the
hand, using names that contain these characters in your code can be to your advan
you want to try to prevent users from externally changing the resource values of ce
widgets. You can achieve the same result by hard-coding the label or by using an il
widget name. The first method is more elegant, so the decision you make here shou
well-informed.

If you are going to hard-code the label string, you can avoid the overhead of creati
compound string by using theXtVaTypedArg feature of Xt, as shown in the following
example:

label = XtVaCreateManagedWidget ("widget_name", xmLabelWidgetClass,
parent, XtVaTypedArg, XmNlabelString,
XmRString,
"A Label", 8, /* strlen("A Label") + 1 */
NULL);

The C string"A Label" (which is 7 chars long, plus 1NULL byte) is automatically
converted into a compound string by the toolkit using a pre-installed type converter.
method can also be used to change the label for a widget usingXtVaSetValues() .

Since compound strings are dynamically created and destroyed, you cannot stat
declare an argument list that contains a pointer to a compound string. For example, it w
be an error to do the following:

static Arg list[] = {... XmNlabelString,
XmStringCreateLocalized ("A label"), ...};

label = XmCreateLabel (parent, "name", list, XtNumber (list));

This technique causes an error because you cannot create a compound string in a st
declared array. For a complete discussion of compound strings, see Chapter 25,Compound
Strings.

Images as Labels
A Label widget or gadget can display an image instead of text by setting
XmNlabelType resource toXmPIXMAP. As a result of this resource setting, the Lab
displays the pixmap specified for theXmNlabelPixmap resource. Example 12-1
demonstrates how pixmaps can be used as labels.*

Example 12-1. The pixmaps.c program

/* pixmaps.c -- Demonstrate simple label gadgets in a row column
** Each command line argument represents a bitmap filename. Try

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 393

Chapter 12: Labels and Buttons
** to load the corresponding pixmap and store in a RowColumn.
*/
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>

main (int argc, char *argv[])
{

XtAppContext app;
Pixel fg, bg;
Widget toplevel, rowcol, pb;
Arg args[6];
int n;
int int_sqrt();

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

if (argc < 2) {
puts ("Specify bitmap filenames.");
exit (1);

}
/* create a RowColumn that has an equal number of rows and
** columns based on the number of pixmaps it is going to
** display (this value is in "argc").
*/
n = 0;
XtSetArg (args[n], XmNpacking, XmPACK_COLUMN); n++;
XtSetArg (args[n], XmNnumColumns, int_sqrt (argc)); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, n);
/* Get the foreground and background colors of the rowcol to make
** all the pixmaps appear using a consistent color.
*/
XtVaGetValues (rowcol, XmNforeground, &fg, XmNbackground, &bg, NULL);

while (*++argv) {
Pixmap pixmap = XmGetPixmap (XtScreen (rowcol), *argv, fg, bg);
if (pixmap == XmUNSPECIFIED_PIXMAP)

printf ("Couldn't load %s\n", *argv);
else {

n = 0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
pb = XmCreateLabelGadget (rowcol, *argv, args, n);
XtManageChild (pb);

}
}
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* get the integer square root of n -- used to determine the number
** of rows and columns of pixmaps to use in the RowColumn widget.
394 Motif Programming Manual

Chapter 12: Labels and Buttons

isted
n in

mns
ps to
d

y for

p
eds
n. If
the

s

urn
*/
int int_sqrt (register int n)
{

register int i, s = 0, t;
for (i = 15; i >= 0; i--) {

t = (s | (1 << i));
if (t * t <= n)

s = t;
}
return s;

}

The program displays a two-dimensional array of pixmaps based on the bitmap files l
on the command line. For example, the following command produces the output show
Figure 12-1.

% pixmaps flagup letters wingdogs xlogo64 calculator tie_fighter

To optimize the use of space by the RowColumn widget, the number of rows and colu
is set to the square root of the number of images. For example, if there are nine pixma
load, there should be a 3× 3 grid of images. Since the number of files to be loade
corresponds to the number of arguments inargv , argc is passed toint_sqrt() to get
the integer square root of its value. This value tells us the number of columns to specif
theXmNnumColumns resource of the RowColumn.

The bitmap files are read usingXmGetPixmap() , which is a function that creates a pixma
from the specified file. This file must be in X11 bitmap format. Since the function ne
foreground and background colors for the pixmap, we use the colors of the RowColum
the specified file cannot be found or if it does not contain a bitmap, the function returns
constantXmUNSPECIFIED_PIXMAP.* If this error condition is returned, the program skip
the file and goes on to the next one. For more detailed information onXmGetPixmap()

* XmUNSPECIFIED_PIXMAPis not0 or NULL. Many people have a tendency to test for these values upon ret
of functions that return opaque objects. The literal value is2.

Figure 12-1: Output of the pixmaps program
Motif Programming Manual 395

Chapter 12: Labels and Buttons

quite
Field,
sitize
t the

ding

out.
can
s
alue

age

can
the

e

et

ing
are
and other supporting functions, see Section 3.4.5 in Chapter 3,Overview of the Motif
Toolkit.

Label Sensitivity
A Label can be made inactive by setting theXmNsensitive resource toFalse . While it
may seem frivolous to set a Label insensitive, since Labels are never really active, it is
common to associate a Label with another interactive element, such as a List, a Text
or even a composite item such as RadioBox. In these situations, it is useful to desen
the Label along with its corresponding user-interface element, to emphasise tha
component is inactive. In the same vein, ifXtSetSensitive() is applied to a Manager
widget, the routine sensitizes or desensitizes all of the children of the widget, inclu
Labels.

If a Label is displaying text, setting the widget insensitive causes the text to be greyed
This effect is achieved by stippling the text label. If a Label is displaying an image, you
specify the XmNlabelInsensitivePixmap resource to indicate the image that i
displayed when the Label is inactive. By default, the resource is set to the v
XmUNSPECIFIED_PIXMAP, and the Label will use theXmNlabelPixmap resource
value, automatically applying an opaque stippling mask operation on the pixmap im
concerned.*

Label Alignment
Within the boundaries of a Label widget or gadget, the text or image that is displayed
be left justified, right justified, or centered. The alignment depends on the value of
XmNalignment resource†, which can have one of the following values:

XmALIGNMENT_BEGINNING XmALIGNMENT_END XmALIGNMENT_CENTER

The default value isXmALIGNMENT_CENTER, which causes the text or pixmap to b
centered vertically and horizontally within the widget or gadget. TheXmALIGNMENT_
BEGINNING and XmALIGNMENT_ENDvalues refer to the left and right edges of the widg
or gadget when the value forXmNlayoutDirection is set toXmLEFT_TO_RIGHT. If the
text used within a Label is read from left-to-right (the default), the beginning of the str
is on the left. However, if the text used is read from right-to-left, the alignment values
inverted, as should be the value forXmNlayoutDirection . These values also apply to
Labels that display pixmaps.

* In Motif 1.2, the Label will not display a pixmap when it is insensitive and theXmNlabelInsensitivePix-
mapis XmUNSPECIFIED_PIXMAP. Any pixmap specified for the resource isnotstippled by the toolkit: the pro-
grammer has to construct or supply an appropriate stippled pixmap herself.

† In Motif 2.0 and later,XmNstringDirection is superseded by theXmNlayoutDirection resource.
396 Motif Programming Manual

Chapter 12: Labels and Buttons

, all
ency.
based
ritten
ing

ld also
r the

es a
the
s if
-to-

olling
roup
ll the
the
the
a

urce

es of
and

that

ows,

e

If you have a set of Labels that are associated with strings of text that are right justified
of the Labels should use the same alignment and string direction settings for consist
One way to handle this situation is to set the resources universally (as a class-
resource) for all Labels and subclasses of Labels. For example, if your application is w
for a language that displays text from right-to-left, you may choose to have the follow
lines in the application defaults file:

XmLabel.layoutDirection: RIGHT_TO_LEFT
*XmLabelGadget.layoutDirection: RIGHT_TO_LEFT

Note that the resource must be set for both the widget and gadget classes. You shou
be aware that setting the layout direction does not cause the compound strings fo
Labels to be automatically converted to the right direction. Similarly, a Label that us
compound string with a right-to-left string direction does not automatically set
XmNlayoutDirection resource appropriately. These are internationalization issue
you are thinking of supporting languages that are justified either left-to-right or right
left.

The RowColumn manager widget can also be used to enforce consistency by contr
the geometry management of its children. If you are using a RowColumn to lay out a g
of Labels (or objects subclassed from Label, such as PushButtons), you can te
RowColumn to align each of its children in a consistent manner using
XmNentryAlignment resource. This resource takes the same values as
XmNalignment resource for Labels. If the parent of a Label widget or gadget is
RowColumn with itsXmNisAligned resource set toTrue , theXmNalignment resource
of each of the Label children is forced to the same value as theXmNentryAlignment
resource.

You should note that the alignment is only enforced when the RowColumn reso
XmNrowColumnType is XmWORK_AREA. If you are using a RowColumn to arrange
components in your application, its type should always be a work area. The other typ
the widget are used by the internals of Motif for creating special objects like MenuBars
PulldownMenus. If you set theXmNentryAlignment resource for other types of
RowColumn widgets, you may or may not see the alignment effects.

There is also a RowColumn resource that affects the vertical alignment of its children
are Labels, subclasses of Label, and Text widgets. TheXmNentryVerticalAlignment
resource can take one of the following values:

XmALIGNMENT_BASELINE_BOTTOM XmALIGNMENT_BASELINE_TOP
XmALIGNMENT_CONTENTS_BOTTOM XmALIGNMENT_CONTENTS_TOP
XmALIGNMENT_CENTER

The resource only takes effect when the children of the RowColumn are arranged in r
which means that theXmNorientation is XmHORIZONTAL. The default value is
XmALIGNMENT_CENTER, which causes the center of all of the children in a row to b
aligned.
Motif Programming Manual 397

Chapter 12: Labels and Buttons

used

and
ltiple
the

nes
lay a

d as
Multi-line and Multi-font Labels
The fonts used within a Label are directly associated with the rendition element tags
in the compound string specified for theXmNlabelString resource. The
XmNrenderTable * resource for a Label specifies the mapping between rendition tags
fonts that are used when displaying the text. Since a compound string may use mu
character sets, a Label can display any number of fonts, as specified in
XmNlabelString for the Label. A compound string may also contain embedded newli
and tabs, and color specifications. Example 12-2 shows the use of a Label to disp
single compound string that contains a monthly calendar.†

Example 12-2. The xcal.c program

/* xcal.c -- display a monthly calendar. The month displayed is a
** single Label widget whose text is generated from the output of
** the "cal" program found on any UNIX machine. popen() is used
** to run the program and read its output. Although this is an
** inefficient method for getting the output of a separate program,
** it suffices for demonstration purposes. A List widget displays
** the months and the user can provide the year as argv[1].
*/
#include <stdio.h>
#include <X11/Xos.h>
#include <Xm/Xm.h>
#include <Xm/List.h>
#include <Xm/Frame.h>
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <Xm/SeparatoG.h>

int year;
XmStringTable ArgvToXmStringTable(int, char **);
void FreeXmStringTable(XmStringTable);
char *months[] = {"January", "February", "March", "April", "May",

"June", "July", "August", "September",
"October", "November", "December"};

main (int argc, char *argv[])
{

Widget toplevel, frame, rowcol, label, w;
XtAppContext app;
extern void set_month(Widget, XtPointer, XtPointer);
XmRenderTable render_table;
XmRendition rendition;

* In Motif 2.0 and later, theXmFontList type is obsolete, replaced by theXmRenderTable . Accordingly, the
XmNfontList resource is deprecated. For backwards compatibility, a font lists is internally re-implemente
a render table.

† XtVaAppInitialize () is considered deprecated in X11R6.XmFontListEntryCreate (), XmFontListAp-
pendEntry (), XmFontListCreate () andXmFontListAdd () are all deprecated from Motif 2.0 onwards. The
XmFontList is deprecated, and replaced with theXmRenderTable andXmRendition objects.
398 Motif Programming Manual

Chapter 12: Labels and Buttons
Arg args[10];
int n;
XmStringTable strs;
int month_no;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a render table based on the fonts we're using. These are the
** fonts that are going to be hardcoded in the Label and List widgets.
*/

n = 0;
XtSetArg (args[n], XmNfontName, "-*-courier-bold-r-*--18-*"); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_IMMEDIATE); n++;
rendition = XmRenditionCreate (toplevel, "tag1", args, n);
render_table = XmRenderTableAddRenditions (NULL, &rendition, 1,

XmMERGE_NEW);
XmRenditionFree (rendition);

n = 0;
XtSetArg (args[n], XmNfontName, "-*-courier-medium-r-*--18-*"); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_IMMEDIATE); n++;
rendition = XmRenditionCreate (toplevel, "tag2", args, n);
render_table = XmRenderTableAddRenditions (render_table, &rendition,

1,XmMERGE_NEW);
XmRenditionFree (rendition);

if (argc > 1) {
month_no = 1;year = atoi (argv[1]);

} else {
extern long time(long *);
long t = time ((long *) 0);
struct tm *today = localtime (&t);
year = 1900 + today->tm_year;
month_no = today->tm_mon+1;

}
/* The RowColumn is the general layout manager for the application.
** It contains two children: a Label gadget that displays the calendar
** month, and a ScrolledList to allow the user to change the month.
*/
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, n);

/* enclose the month in a Frame for decoration. */
frame = XmCreateFrame (rowcol, "frame", NULL, 0);

n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
XtSetArg (args[n], XmNrenderTable, render_table); n++;
Motif Programming Manual 399

Chapter 12: Labels and Buttons
label = XmCreateLabelGadget (frame, "month", args, n);
XtManageChild (label);
XtManageChild (frame);

/* create a list of month names */
strs = ArgvToXmStringTable (XtNumber (months), months);
w = XmCreateScrolledList (rowcol, "list", NULL, 0);
XtVaSetValues (w,

XmNitems, strs,
XmNitemCount, XtNumber (months),
XmNrenderTable, render_table,
NULL);

FreeXmStringTable (strs);
XmRenderTableFree (render_table);
XtAddCallback (w, XmNbrowseSelectionCallback, set_month,

(XtPointer) label);
XtManageChild (w);
XmListSelectPos (w, month_no, True);

/* initialize month */
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback function for the List widget -- change the month */
void set_month (Widget w, XtPointer client_data, XtPointer call_data)
{

register FILE *pp;
extern FILE *popen();
char text[BUFSIZ];
register char *p = text;
XmString str;
Widget label = (Widget) client_data;
XmListCallbackStruct *list_cbs = (XmListCallbackStruct *) call_data;

/* Ask UNIX to execute the "cal" command and read its output */
sprintf (text, "cal %d %d", list_cbs->item_position, year);

if (!(pp = popen (text, "r"))) {
perror (text);
return;

}
*p = 0;

while (fgets (p, sizeof (text) - strlen (text), pp))
p += strlen (p);

pclose (pp);

/* display the month using the "tag1" rendition from the
** Label gadget's XmNrenderTable
*/
str = XmStringGenerate ((XtPointer) text, "tag1",

XmCHARSET_TEXT, NULL);
400 Motif Programming Manual

Chapter 12: Labels and Buttons

d

d
lines

in the
ing
XtVaSetValues (label, XmNlabelString, str, NULL);
XmStringFree (str);

}

/* Convert an array of string to an array of compound strings */
XmStringTable ArgvToXmStringTable (int argc, char **argv)
{

XmStringTable new =
(XmStringTable) XtMalloc ((argc+1) * sizeof (XmString));

if (!new)
return (XmStringTable) 0;

new[argc] = (XmString) 0;
while (--argc >= 0)

new[argc] = XmStringGenerate ((XtPointer) argv[argc], "tag2",
XmCHARSET_TEXT, NULL);

return new;
}

/* Free the table created by ArgvToXmStringTable() */
void FreeXmStringTable (XmStringTable argv)
{

register int i;
if (!argv)

return;
for (i = 0; argv[i]; i++)

XmStringFree (argv[i]);
XtFree ((char *) argv);

}

The output of this program is shown in Figure 12-2.

The principal function in Example 12-2 isset_month() . In this function, we call
popen() to run theUNIX programcaland read its input into a buffer. Since we know ahea
of time about how much text we are going to read,text is declared with ample space
(BUFSIZ). Each line is read consecutively untilfgets() returnsNULL, at which time we
close the opened process usingpclose() and convert the text buffer into a compoun
string. This compound string specifies a render table element tag and it includes new
becausefgets() does not strip newline characters from the strings it retrieves.

The program displays the calendar for the month corresponding to the selected item
List, but only as a single Label widget. If we wanted to display individual days us

Figure 12-2: Output of the xcal program
Motif Programming Manual 401

Chapter 12: Labels and Buttons

e to
fferent
ting

e
ect
r and
dix A,

that a
voke
vity
isual
abel

d

e

the
ver
ssing

e
n the
of the
different fonts (with Sundays greyed out, for example), then the text buffer would hav
be parsed. In this case, separate compound strings would be created using a di
rendition for the Sunday dates only. Since this exercise is more about manipula
compound strings than it is about Label widgets, we refer you to Chapter 24,Render
Tables, and Chapter 25,Compound Strings, for a detailed discussion of the use of multipl
fonts in compound strings. If you want to provide the user with the ability to sel
individual days from the month displayed, you must parse the dates from the text buffe
you probably want to use separate PushButton widgets for each date. See the Appen
Additional Example Programs, for an example of this technique.

PushButtons
Since the PushButton is subclassed from Label, a PushButton can do everything
Label can. However, unlike Labels, PushButtons can interact with the user and in
functions internal to the underlying application through callback routines. This interacti
is the principal difference between PushButtons and Labels. There are other v
differences, but these are adjusted automatically by the PushButton widget using L
resources.

<Xm/PushB.h> and <Xm/PushBG.h> are the header files for PushButton widgets an
gadgets, respectively. These objects can be created usingXtCreateWidget(),
XtVaCreateManagedWidget() , or the appropriate Motif convenience routine, as in th
following code fragments:

Widget pushb_w = XtVaCreateWidget ("name", xmPushButtonWidgetClass, parent,
resource-value-list , NULL);

Widget pushb_g = XtVaCreateWidget ("name", xmPushButtonGadgetClass, parent,
resource-value-list , NULL);

Widget pushb_w = XmCreatePushButton (parent, “name”, resource-value-array,
resource-value-count);

Widget pushb_g = XmCreatePushButtonGadget (parent, “name”,
resource-value-array,
resource-value-count);

PushButton Callbacks
The major callback routine associated with the PushButton widget is
XmNactivateCallback . The functions associated with this resource are called whene
the user activates the PushButton by pressing the left mouse button over it or by pre
the SPACEBAR when the widget has the keyboard focus.

The other callback routines associated with the PushButton are theXmNarmCallback and
the XmNdisarmCallback . Each function in an arm callback list is called whenever th
user presses the left mouse button when the pointer is over the PushButton. Whe
PushButton is armed, the top and bottom shadows are inverted and the background
402 Motif Programming Manual

Chapter 12: Labels and Buttons

s been
llback
er or

ton is
arm
been
ve the
m and
tually
d by

It is
your
n if it

acks.
button changes to the arm color. The arm callback does not indicate that the button ha
released. If the user releases the mouse button within the widget, then the activate ca
list is invoked. The arm callback is always called before the activate callback, wheth
not the activate callback is even called.

When the user releases the button, the disarm callback list is invoked. When the but
disarmed, its shadow colors and the background return to their normal state. Like the
callback, the disarm callback does not guarantee that the activate callback has
invoked. If the user changes her mind before releasing the mouse button, she can mo
mouse outside of the widget area and then release the button. In this case, only the ar
disarm callbacks are called. However, the most common case is that the user ac
selects and activates the button, in which case the arm callback is called first, followe
the activate callback and then the disarm callback.

The activate callback function is by far the most useful of the PushButton callbacks.
generally unnecessary to register arm and disarm callback functions, unless
application has a specific need to know when the button is pushed and released, eve
is not activated. Example 12-3 demonstrates the use of the various PushButton callb*

Example 12-3. The pushb.c program

/* pushb.c -- demonstrate the pushbutton widget. Display one
** PushButton with a single callback routine. Print the name
** of the widget and the number of "multiple clicks". This
** value is maintained by the toolkit.
*/

#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, button;
void my_callback(Widget, XtPointer, XtPointer);
XmString btn_text;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
btn_text = XmStringCreateLocalized ("Push Here");
XtSetArg (args[0], XmNlabelString, btn_text);
button = XmCreatePushButton (toplevel, "button", args, 1);
XmStringFree (btn_text);

XtAddCallback (button, XmNarmCallback, my_callback, NULL);
XtAddCallback (button, XmNactivateCallback, my_callback, NULL);

* XtVaAppInitialize() is considered deprecated in X11R6.
Motif Programming Manual 403

Chapter 12: Labels and Buttons

is

cide
to be

en
time
g the
ed by
hy
from
ns

epeat
XtAddCallback (button, XmNdisarmCallback, my_callback, NULL);
XtManageChild (button);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void my_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

XmPushButtonCallbackStruct *cbs =
(XmPushButtonCallbackStruct *) call_data;

if (cbs->reason == XmCR_ARM)
printf ("%s: armed\n", XtName (w));

else if (cbs->reason == XmCR_DISARM)
printf ("%s: disarmed\n", XtName (w));

else
printf ("%s: pushed %d times\n", XtName (w), cbs->click_count);

}

The callback structure associated with the PushButton callback routines
XmPushButtonCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
int click_count;

} XmPushButtonCallbackStruct;

The reason parameter is set toXmCR_ACTIVATE, XmCR_ARM, or XmCR_DISARM
depending on the callback that invoked the callback routine. We use this value to de
what action to take in the callback routine. The event that caused the callback routine
invoked is referenced by theevent field.

The value of theclick_count field reflects how many times the PushButton has be
clicked repeatedly. A repeated button click is one that occurs during a predefined
segment since the last button click. Repeated button clicks can only be done usin
mouse. The time segment that determines whether a button click is repeated is defin
the resourcemultiClickTime * . This resource is not defined in the widget class hierarc
but on a per-display basis; the value should be left to the user to specify independently
the application. You can get or set this value using the functio
XtGetMultiClickTime() or XtSetMultiClickTime() . The time interval is used by
Xt’s translation manager to determine when multiple events are interpreted as a r
event. The default value is 200 milliseconds (1/5 of a second).

* There is no definition of this resource in any public header file, Motif, Xt, or otherwise.
404 Motif Programming Manual

Chapter 12: Labels and Buttons

tiple
arm

ck.
ed.

r the
r this
utton
ust
by

ks
d for

ed in
Multiple Button Clicks
Unfortunately, there is no way to determine whether you are about to receive mul
button clicks from a PushButton. Each time the user activates the PushButton, the
callback is invoked, followed by the activate callback, followed by the disarm callba
These three callbacks are invoked regardless of whether multiple clicks have occurr

The best way to determine whether multiple button clicks have occurred would be fo
disarm callback to be called only when there are no more button clicks queued. Unde
scenario, the same callback function can be used to determine the end of a multiple b
click sequence. However, since the Motif toolkit does not operate this way, we m
approach the task of handling multiple button clicks differently. We handle the situation
setting up our own timeout routines independently of Motif and handling multiple clic
through the timeout function. Even though we are going to use an alternate metho
handling multiple clicks, we can still use theclick_count parameter in the callback
structure provided by the PushButton callback routine. Our technique is demonstrat
Example 12-4.*

Example 12-4. The multi_click.c program

/* multi_click.c -- demonstrate handling multiple PushButton clicks.
** First, obtain the time interval of what constitutes a multiple
** button click from the display and pass this as the client_data
** for the button_click() callback function. In the callback, single
** button clicks set a timer to expire on that interval and call the
** function process_clicks(). Double clicks remove the timer and
** just call process_clicks() directly.
*/

#include <Xm/PushB.h>
XtAppContext app;

main (int argc, char *argv[])
{

Widget toplevel, button;
void button_click(Widget, XtPointer, XtPointer);
XmString btn_text;
int interval;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* get how long for a double click */
interval = XtGetMultiClickTime (XtDisplay (toplevel));
printf ("Interval = %d\n", interval);

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 405

Chapter 12: Labels and Buttons

erval
the

lick
the
a
timer
btn_text = XmStringCreateLocalized ("Push Here");
XtSetArg (args[0], XmNlabelString, btn_text);
button = XmCreatePushButton (toplevel, "button", args, 1);
XtManageChild (button);
XmStringFree (btn_text);
XtAddCallback (button, XmNactivateCallback, button_click,

(XtPointer) interval);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Process button clicks. Single clicks set a timer, double clicks
** remove the timer, and extended clicks are ignored.
*/
void button_click (Widget w, XtPointer client_data, XtPointer call_data)
{

static XtIntervalId id;
void process_clicks(XtPointer, XtIntervalId *);
int interval = (int) client_data;
XmPushButtonCallbackStruct *cbs =

(XmPushButtonCallbackStruct *) call_data;

if (cbs->click_count == 1)
id = XtAppAddTimeOut (app, (unsigned long) interval,

process_clicks, (XtPointer) False);
else if (cbs->click_count == 2) {

XtRemoveTimeOut (id);
process_clicks ((XtPointer) True, (XtIntervalId *) 0);

}
}

/* This function won't be called until we've established whether
** or not a single or a double click has occurred.
*/
void process_clicks (XtPointer client_data, XtIntervalId *id)
{

int double_click = (int) client_data;

if (double_click)
puts ("Double click");

else
puts ("Single click");

}

The program displays the same basic PushButton widget. First, it obtains the time int
that constitutes a multiple button click from the display. This value is passed as
client_data to the PushButton’s callback function,button_click() . When the user
first clicks on the PushButton, the callback function is called, and since it is a single-c
at this point, a timer is set to expire on the given time interval. If the timer expires,
functionprocess_clicks() is called withFalse as its parameter, which means that
single-click has indeed occurred. However, if a second button click occurs before the
406 Motif Programming Manual

Chapter 12: Labels and Buttons

you

r an
r has
a user
; she

time
is
ny
ram

the
son
sn’t
. If
ou
ble-
the
lick
how

ers
est
iliar

sing
yet
ation
cting
d for

n is
d it is

are

es
expires, the timer is removed andprocess_clicks() is called directly withTrue as its
data, to indicate that a double-click has occurred. The functionprocess_clicks() can
be any function that processes single, double, or multiple clicks, depending on how
modify the example we’ve provided.

If you run Example 12-4, you may find that you get mixed messages about whethe
action is a single or double mouse click. A multiple mouse click means that the use
both pressed and released the mouse button more than once. It is very common for
to intend to double click on a button only to find that she really invoked a double press
quickly pressed the mouse button twice, but she failed to release it before the required
interval. This problem makes it difficult to interpret double (multiple) button clicks. It
important that you inform the user of the proper double-clicking method in a
accompanying documentation you provide with your application, as attempting to prog
around this problem will definitely cause you great distress.

If you are going to use multiple button clicks for PushButtons, it is important that
multiple-click actions perform a more global version of the single-click actions. The rea
for this recommendation is that if the user intends to perform a double click but doe
click fast enough, the single-click action is invoked instead of the double-click action
the two actions are completely different, it can make an application difficult to use.Y
might also consider displaying some visual cue to the user about the availability of dou
click actions. For example, you could use a multi-lined label in a PushButton, where
first line indicates the single-click action and the second line specifies the double-c
action. If you use this technique, make sure that your documentation informs the user
to invoke either of the two actions.

While double-clicking is a popular interface technique among application programm
and it is certainly useful for computers with single-button mice, it may not be the b
interface for all occasions. Possible error conditions may arise when the user is unfam
with single and double-clicking techniques. Users often trip on mouse buttons, cau
unintentional multiple clicks. Also, users frequently intend to do one double click
succeed in doing two single clicks. As a result, they get very upset because the applic
invokes the wrong action twice as opposed to the right action once. Rather than subje
your users to possible misinterpretation, it may be better to define an alternate metho
providing separate actions for the same PushButton widget.

For example, you could define an action for a SHIFT-modified button click. This actio
easy enough for the user to do, it is less subject to ambiguity or accidental usage, an
much easier to program. The callback function only needs to check theevent data
structure and see if the SHIFT key is down when the button is activated.

The PushButton looks for and reports multiple button-click actions by default, so if you
not interested in multiple button clicks, you should set the resourceXmNmultiClick to
XmMULTICLICK_DISCARD. When multiple clicks are discarded, only the first of a seri
Motif Programming Manual 407

Chapter 12: Labels and Buttons

. To

some
d, or

The
ls set
same

d in
upon
ether
p of

ios,
up of
In a

Box it
s to be
n also

tively
s are
m:

t that
of clicks are processed; the rest are discarded without notifying the callback routine
turn multiple clicks back on, set the resource toXmMULTICLICK_KEEP.

ToggleButtons
A ToggleButton is a simple user-interface element that represents application state in
way, usually a Boolean value. The widget consists of an indicator (a square, diamon
circle) with either text or a pixmap on one side of it* . The indicator is optional, however,
since the text or pixmap itself can provide the state information of the button.
ToggleButton widget is subclassed from Label, so ToggleButtons can have their labe
to compound strings or pixmaps and can be aligned in the same ways and under the
restrictions as Label widgets.

Individually, a ToggleButton might be used to indicate whether a file should be opene
overwrite mode or append mode, or whether a mail application should update a folder
process termination. But for the most part, it is when ToggleButtons are grouped tog
that they become interesting components of a user interface. A RadioBox is a grou
ToggleButtons in which only one may be on at any given time. Like the old AM car rad
when one button is pressed in, all of the others are popped out. A CheckBox is a gro
ToggleButtons in which each ToggleButton may be set independently of the others.
RadioBox the selection indicator is represented by a diamond shape, and in a Check
is represented by a square. In either case, when the button is on, the indicator appear
pressed in, and when it is off, the indicator appears to be popped out. The indicator ca
be configured to internally display a cross or check (tick) mark†, and there are resources
specifically to configure the color of the indicator in the on and off state‡.

A CheckBox or a RadioBox can often present a set of choices to the user more effec
than a List widget, a PopupMenu, or a row of PushButtons. In fact, these configuration
so common that Motif provides convenience routines for creating the
XmCreateRadioBox() and XmCreateSimpleCheckBox() . RadioBoxes and
CheckBoxes are really specialized instances of the RowColumn manager widge
contain ToggleButton children.

Creating ToggleButtons
Applications that use ToggleButtons must include the header file <Xm/ToggleB.h>.
ToggleButtons may be created usingt he following code fragment:

Widget toggle = XtVaCreateWidget ("name", xmToggleButtonWidgetClass,
parent, resource-value-list , NULL);

* The range of indicators is extended in Motif 2.0: Motif 1.2 can only display squares and diamonds.

† Crosses, Checks and the like are only available from Motif 2.0 onwards.

‡ Coloration for the off state can only be specified in Motif 2.0 and later.
408 Motif Programming Manual

Chapter 12: Labels and Buttons

t, you
s

the
when

iated
ost

f
or a
Widget toggle = XmCreateToggleButton (parent, “name”, resource-value-array ,
resource-value-count);

ToggleButtons are also available in the form of gadgets. To use a ToggleButton gadge
must include the header file <Xm/ToggleBG.h>. ToggleButton gadgets may be created a
follows:

Widget toggle = XtVaCreateWidget ("name", xmToggleButtonGadgetClass,
parent, resource-value-list , NULL);

Widget toggle = XmCreateToggleButtonGadget (parent, “name”,
resource-value-array , resource-value-count);

As we’ll show you later in this section, it is also possible to create ToggleButtons at
same time as you create their RowColumn parent. This technique is commonly used
you create a RadioBox or a CheckBox.

Figure 12-3 shows an example of several different ToggleButtons in various states.

ToggleButton Resources
Since ToggleButtons are fairly simple objects, there are only a few resources assoc
with them aside from those inherited from the Label class. Probably one of the m
important of these resources isXmNindicatorType , which controls the general shape o
the selection indicator that shows whether the ToggleButtons are part of a CheckBox
RadioBox. Table 12-1 lists the available possibilities and their meanings.*

. Table 12-1: The various settings for the XmNindicatorType resource

XmN_OF_MANY A square button

XmONE_OF_MANY A round or diamond shaped button

XmONE_OF_MANY_ROUND A round button

XmONE_OF_MANY_DIAMOND A diamond-shaped button

Figure 12-3: ToggleButton widgets and gadgets
Motif Programming Manual 409

Chapter 12: Labels and Buttons

pe,

t with

otif
eral
tting

to
g

than

the

t

2.x

the
e that
The valueXmONE_OF_MANYresource can result in either a round or diamond sha
depending upon the XmDisplay objectXmNenableToggleVisual resource. If this is
True , then the result is round, otherwise a diamond. The diamond shape is consisten
a Motif 1.2 appearance.

When you are grouping ToggleButtons together in a single manager widget, the M
toolkit expects you to use a RowColumn widget. The RowColumn widget has sev
resources intrinsic to its class that control the behavior of ToggleButton children. Se
the RowColumn resourceXmNradioBehavior to True automatically changes the
XmNindicatorType resource of every ToggleButton managed by the RowColumn
XmONE_OF_MANY, which provides the exclusive RadioBox behavior. Settin
XmNradioBehavior to False sets theXmNindicatorType to XmN_OF_MANYand gives
the CheckBox behavior. If you want to use ToggleButtons in a manager widget other
a RowColumn, you need to set theXmNindicatorType resource for each ToggleButton
individually, as well as manage the state of each button.

Whilst XmNindicatorType configured the general geometric shape of the indicator,
resourceXmNindicatorOn configures the contents*. Table 12-2 lists the possibilities:

The value XmINDICATOR_FILL depends upon the XmDisplay objec
XmNenableToggleVisual resource. IfFalse , the toggle indicator is a box, which is the
Motif 1.2 appearance. IfTrue , the indicator has a check mark.

Toggles are usually thought of as Boolean in nature: they are either on, or off. A Motif
toggle can, however, be tri-state. The third state is theindeterminatestate, which is neither
on, nor off. To configure a Toggle for three states, theXmNtoggleMode resource is set to
XmTOGGLE_INDETERMINATE;the default,XmTOGGLE_BOOLEAN,is the normal two-
state toggle. In order to programmatically set the Toggle into a given state, theXmNset

* XmONE_OF_MANY_ROUND, XmONE_OF_MANY_DIAMOND are only available from Motif 2.0 onwards.

. Table 12-2: The XmNindicatorOn resource and associated values

XmINDICATOR_NONE No indicator

XmINDICATOR_FILL A check box, or box

XmINDICATOR_BOX A Shadowed Box

XmINDICATOR_CHECK A check (tick) mark

XmINDICATOR_CHECK_BOX A check (tick) enclosed in a box

XmINDICATOR_CROSS A cross

XmINDICATOR_CROSS_BOX A cross enclosed in a box

* XmNindicatorOn in Motif 1.2 is a simple Boolean: display the indicator, or not. We feel that extending
meaning to also encompass the visual appearance itself is possibly confusing, and it is no longer intuitiv
this is the resource to set if you want a Cross in a box. There should possibly have been anXmNindicator-
Style resource instead of overloadingXmNindicatorOn .
410 Motif Programming Manual

Chapter 12: Labels and Buttons

the
al of

th
r their
e left

on

,
urce
e

he use
resource is used:XmSET, XmUNSET, and XmINDETERMINATEare the relevant values*.
Figure 12-4 shows some Toggles in the three states.

Many of the remaining resources are intended mostly for fine-tuning the details of
indicator shape. These details are straightforward and do not require a great de
discussion. For example, theXmNindicatorSize resource can be used to set the wid
and height of the indicator. There is nothing magical about these sorts of resources o
side effects, so most are either set automatically by the ToggleButton or they should b
to the user to configure for herself.

ToggleButton Pixmaps
TheXmNselectPixmap resource specifies the pixmap to use when a ToggleButton is
(the resourceXmNset has the valueXmSET). The selected pixmap only applies if the
XmNlabelType resource is set toXmPIXMAP. XmNlabelType is a Label class resource
but it applies to ToggleButtons since they are subclassed from Label. The reso
XmNindeterminatePixmap specifies the pixmap to use when the Toggle is in th
indeterminate state. Example 12-5 demonstrates the creation of a ToggleButton and t
of theXmNselectPixmap and XmNindeterminatePixmap resources.†

Example 12-5. The toggle.c program

/* toggle.c -- demonstrate a simple toggle button.
*/

* In Motif 1.2, XmNset is a Boolean-valued resource. for backwards compatibility,XmSETis equivalent to True,
XmUNSET is equivalent to False.

† XtVaAppInitialize () is considered deprecated in X11R6.XmNindeterminatePixmap is available from
Motif 2.0 and later.

Figure 12-4: ToggleButton states and indicator appearance
Motif Programming Manual 411

Chapter 12: Labels and Buttons
#include <Xm/ToggleB.h>
#include <Xm/RowColumn.h>

void toggled (Widget widget, XtPointer client_data, XtPointer call_data)
{

XmToggleButtonCallbackStruct *state =
(XmToggleButtonCallbackStruct *) call_data;

printf ("%s: %s\n", XtName (widget),
state->set == XmSET? "on" : state->set == XmOFF ? "off" :
“indeterminate”);

}

main (int argc, char *argv[])
{

Widget toplevel, rowcol, toggle;
XtAppContext app;
Pixmap on, off, unknown;
Pixel fg, bg;
Arg args[6];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, n);
XtVaGetValues (rowcol, XmNforeground, &fg, XmNbackground, &bg, NULL);
on = XmGetPixmap (XtScreen (rowcol), "switch_on.xbm", fg, bg);
off = XmGetPixmap (XtScreen (rowcol), "switch_off.xbm", fg, bg);
unknown = XmGetPixmap (XtScreen (rowcol),

"switch_unknown.xbm", fg, bg);
if (on == XmUNSPECIFIED_PIXMAP ||

off == XmUNSPECIFIED_PIXMAP ||
unknown == XmUNSPECIFIED_PIXMAP) {

puts ("Couldn't load pixmaps");
exit (1);

}

n = 0;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNtoggleMode, XmTOGGLE_INDETERMINATE); n++;
XtSetArg (args[n], XmNlabelPixmap, off); n++;
XtSetArg (args[n], XmNselectPixmap, on); n++;
XtSetArg (args[n], XmNindeterminatePixmap, unknown); n++;

toggle = XmCreateToggleButton (rowcol, "toggle", args, n);
XtAddCallback (toggle, XmNvalueChangedCallback, toggled, NULL);
XtManageChild (toggle);

toggle = XmCreateToggleButton (rowcol, "toggle",args, n);
XtAddCallback (toggle, XmNvalueChangedCallback, toggled, NULL);
XtManageChild (toggle);
412 Motif Programming Manual

Chapter 12: Labels and Buttons

the

ake
ed off

tion
he

trieve
ton.

meth-
toggle = XmCreateToggleButton (rowcol, "toggle",args, n);
XtAddCallback (toggle, XmNvalueChangedCallback, toggled, NULL);
XtManageChild (toggle);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output for this program is shown in Figure 12-5. The button on the left shows
ToggleButton when it is in theXmUNSETstate, the button in center is the
XmINDETERMINATEstate, and the button on the right shows it in theXmSETstate. The
pixmaps illustrate the movement of a simple mechanical switch. Since the pixmaps m
the state of the toggle clear, the square indicator is not really necessary. It can be turn
by setting XmNindicatorOn to XmINDICATOR_NONE (its default value is
XmINDICATOR_FILL).

In order to create the pixmaps for the ToggleButtons, we use the func
XmGetPixmap() , which is a general-purpose pixmap loading and caching function. T
function needs a foreground and background color for the pixmap it creates, so we re
and use the colors from the RowColumn that is the parent of the ToggleBut
XmGetPixmap() loads the pixmaps stored in the filesswitch_on.xbm, switch_off.xbm,and
switch_unknown.xbmin the current directory.*Those files contain the following bitmap
definitions:

#define switch_on_width 16
#define switch_on_height 16
static unsigned char switch_on_bits[] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x3c,
0x00, 0x1e, 0x00, 0x0f, 0x80, 0x07, 0xc0, 0x03, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

#define switch_off_width 16
#define switch_off_height 16
static unsigned char switch_off_bits[] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x3c, 0x00,
0x78, 0x00, 0xf0, 0x00, 0xe0, 0x01, 0xc0, 0x03, 0xff, 0xff, 0xff, 0xff,

* The fact that the pixmap files happen to reside in the current directory is not necessarily the recommended
od for usingXmGetPixmap() . For a complete discussion of the function, see Section 3.4.5 in Chapter 3,Over-
view of the Motif Toolkit.

Figure 12-5: Output of the toggle program
Motif Programming Manual 413

Chapter 12: Labels and Buttons

be
utton

rly,
te

the
n
to the
tton

her

n.

utton
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

#define switch_unknown_width 16
#define switch_unknown_height 16
static unsigned char switch_unknown_bits[] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x01, 0x80, 0x01, 0x80, 0x01,
0x80, 0x01, 0x80, 0x01, 0x80, 0x01, 0x80, 0x01, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

The XmNselectInsensitivePixmap resource can be used to specify a pixmap to
used when the widget or gadget is insensitive, but in a selected state. When a ToggleB
is insensitive, the user cannot change its value interactively. Simila
XmNindeterminateInsensitivePixmap can be used to display the indetermina
state when the Toggle is insensitive* .

ToggleButton Callbacks
The primary callback routine associated with the ToggleButton is
XmNvalueChangedCallback , which is invoked when the value of the ToggleButto
changes. The ToggleButton also has arm and disarm callbacks that are analogous
callbacks in PushButtons. The callback structure associated with the ToggleBu
callback routines isXmToggleButtonCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
int set;

} XmToggleButtonCallbackStruct;

When the value of the ToggleButton has changed, thereason field is set toXmCR_VALUE_
CHANGEDand theset field indicates the current state of the widget.

You can determine the state of a ToggleButton at any time using eit
XmToggleButtonGetState() or XmToggleButtonGadgetGetState() . These
functions take the following form:

Boolean XmToggleButtonGetState (Widget toggle_w)
Boolean XmToggleButtonGadgetGetState (Widget toggle_w)

Both of the routines return the state of the specified ToggleButto
XmToggleButtonGetState() determines if thetoggle_w parameter is a widget or a
gadget, so you can use the routine on either a ToggleButton widget or a ToggleB
gadget.XmToggleButtonGadgetSetState() can only be used on a gadget.

* XmNindeterminateInsensitivePixmap is only available from Motif 2.0 onwards.
414 Motif Programming Manual

Chapter 12: Labels and Buttons

s:

ction,
et
get.

ry or
, the

and
This
t the
ell the
ason,
; the

For
ound
a CD
You can explicitly set the state of a ToggleButton using similar function
XmToggleButtonSetState() and XmToggleButtonGadgetSetState() . These
functions take the following form:

void XmToggleButtonSetState (Widget toggle_w , Boolean state ,
Boolean notify)

void XmToggleButtonGadgetSetState (Widget toggle_w , Boolean state ;
Boolean notify)

The state argument specifies the state of the ToggleButton. Thenotify parameter
allows you to specify whether or not theXmNvalueChangedCallback of the
ToggleButton is called when the state is changed. Just like the corresponding get fun
XmToggleButtonSetState() determines if its parameter is a widget or gadg
internally, so you can use it on either a ToggleButton widget or a ToggleButton gad
XmToggleButtonGadgetSetState() can only be used on a gadget.

The XmToggleButtonGetState () and XmToggleButtonSetState () functions
assume the Motif 1.2 model: the Toggle is a Boolean switch. It is not possible to que
set the Toggle into an indeterminate state using the routines. For a tri-state Toggle
following functions set the widget state:

Boolean XmToggleButtonSetValue (Widget toggle_w,
XmToggleButtonState state,
Boolean notify)

Boolean XmToggleButtonGadgetSetValue (Widget toggle_w;
XmToggleButtonState state;
Boolean notify)

If the Toggle has the resourceXmNtoggleMode set to XmTOGGLE_INDETERMINATE,
XmToggleButtonSetValue () and XmToggleButtonGadgetSetValue () set the
Toggle to the requested state, call theXmNvalueChangedCallback if notify is True ,
and thereafter return the valueTrue . If XmNtoggleMode is set otherwise, the routines
simply returnFalse .

One important point to make about ToggleButtons is that, unlike PushButtons
DrawnButtons, the callback is not typically used to take an action in the application.
point becomes clearer with groups of ToggleButtons, which are commonly used to se
state of various variables. When the user has set the state as desired, she might t
application to apply the settings by clicking on an associated PushButton. For this re
the callback routine for a ToggleButton may simply set the state of a global variable
value can then be used by other application functions.

Of course, like almost every object in Motif, a ToggleButton can be put to many uses.
example, a single ToggleButton could be used to swap the foreground and backgr
colors of a window as soon as the user selects the button. An application that controls
player could have aPause button represented by a ToggleButton.
Motif Programming Manual 415

Chapter 12: Labels and Buttons

of a
f the
gous
out.
r a
log of

and

of its
for a

ty is

e
ver

in

lumn

l as
is not
t a
even
RadioBoxes
When a group of ToggleButtons are used as part of an interface, it is in the form
RadioBox or a CheckBox. The primary difference between the two is the selection o
ToggleButtons within. In a RadioBox, only one item may be selected at a time (analo
to old-style AM car radios). You push one button and the previously set button pops
Examples of exclusive settings in a RadioBox might be baud rate settings fo
communications program or U.S. versus European paper sizes in the page setup dia
a word processing program.

A RadioBox is implemented using a combination of ToggleButton widgets or gadgets
a RowColumn manager widget. As discussed in Chapter 8,Manager Widgets, the
RowColumn widget is a general-purpose composite widget that manages the layout
children. The RowColumn has special resources that allow it to act as a RadioBox
group of ToggleButtons.

In a RadioBox, only one of the buttons may be set at any given time. This functionali
enforced by the RowColumn when the resourceXmNradioBehavior is set toTrue . For
true RadioBox effect, theXmNradioAlwaysOne resource can also be set to tell th
RowColumn that one of the ToggleButtons should always be set. Whene
XmNradioBehavior is set, the RowColumn automatically sets theXmNindicatorType
resource toXmONE_OF_MANYand theXmNvisibleWhenOff resource toTrue for all of
its ToggleButton children. Furthermore, theXmNisHomogeneous resource on the
RowColumn is forced toTrue to ensure that no other kinds of widgets can be contained
that RowColumn instance.

Motif provides the convenience functionXmCreateRadioBox() to automatically create
a RowColumn widget that is configured as a RadioBox. This routine creates a RowCo
widget with XmNisHomogeneous set to True , XmNentryClass set to
xmToggleButtonGadgetClass , XmNradioBehavior set toTrue , andXmNpacking
set toXmPACK_COLUMN. Keep in mind that unlessXmNisHomogeneous is set toTrue ,
there is nothing restricting a RadioBox from containing other classes as wel
ToggleButtons. Whether the RowColumn is homogeneous or not, the toggle behavior
affected. Although the Motif convenience function sets the homogeneity, it is no
requirement. For example, you might want a RadioBox to contain a Label, or perhaps
some other control area, like a Command widget.

Example 12-6 contains a program that creates and uses a RadioBox.*

Example 12-6. The radio.c program

/* radio.c -- demonstrate a simple radio box. Create a
** box with 3 toggles: "one", "two" and "three". The callback

* XtVaAppInitialize () is considered deprecated in X11R6.
416 Motif Programming Manual

Chapter 12: Labels and Buttons

ts one
he
r

** routine prints the most recently selected choice. Maintain
** a global variable that stores the most recently selected.
*/
#include <Xm/ToggleBG.h>
#include <Xm/RowColumn.h>

int toggle_item_set;

void toggled (Widget widget, XtPointer client_data, XtPointer call_data)
{

int which = (int) client_data;
XmToggleButtonCallbackStruct *state =

(XmToggleButtonCallbackStruct *) call_data;
printf ("%s: %s\n", XtName (widget),

state->set == XmSET ? "on" : state->set == XmOFF ? "off" :
“indeterminate”);

if (state->set == XmSET)
toggle_item_set = which;

else
toggle_item_set = 0;

}

main (int argc, char *argv[])
{

Widget toplevel, radio_box, one, two, three;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);

radio_box = XmCreateRadioBox (toplevel, "radio_box", NULL, 0);

one = XmCreateToggleButtonGadget (radio_box, "One", NULL, 0);
XtAddCallback (one, XmNvalueChangedCallback, toggled, (XtPointer) 1);
XtManageChild (one);

two = XmCreateToggleButtonGadget (radio_box, "Two", NULL, 0);
XtAddCallback (two, XmNvalueChangedCallback, toggled, (XtPointer) 2);
XtManageChild (two);

three = XmCreateToggleButtonGadget (radio_box, "Three", NULL, 0);
XtAddCallback (three, XmNvalueChangedCallback, toggled,

(XtPointer) 3);
XtManageChild (three);

XtManageChild (radio_box);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The program creates three ToggleButtons inside of a RadioBox. When the user selec
of the buttons, the previously-set widget is toggled off, and t
XmNvalueChangedCallback routine is called. Notice that the routine is called twice fo
Motif Programming Manual 417

Chapter 12: Labels and Buttons

off,
ut of

e
the

could

tion
list

your
ggle

t and
form

You
lue

be
ts: a

f

each selection: the first time to notify that the previously set widget has been turned
and the second time to notify that the newly set widget has been turned on. The outp
the program is shown in Figure 12-6.

The global variabletoggle_item_set indicates which of the three selections is on. Th
value oftoggle_item_set is accurate at any given time because it is either set to
most currently selected object or it is set to0. In a real application, this global variable
would be used to store the state of the buttons, so that other application functions
reference them.

You should beware of lengthy callback lists, however. If you have more than one func
in the callback list for the ToggleButtons (unlike the situation shown above), the entire
is going to be called twice. A zero value fortoggle_item_set indicates that you are in
the first of two phases of the toggling mechanism. In this case, you can fall through
callback lists, as the list is called again with the value set to the recently selected to
item.

Motif provides another RadioBox creation routine,XmVaCreateSimpleRadioBox() ,
for creating simple RadioBoxes. If a RadioBox only has one callback associated with i
you only need to know which button has been selected, this routine may be used. The
of the function is:

XmVaCreateSimpleRadioBox (Widget parent , String name, int button_set ,
void (* callback)(), ..., NULL)

In addition to the specified parameters, the function also accepts aNULLterminated list of
resource-value pairs that apply to the RowColumn widget that acts as the RadioBox.
can specify any normal RowColumn resources in this list, as well as the va
XmVaRADIOBUTTON, which is a convenient method for specifying a button that is to
created inside the RadioBox. This parameter is followed by four additional argumen
label of type XmString , a mnemonic of type XmKeySym, an accelerator of type
String , andaccelerator_text (also of typeXmString) that is used to display the
accelerator in the widget. You can useXmVaRADIOBUTTONmultiple times in the same call
to XmVaCreateSimpleRadioBox() , so that you can create an entire group o
ToggleButtons in one function call.

Example 12-7 contains an example ofXmVaCreateSimpleRadioBox() . This program
is functionally identical to the previous example.*

Figure 12-6: Output of the simple_radio program
418 Motif Programming Manual

Chapter 12: Labels and Buttons
 Example 12-7. The simple_radio.c program

/* simple_radio.c -- demonstrate a simple radio box by using
** XmVaCreateSimpleRadioBox(). Create a box with 3 toggles:
** "one", "two" and "three". The callback routine prints
** the most recently selected choice.
*/

#include <Xm/RowColumn.h>

void toggled (Widget widget, XtPointer client_data, XtPointer call_data)
{

int which = (int) client_data;
XmToggleButtonCallbackStruct *state =

(XmToggleButtonCallbackStruct *) call_data;
printf ("%s: %s\n", XtName (widget),

state->set == XmSET? "on" : state->set == XmOFF ? "off" :
“indeterminate”);

}

main (int argc, char *argv[])
{

Widget toplevel, radio_box;
XtAppContext app;
XmString one, two, three;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);

one = XmStringCreateLocalized ("One");
two = XmStringCreateLocalized ("Two");
three = XmStringCreateLocalized ("Three");

radio_box = XmVaCreateSimpleRadioBox (toplevel,
"radio_box",
0, /* the initial choice */
toggled, /* the callback routine */
XmVaRADIOBUTTON, one, NULL, NULL, NULL,
XmVaRADIOBUTTON, two, NULL, NULL, NULL,
XmVaRADIOBUTTON, three, NULL, NULL, NULL,
NULL);

XmStringFree (one);
XmStringFree (two);
XmStringFree (three);

XtManageChild (radio_box);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 419

Chapter 12: Labels and Buttons

ems
for

hould

and

he
e a
we
e can
et.
CheckBoxes
A CheckBox is similar to a RadioBox, except that there is no restriction on how many it
may be selected at once. A word processing program might use a CheckBox
nonexclusive settings, such as whether font smoothing, bitmap smoothing, or both, s
be applied.

Like RadioBoxes, CheckBoxes are implemented using RowColumn widgets
ToggleButton children. To allow multiple items to be selected, theXmNradioBehavior
resource is set toFalse . The convenience routineXmVaCreateSimpleCheckBox()
works just like the radio box creation routine, except that it turns off t
XmNradioBehavior resource. Rather than using this function, we can simply creat
common RowColumn widget and add ToggleButton children. With this technique,
have more direct control over the resources that are set in the RowColumn, since w
specify exactly which ones we want using the varargs interface for creating the widg

Example 12-8 demonstrates how to create a CheckBox using a RowColumn widget.*

Example 12-8. The toggle_box.c program

/* toggle_box.c -- demonstrate a home-brew ToggleBox. A static
** list of strings is used as the basis for a list of toggles.
** The callback routine toggled() is set for each toggle item.
** The client data for this routine is set to the enumerated
** value of the item with respect to the entire list. This value
** is treated as a bit which is toggled in "toggles_set" -- a
** mask that contains a complete list of all the selected items.
** This list is printed when the PushButton is selected.
*/

#include <Xm/ToggleBG.h>
#include <Xm/PushBG.h>
#include <Xm/SeparatoG.h>
#include <Xm/RowColumn.h>

unsigned long toggles_set; /* has the bits of which toggles are set */
char *strings[] = {"One", "Two", "Three", "Four", "Five", "Six", "Seven",

"Eight", "Nine", "Ten"};
/* A RowColumn is used to manage a ToggleBox (also a RowColumn) and
** a PushButton with a separator gadget in between.
*/
main (int argc, char *argv[])
{

Widget toplevel, rowcol, toggle_box, w;
XtAppContext app;
void toggled(Widget, XtPointer, XtPointer);
void check_bits(Widget, XtPointer, XtPointer);
int i;

* XtVaAppInitialize () is considered deprecated in X11R6.
420 Motif Programming Manual

Chapter 12: Labels and Buttons
Arg args[4];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

i = 0;
XtSetArg (args[i], XmNpacking, XmPACK_TIGHT); i++;
rowcol = XmCreateRowColumn (toplevel, "rowcolumn", args, i);

i = 0;
XtSetArg (args[i], XmNpacking, XmPACK_COLUMN); i++;
XtSetArg (args[i], XmNnumColumns, 2); i++;
toggle_box = XmCreateRowColumn (rowcol, "togglebox", args, i);

/* simply loop through the strings creating a widget for each one */
for (i = 0; i < XtNumber (strings); i++) {

w = XmCreateToggleButtonGadget (toggle_box, strings[i], NULL, 0);
XtAddCallback (w, XmNvalueChangedCallback, toggled,

(XtPointer) i);
XtManageChild (w);

}

w = XmCreateSeparatorGadget (rowcol, "sep",NULL, 0);
XtManageChild (w);
w = XmCreatePushButtonGadget (rowcol, "Check Toggles",NULL, 0);
XtAddCallback (w, XmNactivateCallback, check_bits, NULL);
XtManageChild (w);

XtManageChild (rowcol);
XtManageChild (toggle_box);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* callback for all ToggleButtons.*/
void toggled (Widget widget, XtPointer client_data, XtPointer call_data)
{

int bit = (int) client_data;
XmToggleButtonCallbackStruct *toggle_data =

(XmToggleButtonCallbackStruct *) call_data;

if (toggle_data->set == XmSET)
/* if the toggle button is set, flip its bit */
toggles_set |= (1 << bit);

else /* if the toggle is "off", turn off the bit. */
toggles_set &= ~(1 << bit);

}

void check_bits (Widget widget, XtPointer client_data, XtPointer call_data)
{

int i;

printf ("Toggles set:");
Motif Programming Manual 421

Chapter 12: Labels and Buttons

than

e its

the
een
the

ttons

the
ttons

is a
the

the
for (i = 0; i < XtNumber (strings); i++)
if (toggles_set & (1<<i))

printf (" %s", strings[i]);
putchar ('\n');

}

The output of this program is shown in Figure 12-7.

This example is similar to the previous RadioBox examples, except that since more
one of the buttons may be set at a time in a CheckBox, we can no longer usetoggle_
item_set the way we did in the previous examples. Instead, we are going to chang
name totoggles_set and its type tounsigned long . This time we are going to use the
variable as amask, which means that its individual bits have meaning, rather than
combined value of the variable. The bits indicate which of the ToggleButtons have b
set. Each time a ToggleButton changes its value, the callback routine flips
corresponding bit in the mask. We can therefore determine at any given time which bu
are set and which are not.*

The PushButton in the program provides a way to check the state of all of
ToggleButtons. The callback routine for the PushButton prints the strings of those bu
that are selected by looping through thetoggles_setvariable and checking for bits that have
been set.

One interesting aspect of this program is that it works just as well if the CheckBox
RadioBox. To test this statement, we can run the program again with
XmNradioBehavior resource set toTrue via the-xrm command-line option:

toggle_box -xrm "*radioBehavior: True"

* The unsigned long type can only represent up to 32 ToggleButtons. If more buttons are used within
CheckBox, a new mechanism is needed, although the basic design presented here can still be used.

Figure 12-7: Output of the toggle_box program
422 Motif Programming Manual

Chapter 12: Labels and Buttons

s the

ow
get

ach
The result is shown in Figure 12-8.

As you can see, simply changing this single RowColumn resource completely change
appearance of all the ToggleButtons.

ArrowButtons
An ArrowButton is just like a PushButton, except that it only displays a directional arr
symbol. The arrow can point up, down, left, or right. Motif provides both widget and gad
versions of the ArrowButton; the associated header files are <Xm/ArrowB.h>and <Xm/
ArrowBG.h>. Example 12-9 shows a program that creates four ArrowButtons, one for e
direction.*

 Example 12-9. The arrow.c program

/* arrow.c -- demonstrate the ArrowButton widget.
** Have a Form widget display 4 ArrowButtons in a
** familiar arrangement.
*/

#include <Xm/ArrowBG.h>
#include <Xm/Form.h>

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, form, arrow;
Arg args[6];
int n;
XrmDatabase xrm_db;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL,sessionShellWidgetClass, NULL);

* XtVaAppInitialize () is considered deprecated in X11R6.

Figure 12-8: Output of the toggle_box program withXmNradioBehavior setTrue
Motif Programming Manual 423

Chapter 12: Labels and Buttons
xrm_db = XrmGetDatabase(XtDisplay (toplevel));
/* Rather than listing all these resources in an app-defaults file,
** add them directly to the database for this application only. This
** would be virtually equivalent to hard-coding values, since these
** resources will override any other specified external to this file.
*/

XrmPutStringResource (&xrm_db,
"*form*topAttachment", "attach_position");

XrmPutStringResource (&xrm_db,
"*form*leftAttachment", "attach_position");

XrmPutStringResource (&xrm_db,
"*form*rightAttachment", "attach_position");

XrmPutStringResource (&xrm_db,
"*form*bottomAttachment","attach_position");

n = 0;
XtSetArg (args[n], XmNfractionBase, 3); n++;
form = XmCreateForm (toplevel, "form",args, n);

n = 0;
XtSetArg (args[n], XmNtopPosition, 0); n++;
XtSetArg (args[n], XmNbottomPosition, 1); n++;
XtSetArg (args[n], XmNleftPosition, 1); n++;
XtSetArg (args[n], XmNrightPosition, 2); n++;
XtSetArg (args[n], XmNarrowDirection, XmARROW_UP); n++;
arrow = XmCreateArrowButtonGadget (form, "arrow1", args, n);
XtManageChild (arrow);

n = 0;
XtSetArg (args[n], XmNtopPosition, 1); n++;
XtSetArg (args[n], XmNbottomPosition, 2); n++;
XtSetArg (args[n], XmNleftPosition, 0); n++;
XtSetArg (args[n], XmNrightPosition, 1); n++;
XtSetArg (args[n], XmNarrowDirection, XmARROW_LEFT); n++;
arrow = XmCreateArrowButtonGadget (form, "arrow2", args, n);
XtManageChild (arrow);

n = 0;
XtSetArg (args[n], XmNtopPosition, 1); n++;
XtSetArg (args[n], XmNbottomPosition, 2); n++;
XtSetArg (args[n], XmNleftPosition, 2); n++;
XtSetArg (args[n], XmNrightPosition, 3); n++;
XtSetArg (args[n], XmNarrowDirection, XmARROW_RIGHT); n++;
arrow = XmCreateArrowButtonGadget (form, "arrow3", args, n);
XtManageChild (arrow);

n = 0;
XtSetArg (args[n], XmNtopPosition, 2); n++;
XtSetArg (args[n], XmNbottomPosition, 3); n++;
XtSetArg (args[n], XmNleftPosition, 1); n++;
XtSetArg (args[n], XmNrightPosition, 2); n++;
XtSetArg (args[n], XmNarrowDirection, XmARROW_DOWN); n++;
424 Motif Programming Manual

Chapter 12: Labels and Buttons

f the
or

lues:

tain
f a
of a
such
ctly
ing

ject

tons

pe
arrow = XmCreateArrowButtonGadget (form, "arrow3", args, n);
XtManageChild (arrow);

XtManageChild (form);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Figure 12-9 shows the output of this program.

The size of the arrow-shaped image is calculated dynamically based on the size o
widget itself. If the widget is resized for some reason, the directional arrow grows
shrinks to fill the widget. TheXmNarrowDirection resource controls the direction of the
arrow displayed by an ArrowButton. This resource may have one of the following va

XmARROW_UP XmARROW_DOWN XmARROW_LEFT XmARROW_RIGHT

ArrowButtons are useful if you want to provide redundant interface methods for cer
widgets. For example, you could use ArrowButtons to move the viewport o
ScrolledWindow. Redundancy, when used appropriately, can be an important part
graphical user interface. Many users may not adapt well to certain interface controls,
as PulldownMenus in MenuBars or keyboard accelerators, while they are perfe
comfortable with iconic controls such as ArrowButtons and PushButtons display
pixmaps. ArrowButtons are also useful if you want to build your own interface for an ob
that is not part of the Motif widget set.

ArrowButton widgets and gadgets work in the same way as PushButtons. ArrowBut
have anXmNactivateCallback , anXmNarmCallback , anXmNdisarmCallback , and
a XmNmultiClick resource. The callback routines all take a parameter of ty
XmArrowButtonCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
int click_count;

} XmArrowButtonCallbackStruct;

This callback structure is identical to the one used for PushButtons.

Figure 12-9: Output of the arrow program
Motif Programming Manual 425

Chapter 12: Labels and Buttons

n, or
d or
t is
ple,
holds
e of
, we
ArrowButtons are commonly used to increment and decrement a value, a positio
another type of data by some arbitrary amount. If the amount being incremente
decremented is sufficiently small in comparison to the total size of the object, i
convenient for the user if you give her the ability to change the value quickly. For exam
we can emulate the activate callback routine being called continuously when the user
down the mouse button over an ArrowButton widget. This functionality is not a featur
the ArrowButton; it is something we have to add ourselves. To implement this feature
use an Xt timer as demonstrated in Example 12-10.*

Example 12-10. The arrow_timer.c program

/* arrow_timer.c -- demonstrate continuous callbacks using
** ArrowButton widgets. Display up and down ArrowButtons and
** attach arm and disarm callbacks to them to start and stop timer
** that is called repeatedly while the button is down. A label
** that has a value changes either positively or negatively
** by single increments while the button is depressed.
*/

#include <Xm/ArrowBG.h>
#include <Xm/Form.h>
#include <Xm/RowColumn.h>
#include <Xm/LabelG.h>

XtAppContext app;
Widget label;
XtIntervalId arrow_timer_id;

typedef struct value_range {
int value, min, max;

} ValueRange;

main (int argc, char *argv[])
{

Widget w, toplevel, rowcol;
void start_stop(Widget, XtPointer, XtPointer);
ValueRange range;
Arg args[6];
int n;
XmString xms;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, n);

* XtVaAppInitialize () is considered deprecated in X11R6.
426 Motif Programming Manual

Chapter 12: Labels and Buttons
n = 0;
XtSetArg (args[n], XmNarrowDirection, XmARROW_UP); n++;
w = XmCreateArrowButtonGadget (rowcol, "arrow_up", args, n);
XtAddCallback (w, XmNarmCallback, start_stop, (XtPointer) 1);
XtAddCallback (w, XmNdisarmCallback, start_stop, (XtPointer) 1);
XtManageChild (w);

n = 0;
XtSetArg (args[n], XmNarrowDirection, XmARROW_DOWN); n++;
w = XmCreateArrowButtonGadget (rowcol, "arrow_dn", args, n);
XtAddCallback (w, XmNarmCallback, start_stop, (XtPointer) -1);
XtAddCallback (w, XmNdisarmCallback, start_stop, (XtPointer) -1);
XtManageChild (w);

range.value = 0;
range.min = -50;
range.max = 50;

n = 0;
xms = XmStringCreateLocalized(“3”);
XtSetArg (args[n], XmNlabelString, xms); n++;
XtSetArg (args[n], XmNuserData, &range); n++;
label = XmCreateLabelGadget (rowcol, "label", args, n);
XmStringFree (xms);
XtManageChild (label);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* start_stop is used to start or stop the incremental changes to
** the label's value. When the button goes down, the reason is
** XmCR_ARM and the timer starts. XmCR_DISARM disables the timer.
*/

void start_stop (Widget w, XtPointer client_data, XtPointer call_data)
{

int incr = (int) client_data;
XmArrowButtonCallbackStruct *cbs =

(XmArrowButtonCallbackStruct *) call_data;
void change_value(XtPointer, XtIntervalId *);

if (cbs->reason == XmCR_ARM)
change_value ((XtPointer) incr, (XtIntervalId *) 1);

else if (cbs->reason == XmCR_DISARM)
XtRemoveTimeOut (arrow_timer_id);

}

/* change_value is called each time the timer expires. This function
** is also used to initiate the timer. The "id" represents that timer
** ID returned from the last call to XtAppAddTimeOut(). If id == 1,
** the function was called from start_stop(), not a timeout. If the value
Motif Programming Manual 427

Chapter 12: Labels and Buttons

backs
y the
own.

. The
to
** has reached its maximum or minimum, don't restart timer, just return.
** If id == 1, this is the first timeout so make it be longer to allow
** the user to release the button and avoid getting into the "speedy"
** part of the timeouts.
*/
void change_value (XtPointer client_data, XtIntervalId *id)
{

ValueRange *range;
char buf[8];
int incr = (int) client_data;
XmString xms;

XtVaGetValues (label, XmNuserData, &range, NULL);

if (range->value + incr > range->max || range->value + incr < range->min)
return;

range->value += incr;
sprintf (buf, "%d", range->value);
xms = XmStringCreateLocalized (buf);
XtVaSetValues (label, XmNlabelString, xms, NULL);
XmStringFree (xms);

arrow_timer_id = XtAppAddTimeOut (app,
(unsigned long) (id == (XtIntervalId *) 1? 500: 100),
change_value,
incr);

}

The output of this program is shown in Figure 12-10.

The program creates up and down ArrowButtons and attaches arm and disarm call
that start and stop an internal timer. Each time the timer expires, the value displayed b
Label changes incrementally by one. The timer remains on as long as the button is d
We know that the button has been released when the disarm event occurs.

The function responsible for this behavior isstart_stop() ; it is installed for both the
arm and disarm callback. When the button is pressed, thereason is XmCR_ARM, and the
timer starts. When the button is released, the disarm callback is invoked, thereason is
XmCR_DISARM, and the timer is disabled. Thestart_stop() routine initiates the timer
by calling change_value() . Each time the timer expires,change_value() is also
called, which means that the function is called repeatedly while the button is pressed
id represents the ID of the timer that recently expired from the last call

Figure 12-10: Output of the arrow_timer program
428 Motif Programming Manual

Chapter 12: Labels and Buttons

or
st
edy”

nd
strate
ther

s for
ed,
f the

any
such
f

ete
the
e it a
you

utton
get,

w of

atly

ause
dget

ow a

x in
XtAppAddTimeOut() . If the value is one, the function was called fromstart_stop() ,
not as a timeout. We don’t restart the timer if the value has reached its maximum
minimum value. Ifid is one, we know that this is the initiating call, so we make the fir
timeout last longer to allow the user to release the button before getting into the “spe
timeouts. Otherwise, the time out occurs every 100 milliseconds.

If you experiment with the program, you can get a feel for how the functions work a
modify some of the hard-coded values, such as the timeout values. While we demon
this technique with ArrowButtons, it can also be applied to a PushButton or any o
widget that provides arm and disarm callbacks.*

DrawnButtons
DrawnButtons are similar to PushButtons, except that they also have callback routine
Expose andConfigureNotify events. Whenever a DrawnButton is exposed or resiz
the corresponding callback routine is responsible for redisplaying the contents o
button. The widget does not handle its own repainting. These callbacks are invoked
time the widget needs to redraw itself, even if it is a result of a change to a resource
asXmNshadowType, XmNshadowThickness , or the foreground or background color o
the widget.

The purpose of the DrawnButton is to allow you to draw into it while maintaining compl
control over what the widget displays. Unlike with a PushButton, you are in control of
repainting of the surface area of the widget, not including the bevelled edges that giv
3D effect. To provide a dynamically changing pixmap using a PushButton widget,
would have to change theXmNlabelPixmap resource usingXtVaSetValues() .
Unfortunately, this method results in an annoying flickering effect because the PushB
redisplays itself entirely whenever its pixmap changes. By using the DrawnButton wid
you can dynamically change its display by rendering graphics directly onto the windo
the widget using any Xlib routines such asXDrawLine() or XCopyArea() . This tight
control may require more work on your part, but the feedback to the user is gre
improved over the behavior of the PushButton.

DrawnButtons are created similarly to PushButtons and ArrowButtons. However, bec
the widget provides you with its own drawing area, there is no corresponding ga
version of this object. The associated header file is <Xm/DrawnB.h> and it must be
included by files that create the widget. Example 12-11 shows a simple example of h
DrawnButton can be created.†

Example 12-11. The drawn.c program

* The kind of input arrangement outlined in Example 12-10 is more likely to be implemented as a SpinBo
Motif 2.0 (or, in Motif 2.1, a SimpleSpinBox).

† XtVaAppInitialize() is considered deprecated in X11R6.
Motif Programming Manual 429

Chapter 12: Labels and Buttons
/* drawn.c -- demonstrate the DrawnButton widget by drawing a
** common X logo into its window. This is hardly much different
** from a PushButton widget, but the DrawnButton isn't much
** different, except for a couple more callback routines...
*/

#include <Xm/DrawnB.h>
#include <Xm/BulletinB.h>

Pixmap pixmap;

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, bb, button;
Pixel fg, bg;
Dimension ht, st;
void my_callback(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

bb = XmCreateBulletinBoard (toplevel, "bb", NULL, 0);
XtVaGetValues (bb, XmNforeground, &fg, XmNbackground, &bg, NULL);
pixmap = XmGetPixmap (XtScreen (bb), "xlogo64", fg, bg);
button = XmCreateDrawnButton (bb, "button", NULL, 0);
XtManageChild (button);

XtVaGetValues (button, XmNhighlightThickness, &ht,
XmNshadowThickness, &st, NULL);

XtVaSetValues (button, XmNwidth, 2 * ht + 2 * st + 64,
XmNheight, 2 * ht + 2 * st + 64, NULL);

XtAddCallback (button, XmNactivateCallback, my_callback, NULL);
XtAddCallback (button, XmNexposeCallback, my_callback, NULL);
XtAddCallback (button, XmNresizeCallback, my_callback, NULL);

XtManageChild (bb);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void my_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

XmDrawnButtonCallbackStruct *cbs =
(XmDrawnButtonCallbackStruct *) call_data;

if (cbs->reason == XmCR_ACTIVATE)
printf ("%s: pushed %d times\n", XtName (w), cbs->click_count);

else if (cbs->reason == XmCR_EXPOSE) {
Dimension ht, st;
430 Motif Programming Manual

Chapter 12: Labels and Buttons

e

light

ou
n is
ide a
XtVaGetValues (w, XmNhighlightThickness, &ht,
XmNshadowThickness, &st, NULL);

XtVaSetValues (w, XmNwidth, 2 * ht + 2 * st + 64,
XmNheight, 2 * ht + 2 * st + 64, NULL);

XCopyArea (XtDisplay (w), pixmap, XtWindow (w),
XDefaultGCOfScreen (XtScreen (w)), 0, 0, 64,
64, ht + st, ht + st);

}
else /* XmCR_RESIZE */

puts ("Resize");
}

The program simply displays the X Window System logo as shown in Figure 12-11.

A single callback routine,my_callback() , is specified for theXmNactivateCallback ,
XmNexposeCallback , and XmNresizeCallback callbacks. The callback structure
associated with the DrawnButton is called theXmDrawnButtonCallbackStruct , which
is defined as follows:

typedef struct {
int reason;
XEvent *event;
Window window;
int click_count;

} XmDrawnButtonCallbackStruct;

Thewindow field of the structure is the window ID of the DrawnButton widget. This valu
is the same as that returned byXtWindow() . The my_callback() callback routine
checks the value of thereason field to determine which action to take. Thereason can
be one of the following values:

XmCR_ACTIVATE XmCR_ARM XmCR_DISARM
XmCR_EXPOSE XmCR_RESIZE

When thereason is XmCR_EXPOSE, the callback routine handles drawing the X Window
System logo in the DrawnButton. Since the widget takes care of drawing its own high
and shadow, we have to be careful not to draw over these areas.

Since all of the rendering in a DrawnButton is the responsibility of the application, y
must decide whether you want to render the graphics differently when the butto
insensitive. Since the DrawnButton is subclassed from the Label class, you can prov

Figure 12-11: Output of the drawn program
Motif Programming Manual 431

Chapter 12: Labels and Buttons

an
t
ushes

o that
r this

ces of

he

dow

to

. The

is

Motif
als of
pter.
, see

labels

om-
XmNlabelPixmap andXmNlabelInsensitivePixmap if you like, but in this case you
might as well use a PushButton instead of a DrawnButton.

In Chapter 26,Signal Handling, we present an example that shows how DrawnButtons c
be used to construct anapplication manager* . An application manager is a program tha
contains a set of icons, where each icon corresponds to a program. When the user p
one of the buttons, the corresponding program is run. The button deactivates itself s
only one instance of each application can run at a time. There is no particular reason fo
design restriction aside from the fact that it demonstrates the use of the visual resour
the DrawnButton widget.

TheXmNpushButtonEnabled resource of the DrawnButton indicates whether or not t
DrawnButton should look and act like a PushButton. When the value isFalse (the
default), the DrawnButton displays whatever contents you put in it as well as a sha
border. The style of the shadow is specified by theXmNshadowType resource, which can
be set to one of the following values:

XmSHADOW_IN XmSHADOW_OUT
XmSHADOW_ETCHED_IN XmSHADOW_ETCHED_OUT

WhenXmNpushButtonEnabled is False , the button does not provide any feedback
the user when the button is activated.

When the value ofXmNpushButtonEnabled is set toTrue , the DrawnButton behaves
like a PushButton and does provide feedback to the user when the button is activated
shadow border for the button is always drawn in theXmSHADOW_INstyle, regardless of the
setting of theXmNshadowType resource. When the button is activated, the shadow
reversed, just as for a PushButton.

Summary
The Label class acts as a superclass for more widgets than any other widget in the
toolkit and as a result, its use is rather broad. We have presented the fundament
Labels, PushButtons, ToggleButtons, ArrowButtons, and DrawnButtons in this cha
For additional information on these widgets, especially their uses in menu systems
Chapter 4,The Main Window, and Chapter 19,Menus. Examples of all these widgets are
also liberally spread throughout the rest of the book.

Exercise
The following exercise is intended to stimulate and encourage other creative uses of
and buttons.

* This is not the natural manner of performing this task in Motif 2.0 or later: the Container and IconGadget c
bination are specifically designed for this task.
432 Motif Programming Manual

Chapter 12: Labels and Buttons
1. Generic X windows have a background pixmap property that can be set us-
ing XSetWindowBackgroundPixmap() .* Whenever the background pixmap
is set, the image is tiled on the window. If the window is larger than the
image, the image is replicated in a checkerboard fashion until the window’s
background is filled; if the window is the same size or smaller than the im-
age, the image is centered in the window. The image is automatically ren-
dered into the window appropriately by the server whenever necessary.
Since widgets have windows, the X Toolkit Intrinsics provides a resource
for the Core widget class that allows you to set the background pixmap us-
ing XtNbackgroundPixmap . (Motif’s XmNbackgroundPixmap resource is
identical except that the naming convention provides consistency among
resource names.) Write a program that displays a Label that contains both
graphics and a text label by setting both XmNlabelString and XmNback-
groundPixmap to appropriate values.

* See Volume 1, for details onXSetWindowBackgroundPixmap ().
Motif Programming Manual 433

Chapter 12: Labels and Buttons
434 Motif Programming Manual

idget

n be
group
set
Chapter 1

In this chapter:
• Creating a List Widget
• Using ScrolledLists
• Manipulating Items
• Positioning the List
• Navigating the List
• List Callback Routines
• Summary
• Exercises

This chapter describes anot
displays a number of text cho

Almost every application nee
accomplished in many ways,
of ToggleButtons is ideal for d
Motif Programming Manual
13
in a
t can
as a
al

cted
e text

y the

ition
r can
ll of
The List Widget
her control that the user can manipulate. The List w
ices that the user can select interactively.

ds to display lists of choices to the user. This task ca
depending on the nature of the choices. For example, a
isplaying configuration settings that can be individually

and unset and then applied all at once. A list of commands can be displayed
PopupMenu, or for a more permanent command palette, a RowColumn or Form widge
manage a group of PushButton widgets. But for displaying a list of text choices, such
list of files to be opened or a list of fonts to be applied to text, the List widget is the optim
choice.

A List widget displays a single column of text choices that can be selected or desele
using either the mouse or the keyboard. Each choice is represented by a single-lin
element specified as a compound string. Figure 13-1 shows a typical List widget.

Internally, the List widget operates on an array of compound strings that are defined b
application. (See Chapter 25,Compound Strings, for a discussion of how to create and
manage compound strings. Each string is an element of the array, with the first pos
starting at one, as opposed to position zero, which is used in C-style arrays. The use
select a particular choice by clicking and releasing the left mouse button on the item. A

Figure 13-1: A List widget with a selected item
435

Chapter 13: The List Widget

ake
the

th
e user
items

any
any

items
mily

, but
ective,
cted
e is

an
e rest
s are
us in
in an

print

his
ore

ust
st
the items in the list are available to the user for selection at all times; you cannot m
individual items unselectable. What happens when an item is selected is up to
application callback routines invoked by the List widget.

A List widget is typically a child of a ScrolledWindow, so that the List is displayed wi
ScrollBars attached to it. The selection mechanism for the List does not change, so th
can still select items as before, but the user can now use the ScrollBars to adjust the
in the list that are visible.

The List widget supports four different selection policies:

• In single selectionmode, selecting an item toggles its selection state and deselects
other selected item. Single selection Lists should be used when only one of m
choices maybe selected at a time, although under this policy there may also be no
selected. Some possible uses for a single selection List include choosing a font fa
or style for text input and choosing a color for a bitmap editor.

• In browse selectionmode, selecting a new item deselects any other selected item
there can never be a state where no items are selected. From the user’s persp
browse selection is similar to single selection, except that there is an initial sele
item. There are also differences with respect to callback routines. This issu
addressed in Section 13.5.

• In multiple selectionmode, any number of items can be selected atone time. When
item is selected, the selection state of the item is toggled; the selection states of th
of the items are not changed. The List can be in a state where none of the item
selected or all of the items are selected. Multiple selection mode is advantageo
situations where an action may be taken on more than one item at a time, such as
electronic mail application, where the user might choose to delete, save, or
multiple messages simultaneously.

• In extended selectionmode, the user can select discontiguous ranges of items. T
selection policy is an extension of the multiple selection policy that provides m
flexibility.

Creating a List Widget
Using List widgets is fairly straightforward. An application that uses the List widget m
include the header file <Xm/List.h>. This header file declares the types of the public Li
functions and the widget class namexmListWidgetClass . A List widget can be created
as shown in the following code fragment:

Widget list = XmCreateList (parent, "name", resource-value-array ,
resource-value-count);

Widget list = XtCreateWidget ("name", xmListWidgetClass, parent,
resource-value-list , NULL);
436 Motif Programming Manual

Chapter 13: The List Widget
Example 13-1 shows a program that creates a simple List widget.*

Example 13-1. The simple_list.c program

/* simple_list.c -- introduce the List widget. Lists present
** a number of compound strings as choices. Therefore, strings
** must be converted before set in lists. Also, the number of
** visible items must be set or the List defaults to 1 item.
*/
#include <Xm/List.h>

char *months[] = {"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November",
"December"};

main (int argc, char *argv[])
{

Widget toplevel, list;
XtAppContext app;
int i, n = XtNumber (months);
XmStringTable str_list;
Arg args[4];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

str_list = (XmStringTable) XtMalloc (n * sizeof (XmString));

for (i = 0; i < n; i++)
str_list[i] = XmStringCreateLocalized (months[i]);

i = 0;
XtSetArg (args[i], XmNvisibleItemCount, n); i++;
XtSetArg (args[i], XmNitemCount, n); i++;
XtSetArg (args[i], XmNitems, str_list); i++;
list = XmCreateList (toplevel, "Hello", args, i);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree ((char *) str_list);

XtManageChild (list);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 437

Chapter 13: The List Widget

wn in

is

tion.
e the

list of
tems
string

le of
to be
g
f
opy.
in
al
The program simply creates a List widget as the child of thetop level widget. The List
contains the names of the months as its choices. The output of the program is sho
Figure 13-2.

The selection policy of the List is controlled by theXmNselectionPolicy resource. The
possible values for this resource are:

XmSINGLE_SELECT XmBROWSE_SELECT
XmMULTIPLE_SELECT XmEXTENDED_SELECT

XmBROWSE_SELECTis the default selection policy for the List widget. Since this policy
the one that we want to use, we do not need to set theXmNselectionPolicy resource.
You should be aware that the user could change this policy with a resource specifica
If you want to enforce this selection policy, you can program defensively and hard-cod
value forXmNselectionPolicy , despite its default.

The program demonstrates the use of three basic elements of the List widget: the
items, the number of items in the list, and the number of visible items. Because the i
in a List must be compound strings, each of the choices must be converted from a C
to a compound string. The application allocates an array ofXmStrings , creates a
compound string for each month name, and stores the string in thestr_list . The List
widget is created withstr_list as the value for theXmNitems resource and
XmNitemCount is set ton.

Just like other widgets that use compound strings, the List widget copies the entire tab
compound strings into its own internal storage. As a result, the list of strings needs
freed after you have used it to set theXmNitems resource. When you set the items usin
this resource, you also need to set theXmNitemCount resource to specify the number o
items in the list. If this resource is not set, the List does not know how many items to c
The value ofXmNitemCount should never be larger than the number of items
XmNitems . If the value forXmNitemCount is less than the number of items, the addition
items are not put in the list.

Figure 13-2: Output of the simple_list program
438 Motif Programming Manual

Chapter 13: The List Widget

n

to C-
late

er 25,

ly. You
em)

the
tting
ed to
n the
next

g a
ist.
most
iled
10,

gets
s a

d
use
usion
Core
some
To retrieve the list of items, you can callXtVaGetValues() on these resources, as show
in the following code fragment:

extern Widget list;
XmStringTable choices;
int n_choices;
XtVaGetValues (list, XmNitems, &choices, XmNitemCount, &n_choices, NULL);

Since the items that the area returned are compound strings, you must convert them
style strings if you need to use any of the standard C library functions to view or manipu
the strings. You can also use any of the compound string functions described in Chapt
Compound Strings, for this purpose. Since we usedXtVaGetValues() to obtain the
values for the resources, the returned data should, as always, be considered read-on
should not change any of the items in the list or attempt to free them (or the pointer to th
when you are done examining their values.

Example 13-1 also makes use of theXmNvisibleItemCount resource, which sets the
height of the list to match the number of items that should be visible. If you want all
items to be visible, you simply set the value to the total number of items in the list. Se
the visible item count to a higher value is acceptable, assuming that the list is expect
grow to at least that size. If you want to set the number of visible items to be less tha
number of items actually in the list, you should use a ScrolledList as described in the
section.

Using ScrolledLists
Most applications use List widgets in conjunction with ScrolledWindows. By creatin
List widget as the child of a ScrolledWindow, we create what Motif calls a ScrolledL
The ScrolledList is not a widget, but a compound object. While this chapter describes
of the common resources and functions that deal with ScrolledLists, more deta
information about ScrolledWindows and ScrollBars can be found in Chapter
ScrolledWindows and ScrollBars.

A ScrolledList is built from two widget classes, so we could create and manage the wid
separately. However, since ScrolledLists are used so frequently, Motif provide
convenience function to create this compound object.XmCreateScrolledList() takes
the following form:

Widget XmCreateScrolledList (Widget parent , char * name, ArgList arglist ,
Cardinal argcount)

Thearglist parameter is an array of sizeargcount that contains resources to be passe
to both the ScrolledWindow widget and the List widget. Generally, the two widgets
different resources that are specific to the widgets themselves, so there isn’t any conf
about which resources apply to which widget. However, common resources, such as
resources, are interpreted by both widgets, so caution is advised. If you want to set
Motif Programming Manual 439

Chapter 13: The List Widget

t, you
ources

e

y the

e
the

s

r

en
e
tal
s
ed.
ntal
resources on one widget, while ensuring that the values are not set on the other widge
should avoid passing the values to the convenience routine. Instead, you can set res
separately by using the routineXtVaSetValues() on each widget individually.
XmCreateScrolledList() returns the List widget; if you need a handle to th
ScrolledWindow, you can useXtParent() on the List widget. When you use the
convenience routine, you need to manage the object explicitly withXtManageChild() .

ScrolledLists are useful because they can display a portion of the entire list provided b
widget. For example, we can modify the previous example,simple_list.c, to use a
ScrolledList by using the following code fragment:

...
/* Create the ScrolledList */
list_w = XmCreateScrolledList (toplevel, "Months", NULL, 0);
/* set the items, the item count, and the visible items */
XtVaSetValues (list_w, XmNitems, str_list, XmNitemCount, n,

XmNvisibleItemCount, 5, NULL);
/* Convenience routines don't create managed children */
XtManageChild (list_w);
...

The size of the viewport into the entire List widget is controlled by th
XmNvisibleItemCount resource. The resource calculates its default value based on
XmNheight of the List. We set the resource to5. The output resulting from these change
is shown in Figure 13.3.

The XmNscrollBarDisplayPolicy andXmNlistSizePolicy resources control the
display of the ScrollBars in a ScrolledList widget. The value fo
XmNscrollBarDisplayPolicy controls the display of the vertical ScrollBar; the
resource can be set to eitherXmAS_NEEDED(the default) orXmSTATIC. If the policy is
XmAS_NEEDED, when the entire list is visible, the vertical ScrollBar is not displayed. Wh
the resource is set toXmSTATIC, the vertical ScrollBar is always displayed. Th
XmNlistSizePolicy resource reflects how the ScrolledList manages its horizon
ScrollBar. The default setting isXmVARIABLE, which means that the ScrolledList attempt
to grow horizontally to contain its widest item and a horizontal ScrollBar is not display
This policy may present a problem if the parent of the ScrolledList constrains its horizo
size. If the resource is set toXmRESIZE_IF_POSSIBLE, the ScrolledList displays a

Figure 13-3: Output of the simple_list program modified to use a ScrolledList
440 Motif Programming Manual

Chapter 13: The List Widget

ager
. If a
the

n

ke

croll
his
mend
get

List
rfere
sktop

ve,
ion at

the
List
t is
o the
cts an
r will

rom
tions

tions,
horizontal ScrollBar only if it cannot resize itself accordingly. If the valueXmCONSTANTis
used, the horizontal ScrollBar is displayed at all times, whether it is needed or not.

The size of a ScrolledList is ultimately controlled by its parent. In most cases, a man
widget such as a RowColumn or Form allows its children to be any size they request
ScrolledList is a child of a Form widget, its size is whatever you specify with either
XmNheight resource or theXmNvisibleItemCount . However, certain constraints, such
as theXmNresizePolicy in a Form widget, may affect the height of its childre
unexpectedly. For example, if you setXmNresizePolicy to XmRESIZE_NONE, the
ScrolledList widget’s height request is ignored, which makes it look li
XmNvisibleItemCount is not working.

The List widget accepts keyboard input to select items in the list, browse the list, and s
the list. Like all other Motif widgets, the List has translation functions that facilitate t
process. The translations are hard-coded into the widget and we do not recom
attempting to override this list with new translations. For ScrolledLists, the List wid
automatically sets the ScrollBar’sXmNtraversalOn resource toFalse so that the
ScrollBar associated with the ScrolledList does not get keyboard input. Instead, the
widget handles the input that affects scrolling. We recommended that you do not inte
with this process, so users are not confused by different applications on the de
behaving in different ways.

If a List widget is sensitive, all of the items in the List are selectable. If it is insensiti
none of them are selectable. You cannot set certain items to be insensitive to select
any given time. Furthermore, you cannot set the entire List to be insensitive and allow
user to manipulate the ScrollBars. It is not entirely possible to make a read-only
widget; the user always has the ability to select items in the List, providing that i
sensitive. Of course, you can always choose not to hook up callback procedures t
widget, but this can lead to more confusion than anything else because if the user sele
object and the toolkit provides the visual feedback acknowledging the action, the use
expect the application to respond as well.

Manipulating Items
From the programmer’s perspective, much of the power of the List widget comes f
being able to manipulate its items. The toolkit provides a number of convenience func
for dealing with the items in a List. While the items are accessible through theXmNitems
resource, the convenience routines are designed to deal with many common opera
such as adding items to the List, removing items, and locating items.
Motif Programming Manual 441

Chapter 13: The List Widget

fact,
can

ition.

new
down

em
cted.

new
n list,
new

st
ose
ms.

sing
Adding Items
The entire list of choices may not always be available at the time the List is created. In
it is not uncommon to have no items available for a new list. In these situations, items
be added to the list dynamically using the following toolkit functions:XmListAddItem() ,
XmListAddItemsUnselected() , XmListAddItems() , and XmListAddItemsUn-
selected() . These functions take the following form:

void XmListAddItem (Widget list_w , XmString item , int position)
void XmListAddItemUnselected (Widget list_w , XmString item , int position)
void XmListAddItems (Widget list_w , XmString * items , int item_count ,

int position)
void XmListAddItemsUnselected (Widget list_w , XmString * items ,

int item_count , int position)

These routines allow you to add one or more items to a List widget at a specified pos
Remember that list positions start at1, not 0. The position0 indicates the last position in
the List; specifying this position appends the item or items to the end of the list. If the
item(s) are added to the list in between existing items, the rest of the items are moved
the list.

The difference betweenXmListAddItem() andXmListAddItemUnselected() is that
XmListAddItem() compares each new item to each of the existing items. If a new it
matches an existing item and if the existing item is selected, the new item is also sele
XmListAddItemUnselected() simply adds the new item without performing this
check. In most situations, it is clear which routine you should use. If you know that the
item does not already exist, you should add it unselected. If the List is a single selectio
you should add new items as unselected. The only time that you should really add
items to the list usingXmListAddItem() is when there could be duplicate entries, the li
supports multiple selections, and you explicitly want to select all new items wh
duplicates are already selected. The same is true of the routines that add multiple ite

Example 13-2 shows how items can be added to a ScrolledList dynamically u
XmListAddItemUnselected() .*

Example 13-2. The alpha_list.c program

/* alpha_list.c -- insert items into a list in alphabetical order.
*/

#include <Xm/List.h>
#include <Xm/RowColumn.h>
#include <Xm/TextF.h>

main (int argc, char *argv[])

* XtVaAppInitialize () is considered deprecated in X11R6.XmStringGetLtoR () is deprecated from Motif
2.0 onwards.XmStringUnparse () is only available from Motif 2.0 onwards.
442 Motif Programming Manual

Chapter 13: The List Widget
{
Widget toplevel, rowcol, list_w, text_w;
XtAppContext app;
Arg args[5];
int n = 0;
void add_item(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
XtSetArg (args[n], XmNvisibleItemCount, 5); n++;
list_w = XmCreateScrolledList (rowcol, "scrolled_list", args, n);
XtManageChild (list_w);

n = 0;
XtSetArg (args[n], XmNcolumns, 25); n++;
text_w = XmCreateTextField (rowcol, "text", args, n);
XtAddCallback (text_w, XmNactivateCallback, add_item,

(XtPointer) list_w);
XtManageChild (text_w);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Add item to the list in alphabetical order. Perform binary
** search to find the correct location for the new item position.
** This is the callback routine for the TextField widget.
*/
void add_item (Widget text_w, XtPointer client_data, XtPointer call_data)
{

Widget list_w = (Widget) client_data;
char *text, *newtext = XmTextFieldGetString (text_w);
XmString str, *strlist;
int u_bound, l_bound = 0;

/* newtext is the text typed in the TextField widget */
if (!newtext || !*newtext) {

/* non-null strings must be entered */
XtFree (newtext); /* XtFree() checks for NULL */
return;

}

/* get the current entries (and number of entries) from the List */
XtVaGetValues (list_w, XmNitemCount, &u_bound,

XmNitems, &strlist, NULL);
u_bound--;

/* perform binary search */
while (u_bound >= l_bound) {

int i = l_bound + (u_bound - l_bound) / 2;
Motif Programming Manual 443

Chapter 13: The List Widget

cify
d

here
an an
n for

tem.
is
/* convert the compound string into a regular C string */
if (!(text = (char *) XmStringUnparse (strlist[i],

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL)))

break;

if (strcmp (text, newtext) > 0)
u_bound = i - 1; /* newtext comes before item */

else
l_bound = i + 1; /* newtext comes after item */

XtFree (text);/* XmStringUnparse() allocates memory */
}

str = XmStringCreateLocalized (newtext);
XtFree (newtext);

/* positions indexes start at 1, so increment accordingly */
XmListAddItemUnselected (list_w, str, l_bound+1);
XmStringFree (str);
XmTextFieldSetString (text_w, "");

}

In Example 13-2, the ScrolledList is created with no items. However, we do spe
XmNvisibleItemCount , in anticipation of items being added to the list. A TextFiel
widget is used to prompt for strings that are added to the list using theadd_item()
callback. This function performs a binary search on the list to determine the position w
the new item is to be added. A binary search can save time, as it is expensive to sc
entire List widget and convert each compound string into a C string. When the positio
the new item is found, it is added usingXmListAddItemUnselected() . The output of
this program is shown in Figure 13-4.

Finding Items
It is often useful to be able to determine whether or not a List contains a particular i
The simplest function for determining whether a particular item exists
XmListItemExists() , which takes the following form:

Figure 13-4: Output of the alpha_list program
444 Motif Programming Manual

Chapter 13: The List Widget

are
ing
s not
-byte

near
tely,
he
e the

ing

he

be
t

Boolean XmListItemExists (Widget list_w ;, XmString item)

This function performs a linear search on the list for the specified item. If you
maintaining your list in a particular order, you may want to search the list yourself us
another type of search to improve performance. The List’s internal search function doe
convert the compound strings to C strings. The search routine does a direct byte-by
comparison of the strings usingXmStringByteCompare() , which is much more efficient
than converting the compound strings to C strings for comparison. However, the li
search is still slower than a binary search by orders of magnitude. And unfortuna
XmStringByteCompare() does not return which string is of greater or lesser value. T
routine just returns whether the strings are different, so we cannot use it to alphabetiz
items in a List.

If you need to know the position of an item in the List, you can useXmListItemPos() .
This routine takes the following form:

int XmListItemPos (Widget list_w , XmString item)

This function returns the position of the first occurrence ofitem in the List, with1 being
the first position. If the function returns0, the element is not in the List. If a List contains
duplicate entries, you can find all of the positions of a particular item us
XmListGetMatchPos() , which takes the following form:

Boolean XmListGetMatchPos (Widget list_w , XmString item , int ** pos_list ,
int * pos_cnt)

This function returnsTrue if the specified item is found in the List in one or more
locations. Thepos_list parameter is allocated to contain the array of positions of t
item and the number of items found is returned inpos_cnt . When you are done using
pos_list , you should free it usingXtFree() . The function returnsFalse if there are no
items in the List, if memory cannot be allocated forpos_list , or if the specified item isn’t
in the List. In these cases,pos_list does not point to allocated space and should not
referenced or freed and the value ofpos_cnt is not specified. The following code fragmen
shows the use ofXmListGetMatchPos() to get the positions of an item in a List:

extern Widget list_w;
int *pos_list;
int pos_cnt, i;
char *choice = "A Sample Text String";
XmString str = XmStringCreateLocalized (choice);

if (!XmListGetMatchPos (list_w, str, &pos_list, &pos_cnt))
XtWarning ("Can't get items in list");

else {
printf ("%s exists in positions %d:", choice, pos_cnt);

for (i = 0; i < pos_cnt; i++)
printf (" %d", pos_list[i]);

puts ("");
XtFree ((char *) pos_list);
Motif Programming Manual 445

Chapter 13: The List Widget

uous

g at
een

ing

from

rence

. The

you
}

Replacing Items
There are also a number of functions for replacing items in a List. To replace a contig
sequence of items, use eitherXmListReplaceItemsPos() or XmListReplaceItem-
sPosUnselected() . These functions take the following form:

void XmListReplaceItemsPos (Widget list_w , XmString * new_items ,
int item_count , int position ;)

void XmListReplaceItemsPosUnselected (Widget list_w , XmString * new_items ,
int item_count , int position)

These functions replace the specified number of items with the new items startin
position . The difference between the two functions is the same as the difference betw
the List routines that add items selected and unselected.

You can also replace arbitrary elements in the list with new elements, us
XmListReplaceItems() or XmListReplaceItemsUnselected() . These routines
take the following form:

void XmListReplaceItems (Widget list_w , XmString * old_items ,
int item_count , XmString * new_items)

void XmListReplaceItemsUnselected (Widget list_w , XmString * old_items ,
int item_count , XmString * new_items)

These functions work by searching the entire list for each element inold_items . Every
occurrence of each element that is found is replaced with the corresponding element
new_items . The search continues for each element inold_items until item_count has
been reached. The difference between the two functions is the same as the diffe
between the List routines that add items selected and unselected.

There is another routine that allows you to replace items in a List based upon position
XmListReplacePositions() routine takes the following form:

void XmListReplacePositions (Widget list_w , int * pos_list ,
XmString * new_items , int item_count)

This routine replaces the item at each position specified inpos_list with the
corresponding item innew_items until item_count has been reached.

Deleting Items
You can delete items from a List widget in many ways. First, to delete a single item,
can use eitherXmListDeleteItem() or XmListDeletePos() . These functions take
the following form:

void XmListDeleteItem (Widget list_w , XmString item)
void XmListDeletePos (Widget list_w , int position)
446 Motif Programming Manual

Chapter 13: The List Widget

e
e
use
e

re
s of
d use

in

a set
tems
es and
Later
when
s in the
st as
t
s

in a
XmListDeleteItem() finds the given item and deletes it from the list, whil
XmListDeletePos() removes an item directly from the given position. If you know th
position of an item, you can avoid creating a compound string and
XmListDeletePos() . After an item is deleted, the items following it are moved up on
position.

You can delete multiple items using eitherXmListDeleteItems() ,
XmListDeleteItemsPos() , or XmListDeletePositions() . These routines take the
following form:

void XmListDeleteItems (Widget list_w , XmString * items , int item_count)
void XmListDeleteItemsPos (Widget list_w , int item_count , int position)
void XmListDeletePositions (Widget list_w , int * pos_list , int pos_count)

XmListDeleteItems() deletes each of the items in theitems array from the List;
there areitem_count strings in the array. You must create and initialize this array befo
calling the function and you must free it afterwards. If you already know the position
the items you want to delete, you can avoid creating an array of compound strings an
either of the routinesXmListDeleteItemsPos() andXmListDeletePositions() .
XmListDeleteItemsPos() deletes item_count items from the List starting at
position . XmListDeletePositions() deletes the item at each position specified
pos_list until item_count has been reached.

You can delete all of the items in a List widget usingXmListDeleteAllItems() . This
routine takes the following form:

void XmListDeleteAllItems (Widget list_w)

Selecting Items
Since the main purpose of the List widget is to allow a user to make a selection from
of choices, one of the most important tasks for the programmer is to determine which i
have been selected by the user. In this section, we present an overview of the resourc
functions available to set or get the actual items that are selected in the List widget.
in Section 13.5, we discuss how to determine the items that are selected by the user
they are selected. The resources and functions used to set and get the selected item
List widget are directly analogous to those that set the actual items in the list. Ju
XmNitems represents the entire list, theXmNselectedItems resource represents the lis
of selected items. TheXmNselectedItemCount resource specifies the number of item
that are selected.

There are convenience routines that allow you to modify the items that are selected
List. The functionsXmListSelectItem() and XmListSelectPos() can be used to
select individual items. These functions take the following form:

void XmListSelectItem (Widget list_w , XmString item , Boolean notify)
void XmListSelectPos (Widget list_w , int position , Boolean notify)
Motif Programming Manual 447

Chapter 13: The List Widget

e list

m.
are

ed are

nded
cted

tems

get
can

tions

elect

.0

et

ck to

utines

list

List.
es
These functions cause the specified item to be selected. If you know the position in th
of the item to be selected, you should useXmListSelectPos() rather than
XmListSelectItem() . The latter routine uses a linear search to find the specified ite
The search can take a long time in a large list, which can affect performance if you
performing frequent list operations.

When the specified item is selected, any other items that have been previously select
deselected, except whenXmNselectionPolicy is set toXmMULTIPLE_SELECT. In this
case, the specified item is added to the list of selected items. Even though the exte
selection policy allows multiple items to be selected, the previous selection is desele
when one of these routines is called. If you want to add an item to the list of selected i
in an extended selection list, you can set the selection policy toXmMULTIPLE_SELECT, use
one of the routines, and then set the selection policy back toXmEXTENDED_SELECT.

The notify parameter indicates whether or not the callback routine for the List wid
should be called. If your callback routine does special processing of list items, then you
avoid having redundant code by passingTrue . As a result, the callback routine is called
just as if the user had made the selection himself. If you are calling either of these func
from the callback routine, you probably want to passFalse to avoid a possible infinite
loop.

There are no functions available for selecting multiple items at the same time. To s
multiple items, use XtVaSetValues() and set the XmNselectedItems and
XmNselectedItemCount resources to the entire list of selected items. From Motif 2
onwards, it is also possible to set theXmNselectedPositions and
XmNselectedPositionCount resources. Another alternative is to temporarily s
XmNselectionPolicy to XmMULTIPLE_SELECT. You can call the above routines
repeatedly to select the desired items individually and then set the selection policy ba
XmEXTENDED_SELECT.

Items can be deselected in the same manner that they are selected using the ro
XmListDeselectItem() and XmListDeselectPos() . These functions take the
following form:

void XmListDeselectItem (Widget list_w , XmString item)
void XmListDeselectPos (Widget list_w , int position)

These routines modify the list of selected items, but they do not have anotify parameter,
so they do not invoke the callback routine for the List. You can deselect all items in the
by callingXmListDeselectAllItems() , which takes the following form:

void XmListDeselectAllItems (Widget list_w)

There are also convenience routines that allow you to check on the selected items in a
You can useXmListPosSelected() to determine whether an item is selected. It tak
the following form:
448 Motif Programming Manual

Chapter 13: The List Widget

ing

he

of

be

ding
y
also

tching
Boolean XmListPosSelected (Widget list_w , int position)

The routine returnsTrue if the item at the specified position is selected andFalse
otherwise. You can get the positions of all of the selected items in a List us
XmListGetSelectedPos() , which takes the following form:

Boolean XmListGetSelectedPos (Widget list_w , int ** pos_list , int * pos_cnt)

This in Motif 2.0 and later does little more than return the value of t
XmNselectedPositions andXmNselectedPositionCount resources, which as an
alternative may as well be fetched directly usingXtGetValues ().

The use of the XmListGetSelectedPos () function is identical to that of
XmListGetMatchPos() . Thepos_list parameter is allocated to contain the array
positions of selected items and the number of items selected is returned inpos_cnt . When
you are done usingpos_list , you should free it usingXtFree() . The function returns
False if there are no selected items in the List or if memory cannot be allocated forpos_
list . In these cases,pos_list does not point to allocated space and should not
referenced or freed and the value ofpos_cnt is not specified.

An Example
In this section, we pull together all of the functions we have described in the prece
sections. This example builds onalpha_list.c, the program that adds items that are input b
the user to a ScrolledList in alphabetical order. Using another Text widget, the user can
search for items in the list. The searching method uses regular expression pattern-ma
functions intrinsic to UNIX systems. Example 13-3 shows the new application.*

Example 13-3. The search_list.c program

/* search_list.c -- search for items in a List and select them
*/

#include <stdio.h>
#include <Xm/List.h>
#include <Xm/LabelG.h>
#include <Xm/Label.h>
#include <Xm/RowColumn.h>
#include <Xm/PanedW.h>
#include <Xm/TextF.h>

main (int argc, char *argv[])
{

Widget toplevel, rowcol, list_w, text_w, label_w;
XtAppContext app;
Arg args[5];

* XtVaAppInitialize () is considered deprecated in X11R6.XmStringGetLtoR () is deprecated from Motif
2.0.XmStringUnparse () is only available from Motif 2.0 onwards.
Motif Programming Manual 449

Chapter 13: The List Widget
int n = 0;
XmString label;
void add_item(Widget, XtPointer, XtPointer);
void search_item(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

rowcol = XmCreatePanedWindow (toplevel, "rowcol", NULL, 0);

label = XmStringCreateLocalized ("List:");
n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
label_w = XmCreateLabel (rowcol, "list_lable", args, n);
XmStringFree (label);
XtManageChild (label_w);

n = 0;
XtSetArg (args[n], XmNvisibleItemCount, 10); n++;
XtSetArg (args[n], XmNselectionPolicy, XmEXTENDED_SELECT); n++;
list_w = XmCreateScrolledList (rowcol, "scrolled_list", args, n);
XtManageChild (list_w);

label = XmStringCreateLocalized ("Add:");
n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
label_w = XmCreateLabel (rowcol, "add_label", args, n);
XmStringFree (label);
XtManageChild (label_w);

n = 0;
XtSetArg (args[n], XmNcolumns, 25); n++;
text_w = XmCreateTextField (rowcol, "add_text",args, n);
XtAddCallback (text_w, XmNactivateCallback, add_item,

(XtPointer) list_w);
XtManageChild (text_w);

label = XmStringCreateLocalized ("Search:");
n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
label_w = XmCreateLabel (rowcol, "search_label", args, n);
XmStringFree (label);
XtManageChild (label_w);

n = 0;
XtSetArg (args[n], XmNcolumns, 25); n++;
text_w = XmCreateTextField (rowcol, "search_text", args, n);
XtAddCallback (text_w, XmNactivateCallback, search_item,

(XtPointer) list_w);
XtManageChild (text_w);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
450 Motif Programming Manual

Chapter 13: The List Widget
XtAppMainLoop (app);
}

/* Add item to the list in alphabetical order. Perform binary
** search to find the correct location for the new item position.
** This is the callback routine for the Add: TextField widget.
*/
void add_item (Widget text_w, XtPointer client_data, XtPointer call_data)
{

Widget list_w = (Widget) client_data;
char *text, *newtext = XmTextFieldGetString (text_w);
XmString str, *strlist;
int u_bound, l_bound = 0;

if (!newtext || !*newtext) {
/* non-null strings must be entered */
XtFree (newtext);
return;

}

XtVaGetValues (list_w, XmNitemCount, &u_bound,
XmNitems, &strlist, NULL);

u_bound--;

/* perform binary search */
while (u_bound >= l_bound) {

int i = l_bound + (u_bound - l_bound)/2;

if (!(text = (char *) XmStringUnparse (strlist[i],
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL)))

break;
if (strcmp (text, newtext) > 0)

u_bound = i-1; /* newtext comes before item */
else

l_bound = i+1; /* newtext comes after item */
XtFree (text);

}

str = XmStringCreateLocalized (newtext);
XtFree (newtext);

/* positions indexes start at 1, so increment accordingly */
XmListAddItemUnselected (list_w, str, l_bound+1);
XmStringFree (str);
XmTextFieldSetString (text_w, "");

}

/* find the item in the list that matches the specified pattern */
void search_item (Widget text_w, XtPointer client_data,

XtPointer call_data)
Motif Programming Manual 451

Chapter 13: The List Widget
{
Widget list_w = (Widget) client_data;
char *exp, *text, *newtext = XmTextFieldGetString (text_w);
XmString *strlist, *selectlist = NULL;
int matched, cnt, j = 0;

#ifndef SYSV
extern char *re_comp();

#endif /* SYSV */

if (!newtext || !*newtext) {
/* non-null strings must be entered */
XtFree (newtext);
return;

}

/* compile expression into pattern matching library */
#ifdef SYSV

if (!(exp = regcmp (newtext, NULL))) {
printf ("Error with regcmp(%s)\n", newtext);
XtFree (newtext);
return;

}
#else /* BSD */

if (exp = re_comp (newtext)) {
printf ("Error with re_comp(%s): %s\n", newtext, exp);
XtFree (newtext);
return;

}
#endif /* SYSV */

/* get all the items in the list... we're going to search each one */
XtVaGetValues (list_w, XmNitemCount, &cnt, XmNitems, &strlist, NULL);

while (cnt--) {
/* convert item to C string */
if (!(text = (char *) XmStringUnparse (strlist[cnt],

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL)))

break;

/* do pattern match against search string */
#ifdef SYSV

/* returns NULL if match failed */
matched = regex (exp, text, NULL) != NULL;

#else /* BSD */
/* -1 on error, 0 if no-match, 1 if match */
matched = re_exec (text) > 0;

#endif /* SYSV */
if (matched) {

selectlist = (XmString *) XtRealloc ((char *) selectlist, (j+1)
* (sizeof (XmString *)));
452 Motif Programming Manual

Chapter 13: The List Widget

d to
ms.
e

lar

X

selectlist[j++] = XmStringCopy (strlist[cnt]);
}
XtFree (text);

}
#ifdef SYSV

free (exp);
/* this must be freed for regcmp() */

#endif /* SYSV */

XtFree (newtext);

/* set the actual selected items to be those that matched */
XtVaSetValues (list_w, XmNselectedItems, selectlist,
XmNselectedItemCount, j, NULL);

while (j--)
XmStringFree (selectlist[j]);

XmTextFieldSetString (text_w, "");
}

The output of this program is shown in Figure 13-5. The TextField widget that is use
search for items in the List widget works identically to the one that is used to add new ite
Its callback routine,search_item() , searches the list for the specified pattern. Th
version of UNIX you are running (System V or BSD) dictates which kind of regu
expression matching is done. System V machines use the functionregcmp() to compile
the pattern andregex() to search for the pattern within another string, while BSD UNI
systems use the functionsre_comp() andre_exec() to do the same thing.*

Figure 13-5: Output of the search_list program
Motif Programming Manual 453

Chapter 13: The List Widget

do
them.
e

o
sing

e top
ced
em

n

e
, you
that
t it is
the
is

ression
The items in the list are retrieved usingXtVaGetValues() and thestrlist parameter.
This variable points to the internal list used by the List widget, so it is important that we
not change any of these elements or free these pointers when we are through with
Changing the value ofXmNselectedItems causes the internal list to change. Since th
internal list is referenced bystrlist , it is important to copy any values that we want t
use elsewhere. If the pattern matches a list item, the item is copied u
XmStringCopy() and is later added to the List’sXmNselectedItems .

Positioning the List
The items within a List can be positioned such that an arbitrary element is placed at th
or bottom of the List. If the List is being used as part of a ScrolledList, the item is pla
at the top or bottom of the viewport of the ScrolledWindow. To position a particular it
at the top or bottom of the window, use eitherXmListSetItem() or
XmListSetBottomItem() . These routines take the following form:

void XmListSetItem (Widget list_w , XmString item)
void XmListBottomItem (Widget list_w , XmString item)

Both of these functions require anXmString parameter to reference a particular item i
the list. However, if you know the position of the item, you can useXmListSetPos() or
XmListSetBottomPos() instead. These functions take the following form:

void XmListSetPos (Widget list_w , int position)
void XmListSetBottomPos (Widget list_w , int position)

Theposition parameter can be set to0 to specify that the last item be positioned at th
bottom of the viewport. Through a mixture of resource values and simple calculations
can position any particular item anywhere in the list. For example, if you have an item
you want to be sure is visible, but you are not concerned about where in the viewpor
displayed, you can write a function to make the item visible. Example 13-4 shows
MakePosVisible() routine, which makes sure that the item at a specified position
visible.

Example 13-4. The MakePosVisible() routine

void MakePosVisible (Widget list_w, int item_no)
{

int top, visible;

XtVaGetValues (list_w, XmNtopItemPosition, &top,
XmNvisibleItemCount, &visible, NULL);

if (item_no < top)

* Systems that support both BSD and System V may support one, the other, or both methods of regular exp
handling. You should consult your system’s documentation for more information on these functions.
454 Motif Programming Manual

Chapter 13: The List Widget

f the
s

es

st

he

m:

or,

ing

tem.
raw
XmListSetPos (list_w, item_no);
else if (item_no >= top + visible)

XmListSetBottomPos (list_w, item_no);
}

The function gets the number of visible items and the position of the item at the top o
viewport. TheXmNtopItemPosition resource stores this information. If the item come
before top,item_no is set to the top of the List usingXmListSetPos() . If it comes after
top + visible , the item is set at the bottom of the List usingXmListSetBottomPos() .
If you don’t know the position of the item in the List, you can write a function that mak
a specified item visible, as shown in Example 13-5.

Example 13-5. The MakeItemVisible() routine

void MakeItemVisible (Widget list_w, XmString item)
{

int item_no = XmListItemPos (list_w, item);

if (item_no > 0)
MakePosVisible (list_w, item_no);

}

The MakeItemVisible() routine simple gets the position of the given item in the li
usingXmListItemPos() and callsMakePosVisible() .

There are some other routines that deal with positions in a List widget. T
XmListGetKbdItemPos() and XmListSetKbdItemPos() routines retrieve and set
the item in the List that has the location cursor. These routines take the following for

int XmListGetKbdItemPos (Widget list_w)
Boolean XmListSetKbdItemPos (Widget list_w , int position)

XmListGetKbdItemPos() returns the position of the item that has the location curs
while XmListSetKbdItemPos() provides a way to specify the position of this item.

The XmListPosToBounds() and XmListYToPos() functions in provide a way to
translate list items to x, y coordinates and vice versa.XmListPosToBounds() returns the
bounding box of the item at a specified position in a List. This routine takes the follow
form:

Boolean XmListPosToBounds (Widget list_w ,
int position ,
Position * x,
Position * y,
Dimension * width ,
Dimension * height)

This routine returnsTrue if the item at the specified position is visible andFalse
otherwise. If the item is visible, the return parameters specify the bounding box of the i
This information can be useful if you need to perform additional event processing or d
Motif Programming Manual 455

Chapter 13: The List Widget

ents
item

ing

, set

t List
the
the

st
e “t”

r the
arate
The
special graphics for the item. TheXmListYToPos() routine returns the position of the List
item at a specified y-coordinate. This function takes the following form:

int XmListYToPos (Widget list_w , Position y)

The position information returned by this routine can be useful if you are processing ev
that report a pointer position and you need to convert the location of the event into an
position.

Navigating the List
In Motif 2.0 and later, the user can navigate through items in the List simply by typ
characters which match the first character of an item. The resourceXmNmatchBehavior
controls this aspect of the List. Match behavior is enabled by default. To disable
XmNmatchBehavior to XmNONE, and to re-enable, use the valueXmQUICK_NAVIGATE.

Navigation proceeds cyclically: when the user types a character, it is compared agains
items starting below the current item. If no item below the current item matches
keyboard input, the search proceeds from the top of the List. If a match is found,
matching item becomes the new current item. Figure 13-6 shows how this all works.

If no match is found,XBell () is called automatically: there is no way to configure the Li
otherwise. Note that matching is case sensitive: in the example, typing a lower cas
would not have matched against any items in the List.

List Callback Routines
While the callback routines associated with the List widget are not affected by whethe
List is scrollable, they do depend on the selection policy currently in use. There is a sep
callback resource for each selection policy, plus a callback for the default action.

User types ‘T’ User types ‘T’

Figure 13-6: XmNmatchBehavior set to XmQUICK_NAVIGATE
456 Motif Programming Manual

Chapter 13: The List Widget

the

m or
lways
. The

time
are

rval
a

od by
ify
lobal

The
wse

made
s soon
ith the

s the
the
e

nt of
rent
default action is invoked when the left mouse button is double-clicked on an item or
RETURN key is pressed. The callback resources are:

XmNbrowseSelectionCallback XmNdefaultActionCallback
XmNextendedSelectionCallback XmNmultipleSelectionCallback
XmNsingleSelectionCallback

The Default Action
In all of the selection modes there is the concept of the defaultaction. This term refers to
the action that is taken when the user double clicks the left mouse button on an ite
presses the RETURN key when an item has the location cursor. The default action a
indicates that the active item should be selected, regardless of the selection policy
XmNdefaultActionCallback is invoked for the default action.

The default selection is activated when the user double clicks on a List item. The
interval between two consecutive button clicks determines whether the clicks
interpreted as individual clicks or as a double click. You can set or get the time inte
using theXmNdoubleClickInterval resource. The value is stored as milliseconds, so
value of500 is half a second. If the resource is not set, the value of themultiClickTime
resource is used instead. This resource is a fundamental X resource that is understo
all X applications; it is not an Xt or Motif toolkit resource. You should let the user spec
the double-click interval in a resource file; the value should be set using the more g
multiClickTime resource.

Browse and Single Selection Callbacks
The browse and single selection modes only allow the selection of a single item.
browsing mode is regarded as a simpler interface for the user. Interactively, bro
selection allows the user to drag the selection over many items; the selection is not
till the mouse button is released. In the single selection mode, the selection is made a
as the mouse button is pressed. For browse selection, the callback list associated w
XmNbrowseSelectionCallback is used, while theXmNsingleSelectionCallback
is used for the single selection mode.

Keyboard traversal in the List is also different between the two modes. If the user use
keyboard to move from one item to the next in single selection mode,
XmNsingleSelectCallback is not invoked until the SPACEBAR is pressed. In brows
selection, theXmNbrowseSelectionCallback is invoked for each item the user
traverses. Since these two modes for the List widget are visually similar, your treatme
the callbacks is very important for maintaining consistency between Lists that use diffe
selection modes.

A simple example of using callbacks with a List widget is shown in Example 13-6.*
Motif Programming Manual 457

Chapter 13: The List Widget
Example 13-6. The browse.c program

/* browse.c -- specify a browse selection callback for a simple List. */

#include <Xm/List.h>

char *months[] = {"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November",
"December"};

main (int argc, char *argv[])
{

Widget toplevel, list_w;
XtAppContext app;
int i, n = XtNumber (months);
XmStringTable str_list;
void sel_callback(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

str_list = (XmStringTable) XtMalloc (n * sizeof (XmString *));
for (i = 0; i < n; i++)

str_list[i] = XmStringCreateLocalized (months[i]);

list_w = XmCreateScrolledList (toplevel, "months", NULL, 0);
XtVaSetValues (list_w, XmNvisibleItemCount, n,

XmNitemCount, n,
XmNitems, str_list, NULL);

XtManageChild (list_w);
XtAddCallback (list_w, XmNdefaultActionCallback, sel_callback, NULL);
XtAddCallback (list_w, XmNbrowseSelectionCallback, sel_callback,

NULL);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree ((char *) str_list);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void sel_callback (Widget list_w, XtPointer client_data,
XtPointer call_data)

{
XmListCallbackStruct *cbs = (XmListCallbackStruct *) call_data;
char *choice;

if (cbs->reason == XmCR_BROWSE_SELECT)

* XtVaAppInitialize () is considered deprecated in X11R6.XmStringGetLtoR () is deprecated in Motif 2.0
and later.
458 Motif Programming Manual

Chapter 13: The List Widget

y the

ven
y the
ation

s to

e
icies,

the
printf ("Browse selection -- ");
else

printf ("Default action -- ");

choice = (char *) XmStringUnparse (cbs->item,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL);

printf ("selected item: %s (%d)\n", choice, cbs->item_position);
XtFree (choice);

}

For this example, we modified our previous example that uses a ScrolledList to displa
months of the year. We have added the same callback routine,sel_callback() , to the
XmNbrowseSelectionCallback andXmNdefaultActionCallback resources. Since
the default action may happen for any List widget, it is advisable to set this callback, e
if there are other callbacks. The callback routine prints the type of action performed b
user and the selection that was made. The callback structure is used to get inform
about the nature of the List widget and the selection made.

The List callbacks provide a callback structure of typeXmListCallbackStruct , which
is defined as follows:

typedef struct {
int reason;
XEvent *event;
XmString item;
int item_length;
int item_position;
XmString *selected_items;
int selected_item_count;
int *selected_item_positions;
char selection_type;
char auto_selection_type; *

} XmListCallbackStruct;

Thereason field specifies the reason that the callback was invoked, which correspond
the type of action performed by the user. The possible values for this field are:

XmCR_BROWSE_SELECT XmCR_DEFAULT_ACTION
XmCR_EXTENDED_SELECT XmCR_MULTIPLE_SELECT
XmCR_SINGLE_SELECT

The reason field is important with List callbacks because not all of the fields in th
callback structure are valid for every reason. For the browse and single selection pol
thereason , event , item , item_length , anditem_position fields are valid. For the
default action, all of the fields are valid. List items are stored as compound strings in

* The auto_selection_type field is only available from Motif 2.0 onwards.
Motif Programming Manual 459

Chapter 13: The List Widget

. Each
the

the
callback structure, so to print an item usingprintf() , we must convert the string with the
compound string functionXmStringUnparse() .

Multiple Selection Callback
When XmNselectionPolicy is set toXmMULTIPLE_SELECT, multiple items can be
selected in the List widget. When the user selects an item, its selection state is toggled
time the user selects an item, the callback routine associated with
XmNmultipleSelectionCallback is invoked. Example 13-7 shows thesel_
callback() routine that could be used with a multiple selection List.*

Example 13-7. The sel_callback() routine for a multiple selection list

void sel_callback (Widget list_w, XtPointer client_data,
XtPointer call_data)

{
XmListCallbackStruct *cbs = (XmListCallbackStruct *) call_data;
char *choice;
int i;

if (cbs->reason == XmCR_MULTIPLE_SELECT) {
printf ("Multiple selection -- %d items selected:\n", cbs->
selected_item_count);

for (i = 0; i < cbs->selected_item_count; i++) {
choice = (char *) XmStringUnparse (cbs->selected_items[i],

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,NULL, 0,
XmOUTPUT_ALL);

printf ("%s (%d)\n", choice, cbs->selected_item_positions[i]);
XtFree (choice);

}
} else {

choice = (char *) XmStringUnparse (cbs->item,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL);

printf ("Default action -- selected item %s (%d)\n",
choice, cbs->item_position);

XtFree (choice);
}

}

The routine tests the callback structure’sreason field to determine whether the callback
was invoked as a result of a multiple selection action or the default action. When

* XmStringGetLtoR () is deprecated from Motif 2.0.
460 Motif Programming Manual

Chapter 13: The List Widget

tion

select

strates
reason is XmCR_MULTIPLE_SELECT, we print the list of selected items by looping
throughselected_items andselected_item_positions . With this reason, all of
the fields in the callback structure exceptselection_type are valid. If thereason is
XmCR_DEFAULT_ACTION, there is only one item selected, since the default selection ac
causes all of the other items to be deselected.

Extended Selection Callback
With the extended selection model, the user has the greatest flexibility to select and de
individual items or ranges of items. TheXmNextendedSelectionCallback is invoked
whenever the user makes a selection or modifies the selection. Example 13-8 demon
thesel_callback() routine that could be used with an extended selection List.*

Example 13-8. The sel_callback() routine for extended selection

void sel_callback (Widget list_w, XtPointer client_data,
XtPointer call_data)

{
XmListCallbackStruct *cbs = (XmListCallbackStruct *) call_data;
char *choice;
int i;

if (cbs->reason == XmCR_EXTENDED_SELECT) {
if (cbs->selection_type == XmINITIAL)

printf ("Extended selection -- initial selection: ");
else if (cbs->selection_type == XmMODIFICATION)

printf ("Extended selection -- modification of selection: ");
else /* selection type = XmADDITION */

printf ("Extended selection -- additional selection: ");

printf ("%d items selected\n", cbs->selected_item_count);

for (i = 0; i < cbs->selected_item_count; i++) {
choice = (char *) XmStringUnparse (cbs->selected_items[i],

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,
XmOUTPUT_ALL);

printf ("%s (%d)\n", choice, cbs->selected_item_positions[i]);
XtFree (choice);

}
} else {

choice = (char *) XmStringUnparse (cbs->item,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
XmCHARSET_TEXT,
NULL, 0,

* XmStringGetLtoR () is deprecated in Motif 2.0.
Motif Programming Manual 461

Chapter 13: The List Widget

an

ll
prise

ase,
n took
was
y in

oke
s that
urce

ion is

o

ming
t of

ce
XmOUTPUT_ALL);
printf ("Default action -- selected item %s (%d)\n",

choice, cbs->item_position);
XtFree (choice);

}
}

Most of the callback routine is the same as it was for multiple selection mode. With
extended selection callback, theselection_type field is also valid. This field can have
the following values:

XmINITIAL XmMODIFICATION XmADDITION

The XmINITIAL value indicates that the selection is an initial selection for the List. A
previously-selected items are deselected and the items selected with this action com
the entire list of selected items. The value isXmMODIFICATIONwhen the user modifies the
selected list by using the SHIFT key in combination with a selection action. In this c
the selected item list contains some items that were already selected before this actio
place.XmADDITIONindicates that the items that are selected are in addition to what
previously selected. The user can select additional items by using the CTRL ke
combination with a selection action. Regardless of the value forselection_type , the
selected_items and selected_item_positions fields always reflect the set of
currently selected items.

Automatic Selection
A List which is configured for browse or extended selection does not normally inv
callbacks until the user completes the selection by releasing the mouse. This mean
notification of selection change does not take place until after the event. If the reso
XmNautomaticSelection is set to XmAUTO_SELECT, however, notification is
immediate as soon as the user moves over a new item in the List. Automatic select
disabled by settingXmNautomaticSelection to XmNO_AUTO_SELECT.* The auto_
selection_typefield in theXmListCallbackStruct indicates the state of the change t
the selection. The field takes the following values:

XmAUTO_UNSET XmAUTO_BEGIN XmAUTO_MOTION
XmAUTO_NO_CHANGE XmAUTO_CHANGE XmAUTO_CANCEL

Summary
The List widget is a powerful user interface tool that has a simple design. The program
interface to the widget is mostly mechanical. The List allows you to present a vast lis

* In Motif 1.2, XmNautomaticSelection is a simple Boolean resource. In Motif 2.0 and later, the resour
changes to the enumerated type. For backwards compatibility,XmNO_AUTO_SELECTis equivalent toFalse ,
XmAUTO_SELECT to True .
462 Motif Programming Manual

Chapter 13: The List Widget

re not
aps

still a

of
s, for

tes a
choices to the user, although the choices themselves must be textual in nature. Lists a
suitable for all situations however, as they cannot display choices other than text (pixm
cannot be used as selection items). Even with these shortcomings, the List widget is
visible and intuitive object that can be used in designing a graphical user interface.

In Motif 1.2, individual List items could not be colored independently. With the advent
Render Tables in Motif 2.0, this is no longer the case. See Chapter 24, Render Table
more information on this subject. Example 24.1 is a sample application which crea
multi-colored ScrolledList.

Exercises
The following exercises expand on some of the concepts presented in this chapter.

1. Write a program that reads each word from the file /usr/dict/wordsinto a
ScrolledList. Provide a TextField widget whose callback routine searches
for the word typed into it from the entries in the List. Once found, make the
List widget scroll so that each item is centered in the ScrolledList’s view-
port. (Hint: convert the C string from the TextField into a compound string
and use one of the List search routines to find the element.)

2. ScrolledLists frequently confuse the unsuspecting programmer who forgets
that the parent of the List widget is a ScrolledWindow. For example, if you
create a ScrolledList as a child of a Form widget, and want to specify at-
tachment constraints on the ScrolledList, you should set these resources on
the ScrolledWindow, not the List widget. Write a program that places two
ScrolledList widgets next to each other in a single Form widget. (For more
information on the role of the ScrolledWindow widget in a ScrolledList ob-
ject, see the similar discussion on ScrolledText objects in Chapter 18, Text
Widgets, and more discussion in Chapter 10, ScrolledWindows and ScrollBars.)

3. Consider two List widgets whose items are somewhat dependent on one an-
other.For example, the one List contains login names and the other List
contains the corresponding user-IDs.Write a program where the XmNde-
faultActionCallback routine for each list selects the dependent/corre-
sponding item in the other list.Since the user ID for “root” is always
0,selecting “root” from the login name list should cause the item 0in the
user-ID list to be selected.
Motif Programming Manual 463

Chapter 13: The List Widget
464 Motif Programming Manual

e of
et of
was
Chapter 1

In this chapter:
• The ComboBox Widget
• Creating a ComboBox
• ComboBox Resources
• ComboBox Functions
• ComboBox Callbacks
• Summary
• Exercises

A ComboBox is a component
list selection. The user can e
predefined values available
Motif Programming Manual
14
and
out
s is

user
e. In

ox,
ield.
ist.
ield,
ciated
Box
The ComboBox
Widget

which combines direct textual entry with the convenienc
ither type directly into a TextField, or choose from a s
from a popup ScrolledList. The ComboBox widget

introduced in Motif 2.0, and is thus not available in earlier versions of the toolkit.

The Motif ComboBox is a manager widget. It automatically creates a TextField
ScrolledList for direct textual entry and list selection respectively. The ComboBox lay
can be configured in a limited number of ways, depending upon whether the list of item
to be permanently visible, or whether the ScrolledList is hidden and only displayed on
request. Figure 14-1 displays a ComboBox with the List set to be permanently visibl

this configuration, the ScrolledList is simply placed directly underneath the ComboB
and is sized so that the width of the List is the same as the ComboBox built-in TextF
The user can either type directly into the TextField, or select an item from the L
Selecting from the ScrolledList automatically places the selected item into the TextF
replacing any previous contents. This configuration is perhaps not the usual one asso
with a ComboBox. More familiar is the arrangement shown in Figure 14-2. The Combo

Figure 14-1: A ComboBox widget with the List permanently visible

TextField

Scrolled
List
465

Chapter 14: The ComboBox Widget

splay
ield.

Box
eans
wn-
the
the
the

re not
ilt-in

otif
the

e Xt
or its
in this case does not display the Scrolled List until requested by the user. In order to di
the List, the user clicks on an arrow which the ComboBox adds to the side of the TextF

There are three basic kinds of ComboBox supported by Motif. The default Combo
creates a permanently visible Scrolled List, and a TextField which is editable, which m
that the user is not restricted in choice by the set of items in the List. A Drop-do
ComboBox, on the other hand, hides the Scrolled List until required, but again
TextField is editable. A ComboBox which is configured as a Drop-down-List also hides
built-in Scrolled List until required, but this time the TextField is not editable, and thus
user must choose from the Scrolled List in order to change the current selection.

The ComboBox is not meant to be used as a general purpose manager, and you a
expected to add any additional children to the widget over and above the bu
components.

Creating a ComboBox
Creating a ComboBox is performed in precisely the same kind of way that other M
widgets are instantiated. Applications must include the header file associated with
widget class, which in this case is <Xm/ComboBox.h>. A ComboBox can be created in one
of the following ways, either using a Motif convenience routine, or the general purpos
methods; note that the ComboBox supports more than one convenience routine f
creation:

Widget combo = XmCreateComboBox (parent, “name”, resource-value-array ,
resource-value-count);

...

Figure 14-2: A ComboBox widget with the List visible on request

User clicks
on Arrow

TextField Arrow

Popup
Scrolled
List
466 Motif Programming Manual

Chapter14: The ComboBox Widget

ment
ged

s
meters
ield

is
ly

he
lue

olled

ithin
a

ith a

these
d

n

le.

.
ng
Widget combo = XmCreateDropDownComboBox (parent, “name”,
resource-value-array , resource-value-count);

...
Widget combo = XmCreateDropDownList (parent, “name”, resource-value-array ,

resource-value-count);
...
Widget combo = XtCreateWidget ("name", xmComboBoxWidgetClass, parent, resource-

value-list , NULL);

The parent can be a Shell or any manager widget. Since the geometry manage
involved in creating a ComboBox is minimal, the widget could be created as mana
usingXtCreateManagedWidget () or similar without incurring a significant performance
overhead. See Chapter 8,Manager Widgets, for a discussion of when manager widget
should be created in the managed or unmanaged state. The resource-value para
control the behavior and visual effects of the ComboBox, as well as its built-in TextF
and List children.

The most important resource for configuring the layout of the ComboBox
XmNcomboBoxType. If the value isXmCOMBO_BOX, the ComboBox creates a permanent
visible Scrolled List, and the built-in TextField is set to be editable. If the value isXmDROP_
DOWN_COMBO_BOX, the Scrolled List is hidden until required, an arrow is drawn by t
ComboBox to facilitate List popup, and the TextField is set to be editable. The va
XmDROP_DOWN_LISTis similar toXmDROP_DOWN_COMBO_BOX, except that the TextField
is not editable, thus forcing the user to display and subsequently select from the Scr
List in order to change the current selection. TheXmNcomboBoxTyperesource is a create-
only attribute: you cannot change the value dynamically, and must specify the type w
theresource-value-array argument to the widget creation routine if you are using
general purpose Xt widget creator. The default value isXmCOMBO_BOX; this might be
considered somewhat inconvenient since the usual requirement is for a ComboBox w
hidden List.

However, Motif does provide three convenience routines to create the widget, and
internally set the XmNcomboBoxType resource appropriately for the require
configuration. The function XmCreateComboBox () is equivalent to setting
XmNcomboBoxTypeto XmCOMBO_BOX, which displays the List permanently. For a hidde
List, use either XmCreateDropDownComboBox () or XmCreateDropDownList (),
depending on whether you need the TextField to be editab
XmCreateDropDownComboBox () is equivalent to settingXmNcomboBoxType to
XmDROP_DOWN_COMBO_BOX, which creates an editable TextField
XmCreateDropDownList () creates a read-only TextField, and is equivalent to setti
XmNcomboBoxType to XmDROP_DOWN_LIST.

Example 14-1 creates a ComboBox for selecting from a range of color names.*

Example 14-1. The simple_combobox.c program
Motif Programming Manual 467

Chapter 14: The ComboBox Widget

tine
nt
ine
al
/* simple_combobox.c -- demonstrate the combobox widget */

#include <Xm/Xm.h>
#include <Xm/ComboBox.h>

/* the list of colors */
char *colors[] = {

“red”, “green”, “blue”, “orange”, “purple”,
“pink”, “white”, “black”, “yellow”

};

main (int argc, char *argv[])
{

Widget toplevel, combo;
XtAppContext app;
Arg args[4];
int count = XtNumber (colors);
int i, n;
XmStringTable str_list;

/* initialize the toolkit */
XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

/* create the List items */
str_list = (XmStringTable) XtMalloc (count * sizeof (XmString *));

for (i = 0; i < count; i++)
str_list[i] = XmStringCreateLocalized (colors[i]);

/* create the combobox */
n = 0;
XtSetArg (args[n], XmNitems, str_list); n++;
XtSetArg (args[n], XmNitemCount, count); n++;
combo = XmCreateDropDownList (toplevel, “combo”, args, n);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree ((XtPointer) str_list);

XtManageChild (combo);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

In the example, we create the ComboBox using the convenience rou
XmCreateDropDownList (). If we wanted the user to be able to directly supply a differe
value to the colors we add to the ComboBox, we would use the rout
XmCreateDropDownComboBox () instead. The appearance of the application is identic

* XtVaOpenApplication () and the SessionShell widget class are only available in X11R6.XmCreateDrop-
DownList () is only available from Motif 2.0 onwards.
468 Motif Programming Manual

Chapter14: The ComboBox Widget

nts

our
der to
f

is an
o the

e
f the
in this case; only the editability of the built-in TextField changes. We specify the conte
of the ComboBox built-in List through theXmNitems and XmNitemCount resources.
These aremirrored resources: the ComboBox arranges to set the items on the List on
behalf, and thus we do not need to gain access to the underlying List component in or
program the set of available choices. TheXmNitems resource specifies an array o
compound strings, which topic is covered in detail in Chapter 25,Compound Strings.

The output from the program is given in Figure 14-3.

ComboBox Resources
The ComboBox provides what is known as amirror; that is, for each of the important
resources which can be set on the built-in TextField and Scrolled List children there
equivalent implemented in the ComboBox resource table itself, so that access t
underlying children is not necessary for the majority of tasks.

List Resources

The contents of the ComboBox popup List can be set using theXmNitems and
XmNitemCount resources of the ComboBox.XmNitems specifies an array of compound
strings, andXmNitemCount is the number of such strings in the array. The following cod
fragment shows how to create a ComboBox which displays the names of the days o
week:

extern Widget parent;

char *month_names[] = {
“Monday”, “Tuesday”, “Wednesday”, “Thursday”,
“Friday”, “Saturday”, “Sunday”

};

int count, i, n;
XmString *xms;
Arg args[4];
Widget combo;

Figure 14-3: Output of the simple_combobox program
Motif Programming Manual 469

Chapter 14: The ComboBox Widget

List

the

the
ven

the

The

r or not
count = XtNumber (month_names);
xms = (XmString *) XtMalloc ((unsigned) count * sizeof (XmString));

for (i = 0; i < count; i++) {
xms[i] = XmStringCreateLocalized (month_names[i]);

}

n = 0;
XtSetArg (args[n], XmNitems, xms); n++;
XtSetArg (args[n], XmNitemCount, count); n++;
combo = XmCreateComboBox (parent, “days”, args, n);

for (i = 0; i < count; i++)
XmStringFree (xms[i]);

XtFree ((char *) xms);

The vertical size of the ComboBox List is controlled through theXmNvisibleItemCount
resource. If the visible item count is less than the number of items in the list, the
automatically displays ScrollBars for navigating to hidden items.

Just as a List supports automatic keyboard selection through theXmNmatchBehavior
resource, so this is mirrored in the ComboBox resource set. If the value isXmQUICK_
NAVIGATE, the user can select an item in the List simply by typing the first character of
item. This behaviour is disabled if the value isXmNONE.

The widget ID of the built-in List is available through the ComboBoxXmNlist resource.
You may fetch, but not set the value of this resource.

TextField Resources

The TextField contains the current selection. This can be fetched or set through
XmNselectedItem resource. Note that this resource specifies a compound string, e
though the internals of the Motif Text widgets are not compound-string based.

The width of the built-in TextField is controlled by theXmNcolumns resource. This also
controls the width of the ComboBox itself, although allowance should be made for
additional space required to draw an arrow.

The widget ID of the built-in TextField can be fetched using theXmNtextField resource.
This resource is read-only in nature.

ComboBox Resources

The type of the ComboBox is specified through the XmNcomboBoxType resource.
possible values are:

XmCOMBO_BOX XmDROP_DOWN_COMBO_BOX XmDROP_DOWN_LIST

Note that these are create-only resources, so you need to decide in advance whethe
to allow the user to type directly into the TextField.
470 Motif Programming Manual

Chapter14: The ComboBox Widget

h a

item
ever
rent

CDE
Box
urce

with

oes
the

he
the

ean

f 1
work

or
t of
ns to

on

as
The way in which the ComboBox reports the current selection is controlled throug
resource calledXmNpositionMode . Normally, a List is manipulated by specifying
indexes starting at 1. That is to say, the first item in a List is at position 1, the second
at position 2, and so forth. Position zero is reserved to mean “the end of the list”, what
that index may be. However, the CDE DtComboBox widget was based around a diffe
model: the first item is at position zero, the second at position 1, and so forth. Since
pre-dates the release of Motif 2.x, applications may well have included the DtCombo
widget well before the Motif ComboBox became available. For this reason, the reso
XmNpositionMode was implemented. IfXmNpositionMode is XmONE_BASED, the
ComboBox reports positions in its callbacks starting at position 1, which is consistent
normal Motif List behavior. If on the other hand,XmNpositionMode is XmZERO_BASED,
positions are reported offset from zero for CDE compatibility. Note that this resource d
not affect any of the ComboBox functions described within Section 14.3: it only affects
way in which the various elements of a ComboBoxXmNselectionCallback is
interpreted, and the value of the resourceXmNselectedPosition .

The index of the current selection in the List of choices is given by t
XmNselectedPosition resource. As described in the previous paragraph,
interpretation of this resource depends upon theXmNpositionMode value. If
XmNpositionMode is XmONE_BASED, anXmNselectedPosition of 1 means that the
first item in the List is the selected item. In this mode, a position of zero is reserved to m
that no List items were selected. IfXmNpositionMode is XmZERO_BASED, an
XmNselectedPosition of zero means that the first List item is selected, a position o
means the second was selected, and so forth. It is difficult in these circumstances to
out if no List items were selected other than by directly querying theXmNselectedItems
of the internal List itself.

ComboBox Functions
Just as you can program the contents of a List widget either by manipulating theXmNitems
and XmNselectedItem resources or by calling any of a whole range of routines f
selectively adding or deleting items, so also the ComboBox comes with a se
convenience routines for changing its List contents over and above any manipulatio
the ComboBoxXmNitems resource you may care to make.*

Adding ComboBox Items
An item can be inserted into the ComboBox built-in List through the functi
XmComboBoxAddItem(), which takes the following form:

* With the exception ofXmComboBoxUpdate(), all of the ComboBox convenience routines are only available
of Motif 2.1.XmComboBoxUpdate() is available from Motif 2.0.
Motif Programming Manual 471

Chapter 14: The ComboBox Widget

tion

ox
rror

tine

lkit.

m in

the
t it

h the
es
be
void XmComboBoxAddItem (Widget combo,
XmString item ,
int position ,
Boolean unique)

Theposition parameter specifies an index into the ComboBox List where theitem is to
be inserted. The first item in the List is at position 1. Ifposition is zero, item is
appended to the bottom of the List. Ifunique is True , item is only inserted if it does not
already exist in the ComboBox List.

Deleting ComboBox Items
You can delete an item at a given position in the ComboBox List through the func
XmComboBoxDeletePos (). This routine has the following prototype:

void XmComboBoxDeletePos (Widget combo, int position)

Again, theposition parameter is interpreted such that the first item in the ComboB
List is at position 1. Deleting position zero deletes the last ComboBox List item. An e
message is displayed by the Motif toolkit if no item exists at the specifiedposition .

Selecting ComboBox Items
You can programmatically set the current choice in the ComboBox through the rou
XmComboBoxSelectItem (). This has the following signature:

void XmComboBoxSelectItem (Widget combo, XmString item)

The routine selects the first occurrence ofitem in the ComboBox internal List. This also
resets the contents of the built-in TextField. There is a side effect such that ifitem is not
amongst the ComboBox List choices, an error message is displayed by the Motif too

The routineXmComboBoxSetItem () is very similar toXmComboBoxSelectItem () in
that it sets the current selection. It also makes the selected choice the first visible ite
the ComboBox List. The routine has the following format:

void XmComboBoxSetItem (Widget combo, XmString item)

Whether usingXmComboBoxSetItem () or XmComboBoxSelectItem (), no callbacks are
invoked by the ComboBox as a result of changing the current selection.

Updating the ComboBox
If you change the state of the ComboBox built-in components other than through
convenience routines, it is possible for the ComboBox to get out of step with wha
believes is the current contents and state of its children. For example, you might fetc
built-in List through theXmNlist resource of the ComboBox, and set various resourc
directly on the child rather than going through the ComboBox mirror. This might
472 Motif Programming Manual

Chapter14: The ComboBox Widget

the
ctly
ch
s, the
ave

m the

the
ion,
t.

tion.
d to

e

-
er

t

ish
e user

user

to
performed because the set of ComboBox convenience routines for manipulating
contents of the internal List is considerably smaller than the set provided for dire
manipulating a normal List, and so by fetching the widget ID of the List child a mu
greater range of toolkit functionality becomes available for use. In these circumstance
ComboBox may need to be synchronized with the state of its children after you h
finished manipulating them. The routineXmComboBoxUpdate() is provided for this
purpose, and the ComboBox resets its state by refreshing its values read directly fro
children. This routine is specified as follows:

void XmComboBoxUpdate (Widget combo)

ComboBox Callbacks
The only callback defined specifically by the ComboBox widget class is
XmNselectionCallback . This is called when the user changes the current select
either by typing into the built-in TextField, or by selecting from the built-in Scrolled Lis
Each callback of this type is associated with the structureXmComboBoxCallbackStruct ,
which is defined as follows:

typedef struct
{

int reason;
XEvent *event;
XmString item_or_text;
int item_position;

} XmComboBoxCallbackStruct;

Thereason element of anXmNselectionCallback will have the valueXmCR_SELECT.
The item_or_text element is a compound string which represents the current selec
This is temporarily allocated only for the duration of the callback, and so if you nee
cache the current choice, you need to copy the element usingXmStringCopy () or similar.

The interpretation of theitem_position element depends upon the value of th
XmNpositionMode resource. If the mode isXmONE_BASED, an item_position of 1
refers to the first item in the ComboBox List, anitem_position of 2 is the second List
item, and so forth. Anitem_position of zero indicates that there was no List selection
in other words, theitem_or_text element value must have resulted from the us
directly typing into the ComboBox TextField. If theXmNpositionMode resource is
XmZERO_BASED, an item_position of zero could either have resulted from direct tex
entry, or the first List item was selected. Anitem_position of 1 indicates selection of
the second List item, and so forth. In this mode, it can be very difficult to distingu
between the cases where the user has selected the first item in the List, and when th
has directly typed, simply by inspection of the callback data, particularly when the
navigates the built-in List using the keyboard. In both cases, theitem_position element
is zero, and theevent element will report a KeyEvent of some description. If you need
Motif Programming Manual 473

Chapter 14: The ComboBox Widget

hing

en
and

final
and

.

an
know the difference between List and TextField selection, you should consider switc
to a position mode ofXmONE_BASED.

Note that theXmNselectionCallback is called every time the selection changes, ev
if the user has not finished with the current action. For example, if the user browses up
down the List of choices using the arrow keys, theXmNselectionCallback will be
invoked each time the choice is moved, even though the user has not made the
selection. Fortunately it is possible to distinguish between browsing around the List
actual selection because theevent element of the callback structure isNULLwhen the user
browses the List, and points to a proper KeyPress or ButtonRelease event otherwise

Example 14-2 is a simple program which prints out the current selection, using
XmNselectionCallback for the purpose.*

Example 14-2. The combo_cb.c program

/* combo_cb.c -- demonstrate the combobox widget selection callback */

#include <Xm/Xm.h>
#include <Xm/ComboBox.h>

/* the list of colors */
char *colors[] = {

"red", "green", "blue", "orange", "purple",
"pink", "white", "black", "yellow"

};

/* selection_callback: simply prints out the current ComboBox selection */
void selection_callback (Widget w, XtPointer client_data, XtPointer call_data)
{

XmComboBoxCallbackStruct *cb = (XmComboBoxCallbackStruct *) call_data;

char *choice = (char *) XmStringUnparse (cb->item_or_text,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT, XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL);

if (cb->event == NULL) {
printf ("Browsing: potential choice is %s\n", choice);

}
else {

printf ("New current choice is %s\n", choice);
}

XtFree (choice);
}

main (int argc, char *argv[])

* XtVaOpenApplication () and the SessionShell widget class are only available in X11R6.XmCreateDrop-
DownComboBox() andXmStringUnparse () are only available from Motif 2.0 onwards.
474 Motif Programming Manual

Chapter14: The ComboBox Widget

tion
ally
n the
cting
ase
get
{
Widget toplevel, combo;
XtAppContext app;
Arg args[4];
int count = XtNumber (colors);
int i, n;
XmStringTable str_list;

/* initialize the toolkit */
XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

/* create the List items */
str_list = (XmStringTable) XtMalloc ((unsigned) count *

sizeof (XmString *));

for (i = 0; i < count; i++)
str_list[i] = XmStringCreateLocalized (colors[i]);

/* create the combobox */
n = 0;
XtSetArg (args[n], XmNitems, str_list); n++;
XtSetArg (args[n], XmNitemCount, count); n++;
combo = XmCreateDropDownComboBox (toplevel, "combo", args, n);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree ((XtPointer) str_list);

XtAddCallback (combo, XmNselectionCallback, selection_callback, NULL);

XtManageChild (combo);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Summary
The beauty of the ComboBox is the fact that it provides the convenience of List selec
while only occupying the screen space of a TextField when inactive. The user norm
sees just the current selection, and only needs to inspect the full set of values whe
choice is to be changed. Changing the choice is simply a matter of displaying and sele
from the List, or typing the new value. It is the conjunction of economy of space with e
of use which makes this one of the single most important additions to the Motif 2.x wid
set.
Motif Programming Manual 475

Chapter 14: The ComboBox Widget
Exercises
1. Create a program which displays a date using a combination of three Com-

boBoxes for each of the day, month, and year elements. The year ComboBox
should offer a simple range of choices for the years 1990 through to 2010.

2. Modify your program such that the current date is displayed in the Com-
boBoxes when the program first starts.
476 Motif Programming Manual

p of

tes a
Chapter 1

In this chapter:
• Creating a SimpleSpinBo
• Creating a SpinBox
• SpinBox Resources
• SpinBox Callbacks
• Summary
• Exercises

S
This chapter describes two c
values that occur in a predefi

The SimpleSpinBox consists
Motif Programming Manual
x 15
the
arrow.
ally
ist of
t is
r next

he
r: the
late

e 15-

.1.
The SpinBox and
impleSpinBox Widgets
omponents which allow the user to chose from a grou
ned set: the SpinBox, and the SimpleSpinBox widgets*.

of a TextField, and two arrows. The programmer associa
set of values with the SimpleSpinBox; the TextField displays the current selection from
set, and the user can chose the next or previous value in the set by pressing on an
Think of the widget as a kind of ComboBox which, when an arrow is pressed, automatic
selects the next value for the user, rather than the user selecting from a popdown L
choices. Figure 15-1 displays a typical SimpleSpinBox. In this case, the widge
associated with the names of the months, and the user simply chooses the previous o
month by pressing the increment or decrement arrow.

The SpinBox is similar to the SimpleSpinBox: it provides two arrows for rotating t
current selection. The difference is that the SpinBox is a general purpose manage
programmer can add multiple TextFields to the widget, and the arrows simply manipu
the set of values associated with the current TextField child which has the focus. Figur

* The SpinBox is only available from Motif 2.0 onwards. The SimpleSpinBox is only available from Motif 2

Increment Arrow

Decrement Arrow

TextField

Figure 15-1: A SimpleSpinBox widget
477

Chapter 15: The SpinBox and SimpleSpinBox Widgets

for

two
r to
ge, as
ays

, 30,
nt or
ield,
can

es the
raps
ther
value
ping

ser is
e way
ugh

the
ugh
comes
s well
not
2 display a SpinBox which contains three TextField children, used in this instance
displaying the day, month, and year components of a date.

SpinBoxes, and SimpleSpinBoxes, assume that their TextField children come in
different flavors: numeric, and string. A numeric SpinBox TextField allows the use
select from a range: the programmer specifies the lower and upper bounds of the ran
well as the interval between selections. Clearly, a TextField in a SpinBox displaying d
of the month would have a lower bound of 1, and an upper bound variously of 28, 29
or 31, The interval would be 1, because you would expect that pressing the increme
decrement arrow should change the value to an adjacent day. A string SpinBox TextF
on the other hand, simply has an ordered array of strings from which the user
sequentially select.

In either flavor, when the last value in the set of choices is reached, and the user press
increment arrow, the new current value is the first value in the range: the choice w
around to the start of the set. This wrapping behavior is also true when going in the o
direction: pressing the decrement arrow when the first value is current causes the last
to become the current choice. If the programmer does not want this kind of wrap
behavior, it can be configured through resources.

The differences between the SpinBox and SimpleSpinBox widgets as far as the u
concerned are minimal: each presents the current choice to the user in the sam
through a TextField or TextFields, and each allows the user to modify the choice thro
increment and decrement arrows automatically provided for the purpose.

As far as programming the two widgets is concerned, there are subtle differences.

Firstly, the SimpleSpinBox comes with a built-in TextField ready-prepared to display
current choice: the programmer only needs to specify the valid set of values thro
appropriate resources. The general purpose SpinBox manager, on the other hand,
unprepared: the programmer must add all the necessary TextField children herself, a
as specifying the value ranges. Although derived from SpinBox, the SimpleSpinBox is

Figure 15-2: A SpinBox widget with three TextField children

TextFields

Increment Arrow

Decrement Arrow
478 Motif Programming Manual

Chapter 15: The SpinBox and SimpleSpinBox Widgets

hildren
ay.

ildren
ides

t of
ources
he
half.
d a

If it
the
days
he

not
is an
f the
not
ple

, or if

their
oxes

otif
the

e
e Xt

ment
gle
meant to be used as a general purpose manager, and you should not put additional c
into the widget: use the SpinBox instead if you need to modify the structure in this w

The second and most important difference is the fact that the SpinBox widget is aconstraint
manager pure and simple: the set of values associated with the various TextField ch
is specified by setting constraints on each. By contrast, the SimpleSpinBox prov
mirrored resources for the built-in TextField child; you do not have to specify the se
values by setting constraints on the TextField: instead you set the same constraint res
defined by the SpinBox directly onto the SimpleSpinBox widget itself. T
SimpleSpinBox thereafter arranges to apply the values to the built-in child on your be
In other words, the set of resources you can use to program a SpinBox an
SimpleSpinBox is the same in each case; what is different is where you apply them.

The notion of a set is important when considering using a SpinBox or SimpleSpinBox.
is not obvious what the “next” or “previous” value means in a given context, then
SpinBox is probably not the correct widget to use. For example, if the set consists of
of the week, it is fairly intuitive what “next” means if the current value is Monday. On t
other hand, if the set consists of arbitrary data such as a list of color names, it is
necessarily obvious what “next” means if the current value is Orange. Unless there
imposed order on the set, for example, an alphabetical listing, then this usage o
SpinBox could well be entirely inappropriate and confusing to the user, who would
know whether to increment or decrement to find the required new current value. A sim
List or ComboBox presentation should therefore be preferred if the data is unordered
the next or previous choice is not obvious given an arbitrary current selection.

In passing, note that the increment and decrement arrows aredrawnby the SpinBoxes; they
are not real widgets, and thus there is little which can be done to manipulate
appearance other than through resources which are directly provided by the SpinB
themselves.

Creating a SimpleSpinBox
Creating a SimpleSpinBox is performed in precisely the same kind of way that other M
widgets are instantiated. Applications must include the header file associated with
widget class, which in this case is <Xm/SSpinB.h>. A SimpleSpinBox can be created in on
of the following ways, either using a Motif convenience routine, or the general purpos
methods:

Widget sspin_b = XmCreateSimpleSpinBox (parent, “name”,
resource-value-array , resource-value-count);

Widget sspin_b = XtCreateWidget ("name", xmSimpleSpinBoxWidgetClass,
parent, resource-value-list , NULL);

The parent can be a Shell or any manager widget. Since the geometry manage
involved in creating a SimpleSpinBox is minimal, involving as it does just a sin
Motif Programming Manual 479

Chapter 15: The SpinBox and SimpleSpinBox Widgets

ed or
ects of
e is
ed

to
ower
ate a
een

ilt-in
nBox
TextField, the widget could be created managed usingXtCreateManagedWidget () or
similar without incurring a significant performance overhead. See Chapter 8,Manager
Widgets, for a discussion of when manager widgets should be created in the manag
unmanaged state. The resource-value parameters control the behavior and visual eff
the SimpleSpinBox, as well as its built-in TextField child. The most important resourc
XmNspinBoxChildType , which specifies whether the widget is numerical or string-bas
in behavior. The value of the resource is eitherXmNUMERIC, orXmSTRING.

The Numerical SimpleSpinBox
Numerical SimpleSpinBoxes are created by specifying theXmNspinBoxChildType
resource asXmNUMERIC* . Once we have made our SimpleSpinBox numerical, we need
specify the range of values from which the user can chose. We do this by supplying a l
bound, an upper bound, and an increment value. Example 15-1 shows how to cre
numerical SimpleSpinBox which lets the user select an even number which falls betw
zero and twenty.

Example 15-1. The numeric_simplespin.c program

/* numeric_simplespin.c -- demonstrate the simple spin box widget */

#include <Xm/Xm.h>
#include <Xm/SSpinB.h>

main (int argc, char *argv[])
{

Widget toplevel, simple_b;
XtAppContext app;
int n;
Arg args[8];

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNminimumValue, 0); n++;
XtSetArg (args[n], XmNmaximumValue, 20); n++;
XtSetArg (args[n], XmNincrementValue, 2); n++;
XtSetArg (args[n], XmNeditable, TRUE); n++;
XtSetArg (args[n], XmNcolumns, 10); n++;
XtSetArg (args[n], XmNwrap, FALSE); n++;
simple_b = XmCreateSimpleSpinBox (toplevel, "simple", args, n);

* Note that this is really a SpinBox constraint resource, and we are in reality making the SimpleSpinBox bu
TextField numerical, rather than making the SimpleSpinBox numerical. We can apply it to the SimpleSpi
because of the way it applies constraints on our behalf.
480 Motif Programming Manual

Chapter 15: The SpinBox and SimpleSpinBox Widgets

the

the
ser

nd)
nts at

his
hink

s

l in
s to
in the
ing
ed to
ay

nt

rther
XtManageChild (simple_b);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

We specify the minimum bounds to the range of selectable values through
XmNminimumValue resource. The upper bound is given by theXmNmaximumValue
resource, and the gap between selectable values is specified using
XmNincrementValue resource. For the sake of example, we also explicitly allow the u
to directly type into the built-in TextField by setting theXmNeditable resource toTrue .
We also explicitly specify that the SimpleSpinBox is not to wrap around to the start (or e
of the range of values when the user increments at the end of the range (or decreme
the beginning) by forcing theXmNwrapresource toFalse . The user will either have to type
the value in directly, or cycle right through the set of values in the opposite direction. T
may or may not be anti-social programming in any given circumstance: you should t
carefully before turning either or bothXmNeditable andXmNwrapbehavior off. In the
example, it makes some kind of sense to turnXmNwrapoff so that the user is more aware
of the upper bound; ifXmNwrapis False , the bell is automatically rung if the user attempt
to exceed the bounds of the data set.

The numeric SimpleSpinBox is not confined to situations where the data is integra
character: theXmNdecimalPoints resource can be specified so that the widget appear
handle real numbers. Supposing that we wanted to allow the user to chose from with
range 2.75 through to 3.45, incrementing by 0.05 on each click of the arrow. The follow
code fragment shows the way to do this: since there are two decimal places, we ne
multiply all our bound resources by 10 to the power of two. This is consistent with the w
that theXmNdecimalPoints resource behaves in the Scale widget.

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNminimumValue, 275); n++;
XtSetArg (args[n], XmNmaximumValue, 345); n++;
XtSetArg (args[n], XmNdecimalPoints, 2); n++;
XtSetArg (args[n], XmNincrementValue, 5); n++;
XtSetArg (args[n], XmNpositionType, XmPOSITION_VALUE); n++;
XtSetArg (args[n], XmNposition, 275); n++;
...
simple_b = XmCreateSimpleSpinBox (toplevel, "simple", args, n);
...

The XmNpositionType andXmNposition resources are used to initialize the curre
value of the SimpleSpinBox.XmNposition specifies the current value of the
SimpleSpinBox;XmNpositionType specifies whether theXmNposition resource is
interpreted as an absolute value, or as an index into the set of values. They will be fu
discussed in Section 15.1.3.
Motif Programming Manual 481

Chapter 15: The SpinBox and SimpleSpinBox Widgets

is

r 25,
se

from

nBox
The String SimpleSpinBox
A string-based SimpleSpinBox is created by specifying theXmNspinBoxChildType
resource asXmSTRING* . The set of data associated with the string SimpleSpinBox
defined by theXmNvalues andXmNnumValues resources. TheXmNvalues resource is
internally represented by an array of compound strings; you are referred to Chapte
Compound Strings, if you require more details on the creation and manipulation of the
objects.

Example 15-2 creates a string-based SimpleSpinBox, which allows the user to select
the names of the months.

Example 15-2. The string_simplespin.c program

/* string_simplespin.c -- demonstrate the simple spin box widget */

#include <Xm/Xm.h>
#include <Xm/SSpinB.h>

char *months[] = {
"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"

};

main (int argc, char *argv[])
{

Widget toplevel, simple_b;
XtAppContext app;
int i, n = XtNumber (months);
Arg args[8];
XmStringTable str_list;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

str_list = (XmStringTable) XtMalloc (n * sizeof (XmString *));

for (i = 0; i < n; i++)
str_list[i] = XmStringCreateLocalized (months[i]);

i = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmSTRING); i++;
XtSetArg (args[i], XmNeditable, FALSE); i++;
XtSetArg (args[i], XmNnumValues, n); i++;
XtSetArg (args[i], XmNvalues, str_list); i++;
XtSetArg (args[i], XmNwrap, TRUE); i++;

* Again, note that this is really a SpinBox constraint resource, and we are in reality making the SimpleSpi
built-in TextField string-based, rather than making the SimpleSpinBox string-based.
482 Motif Programming Manual

Chapter 15: The SpinBox and SimpleSpinBox Widgets

ay of

so set
r

hings

and
the
ng

ates

ould
the

tion
the
simple_b = XmCreateSimpleSpinBox (toplevel, "simple", args, i);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree ((XtPointer) str_list);

XtManageChild (simple_b);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output from the program is the same as that of Figure 15-1. We allocate an arr
compound strings for use with theXmNvalues resource. We also specifyXmNwrap to
True , because the notion of a “next month” after December does make sense. We al
theXmNeditable resourceFalse : allowing the user to directly type in an abbreviated o
other style could give us some minor parsing problems, and we probably have better t
to do with our time than writing verification callbacks for this.

The SimpleSpinBox Value
Now that we have created our SimpleSpinBox, we need to know how to explicitly set
fetch the current value. We could fetch the value using a simplistic algorithm: find
TextField which is built-in to the SimpleSpinBox, then retrieve the value usi
XmTextFieldGetString (). The name of the TextField is given byspin _TF, where
spin is the name of the SimpleSpinBox parent. The following code fragment demonstr
this scheme:

char *FetchSimpleSpinValue (Widget simple_spin)
{

char *pname = XtName (simple_spin);
char *tname = XtMalloc ((unsigned) strlen (pname) + 4);
Widget textf;

(void) sprintf (tname, “%s_TF”, pname);

textf = XtNameToWidget (simple_spin, tname);
XtFree (tname);
return XmTextFieldGetString (textf); /* Caller frees */

}

Whilst this would work, the method is somewhat heavy handed. Added to which, we w
probably have to convert the fetched value into another form, particularly if
SimpleSpinBox is numeric in behavior. We most certainly couldnot use this kind of
method for setting the value. The SimpleSpinBox internally keeps track of the selec
through an index into the set of possible values, and directly writing the value into
TextField is not going to update the index correctly.
Motif Programming Manual 483

Chapter 15: The SpinBox and SimpleSpinBox Widgets

arly
dget
e, but
ings

g

f
d, the
rrent
The correct way to fetch and store the current selection is to manipulate theXmNposition
and XmNpositionType resources.XmNpositionType defines the way in which
XmNposition is interpreted. If XmNpositionType is XmPOSITION_VALUE, the
XmNposition resource represents an absolute value, bounded by theXmNmaximumValue
andXmNminimumValue resource settings. If the position type isXmPOSITION_INDEX,
then theXmNposition resource represents an index into the set of possible values. Cle
how we set the position type depends on the type of the SimpleSpinBox itself: if the wi
is numeric, we probably want to fetch or set the current choice using an absolute valu
if the widget is string-based, we would prefer an index into the array of compound str
stored behind theXmNvalue resource.XmNpositionType is a create only-resource; by
default, it isXmPOSITION_VALUE. This needs not concern us if we are using a strin
SimpleSpinBox: since the default value ofXmNposition is zero, we set and fetch the
resource as though the value ofXmNposition is indeed an index into the array o
compound strings. Example 15-3 creates a pair of SimpleSpinBoxes, one string base
other numeric, and a pair of PushButtons. Pressing a PushButton prints out the cu
value of a SimpleSpinBox, and increments the value as a side effect.

Example 15-3. The simplespin_value.c program

/* simplespin_value.c -- demonstrate the simple spin box widget */

#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>
#include <Xm/SSpinB.h>

char *months[] = {
“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”,
“Jul”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”

};

/*
** Callback which prints out, then increments,
** the SimpleSpinBox value
*/
void increment_spinbox (Widget w, XtPointer client_data,

XtPointer call_data)
{

Widget spin = (Widget) client_data;
unsigned char type;
int position;

XtVaGetValues (spin, XmNspinBoxChildType, &type,
XmNposition, &position, NULL);

printf (“type: %s current position: %d\n”,
(type == XmNUMERIC ? “numeric” : “string”),
position);

if (type == XmNUMERIC) {
484 Motif Programming Manual

Chapter 15: The SpinBox and SimpleSpinBox Widgets
int max;
int min;

XtVaGetValues (spin, XmNmaximumValue, &max,
XmNminimumValue, &min, NULL);

if (position == max) /* Wrap */
position = min;

else
position++;

XtVaSetValues (spin, XmNposition, position, NULL);
}
else {

XmStringTable values;
int count;

XtVaGetValues (spin, XmNvalues, &values,
XmNnumValues, &count, NULL);

if (position == count - 1) /* Wrap */
position = 0;

else
position++;

XtVaSetValues (spin, XmNposition, position, NULL);
}

}

main (int argc, char *argv[])
{

Widget toplevel, simple_b, push_b, rowcol, rc;
XtAppContext app;
int i, n = XtNumber (months);
Arg args[8];
XmStringTable str_list;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

rowcol = XmCreateRowColumn (toplevel, “rowcol”, NULL, 0);

i = 0;
XtSetArg (args[i], XmNorientation, XmHORIZONTAL); i++;
rc = XmCreateRowColumn (rowcol, “rowcol”, args, i);

/* Create a numeric SimpleSpinBox */
i = 0;
XtSetArg (args[i], XmNmaximumValue, 31); i++;
XtSetArg (args[i], XmNminimumValue, 1); i++;
XtSetArg (args[i], XmNincrementValue, 1); i++;
XtSetArg (args[i], XmNpositionType, XmPOSITION_VALUE); i++;
XtSetArg (args[i], XmNposition, 1); i++;
Motif Programming Manual 485

Chapter 15: The SpinBox and SimpleSpinBox Widgets
XtSetArg (args[i], XmNspinBoxChildType, XmNUMERIC); i++;
simple_b = XmCreateSimpleSpinBox (rc, “simple”, args, i);
XtManageChild (simple_b);

push_b = XmCreatePushButton (rc, “Push me”, NULL, 0);
XtAddCallback (push_b, XmNactivateCallback, increment_spinbox,
(XtPointer) simple_b);
XtManageChild (push_b);
XtManageChild (rc);

i = 0;
XtSetArg (args[i], XmNorientation, XmHORIZONTAL); i++;
rc = XmCreateRowColumn (rowcol, “rowcol”, args, i);

/* Create a string SimpleSpinBox */
str_list = (XmStringTable) XtMalloc (

(unsigned) n * sizeof (XmString *));

for (i = 0; i < n; i++)
str_list[i] = XmStringCreateLocalized (months[i]);

i = 0;
XtSetArg (args[i], XmNcolumns, 3); i++;
XtSetArg (args[i], XmNeditable, FALSE); i++;
XtSetArg (args[i], XmNnumValues, n); i++;
XtSetArg (args[i], XmNvalues, str_list); i++;
XtSetArg (args[i], XmNwrap, TRUE); i++;
XtSetArg (args[i], XmNpositionType, XmPOSITION_INDEX); i++;
XtSetArg (args[i], XmNspinBoxChildType, XmSTRING); i++;
simple_b = XmCreateSimpleSpinBox (rc, “simple”, args, i);
XtManageChild (simple_b);

for (i = 0; i < n; i++)
XmStringFree (str_list[i]);

XtFree((char *) str_list);

push_b = XmCreatePushButton (rc, “Push me”, NULL, 0);
XtAddCallback (push_b, XmNactivateCallback, increment_spinbox,
(XtPointer) simple_b);
XtManageChild (push_b);

XtManageChild (rc);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

486 Motif Programming Manual

Chapter 15: The SpinBox and SimpleSpinBox Widgets

hich
a

ated

very

d state.

a
is
be

ith
eld
ates a
The output of the program is given in Figure 15-3.

Creating a SpinBox
Applications must include the header file associated with the SpinBox widget class, w
is <Xm/SpinB.h>. A SpinBox can be created in one of the following ways, either using
Motif convenience routine, or the general purpose Xt methods:

Widget sspin_b = XmCreateSpinBox (parent, “name”, resource-value-array ,
resource-value-count);

...
Widget sspin_b = XtCreateWidget ("name", xmSpinBoxWidgetClass, parent,

resource-value-list , NULL);

Theparent can be a Shell or any manager widget. The widget could probably be cre
managed usingXtCreateManagedWidget () or similar without incurring a significant
performance overhead since the layout which the widget performs for its children is
simplistic: it simply lays them out in a line. See Chapter 8,Manager Widgets, for a
discussion of when manager widgets should be created in the managed or unmanage

The SpinBox widget is aconstraintmanager. Unlike the SimpleSpinBox which provides
mirror for resources which are applied to the built-in TextField child, the SpinBox
programmed by directly applying resources to each textual child, which must
individually added by the programmer. The SpinBox behavior will work equally well w
either Text or TextField children; in the examples which follow, we use a TextFi
throughout, but this should not be taken as in any way necessary. Example 15-4 cre
SpinBox which displays the time.

Example 15-4. The date_spinbox.c program

/* date_spinbox.c -- demonstrate the spin box widget */
#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
#include <Xm/SpinB.h>
#include <Xm/TextF.h>
#include <Xm/Label.h>
#include <sys/types.h>
#include <sys/time.h>

Widget hours_t, mins_t, ampm_t;

Figure 15-3: Output of the simplespin_values program
Motif Programming Manual 487

Chapter 15: The SpinBox and SimpleSpinBox Widgets
main (int argc, char *argv[])
{

Widget toplevel, spin, child;
XtAppContext app;
XmStringTable ampm;
Arg args[8];
int n;
/* Initialize the spinbox to the current time */
long tick = time ((long *) 0);
struct tm *tm = localtime (&tick);
/* 12 hour clock */
int hours = ((tm->tm_hour > 12) ? (tm->tm_hour - 12) : tm->tm_hour);

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

/* Create the SpinBox */
spin = XmCreateSpinBox (toplevel, “spin”, NULL, 0);

/* Create the Hours field */
n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1); n++;
XtSetArg (args[n], XmNmaximumValue, 12); n++; /* 12 hour clock */
XtSetArg (args[n], XmNposition, hours); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
hours_t = XmCreateTextField (spin, “hourText”, args, n);
XtManageChild (hours_t);

/* Hours/Minutes separator */
child = XmCreateLabel (spin, “:”, NULL, 0);
XtManageChild (child);

/* Create the Minutes field */
n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 0); n++;
XtSetArg (args[n], XmNmaximumValue, 59); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
XtSetArg (args[n], XmNposition, tm->tm_min); n++;
mins_t = XmCreateTextField (spin, “minuteText”, args, n);
XtManageChild (mins_t);

/* Create the am/pm indicator field */
ampm = (XmStringTable) XtMalloc(2 * sizeof (XmString *));
ampm[0] = XmStringCreateLocalized (“am”);
ampm[1] = XmStringCreateLocalized (“pm”);
488 Motif Programming Manual

Chapter 15: The SpinBox and SimpleSpinBox Widgets

y the
fields.
get
o

the

we

ith
n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmSTRING); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNnumValues, 2); n++;
XtSetArg (args[n], XmNvalues, ampm); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
XtSetArg (args[n], XmNposition, (tm->tm_hour > 12) ? 1 : 0); n++;
ampm_t = XmCreateTextField (spin, “ampmText”, args, n);
XtManageChild (ampm_t);
XmStringFree (ampm[0]);
XmStringFree (ampm[1]);
XtFree ((char *) ampm);

XtManageChild (spin);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of the date_spinbox.c program is given in Figure 15-4.

In the example, we create a SpinBox, and add four children: three TextFields to displa
hours, minutes, and time-of-day, and a Label used to separate the hours and minutes
The SpinBox simply lays the children out horizontally in the order of creation. The wid
is not sensitive to theXmNlayoutDirection resource in this respect: it is not possible t
lay the children out vertically. The SpinBox itself is created very simply:

spin = XmCreateSpinBox (toplevel, “spin”, NULL, 0);

The TextField to display the hours is programmed using SpinBox constraints:
XmNspinBoxChildType is set to XmNUMERIC, and the XmNmaximumValue and
XmNminimumValue resources are set appropriately for a 12 hour clock. As a gloss,
initialize the value of the TextField from the current time, by using theXmNposition
resource. The current time is fetched through the standardUNIX system callstime () and
localtime (). You should refer to your system documentation if you are unfamiliar w
these routines.

/* Initialize the spinbox to the current time */
long tick = time ((long *) 0);
struct tm *tm = localtime (&tick);
/* 12 hour clock */
int hours = ((tm->tm_hour > 12) ? (tm->tm_hour - 12) : tm->tm_hour);
...
n = 0;

Figure 15-4: Output of the date_spinbox program
Motif Programming Manual 489

Chapter 15: The SpinBox and SimpleSpinBox Widgets

has
the
n the

eld;

s to

ted

nd
the

of

We
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1); n++;
XtSetArg (args[n], XmNmaximumValue, 12); n++; /* 12 hour clock */
XtSetArg (args[n], XmNposition, hours); n++; /* The current time */
XtSetArg (args[n], XmNwrap, TRUE); n++;
hours_t = XmCreateTextField (spin, “hourText”, args, n);
XtManageChild (hours_t);

Although the SpinBox works by rotating the values of the TextField which currently
the input focus, the SpinBox will layout any widget class which is added as a child. In
example, we add a Label after the first TextField to act as a logical separator betwee
hours and minutes field.

/* Hours/Minutes separator */
child = XmCreateLabel (spin, “:”, NULL, 0);
XtManageChild (child);

The TextField to display the minutes field is created in a similar fashion to the hours fi
theXmNspinBoxChildType resource is set toXmNUMERIC, theXmNmaximumValueand
XmNminimumValue constraint resources are set appropriately for the range of value
display, and theXmNposition resource is initialized to the current time.

The last TextField, used to display the morning or afternoon indicator, is crea
differently. In this case, theXmNspinBoxChildType constraint is set toXmSTRING, and
theXmNvalues andXmNnumValues resources are used to specify an array of compou
strings which contain the am/pm labels. Again, we initialize the TextField to display
current time using theXmNposition resource. Since theXmNspinBoxChildType is
XmSTRING, theXmNposition resource in this case represents an index into the array
compound strings, rather than an absolute value.

/* Create the am/pm indicator field */
ampm = (XmStringTable) XtMalloc(2 * sizeof (XmString *));
ampm[0] = XmStringCreateLocalized ("am");
ampm[1] = XmStringCreateLocalized ("pm");

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmSTRING); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNnumValues, 2); n++;
XtSetArg (args[n], XmNvalues, ampm); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
/* Current time of day */
XtSetArg (args[n], XmNposition, (tm->tm_hour > 12) ? 1 : 0); n++;
ampm_t = XmCreateTextField (spin, “ampmText”, args, n);
XtManageChild (ampm_t);

Clearly, this arrangement of widgets could trivially be used to create a simple clock.
would only need to add a looping timeout handler, and adjust theXmNposition resources
490 Motif Programming Manual

Chapter 15: The SpinBox and SimpleSpinBox Widgets

ing

iated
les of
less
hould

t-in

eric,

int

rce
is

ich
ource
t.

_
tly
r.
In
rce

nd not

rrow,
lues
the
of eachTextField appropriately as the timer expires. A program to create a clock us
the SpinBox is listed amongst the Exercises section at the end of the chapter.

SpinBox and SimpleSpinBox Resources
The SpinBox, and SimpleSpinBox, resources for configuring the range of values assoc
with TextField children have already been mentioned in previous sections and examp
this chapter. In the paragraphs which follow, SpinBox is to include SimpleSpinBox un
otherwise stated. For a SimpleSpinBox, resources which are specified as constraints s
be applied to the SimpleSpinBox itself, rather than on the SimpleSpinBox buil
TextField.

To recap, TextField children of SpinBoxes are considered to come in two flavors: num
and string.

A numeric TextField child of the SpinBox is configured by specifying the constra
resourceXmNspinBoxChildType as XmNUMERIC. The range of possible values is
programmed by specifying theXmNmaximumValueandXmNminimumValue constraints,
and the current value is specified by theXmNposition constraint.

A string SpinBox TextField is configured by specifying the constraint resou
XmNspinBoxChildType as XmSTRING. The values associated with the SpinBox
controlled through theXmNvalues and XmNnumValues constraints, which specify an
array of compound strings. The current value is given by theXmNposition constraint,
which represents an index into the array of compound strings.

In addition to specifying the range of values, it is also possible to control the way in wh
the user can activate the arrows for spinning through these values. The constraint res
XmNarrowSensitivity controls which of the arrows is currently sensitive to user inpu
The valueXmARROWS_DECREMENT_SENSITIVEmakes it possible for the user to only
decrement the current value of the SpinBox. Similarly,XmARROWS_INCREMENT
SENSITIVE only allows an increase in SpinBox value. If neither action is curren
allowed, the valueXmARROWS_INSENSITIVEcan be used to turn off spinning altogethe
The default value,XmARROWS_SENSITIVE, allows both increase and decrease actions.
addition, a SpinBox, but not a SimpleSpinBox, supports the resou
XmNdefaultArrowSensitivity , which specifies a default layout for TextField
children which do not have theXmNarrowSensitivity constraint explicitly set.
XmNdefaultArrowSensitivity can hold the same values as theXmNarrowLayout
resource, and as a normal non-constraint resource should be applied to the SpinBox a
the TextField children.

The SpinBox supports the notion of automatic spin. That is, if the user presses an a
and holds the mouse button down, the SpinBox will automatically rotate through the va
as though the user clicked multiple times. Automatic spin is configured through
Motif Programming Manual 491

Chapter 15: The SpinBox and SimpleSpinBox Widgets

fore

ugh
lly
the

the
the
s to
xes

a
ctual
cept,
t by
XmNinitialDelay and XmNrepeatDelay resources.XmNinitialDelay specifies a
time interval which is to elapse since the mouse button was first held down be
automatic spinning becomes operative.XmNrepeatDelay specifies the time interval
between successive spins of the value. IfXmNrepeatDelay is zero, automatic spinning is
disabled.

The location of the arrows relative to the SpinBox TextFields can be configured thro
theXmNarrowLayout resource. The arrows can be placed either horizontally or vertica
aligned, both before and after the TextField children. Possible values for
XmNarrowLayout resource are:

XmARROWS_BEGINNING XmARROWS_END
XmARROWS_FLAT_BEGINNING XmARROWS_FLAT_END XmARROWS_SPLIT

Figure 15-5 shows the effect of the variousXmNarrowLayout values.

SpinBox and SimpleSpinBox Callbacks
The callback routines associated with the SpinBox and SimpleSpinBox widgets give
programmer control both over the value to display, and whether to allow spinning of
value, in any given instant. The callback model for the SpinBox widgets is analogou
those for the Text and TextField widgets, which is not surprising since the SpinBo
simply manage the contents of child Text components.

TheXmNmodifyVerifyCallback of the SpinBox can be used to verify the contents of
SpinBox TextField child after the user has requested a new selection, but before the a
contents are changed in the TextField itself. In the callback, the programmer can ac
reject, or otherwise alter the new proposed choice in any way which she feels fi
modifying suitable elements in the structure passed to the callback.

Figure 15-5: The various settings of theXmNarrowLayout resource

XmARROWS_BEGINNING

XmARROWS_END

XmARROWS_FLAT_BEGINNING

XmARROWS_FLAT_END

XmARROWS_SPLIT
492 Motif Programming Manual

Chapter 15: The SpinBox and SimpleSpinBox Widgets

ack

tly

he
es

efore
e

TheXmNvalueChangedCallback is called after anyXmNmodifyVerifyCallback has
completed, provided that theXmNmodifyVerifyCallback did not reject the new
SpinBox TextField value.

These two callbacks are typically used in conjunction; theXmNmodifyVerifyCallback
polices the validity of the user selection, and theXmNvalueChangedCallback blindly
processes the new value, safe in the knowledge that the value has been validated.

Both XmNmodifyVerifyCallback and XmNvalueChangedCallback functions are
passed a structure in the following form:

typedef struct
{

int reason;
XEvent *event;
Widget widget;
Boolean doit;
int position;
XmString value;
Boolean crossed_boundary;

} XmSpinBoxCallbackStruct;

Thereason field specifies the action performed by the user. Table 15-1 lists the callb
name, reason, and associated user action for all values of thereason field:

Thewidget element is set to whichever Text or TextField child of the SpinBox curren
has the input focus.

The doit element is the key to performing validation of the user’s action. If t
programmer sets this field toFalse , the SpinBox action is cancelled, and no change tak
place to the current selection.

The position element is the callback equivalent of theXmNposition resource. The
SpinBox sets the element to what it believes should be the newly displayed value b
calling anyXmNmodifyVerifyCallback : the programmer can subsequently alter th
element inside the callback if an alternative position is required.

. Table 15-1. Callback resources for the SpinBox Widget

Resource Name Reason Action

XmNmodifyVerifyCallback,
XmNvalueChangedCallback

XmCR_SPIN_FIRST The SpinBox is at the lower end of
the range of values

XmNmodifyVerifyCallback,
XmNvalueChangedCallback

XmCR_SPIN_LAST The SpinBox is at the upper end of
the range of values

XmNmodifyVerifyCallback,
XmNvalueChangedCallback

XmCR_SPIN_PRIOR The user has armed the decrement
arrow

XmNmodifyVerifyCallback,
XmNvalueChangedCallback

XmCR_SPIN_NEXT The user has armed the increment
arrow

XmNvalueChangedCallback XmCR_OK The user has changed the value
Motif Programming Manual 493

Chapter 15: The SpinBox and SimpleSpinBox Widgets

e. If

ated
t the
ox

t
ny

t of
eric
al to
the

or
d
d 28
The
Thevalue field contains a compound string representation of the newly selected valu
the SpinBox TextField which is being modified is numeric in nature, thevalue field
contains the position of the SpinBox converted into a temporary compound string alloc
only for the duration of the callback. The conversion process takes into accoun
XmNdecimalPoints resource of the changed TextField. On the other hand, if the SpinB
TextField is string-based, then thevalue field is not allocated - it merely points directly
into the array of compound strings associated with theXmNvalue resource. In either case,
if the programmer wishes to store thevalue field for use outside the callback, she mus
allocate a separate copy. Thevalue field should not be freed by the programmer under a
circumstances.

Thecrossed_boundary field indicates whether the user action wraps around the se
values associated with the current TextField. For example, if the user in a num
TextField selects the decrement action and the currently displayed position is equ
XmNminimum, or if in a string-based TextField the user selects the increment action and
currently displayed choice is the last item in theXmNvalues array.

Example 15-5 is a program which utilizes both theXmNmodifyVerifyCallback and this
XmNvalueChangedCallback resources. It creates a SpinBox with three TextFields f
day, month, year fields. TheXmNmodifyVerifyCallback ensures that the date displaye
is valid. For example, if February is the current month then the day field cannot excee
or 29, depending on whether the year field represents a leap year.
XmNvalueChangedCallback simply prints out the new current date as it changes.

Example 15-5. The date_spinbox_cb.c program

/* date_spinbox_cb.c -- demonstrate the spin box widget callbacks */

#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
#include <Xm/SpinB.h>
#include <Xm/TextF.h>
#include <Xm/Label.h>

Widget day_t, month_t, year_t;

char *months[] = {
“January”, “February”, “March”, “April”, “May”, “June”,
“July”, “August”, “September”, “October”, “November”, “December”

};

int month_days[2][12] =
{

{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

};

/* check_days: the XmNmodifyVerifyCallback for the SpinBox */
void check_days (Widget w, XtPointer client_data, XtPointer call_data)
494 Motif Programming Manual

Chapter 15: The SpinBox and SimpleSpinBox Widgets
{
XmSpinBoxCallbackStruct *sb = (XmSpinBoxCallbackStruct *) call_data;
int year;
int month;
int day;
int leap;

if (sb->widget == day_t) {
/* Make sure that the new day never exceeds the maximum
** for the current month
*/
XtVaGetValues (year_t, XmNposition, &year, 0);

leap = (((year % 4) == 0) ? ((year % 400) == 0 ? 1 : 0) : 0);

XtVaGetValues (month_t, XmNposition, &month, 0);

if (sb->position > month_days[leap][month]) {
if (sb->crossed_boundary)

/* Going backwards */
sb->position = month_days[leap][month];

else
/* Going forwards */
sb->position = 1;

}
}
else {

/* The month or year has changed.
** Recheck the day field to ensure it does not exceed the
** maximum for the new month or year.
*/
if (sb->widget == month_t) {

month = sb->position;

XtVaGetValues (year_t, XmNposition, &year, 0);
}
else {

year = sb->position;

XtVaGetValues (month_t, XmNposition, &month, 0);
}

leap = (((year % 4) == 0) ? ((year % 400) == 0 ? 1 : 0) : 0);

XtVaGetValues (day_t, XmNposition, &day, 0);

if (day > month_days[leap][month]) {
XtVaSetValues (day_t,

XmNposition, month_days[leap][month],
NULL);

}
}

}

Motif Programming Manual 495

Chapter 15: The SpinBox and SimpleSpinBox Widgets
/* print_date: the XmNvalueChangedCallback for the SpinBox */
void print_date (Widget w, XtPointer client_data, XtPointer call_data)
{

XmSpinBoxCallbackStruct *sb = (XmSpinBoxCallbackStruct *) call_data;
int day;
int month;
int year;

if (sb->reason == XmCR_OK) {
XtVaGetValues (day_t, XmNposition, &day, 0);
XtVaGetValues (month_t, XmNposition, &month, 0);
XtVaGetValues (year_t, XmNposition, &year, 0);

printf (“New date: %d/%s/%d\n”, day, months[month], year);
}

}

main (int argc, char *argv[])
{

Widget toplevel, spin;
XtAppContext app;
XmStringTable ampm;
Arg args[8];
int i, n;
XmStringTable str_list;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

/* Create the SpinBox */
spin = XmCreateSpinBox (toplevel, “spin”, NULL, 0);

/* Create the Day field */
n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1); n++;
XtSetArg (args[n], XmNmaximumValue, 31); n++;
XtSetArg (args[n], XmNposition, 1); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
day_t = XmCreateTextField (spin, “dayText”, args, n);
XtManageChild (day_t);

/* Create the Month field */
n = XtNumber (months);
str_list = (XmStringTable) XtMalloc (n * sizeof (XmString *));

for (i = 0; i < n; i++)
str_list[i] = XmStringCreateLocalized (months[i]);

n = 0;
496 Motif Programming Manual

Chapter 15: The SpinBox and SimpleSpinBox Widgets

nd
owed
the

y is

licit
e

of
ow
of the
XtSetArg (args[n], XmNspinBoxChildType, XmSTRING); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNcolumns, 10); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
XtSetArg (args[n], XmNvalues, str_list); n++;
XtSetArg (args[n], XmNnumValues, XtNumber (months)); n++;
month_t = XmCreateTextField (spin, “monthText”, args, n);
XtManageChild (month_t);

for (i = 0; i < XtNumber (months); i++)
XmStringFree (str_list[i]);

XtFree((XtPointer) str_list);

/* Create the Year field */

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 4); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1990); n++;
XtSetArg (args[n], XmNmaximumValue, 2010); n++;
XtSetArg (args[n], XmNposition, 2000); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
year_t = XmCreateTextField (spin, “yearText”, args, n);
XtManageChild (year_t);

XtManageChild (spin);
XtAddCallback (spin, XmNmodifyVerifyCallback, check_days, NULL);
XtAddCallback (spin, XmNvalueChangedCallback, print_date, NULL);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of the program is similar to Figure 15-2. TheXmNmodifyVerifyCallback
check_days is straightforward: if a field changes, we variously fetch the day, month a
year field positions to ensure that the day number does not exceed the maximum all
for the given date. If it is the day field that has changed, we only need to reset
position element of the callback structure to the new valid day, and we know if a da
invalid simply by comparing the callbackposition against themonth_days array.
Otherwise, if the month or year has changed, we must perform an exp
XtVaSetValues () call on the day_t field if we need to change the value. Th
XmNvalueChangedCallback is also straight forwards: format and print out the value
all three fields, but only if this callback is being called for the right reason and we kn
that any prior verification process has succeeded. This is the case if the reason field
callback structure is set toXmCR_OK.
Motif Programming Manual 497

Chapter 15: The SpinBox and SimpleSpinBox Widgets

om a
ta is

uld be
ents,

tion.
is not
of

just
Boxes
have
y not,
cus
more
that
ittle

ize the
. This
ingle
r than
re the
an

and
er is
and
Summary
The SpinBox and SimpleSpinBox widgets can be used whenever there is a choice fr
well-defined set of items. They are the natural choice of interface component if the da
in an ordered sequence. The next or previous item in the sequence of choices sho
intuitive and obvious to the user at all times. Whenever the data meets these requirem
the SpinBox widgets provide a simple, compact, and natural method of selec
Remember that the user only sees the current value: if the next or previous selection
entirely obvious, then the SpinBox or SimpleSpinBox is probably the wrong choice
interface component to present the choices to the user in the first place.

When to use a SpinBox, and when a SimpleSpinBox, can be a tricky choice. We could
as easily present the day/month/year components of a date through three SimpleSpin
rather than using a SpinBox with three TextFields. Each component of the date would
individually associated increment and decrement arrows, which the user may, or ma
find more convenient than making sure the right SpinBox TextField child has the fo
when using the arrows. On the other hand, the SpinBox manager method is slightly
compact, using a single set of arrows for all of the TextField children. It may well be
in any given situation, the choice of a SpinBox or multiple SimpleSpinBoxes makes l
difference in terms of ease of use.

We recommend the SpinBox should be used in preference when you need to emphas
fact that the components of the value are to be considered as parts of a single entity
may well be the deciding factor: whether the data is, when considered logically, a s
unit. In the example of a date, this is likely to be manipulated and stored as one, rathe
each component being separated out and used in differing calculations, and thus he
SpinBox method is probably preferable to multiple SimpleSpinBoxes. Probably is
important word: we would not like to put hard and fast rules on when to use a SpinBox,
when to use multiple SimpleSpinBoxes; this is a judgement call the interface design
going to have to make for herself, involving as it does all kinds of application-specific
human-computer interaction considerations.

Exercises
1. Create a simple working clock using the SpinBox widget. The clock should

be in 12-hour format, and should display hours, minutes, seconds, and the
time-of-day indicator appropriately as the time changes. Hint: you will
need to use the function XtAppAddTimeOut () to effect the ticking of the
clock.

2. Modify the date_spinbox_cb program so that if the user wraps round the
day field, the month changes automatically, and similarly if the months
field wraps round, the year changes. For example, if the current date is 31
498 Motif Programming Manual

Chapter 15: The SpinBox and SimpleSpinBox Widgets
December 1999, incrementing the day field should display 1 January 2000,
and decrementing the day thereafter should revert to the original 31 De-
cember 1999 date.
Motif Programming Manual 499

Chapter 15: The SpinBox and SimpleSpinBox Widgets
500 Motif Programming Manual

s. The

The

or
Chapter 1

In this chapter:
• Creating a Scale Widget
• Scale Values
• Scale Orientation and

Movement
• Scale Resources
• Scale Callbacks
• Scale Tick Marks
• Summary

This chapter describes how
widget can be manipulated to

The Scale widget displays a
widget allows the user to cha
to that of a ScrollBar. This
Motif Programming Manual
16
also
when
ets in
The Scale Widget
to use the Scale widget to represent a range of value
 change the value.

numeric value that falls within upper and lower bounds.
nge that value interactively using aslider mechanism similar
style of interface is useful when it is inconvenient

inappropriate to have the user change a value using the keyboard. The widget is
extremely intuitive to use; inexperienced users often understand how a Scale works
they first see one. Figure 16-1 shows how Scale widgets can be used with other widg
an application.

Figure 16-1: Scale widgets in an application dialog
501

Chapter 16: The Scale Widget

are
e of a
tput-

atus
only
ct of

ed

from
ese
le is
. The
l axis
ique
ks

other
A Scale can be oriented either horizontally or vertically. The values given to a Scale
stored as integers, but decimal representation of values is possible through the us
resource that allows you to place a decimal point in the value. A Scale can be put in ou
only mode, in which it is sometimes called agauge. When a Scale is read-only, it implies
that the value is controlled by another widget or that it is being used to report st
information specific to the application. In Motif 1.2, the standard way to create a read-
Scale is to specify that it is insensitive. Unfortunately, this technique has the side-effe
greying out the widget. In Motif 2.0 and later, the widget supports theXmNeditable
resource: setting this toFalse effects the required gauge behavior without the describ
side-effect.

Creating a Scale Widget
Applications that use the Scale widget must include the header file <Xm/Scale.h>. You can
then create a Scale widget as follows:

Widget scale = XtVaCreateWidget ("name", xmScaleWidgetClass, parent,
resource-value-list , NULL);

Widget scale = XmCreateScale (parent, “name”, resource-value-array ,
resource-value-count);

Even though the Scale widget functions as a primitive widget, it is actually subclassed
the Manager widget. All the parts of a Scale are really other primitive widgets, but th
subwidgets are not directly accessible through the Motif toolkit. The fact that the Sca
a Manager widget means that you can create widgets that are children of a Scale
children are arranged so that they are evenly distributed along the vertical or horizonta
parallel to the slider, depending on the orientation of the Scale. In Motif 1.2, this techn
is used primarily to provide “tick marks” for the Scale. In Motif 2.0 and later, tick mar
can be added automatically through the functionXmScaleSetTicks (), which will be
described later in the chapter. In all other respects, a Scale can be treated just like
primitive widgets. Example 16-1 shows a program that creates some Scale widgets.*

Example 16-1. The simple_scale.c program

/* simple_scale.c -- demonstrate a few scale widgets. */

#include <Xm/Scale.h>
#include <Xm/RowColumn.h>

Widget create_scale (Widget parent, char *title,
int max, int min, int value)

{
Arg args[8];
int n = 0;
XmStringxms = XmStringCreateLocalized (title);

* XtVaAppInitialize() is considered deprecated in X11R6.
502 Motif Programming Manual

Chapter 16: The Scale Widget
void new_value(); /* callback for Scale widgets */
Widget scale;

XtSetArg (args[n], XmNtitleString, xms); n++;
XtSetArg (args[n], XmNmaximum, max); n++;
XtSetArg (args[n], XmNminimum, min); n++;
XtSetArg (args[n], XmNvalue, value); n++;
XtSetArg (args[n], XmNshowValue, True); n++;

scale = XmCreateScale (parent, title, args, n);
XtAddCallback (scale, XmNvalueChangedCallback, new_value, NULL);
XtManageChild (scale);

return scale;
}

main (int argc, char *argv[])
{

Widget toplevel, rowcol, scale;
Arg args[2];
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNorientation, XmHORIZONTAL);
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, 1);

scale = create_scale (rowcol, "Days", 7, 1, 1);
scale = create_scale (rowcol, "Weeks", 52, 1, 1);
scale = create_scale (rowcol, "Months", 12, 1, 1);
scale = create_scale (rowcol, "Years", 20, 1, 1);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void new_value (Widget scale_w, XtPointer client_data, XtPointer call_data)
{

XmScaleCallbackStruct *cbs = (XmScaleCallbackStruct *) call_data;

printf("%s: %d\n", XtName (scale_w), cbs->value);
}

Motif Programming Manual 503

Chapter 16: The Scale Widget

. Each
r

gs is

Scale
, you
ong,
bel is
lider.

f
alue

ed on
h

the
ional.

m 29
in the
The output of this program is shown in Figure 16-2.

The four Scales represent the number of days, weeks, months, and years, respectively
Scale displays a title that is specified by theXmNtitleString resource. Just as with othe
Motif widgets that display strings, theXmNtitleString must be set as a compound
string, not a normal C string. Conversion between C strings and compound strin
described in detail in Chapter 25,Compound Strings.

A Scale cannot have a pixmap as its label. Since real estate for the label is limited in a
widget, you should take care to use small strings. If you need to use a longer string
should include a separator so that the text is printed on two lines. If the string is too l
the label may be too wide and look awkward as a result. For a horizontal Scale, the la
displayed beneath the slider, while for a vertical Scale it is shown to the side of the s

The maximum and minimum values are set with theXmNmaximumand XmNminimum
resources, respectively. The minimum values are set to1 for the user’s benefit; the
minimum value of a Scale defaults to0. Note that if you set a minimum value other than0,
you must also provide a default value forXmNvalue that is at least as large as the value o
XmNminimum, as we have done in our example. Each Scale displays its current v
because theXmNshowValue resource is set toTrue .

Scale Values
The value of a Scale can only be stored as an integer. This restriction is largely bas
the fact that variables of typefloat and double cannot trivially be passed throug
XtVaSetValues() , XtVaGetValues() , or any of the widget creation functions.*If you
need to represent fractional values, you must use theXmNdecimalPoints resource. This
resource specifies the number of places to move the decimal point to the left in
displayed value, which gives the user the impression that the value displayed is fract

For example, a Scale widget used to display the value of a barometer might range fro
to 31, with a granularity of 1-100th. The necessary widget could be created as shown
following code fragment:

* While the Xt functions mentioned do allow the passing of the address of a variable of typefloat or double ,
the Scale widget does not support this type of value representation.

Figure 16-2: Output of the simple_scale program
504 Motif Programming Manual

Chapter 16: The Scale Widget

a to

e of
r
by 10

0.

s
e

that
d get
dded

n be
iented
he
.
d

Widget scale;
Arg args[...];
int n;
...
XtSetArg (args[n], XmNmaximum, 3100); n++;
XtSetArg (args[n], XmNminimum, 2900); n++;
XtSetArg (args[n], XmNdecimalPoints, 2);n++;
XtSetArg (args[n], XmNvalue, 3000); n++;
XtSetArg (args[n], XmNshowValue, True); n++;
scale = XmCreateScale (parent, "barometer",args, n);

The value forXmNdecimalPoints is 2, so that the value displayed is30.00 , rather than
3000 . If you are using a Scale to represent fractional values, it is probably a good ide
setXmNshowValue to True since fine tuning is probably necessary.

There is no limit to the values that can be specified for theXmNmaximum, XmNvalue , and
XmNminimumresources, provided they can be represented by theint type, which includes
negative numbers. In the previous example, the initial value of the Scale (XmNvalue) is set
arbitrarily; the value must be set within the minimum and maximum values. If the valu
the Scale is retrieved usingXtVaGetValues() or through a callback routine, the intege
value is returned. To get the appropriate decimal value, you need to divide the value
to the power of the value of XmNdecimalPoints . For example, since
XmNdecimalPoints is 2, the value needs to be divided by 10 to the power of 2, or 10

The value of a Scale can be set and retrieved usingXtVaSetValues() and
XtVaGetValues() on the XmNvalue resource. Motif also provides the function
XmScaleSetValue() and XmScaleGetValue() to serve the same purpose. Thes
functions take the following form:

void XmScaleSetValue (Widget scale_w , int value)
void XmScaleGetValue (Widget scale_w , int * value)

The advantage of using the Motif convenience routines, rather than the Xt routines, is
the Motif routines manipulate data in the widget directly, rather than using the set an
methods of the Scale. As a result, there is less overhead involved, although the a
overhead of the Xt methods are negligible.

Scale Orientation and Movement
A Scale can be either vertical or horizontal and the maximum and minimum values ca
on either end of the Scale. By default, as shown in the examples so far, the Scale is or
vertically with the maximum on the top and the minimum on the bottom. T
XmNorientation resource can be set toXmHORIZONTALto produce a horizontal Scale
The XmNprocessingDirection resource controls the location of the maximum an
minimum values. The possible values for the resource are:

XmMAX_ON_TOP XmMAX_ON_BOTTOM
XmMAX_ON_LEFT XmMAX_ON_RIGHT
Motif Programming Manual 505

Chapter 16: The Scale Widget

n of
ale is

ction
, but
all
ntrol

f, the

vided

r, the
t
f the

Bar

ces

es
can,
end.
Unfortunately, you cannot set the processing direction unless you know the orientatio
the Scale, so if you hard-code one resource, you should set both of them. If the Sc
oriented vertically, the default value isXmMAX_ON_TOP, but if it is horizontal, the default
depends on the value ofXmNlayoutDirection * . If you use a font that is read from right
to left, then the maximum value is displayed on the left rather than on the right.

As the user drags the slider, the value of the Scale changes incrementally in the dire
of the movement. If the user clicks the middle mouse button inside the Scale widget
not on the slider itself, the slider moves to the location of the click. Unfortunately, in a sm
Scale widget, the slider takes up a lot of space, so this method provides very poor co
for moving the slider close to its current location.

If the user clicks the left mouse button inside the slider area, but not on the slider itsel
slider moves in increments determined by the value ofXmNscaleMultiple . The value of
this resource defaults to the difference between the maximum and minimum values di
by 10.†For example, a Scale widget whose maximum value is250 has a scale increment of
25. If the user presses the left mouse button over the area above or below the slide
Scale’s value increases or decreases by25. If the button is held down, the movemen
continues until the button is released, even if the slider moves past the location o
pointer.

Scale Resources
The Scale widget is internally implemented using a ScrollBar: many of the Scroll
resources listed in Section 10.3.3 in Chapter 10,ScrolledWindows and ScrollBars, are
explicitly implemented to support Scale visuals: the ScrollBar resour
XmNslidingMode , XmNsliderMark , XmNsliderVisual are mirrored in the Scale
widget class‡. For example, setting theXmNslidierVisual resource on the Scale
internally sets the resource for the constituent ScrollBar.

Probably the most interesting of the mirrored resources is theXmNslidingMode resource.
The default value,XmSLIDER, gives the familiar Scale behavior, whereby the slider mov
freely between the maximum and minimum points at the Scale ends. The Scale
however, behave like a classic thermometer, with the slider anchored at one

* As of Motif 2.0, XmNstringDirection is obsolete, and is replaced by theXmNlayoutDirection resource.

† You should setXmNscaleMultiple explicitly if the difference betweenXmNmaximumandXmNminimumis
less than 10. Otherwise, incremental scaling does not work.

‡ XmNsliderMark , XmNsliderVisual , XmNslidingMode are available only from Motif 2.0 onwards.
506 Motif Programming Manual

Chapter 16: The Scale Widget

,
meter,

cale.
der.
it will

ch
the

slider
he

et

case,
of the
XmTHERMOMETERis the required value ofXmNslidingMode for this effect. Figure 16-3
shows the difference between the two settings.

Each of the two Scales have identicalXmNmaximum, XmNminimum, XmNvalue resources:
they differ only in the value ofXmNslidingMode . In the right-hand thermometer Scale
the slider is anchored at one end. Note that when the Scale is configured as a thermo
directly setting theXmNsliderSize resource has no effect.

Scale Callbacks
The Scale widget provides two callbacks that can be used to monitor the value of the S
TheXmNdragCallback callback routines are invoked whenever the user drags the sli
This action does not mean that the value of the Scale has actually changed or that
change; it just indicates that the slider is being moved.

The XmNvalueChangedCallback is invoked when the user releases the slider, whi
results in an actual change of the Scale’s value. It is possible for
XmNvalueChangedCallback to be called without theXmNdragCallback having been
called. For example, when the user adjusts the Scale using the keyboard or moves the
incrementally by clicking in the slider area, but not on the slider itself, only t
XmNvalueChangedCallback is invoked.

These callback routines take the form of anXtCallbackProc , just like any other callback.
As with all Motif callback routines, Motif defines a callback structure for the Scale widg
callbacks.TheXmScaleCallbackStruct is defined as follows:

typedef struct {
int reason;
XEvent *event;
int value;

} XmScaleCallbackStruct;

The reason field of this structure is set toXmCR_DRAGor XmCR_VALUE_CHANGED,
depending on the action that invoked the callback. Thevalue field represents the current
value of the Scale widget.

Example 16-2 shows another example of how the Scale widget can be used. In this
we create a color previewer that uses Scales to control the red, green, and blue values

XmNslidingModeXmNslidingMode
== XmTHERMOMETER== XmSLIDER

Figure 16-3: TheXmNslidingMode resource and its effects
Motif Programming Manual 507

Chapter 16: The Scale Widget

The
the
sed
color that is being edited. This example demonstrates how theXmNdragCallback can be
used to automatically adjust colors as the slider is being dragged.
XmNvalueChangedCallback is also used to handle the cases where the user adjusts
Scale without dragging the slider. For a discussion of the Xlib color setting routines u
in this program, see Volume 1,Xlib Programming Manual.*

Example 16-2. The color_slide.c program

/* color_slide.c -- Use scale widgets to display the different
** colors of a colormap.
*/

#include <Xm/LabelG.h>
#include <Xm/Scale.h>
#include <Xm/RowColumn.h>
#include <Xm/DrawingA.h>

Widget colorwindow; /* the window the displays a solid color */
XColor color; /* the color in the colorwindow */

Widget create_scale (Widget parent, char *name, int mask)
{

Arg args[8];
int n = 0;
Widget scale;
XrmValue from;
XrmValue to;
XmString xms = XmStringCreateLocalized (name);
void new_value();

to.addr = NULL;
from.addr = name;
from.size = strlen (name) + 1;
XtConvertAndStore (parent, XmRString, &from, XmRPixel, &to);

XtSetArg (args[n], XmNforeground, (*(Pixel *) to.addr)); n++;
XtSetArg (args[n], XmNtitleString, xms); n++;
XtSetArg (args[n], XmNshowValue, True); n++;
XtSetArg (args[n], XmNmaximum, 255); n++;
XtSetArg (args[n], XmNscaleMultiple, 5); n++;
scale = XmCreateScale (parent, name, args, n);
XmStringFree (xms);

XtAddCallback (scale, XmNdragCallback, new_value, (XtPointer) mask);
XtAddCallback (scale, XmNvalueChangedCallback, new_value, (XtPointer)
mask);
XtManageChild (scale);

return scale;
}

* XtVaAppInitialize() is considered deprecated in X11R6.
508 Motif Programming Manual

Chapter 16: The Scale Widget
main (int argc, char *argv[])
{

Widget toplevel, rowcol, rc, scale;
XtAppContext app;
Arg args[8];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

if (DefaultDepthOfScreen (XtScreen (toplevel)) < 2) {
puts ("You must be using a color screen.");
exit (1);

}

color.flags = DoRed | DoGreen | DoBlue;

/* initialize first color */
XAllocColor (XtDisplay (toplevel),

DefaultColormapOfScreen (XtScreen (toplevel)),
&color);

rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

/* create a canvas for the color display */
n = 0;
XtSetArg (args[n], XmNheight, 100); n++;
XtSetArg (args[n], XmNbackground, color.pixel); n++;
colorwindow = XmCreateDrawingArea (rowcol, "colorwindow", args, n);
XtManageChild (colorwindow);

/* create another RowColumn under the 1st */
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rc = XmCreateRowColumn (rowcol, "rc", args, n);

/* create the scale widgets */
scale = create_scale (rc, "Red", DoRed);
scale = create_scale (rc, "Green", DoGreen);
scale = create_scale (rc, "Blue", DoBlue);

XtManageChild (rc);
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void new_value (Widget scale_w, XtPointer client_data, XtPointer call_data)
{

int rgb = (int) client_data;
XmScaleCallbackStruct *cbs = (XmScaleCallbackStruct *) call_data;
Colormap cmap = DefaultColormapOfScreen (XtScreen (scale_w));
Motif Programming Manual 509

Chapter 16: The Scale Widget

ook
the

alue,
d the

t the
ks by
ildren
switch (rgb) {
case DoRed : color.red = (cbs->value << 8); break;
case DoGreen : color.green = (cbs->value << 8); break;
case DoBlue : color.blue = (cbs->value << 8);

}
/* reuse the same color again and again */
XFreeColors (XtDisplay (scale_w), cmap, &color.pixel, 1, 0);

if (!XAllocColor (XtDisplay (scale_w), cmap, &color)) {
puts ("Couldn't XAllocColor!"); exit(1);

}

XtVaSetValues (colorwindow, XmNbackground, color.pixel, NULL);
}

The output of this program is shown in Figure 16-4. Obviously, a black and white b
makes it difficult to show how this application really looks. However, when you run
program, you should get a feel for using Scale widgets.

One interesting aspect of thecolor_slide.cprogram is the use ofXtConvertAndStore() .
We use this function to convert from a string representation of a color name to a Pixel v
so that the toolkit handles the type conversion. For a discussion on type conversion an
use of XtConvertAndStore() , see Volume 4,X Toolkit Intrinsics Programming
Manual.

Scale Tick Marks
TheMotif Style Guidesuggests that a Scale widget can have “tick marks” that represen
incremental positions of the Scale. The Scale widget does not provide these mar
default, but you can add them yourself, either by creating Labels or Separators as ch
of a Scale widget, or through the routineXmScaleSetTicks ()*. This convenience

* XmScaleSetTicks () is only available from Motif 2.0 onwards.

Figure 16-4: Output of the color_slide program
510 Motif Programming Manual

Chapter 16: The Scale Widget

are
edium

. The
ber

laces
and

m

function considers ticks to be of three kinds: small, medium, and big. Medium ticks
evenly spaced between the big ticks, and small ticks are evenly spaced between the m
ticks. The function takes the following form:

void XmScaleSetTicks (Widget scale ,
int big_every ,
Cardinal num_medium,
Cardinal num_small ,
Dimension size_big ,
Dimension size_medium ,
Dimension size_small)

The function works by creating SeparatorGadget children along the edges of the Scale
parameterbig_every specifies the number of scale values between big ticks. The num
of medium ticks between big ticks is given bynum_medium, and the number of small ticks
between the medium ticks is given bynum_small . Thesize_* parameters refer to the
size of each tick in Pixels. Example 16-5 creates a Scale with tick marks: the code p
big ticks every 100 units of scale value, medium ticks at every 10 units in between,
small ticks in the intervening 5 unit mark*. This means that there are 9 (not ten) mediu
ticks between the big ticks, and only one small tick between the medium ticks.

Example 16-3. The tick_marks.c program

/* tick_marks.c -- demonstrate a scale widget with tick marks. */
#include <Xm/Scale.h>

main (int argc, char *argv[])
{

Widget toplevel, scale;
XtAppContextapp;
int n;
Arg args[8];
XmString xms;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

xms = XmStringCreateLocalized ("Process Load");
n = 0;
XtSetArg (args[n], XmNtitleString, xms); n++;
XtSetArg (args[n], XmNminimum, 0); n++;
XtSetArg (args[n], XmNmaximum, 200); n++;
XtSetArg (args[n], XmNvalue, 100); n++;
XtSetArg (args[n], XmNshowValue, True); n++;
scale = XmCreateScale (toplevel, "load", args, n);

* XtVaAppInitialize () is considered deprecated in X11R6.XmScaleSetTicks () is only available from Mo-
tif 2.0 onwards.
Motif Programming Manual 511

Chapter 16: The Scale Widget

ted
ll the
d to
r

ial

pter,
range
acks

These
XmScaleSetTicks(scale, 100, 9, 1, 16, 8, 4);

XtManageChild (scale) ;
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of this program is shown in Figure 16-5.

The Scale can have any kind of widget as a child. All of the children are evenly distribu
along the axis of the slider. As you can see in Figure 16-5, the tick marks are placed a
way to the left of the Scale widget to leave space for the value indicator. If you wante
add ticks usingXmScaleSetTicks () as well as adding other children, it could be rathe
difficult to achieve any kind of sensible layout without some particularly non-triv
coding.

Summary
The Scale widget is a simple widget, both in concept and in practical use. In this cha
we have showed a few possible uses of the Scale to represent a range of values. The
of a Scale, as well as its orientation, are customizable. The widget also provides callb
that allow an application to keep track of the value of the Scale as the user changes it.
features make the Scale quite versatile.

Figure 16-5: Output of the tick_marks program
512 Motif Programming Manual

y are
ls so
ges; a
Chapter 1

In this chapter:
• Creating a Notebook
• Notebook Resources
• Notebook Constraints
• Notebook Callbacks
• Notebook Functions
• Summary

This chapter describes the N

The Notebook is a Constrain
pages in a book. At any given
that it appears as though the
spiral binding and overlappin
Motif Programming Manual
17
sub-
just as
g a tab
Major
ction
iate
book
book.
of

than

ed by
h tab

book
nd so

get:
has a
dded

idget
alid
ren as
ypical
The Notebook Widget
otebook widget, introduced in Motif 2.0.

t Manager which organises its children as though the
time, only one child is visible. The Notebook has visua
children are stacked on top of each other like real pa

g back pages complete the appearance.

Continuing the analogy, the pages of a Notebook can be divided into sections and
sections by creating tabs which are inserted along the edges of the Notebook pages,
real notebooks have tab inserts. Tabs can be associated with pages, so that activatin
causes a specific child (page) to be displayed. Each section involves the creation of a
Tab - this is simply a button with a particular constraint resource set, and each sub-se
is added by creating a Minor Tab, which again is simply a button with an appropr
constraint. Minor Tabs appear on a different edge to the Major Tabs along the Note
sides, which is possibly the one aspect of behavior which is not the same as a real note
The Notebook automatically creates a Tab Scroller, consisting of a pair
ArrowButtonGadgets, for scrolling along the set of Tabs when there are more Tabs
can be displayed along the Notebook edge.

The Notebook can also contain a Page Scroller, so that logical pages can be display
rotating through the values of a SpinBox, rather than having to manually select eac
individually.

Any given page can also be assigned a Status Area, which is a region of the Note
display which can be used for information such as the current page number, date, a
forth.

Typically, pages are added to a Notebook simply by adding a Manager child to the wid
the various elements of the page are added to this Manager in turn. The Notebook
default algorithm which takes a note of each child as it is added: it assumes that any a
Manager is supposed to represent a page, a button will form a Major Tab, a textual w
will form a Status Area, and a SpinBox will form a Page Scroller. These are usually v
assumptions, and so it is not normally necessary to assign roles to each of the child
they are added to the Notebook by assigning the relevant constraint resource. For t
513

Chapter 17: The Notebook Widget

for
signs
child

icitly
e gaps
nding
n the
out of
ough
s not
lly

efore
ages
Tab
nd.

k are
o a

e of
. The

a
sion.
lt to
abs:
usage, only the role of Minor Tab need to be explicitly coded by the programmer. As
associating Tabs with pages, again the Notebook has a default algorithm which as
ascending page numbers to objects in the order in which they are added. The first Page
is assigned the logical page number 1 by default. The programmer is free to expl
assign logical pages to each of the various Tab and Page children: there can even b
in the numbering scheme, so that a Tab can refer to a number for which no correspo
Page child exists. In this case, the Notebook simply displays a blank background whe
Tab is activated. It is also possible to assign logical page numbers to Tabs and Pages
order to child widget creation: logical page numbers can be assigned in any order, alth
in this case the programmer should of course make sure that his own code doe
implicitly rely on the order of child creation in any way. The Notebook will automatica
sort the children into ascending page order.

This all seems to indicate that a Notebook needs to be fully loaded with all pages b
displaying the widget to the user. This is not the case: it is possible to create p
dynamically by associating a callback with the Notebook which is called whenever a
is activated: the relevant page associated with the Tab can then be created on dema

Figure 17-1 shows a Notebook with all the various elements indicated.

The Notebook is highly configurable. Each of the various components of the Noteboo
fully under programmer control, so that it is possible to convert the Notebook int
traditional Tab Manager, simply through setting appropriate resources to disable som
the more florid aspects of the illusion and to rotate the Tabs onto the top of the pages
Spiral Binding can be configured for various styles of presentation, including
programmer-supplied pixmap; it can also be removed, as can the overlapping page illu
The Page Scroller, Status Area, and Tabs are entirely optional, although it is difficu
imagine the usefulness of a Notebook which contained neither Page Scroller nor T

Figure 17-1: The Notebook widget and its constituent parts

Page Scroller

Tabs

Tab Scroller

Binding Status Area
Back Pages

Tab Scroller
514 Motif Programming Manual

Chapter 17: The Notebook Widget

erned,
gram

the
to the

ich

ame
in

ably

has
dd Tab
,
rce,
selecting between pages would then become problematic as far as the user is conc
although this arrangement would make some sense if page display is fully under pro
control.

Figure 17-2 is an example of this kind of traditional Tab Manager configuration., where
spiral binding and overlapping page illusions have been removed, the Tabs rotated

top of the Notebook, and the Page Scroller disabled.

Creating a Notebook
Incorporating the Notebook widget into your code is straightforward. An application wh
uses the Notebook widget must include the header file <Xm/Notebook.h>. The header file
declares the types of the public Notebook functions and the widget class n
xmNotebookWidgetClass . A Notebook can be created in either of the ways as shown
the following code fragment:

Widget notebook = XmCreateNotebook (parent , name, resource-value-array ,
resource-value-count)

Widget notebook = XtCreateWidget ("name", xmNotebookWidgetClass, parent ,
resource-value-list , NULL);

The Notebook can potentially manage a very large number of children, and so it is prob
best not to create the widget in a managed state (XtCreateManagedWidget ()) otherwise
performance may suffer. See Chapter 8,Manager Widgets,for a discussion of when
widgets should be created in the managed or unmanaged state.

Theparent of the Notebook can be any Shell or Manager widget. Once the Notebook
been created, the next step is to add logical Pages to the Notebook, and thereafter a
inserts when and if required. The Notebook is aconstraintwidget: as children are added
the role which the child is to take is specified using a constraint resou
XmNnotebookChildType . The possible values of the resource are as follows:

Figure 17-2. A Notebook configured to behave like a traditional Tab Manager
Motif Programming Manual 515

Chapter 17: The Notebook Widget

ified

e
one

be a
der as
ther

dding
with
XmMAJOR_TAB XmMINOR_TAB
XmPAGE_SCROLLER XmSTATUS_AREA
XmPAGE

The Notebook has a default algorithm for assigning roles to children. Unless spec
otherwise, any Manager child is assigned theXmNnotebookChildType constraint value
XmPAGE, any PushButton is assigned the valueXmMAJOR_TAB, any Textual component is
given the valueXmSTATUS_AREA, and any SpinBox or derivative is given the rol
XmPAGE_SCROLLER. If no page scroller is added to the Notebook, the widget creates
for its own use automatically.

Creating Notebook Pages

As stated above, any Manager child which is added to the Notebook is assumed to
logical page. Logical page numbers are assigned by the Notebook in ascending or
required. Adding a Page to the Notebook is therefore simple: create a Form or o
Manager widget as child of the Notebook, and then add the page contents by way of a
extra children to the Form. The following code in Example 17-1 creates a Notebook
four pages.

Example 17-1. The simple_notebook.c program

/* simple_notebook - create a Notebook with four pages
*/

#include <Xm/Xm.h>
#include <Xm/Notebook.h>
#include <Xm/RowColumn.h>
#include <Xm/Label.h>

/* Arbitrary data for the first “page” */
char *page1_labels[] =
{

“Introduction”,
““,
“The Motif Programming Model”,
“Overview of the Motif Toolkit”,
“The Main Window”,
“Introduction to Dialogs”,
(char *) 0

};
/* Arbitrary data for the second “page” */
char *pane2_;labels[] =
{

“Selection Dialogs”,
“Custom Dialogs”,
“Manager Widgets”,
“The Container and IconGadget Widgets”,
“Scrolled Windows and ScrollBars”,
(char *) 0

};
516 Motif Programming Manual

Chapter 17: The Notebook Widget
/* Arbitrary data for the third “page” */
char *page3_labels[] =
{

“The DrawingArea”,
“Labels and Buttons”,
“The List Widget”,
“The ComboBox Widget”,
“The SpinBox and SimpleSpinBox Widgets”,
(char *) 0

};
/* Arbitrary data for the fourth “page” */
char *page4_labels[] =
{

“The Scale Widget”,
“The Notebook Widget”,
“Text Widgets”,
“Menus”,
(char *) 0

};

/* A pointer to all the “page” data */
char **pages[] =
{

page1_labels,
page2_labels,
page3_labels,
page4_labels,
(char **) 0

};

void main (int argc, char **argv)
{

Widget toplevel, notebook, page, label;
XtAppContext app;
Arg args[4];
XmString xms;
int i, j, n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create the Notebook */
notebook = XmCreateNotebook (toplevel, “notebook”, NULL, 0);

/* Create the “pages” */
for (i = 0; pages[i] != (char **) 0; i++) {

page = XmCreateRowColumn (notebook, “page”, NULL, 0);

for (j = 0; pages[i][j] != (char *) 0; j++) {
xms = XmStringGenerate (pages[i][j], XmFONTLIST_DEFAULT_TAG,

XmCHARSET_TEXT, NULL);

n = 0;
Motif Programming Manual 517

Chapter 17: The Notebook Widget

s that
ajor

, and
book
ays
the

the
XtSetArg (args[n], XmNlabelString, xms); n++;
label = XmCreateLabel (page, “label”, args, n);
XtManageChild (label);
XmStringFree (xms);

}
XtManageChild (page);

}

XtManageChild (notebook);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of the program is given in Figure 17-3.

Creating Notebook Tabs

Just as the Notebook assumes that Manager children are pages, so it assume
PushButton children are to form Tab inserts. Tabs are considered to be of two kinds: M
Tabs, which presumably separate the important sections of the Notebook children
Minor Tabs, which mark less important boundaries between the Major Tabs. The Note
by default assumes that any Tab child is a Major Tab, and so explicit action must alw
be taken by the programmer when providing the Minor Tab inserts by specifying
appropriate constraint resources. A Major Tab has theXmNnotebookChildType
constraint set toXmMAJOR_TAB, and a Minor Tab has the valueXmMINOR_TAB. The
following additional code given in Example 17-4 adds a Major and a Minor Tab to
Example 17-3.

Widget tab;
char buffer[32];
...
/* Create the “pages” */
for (i = 0; pages[i] != (char **) 0; i++) {

page = XmCreateRowColumn (notebook, “page”, NULL, 0);

for (j = 0; pages[i][j] != (char *) 0; j++) {
...

}

Figure 17-3. Output of the simple_notebook program

Activate
Page
Scroller
518 Motif Programming Manual

Chapter 17: The Notebook Widget

abs.
inor
ajor

ted,

roller
when
hich
fault

t, and
ame
ller
/* An even page is a Major Tab */
/* And an odd page is a Minor Tab */
n = 0;
if ((i % 2) == 0) {

XtSetArg (args[n], XmNnotebookChildType, XmMAJOR_TAB); n++;
}
else {

XtSetArg (args[n], XmNnotebookChildType, XmMINOR_TAB); n++;
}
(void) sprintf (buffer, “%s %d”, ((i % 2) == 0) ? “Major” : “Minor”, i);
tab = XmCreatePushButton (notebook, buffer, args, n);
XtManageChild (tab);
XtManageChild (page);

}

The output of the modifications results in the dialog shown in Figure 17-4.

Clearly there is a difference in the way that the Notebook displays Major and Minor T
All the Major Tabs are displayed along one edge of the Notebook. However, only the M
Tabs which logically are associated with a page number between the current active M
Tab and the next Major Tab are displayed. If in the Figure Major Tab “Page 2” is activa
only the Minor Tab “Page 3” is displayed along the bottom.

Manipulating the Page Scroller

The Notebook creates a SpinBox with a single TextField child to act as a Page Sc
automatically, unless the programmer takes steps to provide her own Page Scroller
the Notebook is created. This means that in principle trying to create Notebook pages w
are only accessible through the Tab mechanisms looks a little tricky. In practice, the de
Page Scroller can be removed simply enough by accessing the built-in SpinBox widge
then unmanaging it. The Notebook creates the SpinBox using the constant n
“PageScroller”, and so the following code fragment will effectively hide the Page Scro
from view:

extern Widget notebook;
Widget scroller;

Major Tab Inser

Figure 17-4. The Notebook with added Tabs

Minor Tab Inser
Motif Programming Manual 519

Chapter 17: The Notebook Widget

child

figure
g and

urce
. If
ources
e
tside
ed to

mmer
o that

if the
r
value

e the

f
wn to

the
h

scroller = XtNameToWidget (notebook, “PageScroller”);
XtUnmanageChild (scroller);

If you wanted to add your own Page Scroller, you would need to create the widget as a
of the Notebook, setting theXmNnotebookChildType constraint toXmPAGE_SCROLLER.

Notebook Resources
The resources associated with the Notebook fall into three basic sets: those which con
the current pages on view, those which controls the visuals associated with the bindin
page illusions, and those which configure the Tab placement.

Page Resources

The current logical page displayed by the Notebook is specified using the reso
XmNcurrentPageNumber . This can be used to programmatically display a given page
the programmer wishes to set lower and upper bounds upon the pages in view, the res
XmNfirstPageNumber and XmNlastPageNumber resources can be specified. Th
Notebook will not display any Tabs or Pages whose logical page assignments fall ou
the range falling between the two values. How logical page numbers are assign
children is covered in the following Section 17.3,Notebook Constraints. Any Page which
has an assigned page number outside the range can only be displayed if the progra
either modifies the range, or re-assigns the logical number associated with the Page s
it falls within the first/last page bounds. By default, theXmNlastPageNumber value is
maintained by the Notebook itself as page children are added to the widget. However,
programmer sets thisXmNlastPageNumber value herself, the Notebook no longe
maintains the value, and it becomes the programmers responsibility to maintain the
from then on. The automatic page numbering scheme uses theXmNfirstPageNumber
resource to seed the counting algorithm. By default, the first page number is 1.

Visual Resources

The page illusion can be configured through a variety of resources, both to configur
general layout, and to specify the appearance.

The color of the back page is controlled usingXmNbackPageForeground and
XmNbackPageBackground , which are Pixel -valued resources. The number o
overlapping pages which constitute the back page (or rather, the number of lines dra
give the appearance of overlapping pages) is controlled through theXmNbackPageNumber
resource, the thickness of the lines drawn being specified using theXmNbackPageSize
resource.

The size of the binding drawn along the Notebook is bounded by the value of
XmNbindingWidth resource, the binding style itself is specified throug
XmNbindingType . This has the following possible values:
520 Motif Programming Manual

Chapter 17: The Notebook Widget

k.
an
k
your

e

XmSPIRAL XmNONE XmPIXMAP XmPIXMAP_OVERLAP_ONLY
XmSOLID

The default isXmSPIRAL, which displays a spiral binding down the edge of the Noteboo
XmSOLIDdraws a solid binding using the foreground color of the widget. The binding c
be removed using the valueXmNONE: this would be done if you wanted to turn the Noteboo
into something more along the lines of a traditional Tab Manager. You can also supply
own binding in the form of a Pixmap using theXmNbindingPixmap resource. If you do
this, you need to also specify that theXmNbindingType is either XmPIXMAPor
XmPIXMAP_OVERLAP_ONLY. The difference is that if the type isXmPIXMAP, your image
will not be clipped by anyXmNbindingWidth resource - the binding will grow if your
Pixmap is wider than the currentXmNbindingWidth . On the other hand, if the binding
type is XmPIXMAP_OVERLAP_ONLY, the size of the binding drawn is bounded by th
XmNbindingWidth value.

Figure 17-5 shows the effect of setting the variousbinding appearance resources.

XmSPIRAL

XmNONE XmPIXMAP_OVERLAP_ONLY

Figure 17-5. The Notebook binding styles

XmSOLID

XmPIXMAP
Motif Programming Manual 521

Chapter 17: The Notebook Widget

figure
d the

se
s are

at the
The general layout of the Notebook is configured using theXmNbackPagePlacement
resource. This is probably misnamed, in that although the resource does indeed con
the placement of the back page illusion, it also configures the location of the Tabs an
binding as a side effect. The resource has the following possible values:

XmBOTTOM_RIGHT XmBOTTOM_LEFT
XmTOP_RIGHT XmTOP_LEFT

The default value is sensitive to theXmNlayoutDirection and XmNorientation
resources. Figure 17-6 shows the effects of setting the various values:

Clearly theXmNbackPagePlacement resource also affects the binding and Tabs, becau
the binding is always opposite the overlapping back page illusion, and the Major Tab
placed along the back page opposite the binding.

The orientation of the Notebook can be configured through theXmNorientation
resource, which has the possible valuesXmHORIZONTALandXmVERTICAL. Figure 17-6
shows a vertically-oriented Notebook. The spiral binding has also been removed so th

XmBOTTOM_LEFT XmBOTTOM_RIGHT

XmTOP_LEFT XmTOP_RIGHT

Figure 17-6. The Notebook binding placements
522 Motif Programming Manual

Chapter 17: The Notebook Widget

g the

anted
t the

- the
hat
d the
using

age
as
ich

lled

st
ault
that
t
es
Notebook looks more like a traditional Tab Manager.The Tabs, however, appear alon

top as opposed to the sides, which happens with the horizontal arrangement. If you w
the Major Tabs to appear on the bottom of the Notebook, you would need to se
XmNorientation to XmVERTICAL, and theXmNbackPagePlacement to XmBOTTOM_
LEFT or XmBOTTOM_RIGHT to choice.

Tab Resources

Tab placement has already been discussed in the previous paragraphs
XmNbackPagePlacement resource configures the Tab placement as a side effect. All t
remains which can potentially be configured is the spacing between the Tabs an
Notebook pages. The distance between Major Tabs and the page border is specified
theXmNmajorTabSpacing resource, and the distance between Minor Tabs and the p
is specified through theXmNminorTabSpacing resource. Setting these values to zero,
well as specifying theXmNbackPageNumber resource as zero, gives an appearance wh
is more consistent with a normal Tab Manager.

Notebook Constraints
The roles which each child can take in the various Notebook operations is contro
through theXmNnotebookChildType resource. This can take the following values:

XmPAGE
XmMAJOR_TAB XmMINOR_TAB
XmSTATUS_AREA XmPAGE_SCROLLER

The XmNnotebookChildType resource is create-only, which means that you mu
specify the resource when you add the child if the required role differs from the def
which would be assigned by the Notebook. Formally, the default algorithm assumes
if the child supports theXmQTactivatable Trait, then the child is assigned the constrain
valueXmMAJOR_TAB. The PushButton, DrawnButton, ArrowButton and derived class
support this Trait. If the child widget supports theXmQTnavigator Trait, then the child
by default is assigned the constraint valueXmPAGE_SCROLLER. The ScrollBar, SpinBox,

Figure 17-7. The Notebook with a vertical orientation
Motif Programming Manual 523

Chapter 17: The Notebook Widget

the

this

hare

h the
oked

the

rst

upon

, be
ching
and derived widget classes support this Trait. If the child widget supports
XmQTaccessTextual Trait, then the roleXmSTATUS_AREAis the default. The Label,
LabelGadget, Text, TextField, and derived classes support theXmQTaccessTextual
Trait. Everything else is assigned the default roleXmPAGE. It follows that all Minor Tabs
must be explicitly set by the programmer since the default algorithm does not assign
role. The internals of the Trait mechanisms are beyond the scope of this book.

The association between Tabs and Pages is specified using theXmNpageNumber
constraint. A Tab will display a given Page when activated if the Tab and Page child s
the sameXmNpageNumber constraint value.

The last constraint defined by the Notebook is theXmNresizable resource, which simply
specifies whether the Notebook will process resize requests from the given child.

Notebook Callbacks
The Notebook defines a single callback, theXmNpageChangedCallback . This is called
whenever there is a request to change the current Logical Page, whether throug
activation of a Tab or through selection using a Page Scroller. Each callback when inv
is passed a pointer to anXmNotebookCallbackStruct structure, which is defined as
follows:

typedef struct
{

int reason;
XEvent *event;
int page_number;
Widget page_widget;
int prev_page_number;
Widget prev_page_widget;

} XmNotebookCallbackStruct;

The reason element specifies the cause of callback invocation. It may have any of
following possible values:

XmCR_NONE XmCR_MAJOR_TAB XmCR_MINOR_TAB
XmCR_PAGE_SCROLLER_INCREMENT XmCRPAGE_SCROLLER_DECREMENT

The value will beXmCR_NONEon Notebook invocation, as the widget chooses the fi
current page. It will also beXmCR_NONEif the XmNcurrentPageNumber resource is
changed programmatically. Otherwise, the value will reflect a user action, depending
whether a Tab of some kind has been activated, or the Page Scroller selected.

Thepage_number field represents the new logical page number. This may, or may not
associated with a real Page. If the page_number does refer to a child with a mat
XmNpageNumber constraint value, then thepage_widget element will be set to this
child. Otherwise, thepage_widget element will beNULL, and the Notebook will display
a blank page.
524 Motif Programming Manual

Chapter 17: The Notebook Widget

t

as

the
all

ect.

ges

the
The prev_page_number and prev_page_widget elements specify the old curren
page. At Notebook initialisation,prev_page_number is the valueXmUNSPECIFIED_
PAGE_NUMBER, and prev_page_widget is NULL. The prev_page_widget element
will also beNULLif the Notebook is currently displaying a blank Page - no child widget h
the constraintXmNpageNumber which matches theprev_page_number value.

The fields of the callback structure are not used by the Notebook routines when
XmNpageChangedCallback terminates. This means that in effect the elements are
read-only and purely notificatory in effect: modifying thepage_number or page_
widget element in the hope of programmatically setting the next page will have no eff
The resourceXmNcurrentPageNumber should be set directly if this is the required
behavior.

The following code fragment simply prints out the state information as various chan
take place to the Notebook current page:

void notebook_changed_callback (Widget w,
XtPointer client_data,
XtPointer call_data)

{
XmNotebookCallbackStruct *nptr;
nptr = (XmNotebookCallbackStruct *) call_data;

if (nptr->reason == XmCR_NONE) {
if (nptr->prev_page_number == XmUNSPECIFIED_PAGE_NUMBER) {

printf (“Notebook initialisation: first page %d\n”,
nptr->page_number);

}
else {

printf (“Program request: new page %d\n”,
nptr->page_number);

}
}
else {

printf (“New Page: %d %s Old page: %d %s\n”,
nptr->page_number,
(nptr->page_widget ?

XtName(nptr->page_widget) :
“(blank)”),

nptr->prev_page_number,
(nptr->prev_page_widget ?

XtName(nptr->prev_page_widget) :
“(blank)”));

}
}

Notebook Functions
A programmer can request information about a logical page of the Notebook using
routineXmNotebookGetPageInfo (), which has the following signature:
Motif Programming Manual 525

Chapter 17: The Notebook Widget

e

e

d

age
nding
age

f) the
XmNotebookPageStatus XmNotebookGetPageInfo (Widget notebook ,
int page_number ,
XmNotebookPageInfo * page_info)

The return value is anXmNotebookPageStatus , which is an enumerated type. Possibl
values are:

XmPAGE_FOUND XmPAGE_EMPTY
XmPAGE_INVALID XmPAGE_DUPLICATED

If the requestedpage_number falls outside the bounds between thenotebook
XmNfirstPageNumber and XmNlastPageNumber resources, the function returns
XmPAGE_INVALID. Otherwise, if exactly one child which has anXmNpageNumber
constraint which matchespage_number is found, the return value isXmPAGE_FOUND. If
more than one child shares the given page number, the return value isXmPAGE_
DUPLICATED. Otherwise, the return value isXmPAGE_EMPTY.

The page_info parameter specifies an address where data about the requestedpage_
number is returned. The data is filled in by theXmNotebookGetPageInfo () routine
except if the return value isXmPAGE_INVALID. Where there are duplicate pages with th
requestedpage_number , the information will refer to the last child found. The
XmNotebookPageInfo data type is defined as follows:

typedef struct
{

int page_number;
Widget page_widget;
Widget status_area_widget;
Widget major_tab_widget;
Widget minor_tab_widget;

} XmNotebookPageInfo;

If the matching child found is a Status Area, thestatus_area_widget element will be
filled in with the widget ID of the child. Similarly, a matching Major Tab child is place
into the major_tab_widget element, a matching Minor Tab is stored in theminor_
tab_widget element, and a matching Page child is stored in thepage_widget field.

In addition, Major Tabs and Minor Tabs are stored into themajor_tab_widget and
minor_tab_widget fields as they are encountered regardless of whether the p
number matches. Since children of the Notebook are stored internally in sorted asce
XmNpageNumberorder, and since the search terminates if a child is found with a p
number exceeding the request, it means that themajor_tab_widget andminor_tab_
widget elements contain the Tab with a page number nearest to (but not in excess o
requested page number in addition to any data returned in thepage_widget field.
526 Motif Programming Manual

Chapter 17: The Notebook Widget

2.0
one
e the
ed in
they
than

ed to
Summary
The Notebook is a most useful, if some what over-decorous, addition to the Motif
widget set. It performs the services of a traditional Tab Manager by displaying only
given page child at a time. Indeed the visuals of the Notebook can be configured to giv
usual appearance of a Tab Manager, and it is in this form that it is most likely to be us
typical application programming. It works by assigning roles to the various children as
are added: the default algorithm for assigning page numbers and roles is more
sufficient for most purposes, but the programmer has sufficient control should the ne
override the defaults arise.
Motif Programming Manual 527

Chapter 17: The Notebook Widget
528 Motif Programming Manual

entry
om a
tion
other

rmat
Chapter 1

In this chapter:
• Interacting With Text Wid
• Text Widget Basics
• Text Clipboard Functions
• A Text Editor
• Text Callbacks
• Text Widget International
• Summary
• Exercises

This chapter explains how the
capabilities in an application.
simple data-entry field to a f
mechanisms provided by the
applications via the clipboard.
Motif Programming Manual
gets

ization

18
e user
ally

ting
free-

tors,
sed
set
can

with

ple
s well
n to
gets

style,
nable

lors

tion,
;

font
Text Widgets
Text and TextField widgets can be used to provide text-
These widgets can be used for a variety of purposes, fr
ull-fledged text editor. The chapter describes the selec
widgets and how they can be used to communicate with
The widgets also allow the programmer to control the fo

of the data that is entered by the user.

Despite all that can be done with menus, buttons, and lists, there are times when th
can best interact with an application by typing at the keyboard. The Text widget is usu
the best choice for providing this style of interface, as it provides full-featured text edi
capabilities. The Text widget can be used anywhere the user might be expected to type
form text, such as in a compose window in a mail application. Unlike standard text edi
the Text widget supports the point-and-click model that people expect from GUI-ba
applications. The TextField widget provides a single-line data entry field with the same
of editing commands as the Text widget, but it requires less overhead. Text widgets
also be used in output-only mode to display more textual information than is practical
a label or a button.

Even though the text widgets allow for complex interaction, they still provide sim
mechanisms for program control. The widgets have resources that access the text, a
as control their behavior. They also provide callback routines that allow an applicatio
intervene on actions that add text, delete text, or move the insertion cursor. The wid
support keyboard management methods that control the editing style, paging
character positioning, and line-wrapping. There are also convenience routines that e
quick and simple access to the clipboard.

The text widgets do have their limitations. For example, they do not support multiple co
or fonts, so a single widget can only use one color and one font*. There is no support for
text formatting such as paragraph specifications, automatic line numbering, or indenta
so you cannot create WYSIWYG documents.†The Text widget is not a terminal emulator

* The abortive compound string Text widget, CSText, was introduced in Motif 2.0. This did support multi-
capability, but it had serious performance problems; it was excised from Motif 2.1.
529

Chapter 18: Text Widgets

edia
am.

erface
ot be
List

dget.

ore
ould

that
t with

de,
ally

s, not
ting.
vide
es as

s

it cannot be used to run interactive programs. The widgets cannot display multi-m
objects either, which means that it is not possible to insert graphics into the text stre

There are some cases where a text widget is not the most appropriate user-int
element, even though you are displaying text. For example, a Text widget should n
used to display a list whose items can be individually selected; that is the job of the
widget. Text that cannot be edited, or selected should be displayed in a Label wi
Chapter 12,Labels and Buttons, and Chapter 13,The List Widget, describe the appropriate
uses of these components.

If you have not used the Motif Text widget, you should familiarize yourself with one bef
getting too involved in this chapter. Running some of our introductory examples sh
provide an adequate platform for experimentation. Figure 18-1 shows an application
uses several Text widgets. Two widgets are used for single-line data entry. The widge
the ScrollBars attached to it is used for editing multiple lines.

The Text widget supports both single-line and multi-line editing. In single-line mo
which is the default mode, newlines are ignored. However, single-line text entry is usu
done with the TextField widget class. This widget class is a completely separate clas
a subclass, of Text that is lighter-weight because it only supports single-line text edi
Although they are two separate widget classes, the Text and TextField widgets pro
many of the same resources and convenience routines. We will point out the differenc

† WYSIWYG stands forWhat You See Is What You Get. This term is used to describe page formatting program
that can produce camera-ready documents that match what is displayed on the screen.

Figure 18-1: An editor application with both Text and TextField widgets
530 Motif Programming Manual

Chapter 18: Text Widgets

as we

get
ally
ed in
The
ext
tine,

and
, the
ould
best
eds
play
more

The
rted.
user
y be

ple
to the

the
ode.

table
rs,
r like
d text-
we go, but keep in mind that there are two widget classes so you don’t get confused
discuss them throughout this chapter.

Since the TextField widget cannot handle multiline editing, you must use the Text wid
for this purpose. When multiple lines are used for editing, the number of lines typic
grows and shrinks dynamically as the user edits the text. The Text widget is often us
a scrollable window, so that the user can view different portions of the underlying text.
combination of a Text widget and a ScrolledWindow widget is called a ScrolledT
object. This object is not a widget class, although there is a convenience rou
XmCreateScrolledText() , that allows you to create both widgets at once.

Interacting With Text Widgets
The Text and TextField widgets are highly configurable in terms of appearance
behavior. Given the level of sophistication for both the programmer and the user
widgets should not be taken lightly or underestimated. The ease of configurability sh
not tempt you to enforce your personal ideas about how a text editor should work. The
thing to do with text widgets is configure them as minimally as possible to suit the ne
of your program. You should let the user have control over as many details of their dis
and operation as possible. This laissez-faire approach ensures that your application is
compatible with other Motif programs.

Inserting Text
The user interface for the text widgets follows the point-and-click model of interaction.
insertion cursor indicates the position where the next character that is typed will be inse
The insertion position is marked by an I-beam cursor. Using the left mouse button, the
can click on a new location in the widget to move the insertion cursor there, so text ma
inserted at any location in the widget.

The text widgets have predefined action routines that allow the user to perform sim
editing operations such as moving one character to the right or deleting backwards
beginning of the line. The user can specify translations in a resource file that modify
input behavior of the widgets. The widgets are by default always in text-insertion m
There is an action that puts the Text widget in overstrike mode if this is required.

The user can use the action routines provided by the widgets to set up the translation
to mimic an editor such asemacs. The Text widget does not insert non printable characte
so users typically bind control-character sequences to editing action routines. An edito
vi cannot be emulated because there is no distinction between command mode an
entry mode, and in this sense, the Motif Text widgets are completely modeless.
Motif Programming Manual 531

Chapter 18: Text Widgets

ws in
ent
the

mple,
ems;
data

e, all
ut is
ted

r how
t is
is

e than
two

perty
mply
, or

olkit
ed in

in

and
When
pied.
g the
ing
ext

ple-
get.

a

anism
Selecting Text
Users have become accustomed to the ability to cut and paste text between windo
GUI-based applications. Cut and paste is more difficult for the programmer to implem
with the X Window System than a system where a single vendor controls all of
variables, because the nature of X requires a more general solution. For exa
applications running on the same display may actually be executing on different syst
these systems may have different byte orders or other differences in the underlying
format.*In order to insulate cut and paste operations from dependencies like thes
communication between applications is implemented via the X server. Data that is c
stored in apropertyon the X server. A property is simply a named piece of data associa
with a window and stored on the server.

The Interclient Communications Conventions Manual†(ICCCM) defines a set of standard
property names to be used for operations such as cut and paste and lays out rules fo
applications should interact with these properties. According to the ICCCM, text tha
selected is typically stored in the PRIMARY property. The SECONDARY property
defined as an alternate storage area for use by applications that wish to support mor
one simultaneous selection operation or that wish to support operations requiring
selections, such as switching the contents of the two selections. The CLIPBOARD pro
is defined as a longer-term holding area for data that is actually cut (rather than si
copied) from the application’s window. When we refer to the primary, secondary
clipboard selection, we mean the property of the same name.

The most common implementation of the selection mechanism is provided by the X To
Intrinsics. The low-level routines that are used to implement selections are describ
detail in Volume 4,X Toolkit Intrinsics Programming Manual. In general, applications
such asxtermand widgets such as the Motif Text widget encapsulate this functionality
action routines that are invoked by the user with mouse button or key combinations.

The user can select text in a Motif Text widget by pressing the left mouse button
dragging the pointer across the text. The selected text is displayed in reverse video.
the button is released, the text widget has ownership of the selection, but no text is co
The selection can be extended either by pressing the SHIFT key and then draggin
pointer with the left mouse button down, or by pressing any of the arrow keys while hold
down the SHIFT key. In addition to the click-and-drag technique for text selection, the T
widget also supports multiple-clicking techniques: double-clicking selects a word, tri
clicking selects the current line, and quadruple-clicking selects all of the text in the wid
An important constraint imposed by the ICCCM is that only one window may own

* Currently, only text selections are implemented, which makes byte order irrelevant. However, the mech
is designed to allow transparent transfer of any kind of data.

† Reprinted asAppendix L in Volume Zero, X Protocol Reference Manual.
532 Motif Programming Manual

Chapter 18: Text Widgets

imary

ing
on is
any

. The
uick
ecause
ons.

ring
ed by
ext is
other
ed,
r can
and

in a
the
hen
utton
d in
at the
any

n is
ides a
es
f
e of
e to

The

the

far
selection property at one time, which means that once the user makes another pr
selection, the original selection is lost.

The user can copy text directly from the primary selection into the Text widget by click
the middle mouse button at the location where the text is to be inserted. This acti
sometimes called stuffing the selection into the widget. The user can stuff text at
location in the text stream, as long as the location is not inside the current selection
text is copied only when the middle mouse button is clicked, which is defined as a q
succession of press and release actions. The operation does not take place simply b
the middle mouse button is pressed, as this action is used for drag and drop operati

In Motif, the Text and TextField widgets support the drag-and-drop model of transfer
textual data. Once text has been selected in a widget, the selection can be dragg
pressing the middle mouse button over the selection and dragging the pointer. The t
transferred when the user releases the middle mouse button with the pointer over an
location in the same widget or over another text widget. By default, the text is mov
which means that the original text is deleted once the transfer is complete. The use
force a copy operation by holding down the CONTROL key while dragging the pointer
releasing the mouse button. For more information on drag and drop, see Chapter 22,Drag
and Drop, and Chapter 23,The Uniform Transfer Model.

The secondary selection is used by the Motif text widgets to copy text directly with
widget. The user performs this type of operation by first selecting the location where
copied text is to be placed; clicking the left mouse button places the insertion point. T
the text that is to be copied is selected by pressing and dragging the middle mouse b
while the ALT key is pressed. The selected text is underlined rather than highlighte
reverse video. When the button is released, the selected text is immediately stuffed
location of the insertion cursor. Unlike the primary selection, which may be retrieved m
times, the secondary selection is immediate and can only be stuffed once.

The third location for holding text is the clipboard selection. The clipboard selectio
designed to be used as a longer-term storage area for data. For example, MIT prov
client calledxclipboardthat asserts ownership of the CLIPBOARD property and provid
a user interface to it.xclipboardnot only allows a selection to survive the termination o
the window where the data was originally selected, but it also allows for the storag
multiple selections. The user can view all of the selections before deciding which on
paste.

OSF’s implementation of the clipboard is incompatible withxclipboard. If xclipboard is
running, any Motif routines that attempt to store data on the clipboard will not succeed.
Motif routines temporarily try to lock the clipboard, andxclipboardwill not give up its own
lock. Motif treats the clipboard as a two-item cache. Only Motif applications that use
clipboard routines described in Chapter 21,The Clipboard, can inter-operate using this
selection. The advantage of the Motif implementation is that it provides functionality
Motif Programming Manual 533

Chapter 18: Text Widgets

ext is
ver
hese

ify the
lly
this

tion.

are
and
the

ction

ome
from
een

r 21,

d to
ction
the
of

e the
beyond that provided by the standard MIT clients. Withxtermand the Athena widgets,
selections can really only be used for copy-and-paste operations; the selected t
unchanged. The Motif Text widget, by contrast, allows you to cut, copy, clear, or type o
a selection. While there is a translation and action-based interface defined for t
operations, it is typically not implemented.

As described in Chapter 2,The Motif Programming Model, Motif defines translations in
terms of virtual key bindings. By default, the virtual keysosfCut, osfCopy, osfPaste, et. al.
, are not bound to any actual keys. If a user wants to use these keys, he must spec
bindings in a.motifbindfile in his home directory. The interface for these features is usua
provided by menu items associated with the Text widget, as we will demonstrate in
chapter.

When text is selected in a Text widget, it is automatically stored in the primary selec
When one of the Text widget functions, such asXmTextCut() , is used, the text is also
stored in the clipboard selection. Most users will be completely unaware that there
separate holding areas for selected text. If your application gets heavily into cutting
pasting, you may find that the fusion of the primary and clipboard selections in
convenience routines is confusing. You should be careful to implement the sele
operations so that the different properties are transparent to the user.

In Motif 2.0 and later, the Uniform Transfer Model as described in Chapter 23 hides s
of the internal details of differences between the various methods of data transference
the programmer; note that the UTM does not, however, hide the differences betw
selection, the clipboard, or drag-and-drop from the user.

The reference pages for the Text and TextField widgets (in Volume 6B, Motif Reference
Manual; Section 2, Motif and Xt Widget Classes) lists the default translations for the
widgets. See Volume 4,X Toolkit Intrinsics Programming Manual, for a description of
how to programmatically alter translation tables; see Volume 3,X Window System User’s
Guide, for a description of how a user can customize widget translations. See Chapte
The Clipboard, for a discussion of the lower-level Motif clipboard functions.

Text Widget Basics
In order to understand the complexities of the Text and TextField widgets, you nee
know about some of the basic resources and functions that they provide. This se
describes the fundamentals of working with text widgets, including how to create
widgets, how to work with the textual data, and how to control simple aspects
appearance and behavior. Applications that wish to use the Text widget need to includ
file <Xm/Text.h>. TextField widgets require the file <Xm/TextF.h>. You can create a Text
widget using the following methods:

Widget text_w = XtVaCreateWidget ("name", xmTextWidgetClass, parent,
resource-value-list , NULL);
534 Motif Programming Manual

Chapter 18: Text Widgets

as

ans
otif

tead,

ure
Widget text_w = XmCreateText (parent, “name”, resource-value-array ,
resource-value-count);

To create a TextField widget instead, either specify the class
xmTextFieldWidgetClass in the XtVaCreateWidget() call, or use the Motif
convenience routineXmCreateTextField() .

The Textual Data
TheXmNvalue resource of the Text and TextField widgets provides the most basic me
of access to the internal text storage for the widgets. Unlike the other widgets in the M
toolkit that use text, the text widgets do not use compound strings for their values. Ins
the value is specified as a regular C string, as shown in Example 18-1.*

Example 18-1. The simple_text.c program

/* simple_text.c -- Create a minimally configured Text widget */

#include <Xm/Text.h>

main (int argc, char *argv[])
{

Widget toplevel;
XtAppContext app;
Widget text_w;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNvalue, “Now is the time...”);
text_w = XmCreateText (toplevel, "text", args, 1);
XtManageChild (text_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

This short program simply creates a Text widget with the initial value as shown in Fig
18-2.

* XtVaAppInitialize () is considered deprecated in X11R6.

Figure 18-2: Output of the simple_text program
Motif Programming Manual 535

Chapter 18: Text Widgets

r
an

or
rce
ence
:

s a

sing
with

e
idget
r

hever
ayed

the
can

until

ed
sing
e of
Both widgets also provide theXmNvalueWcs resource for storing a wide-characte
representation of the text value. For more information on using the text widgets in
internationalized application, see Section 18.6.

Specifying the Text

The initial value of theXmNvalue resource may be set either when the widget is created
by usingXtVaSetValues() after the widget has been created. The value of the resou
always represents the entire text of the widget. You can also use a Motif conveni
routine,XmTextSetString() , to set the text value. This routine takes the following form

void XmTextSetString (Widget text_w , char * value)

This routine works for both Text and TextField widgets. The TextField widget ha
corresponding routine,XmTextFieldSetString() , but it only works for TextField
widgets. If you are using both types of text widgets in an application, we recommend u
the Text widget routines to manipulate all of the widgets. Since these routines work
both types of widgets, you don’t need to keep track of the widget types.

Although the convenience routine andXtVaSetValues() produce the same results, th
convenience routine may be more efficient since it accesses the internals of the w
directly, while theXtVaSetValues() method involves going through Xt. On the othe
hand, if you are setting a number of resources at the same time, theXtVaSetValues()
method is better because all of the resources can be set in a single function call. Whic
function you use, the text value is copied into the internals of the widget, and the displ
value is changed accordingly.

If, for whatever reason, you are making multiple changes in a short period of time to
text in a Text widget, you may have problems with visual flashing in the widget. You
solve this problem by callingXmTextDisableRedisplay() to turn off visual updating
in the widget. After the call, the appearance of the widget remains unchanged
XmTextEnableRedisplay() is called.

Retrieving the Text

You can access the textual data in a Text widget usingXtVaGetValues() or
XmTextGetString() . The function XmTextGetString() allocates enough space
(usingXtMalloc()) for all of the text in the widget and returns a pointer to the allocat
data. You can modify the returned data any way you like, and then you must free it u
XtFree() when you are done. The code fragment below demonstrates the us
XmTextGetString() :

char *text;

if (text = XmTextGetString (text_w)) {
/* manipulate text in whatever way is necessary */
...
/* free text or there will be a memory leak */
536 Motif Programming Manual

Chapter 18: Text Widgets

e

mory

ins a
ith

call
m is
ndle

e is
not

The
The
r can
the

the
e to

es in
ctly.
the

An
tion.
ata
XtFree (text);
}

XmTextGetString() works with both Text and TextField widgets, while the
corresponding TextField routine,XmTextFieldGetString() , only works with
TextField widgets. You can also useXmTextGetSubstring() to get a copy of a portion
of the text in a Text widget.

The alternative toXmTextGetString() is the Xt functionXtVaGetValues() . The Text
widget responds toXtVaGetValues() by allocating memory and returning a copy of th
text. As a result, this data must be freed after use. This use of theGetValues() method is
different from most other resources. For most resources,XtVaGetValues() returns a
pointer to internal data that should be treated as read-only data. In order to avoid me
leaks, you need to be sure to free the memory that is allocated byXtVaGetValues() for
theXmNvalue resource, as shown in the following code fragment:

char *text;

XtVaGetValues (text_w, XmNvalue, &text, NULL);
/* manipulate text in whatever way is necessary */
...
/* free text or there will be a memory leak */
XtFree (text);

Getting the value of a Text widget can be an expensive operation if the widget conta
large amount of text. In all situations, whenever text is retrieved from the Text widget w
any function, the length of time the data is valid is only guaranteed until the next Xt
into the same Text widget; what any particular call might do to the internal text strea
undefined, and that information will not be reflected in the current character pointer ha
you may have.

A Text widget may contain an arbitrarily large amount of text, assuming that ther
enough memory on the computer running the client application. The text for a widget is
stored on the X server; only the client computer stores widget-specific information.
server displays a bitmap rendition of what the Text widget chooses to show.
XmNmaxLength resource specifies the upper limit on the number of characters the use
type into a Text widget. The default value of this resource is the largest integer for
particular system, so it is likely that the user’s computer will run out of memory before
Text widget’s maximum capacity is reached. You can lower the value of the resourc
limit the number of characters that the user can input to a particular Text widget.

The Text widget does not use a temporary file to store its data. All of the data resid
memory on the machine, so you cannot use a Text widget to browse or edit a file dire
Instead, you load the contents of a file into a Text widget and allow the user to edit
internal buffer. The application controls when to rewrite files with updated data.
application can also provide an interface that allows the user to control this ac
Applications that use Text widgets to edit vital information should make provisions for d
Motif Programming Manual 537

Chapter 18: Text Widgets

dget

mns
ault
e the
URN
the
ta is

h to
way

the
s a

must
Text
text.

the
and

d-line
g is

t is
yed,

g the
it as
s in

nd a

dles
and

the
recovery if the system fails or the application terminates unexpectedly. The Text wi
does not support this type of recovery.

Single and Multiple Lines
In Example 18-1, the Text widget provides a single-line text entry area that is 20 colu
wide; it is shown in Figure 18-2. Both the single-line editing style and the width are def
values. The width of each column is based on the font that is used for the text. Sinc
widget uses the single-line editing style, nothing happens when the user presses RET
in the widget. If the user types more text than the widget can display, the text scrolls to
left. Since newlines are not interpreted when they are typed by the user, textual da
always a single line.*The user can resize the widget to make it appear large enoug
display multiple lines, but this action does not affect the operation of the widget or the
it handles input.

Multiline editing allows the user to enter newlines into a Text widget and provides
capability to edit a large amount of text. The switch from single-line to multiline cause
number of changes in the behavior of the widget. For example, now widget geometry
be considered in order to determine the amount of text that is visible at one time. The
widget may need to be placed in a ScrolledWindow, so that the user can view all of the

Single or multiline editing is controlled through theXmNeditMode resource. The value of
the resource can be eitherXmSINGLE_LINE_EDIT or XmMULTI_LINE_EDIT. While the
two editing modes are quite different in concept, it should be quite intuitive when to use
different modes. Single-line text entry areas are commonly used to prompt for file
directory names, short phrases, or single words. They are also useful for comman
entry in applications that were originally based on a tty-style interface. Multiline editin
used for editing files or other large quantities of text.

Scrollable Text
The layout of a multiline Text widget can be difficult to manage, especially if the tex
editable by the user. An application needs to decide how many lines of text are displa
how to handle the layout when the user adds new text, and how to deal with resizin
Text widget. The easiest way to manage an editable multiline Text widget is to create
part of a ScrolledText compound object. The ScrolledText object is not a widget clas
and of itself, but rather a compound object that is composed of a Text widget a
ScrolledWindow widget.

When you create a ScrolledText object, the ScrolledWindow automatically han
scrolling the text in the Text widget. Basically, the two widget classes have hooks

* It is possible to setXmNvalue to a string that contains newline characters in a single-line Text widget, but
interaction with the user is undefined, and the widget produces confusing behavior.
538 Motif Programming Manual

Chapter 18: Text Widgets

the

nt of

tine

of

its
the

Text

ome
ould

rce,
ext

the

t work
procedures that allow them to cooperate intelligently with each other. As of Motif 1.2,
performance of the ScrolledText object has improved considerably.*In previous releases,
scrolling operations could be quite slow when the Text widget contained a large amou
text.

You can create a ScrolledText object using the Motif convenience rou
XmCreateScrolledText() , which takes the following form:

Widget XmCreateScrolledText (Widget parent , char * name, ArgList arglist ,
Cardinal argcount)

This routine is not a variable-argument list function; it uses the argument-list style
setting resources with theXtSetArg() macro.

XmCreateScrolledText() creates a ScrolledWindow widget and a Text widget as
child. The routine returns a handle to the Text widget; you can get a handle to
ScrolledWindow using the functionXtParent() . When you are laying out an application
that uses ScrolledText objects, you should be sure to useXtParent() to get the
ScrolledWindow widget, since that is the widget that you need to position.

For purposes of specifying resources, the ScrolledWindow takes the name of the
widget with the suffixSW. For example, if the name of the Text widget isname, its
ScrolledWindow parent widget has the namenameSW.

If you specify an argument list in a call toXmCreateScrolledText() , the resources are
set for the Text widget or the ScrolledWindow as appropriate. The routine also sets s
resources for the ScrolledWindow so that scrolling is handled automatically. You sh
be sure to set theXmNeditMode resource toXmMULTI_LINE_EDIT, since it doesn’t make
sense to have a single-line Text widget in a ScrolledWindow. If you don’t set the resou
the Text widget defaults to single-line editing mode. The behavior of a single-line T
widget (or a TextField widget) in a ScrolledWindow is undefined.

XmCreateScrolledText() is adequate for most situations, but you can also create
two widgets separately, as shown in the following code fragment:

Widget scrolled_w, text_w;
Arg args[6];
int n = 0;

XtSetArg (args[n], XmNscrollingPolicy, XmAPPLICATION_DEFINED); n++;
XtSetArg (args[n], XmNvisualPolicy, XmVARIABLE); n++;
XtSetArg (args[n], XmNscrollBarDisplayPolicy, XmSTATIC); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
scrolled_w = XmCreateScrolledWindow (parent, "scrolled_w", args, n);

n = 0;

* One unfortunate side-effect of the performance improvement is that subclasses of the Text widget may no
under Motif 1.2, due to the addition of a new data structure.
Motif Programming Manual 539

Chapter 18: Text Widgets

otif
own
ion,
ets.

gets,
h the

nt.
royed
ext
this

ng a
ield
e

XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
...
text_w = XmCreateText (scrolled_w, "text", args, n);
...
XtManageChild (text);
XtManageChild (scrolled_w);

We create the ScrolledWindow widget with the same resource setting that the M
function uses. Since we are creating the ScrolledWindow ourselves, we can give it our
name. The Text widget itself is created as a child of the ScrolledWindow. In this situat
it is clear that the parent of the ScrolledWindow controls the position of both of the widg

This creation method makes the programmer responsible for managing both of the wid
as shown at the bottom of the fragment. You may also need to handle the case in whic
widgets are destroyed. When you callXmCreateScrolledText() , the routine installs an
XmNdestroyCallback on the Text widget that destroys the ScrolledWindow pare
When you create the widgets yourself, you also need to be sure that they are dest
together, either by destroying them explicitly or installing a callback routine on the T
widget. Unless you are creating and destroying ScrolledText objects dynamically,
issue should not be a concern.

Example 18-2 shows a simple file browser that displays the contents of a file usi
ScrolledText object. The user can specify a file by typing a filename in the TextF
widget below the Filename: prompt. The user can also select a file from th
FileSelectionDialog that is popped up by theOpenentry on theFile menu. The specified
file is displayed immediately in the Text widget.*

Example 18-2. The file_browser.c program

/* file_browser.c -- use a ScrolledText object to view the
** contents of arbitrary files chosen by the user from a
** FileSelectionDialog or from a single-line text widget.
*/

#include <X11/Xos.h>
#include <Xm/Text.h>
#include <Xm/TextF.h>
#include <Xm/FileSB.h>
#include <Xm/MainW.h>
#include <Xm/RowColumn.h>
#include <Xm/LabelG.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>

main (int argc, char *argv[])
{

* XtVaAppInitialize() is considered deprecated in X11R6.XmStringGetLtoR () andXmMainWindowSe-
tAreas () are considered deprecated in Motif 2.0 and later.
540 Motif Programming Manual

Chapter 18: Text Widgets
Widget top, main_w, menubar, menu, rc, text_w, file_w, label_w;
XtAppContext app;
XmString file, open, exit;
void read_file(Widget, XtPointer, XtPointer);
void file_cb(Widget, XtPointer, XtPointer);
Arg args[10];
int n;

XtSetLanguageProc (NULL, NULL, NULL);

/* initialize toolkit and create toplevel shell */
top = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

/* MainWindow for the application -- contains menubar
** and ScrolledText/Prompt/TextField as WorkWindow.
*/
main_w = XmCreateMainWindow (top, "main_w", NULL, 0);

/* Create a simple MenuBar that contains one menu */
file = XmStringCreateLocalized ("File");
menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",

XmVaCASCADEBUTTON, file, 'F', NULL);
XmStringFree (file);

/* Menu is "File" -- callback is file_cb() */
open = XmStringCreateLocalized ("Open...");
exit = XmStringCreateLocalized ("Exit");
menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, exit, 'x', NULL, NULL,
NULL);

XmStringFree (open);
XmStringFree (exit);

/* Menubar is done -- manage it */
XtManageChild (menubar);

rc = XmCreateRowColumn (main_w, "work_area", NULL, 0);
n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
label_w = XmCreateLabelGadget (rc, "Filename:", args, n);
XtManageChild (label_w);

file_w = XmCreateTextField (rc, "text_field", NULL, 0);
XtManageChild (file_w);

/* Create ScrolledText -- this is work area for the MainWindow */
n = 0;
XtSetArg (args[n], XmNrows, 12); n++;
XtSetArg (args[n], XmNcolumns, 70); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
Motif Programming Manual 541

Chapter 18: Text Widgets
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
text_w = XmCreateScrolledText (rc, "text_w", args, n);
XtManageChild (text_w);

/* store text_w as user data in "File" menu for file_cb() callback */
XtVaSetValues (menu, XmNuserData, text_w, NULL);

/* add callback for TextField widget passing "text_w" as client data */
XtAddCallback (file_w, XmNactivateCallback, read_file,

(XtPointer) text_w);
XtManageChild (rc);

/* Store the filename text widget to ScrolledText object */
XtVaSetValues (text_w, XmNuserData, file_w, NULL);

/* Configure the Main Window layout */
XtVaSetValues (main_w, XmNmenuBar, menubar, XmNworkWindow, rc, NULL);
XtManageChild (main_w);

XtRealizeWidget (top);
XtAppMainLoop (app);

}

void popdown_fsb (Widget fsb, XtPointer client_data, XtPointer call_data)
{

/* This calls the ChangeManaged() routine of the parent DialogShell
** which then internally calls XtPopdown
*/

XtUnmanageChild (fsb);
}

/* file_cb() -- "File" menu item was selected so popup a
** FileSelectionDialog.
*/
void file_cb (Widget widget, XtPointer client_data, XtPointer call_data)
{

static Widget dialog;
Widget text_w;
void read_file(Widget, XtPointer, XtPointer);
int item_no = (int) client_data;

if (item_no == 1)
exit (0); /* user chose Exit */

if (!dialog) {
Widget menu = XtParent (widget);
dialog = XmCreateFileSelectionDialog (menu, "file_sb", NULL, 0);

/* Get the text widget handle stored as "user data" in File menu */
XtVaGetValues (menu, XmNuserData, &text_w, NULL);
XtAddCallback (dialog, XmNokCallback, read_file,

(XtPointer) text_w);
XtAddCallback (dialog, XmNcancelCallback, popdown_fsb, NULL);
542 Motif Programming Manual

Chapter 18: Text Widgets
}

/* The DialogShell parent ChangeManage() calls XtPopup() internally */
XtManageChild (dialog);
XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));

}

/* read_file() -- callback routine when the user selects OK in the
** FileSelection Dialog or presses Return in the single-line text widget.
** The specified file must be a regular file and readable.
** If so, it's contents are displayed in the text_w provided as the
** client_data to this function.
*/
void read_file (Widget widget, /* file selection or text field widget */

XtPointer client_data, XtPointer call_data)
{

char *filename, *text;
struct stat statb;
FILE *fp;
Widget file_w;
Widget text_w = (Widget) client_data;
XmFileSelectionBoxCallbackStruct *cbs;

cbs = (XmFileSelectionBoxCallbackStruct *) call_data;

if (XtIsSubclass (widget, xmTextFieldWidgetClass)) {
filename = XmTextFieldGetString (widget);
file_w = widget; /* this *is* the file_w */

} else {
/* file was selected from FileSelectionDialog */
filename = XmStringUnparse (cbs->value, XmFONTLIST_DEFAULT_TAG,

XmCHARSET_TEXT, XmCHARSET_TEXT, NULL,
0, XmOUTPUT_ALL);

/* the user data stored the file_w widget in the text_w */
XtVaGetValues (text_w, XmNuserData, &file_w, NULL);

}
if (!filename || !*filename) {/* nothing typed? */

if (filename)
XtFree (filename);

return;
}
/* make sure the file is a regular text file and open it */
if (stat (filename, &statb) == -1 || (statb.st_mode & S_IFMT) != S_IFREG

|| !(fp = fopen (filename, "r"))) {
if ((statb.st_mode & S_IFMT) == S_IFREG)

perror (filename); /* send to stderr why we can't read it */
else

fprintf (stderr, "%s: not a regular file\n", filename);
XtFree (filename);
return;

}
/* put the contents of the file in the Text widget by allocating
** enough space for the entire file, reading the file into the
** allocated space, and using XmTextFieldSetString() to show the file.
Motif Programming Manual 543

Chapter 18: Text Widgets

the
nce
ange

ts
we
*/
if (!(text = XtMalloc ((unsigned)(statb.st_size + 1)))) {

fprintf (stderr, "Can't alloc enough space for %s", filename);
XtFree (filename);
(void) fclose (fp);
return;

}
if (!fread (text, sizeof (char), statb.st_size + 1, fp))

fprintf (stderr, "Warning: may not have read entire file!\n");

text[statb.st_size] = 0; /* be sure to NULL-terminate */
/* insert file contents in Text widget */
XmTextSetString (text_w, text);
/* make sure text field is up to date */
if (file_w != widget) {

/* only necessary if activated from FileSelectionDialog */
XmTextFieldSetString (file_w, filename);
XmTextFieldSetCursorPosition (file_w, strlen (filename));

}
/* free all allocated space and */
XtFree (text);
XtFree (filename);
(void) fclose (fp);

}

The output of the program is shown in Figure 18-3.

We use the convenience routineXmCreateScrolledText() to create a ScrolledText
area. We specify that the Text widget displays 12 lines by 70 columns of text by setting
XmNrowsandXmNcolumns resources. These settings are used only at initialization. O
the application is up and running, the user can resize the window and effectively ch
those dimensions.

TheXmNeditable resource is set toFalse to prevent the user from editing the conten
of the Text widget. Since we do not provide a way to write changes back to the file,

Figure 18-3: Output of the file_browse program
544 Motif Programming Manual

Chapter 18: Text Widgets

able
ing

the
s a
tion

than

ed
; the
Most
ns),
ave
read

is
ot
rap

e for
licy
.

is
a

By
d

on,
don’t want to mislead the user into thinking that the file is editable. Since a non edit
Text widget should not display an insertion cursor, we remove it by sett
XmNcursorPositionVisible to False .

The FileSelectionDialog is created and managed when the user selects theOpenbutton
from theFile menu. The user can exit the program by selecting theExit button from this
menu. Theread_file() routine is activated when the user presses theOK button in the
FileSelectionDialog or enters RETURN in the TextField widget. This function gets
specified file and checks its type. If the file chosen is not a regular file (e.g., if it i
directory, device, tty, etc.) or if it cannot be opened, an error is reported and the func
simply returns.

Assuming that the file checks out, its contents are placed in the Text widget. Rather
loading the file by reading each line using a function likefgets() , we allocate enough
space to contain the entire file and read it all in with one call tofread() . The text is then
loaded into the Text widget usingXmTextSetString() . The ScrollBars are updated
automatically and the text is positioned so that the beginning of the file is displayed.

Line Wrapping and ScrollBar Placement

In file_browser.c, the ScrolledText object has two ScrollBars that are install
automatically. The vertical ScrollBar is needed in case the text exceeds 12 lines
horizontal ScrollBar is needed in case any of those lines are wider than 70 columns.
users are accustomed to having Text windows be a fixed width (typically 80 colum
especially if they have ever used an ASCII terminal. However, it can be annoying to h
text that is scrollable in the horizontal direction, since you need to see the entire line to
smoothly through a page of text.

TheXmNscrollHorizontal resource controls whether or not a horizontal ScrollBar
displayed. If the resource is set toFalse , the ScrollBar is not displayed, but that does n
stop text from being displayed beyond the visible area. In order to have text w
appropriately, theXmNwordWrapresource must be set toTrue . When this resource is set,
the Text widget breaks lines at spaces, tabs, and newlines. While line breaking is fin
previewing files and other output-only Text widgets, you should not enforce such a po
for Text widgets that are used for text editing, as the user may want to edit wide files

The XmNscrollVertical resource controls whether or not a vertical ScrollBar
displayed. This resource defaults toTrue when a Text widget is created as a child of
ScrolledWindow. TheXmNscrollLeftSide and XmNscrollTopSide resources take
Boolean values that control the location of the ScrollBars within the ScrolledWindow.
default,XmNscrollTopSide is set toFalse , which causes the ScrollBar to be place
below the ScrolledWindow. The default value ofXmNscrollLeftSide depends upon the
value ofXmNstringDirection . These two resources should not be set by the applicati
but left to users to specify themselves.
Motif Programming Manual 545

Chapter 18: Text Widgets

t
ext

idget

of the
s are

r user-
dited.
ion.
get to
tly

the

acters.
14.
f the
ursor,

g

get

e
tion
es

ration.
s the
Automatic Resizing

TheXmNresizeWidth andXmNresizeHeight resources control whether or not a Tex
widget should resize itself vertically or horizontally in order to display the entire t
stream. Both of the resources default toFalse . If XmNresizeWidth is set toTrue and
new text is added such that the number of columns needs to grow, the width of the w
grows to contain the new text. Similarly, ifXmNresizeHeight is set toTrue and the
number of lines increases, the height of the widget increases so that it can display all
lines. These resources have no effect in a ScrolledText object, since the ScrollBar
managing the widget’s size. Also, if line breaking is active,XmNresizeWidth has no
effect.

In most cases, it is not appropriate to set these resources, as it is regarded as poo
interface design to have a Text widget that dynamically resizes as the text is being e
It is also impolite for a window to resize itself except as the result of an explicit user act
One example of an acceptable use of these resources involves using a Text wid
display text for a help dialog. In this situation, the Text widget can resize itself silen
before it is mapped to the screen, so that by the time it is visible, its size is constant.

Text Positions
A position in a Text widget specifies the number of characters from the beginning of
text in the widget, where the first character position is defined as zero (0). All whitespace
and newline characters are considered part of the text and are counted as single char
For example, in Figure 18-3, the insertion cursor in the TextField widget is at position
When the user types in a Text widget, the new text is always added at the position o
insertion cursor and the insertion cursor is advanced. If the user does not move the c
it is always positioned at the end of the text in the widget.

You can set the position of the insertion cursor explicitly usin
XmTextSetInsertionPosition() , which takes the following form:

void XmTextSetInsertionPosition (Widget text_w, XmTextPosition position)

This function is identical toXmTextSetCursorPosition() . The XmTextPosition
type is along value, so it can represent all of the positions in a Text widget.You can
the current cursor position usingXmTextGetInsertionPosition() or
XmTextGetCursorPosition() . As with most of the Text widget functions, there ar
corresponding TextField functions for setting and getting the position of the inser
cursor. The TextField routines only work with TextField widgets, while the Text routin
work with both Text and TextField widgets.

Example 18-3 shows an application that uses these routines as part of a search ope
The program searches the Text widget for a specified pattern and then position
insertion cursor so that the pattern is displayed.*
546 Motif Programming Manual

Chapter 18: Text Widgets
Example 18-3. The search_text.c program

/* search_text.c -- demonstrate how to position a cursor at a
** particular location. The position is determined by a pattern
** match search.
*/

#include <Xm/Text.h>
#include <Xm/TextF.h>
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <X11/Xos.h>

/* for the index() function */
Widget text_w, search_w, text_output;

main (int argc, char *argv[])
{

Widget toplevel, rowcol_v, rowcol_h, label_w;
XtAppContext app;
int i, n;
void search_text(Widget, XtPointer, XtPointer);
Arg args[10];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

rowcol_v = XmCreateRowColumn (toplevel, "rowcol_v", NULL, 0);
XtSetArg (args[0], XmNorientation, XmHORIZONTAL);
rowcol_h = XmCreateRowColumn (rowcol_v, "rowcol_h", args, 1);
label_w = XmCreateLabelGadget (rowcol_h, "Search Pattern:", NULL, 0);
XtManageChild (label_w);
search_w = XmCreateTextField (rowcol_h, "search_text", NULL, 0);
XtManageChild (search_w);
XtManageChild (rowcol_h);

n = 0;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
XtSetArg (args[n], XmNhighlightThickness, 0); n++;
text_output = XmCreateText (rowcol_v, "text_output", args, n);
XtManageChild (text_output);

n = 0;
XtSetArg (args[n], XmNrows, 10); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNscrollHorizontal, False); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 547

Chapter 18: Text Widgets
text_w = XmCreateScrolledText (rowcol_v, "text_w", args, n);
XtManageChild (text_w);

XtAddCallback (search_w, XmNactivateCallback, search_text, NULL);

XtManageChild (rowcol_v);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* search_text() -- called when the user activates the TextField. */
void search_text (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *search_pat, *p, *string, buf[32];
XmTextPosition pos;
int len;
Boolean found = False;

/* get the text that is about to be searched */
if (!(string = XmTextGetString (text_w)) || !*string) {

XmTextSetString (text_output, "No text to search.");
XtFree (string); /* may have been ""; free it */
return;

}
/* get the pattern we're going to search for in the text. */
if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {

XmTextSetString (text_output, "Specify a search pattern.");
XtFree (string); /* this we know is a string; free it */
XtFree (search_pat); /* this may be "", XtFree() checks.. */
return;

}
len = strlen (search_pat);
/* start searching at current cursor position + 1 to find
** the -next- occurrence of string. we may be sitting on it.
*/
pos = XmTextGetCursorPosition (text_w);

for (p = &string[pos+1]; p = index (p, *search_pat); p++)
if (!strncmp (p, search_pat, len)) {

found = True;
break;

}

if (!found) {/* didn't find pattern? */
/* search from beginning till we've passed "pos" */
for (p = string;

(p = index (p, *search_pat)) && p - string <= pos;
p++)
if (!strncmp (p, search_pat, len)) {

found = True;
break;

}
}

548 Motif Programming Manual

Chapter 18: Text Widgets

18-4.

eed
pe a
e
rrent
ttern,
ttern
point

us
me
is
if (!found)
XmTextSetString (text_output, "Pattern not found.");

else {
pos = (XmTextPosition) (p - string);
sprintf (buf, "Pattern found at position %ld.", pos);
XmTextSetString (text_output, buf);
XmTextSetInsertionPosition (text_w, pos);

}

XtFree (string);
XtFree (search_pat);

}

In this example, the user can search for strings in a ScrolledText, as shown in Figure

This program doesn’t provide a way to load a file, so if you want to experiment, you n
to type or paste some text into the widget. Once there is some text in the widget, ty
string pattern in theSearch PatternTextField widget and press RETURN to activate th
search. The text is searched starting at the position immediately following the cu
cursor position. If the search routine reaches the end of the text before it finds the pa
it resumes searching from the beginning of the text and continues until it finds the pa
or reaches the cursor position. If the routine finds the pattern, it moves the insertion
to that location usingXmTextSetInsertionPosition() . Otherwise, the routine prints
an error message and does not move the cursor.

The search_text() routine shown in Example 18-3 searches the text using vario
string routines. However, in Motif, there is a Text routine that provides the sa
functionality.XmTextFindString() searches a Text widget for a specified string. Th
routine takes the following form:

Boolean XmTextFindString (Widget text_w ,
XmTextPosition start ,
char * string ,
XmTextDirection direction ,
XmTextPosition * position)

Figure 18-4: Output of the search_text program
Motif Programming Manual 549

Chapter 18: Text Widgets

r can

e

e

ser
point

for a
ake
e

or is
e
nd
the

the

ved
g

ile
child

xt.

ent a
sy by
The start argument specifies the starting position for the search, whiledirection
indicates whether the routine searches forward or backward in the text. This paramete
have the valueXmTEXT_FORWARDor XmTEXT_BACKWARD. The routine returnsTrue if it
finds the string, and in this case, theposition parameter returns the position where th
string starts in the text. If the string is not found, the routine returnsFalse , and the value
of position is undefined. It is easy to rewritesearch_text() to take advantage of
XmTextFindString() . In Section 18.4, we implement a full text editor and us
XmTextFindString() to handle the various search operations.

The text_output widget in search_text.cis also a Text widget, even though it looks
more like a Label widget. By settingXmNshadowThickness to 0 andXmNeditable to
False , we create the Text widget that doesn’t look like a normal Text widget, and the u
cannot edit the text. We demonstrate this technique not to advocate such usage, but to
out the versatility of this widget class.

If you paste a large amount of text into the main Text widget and search repeatedly
common pattern, you should notice that the Text widget may scroll automatically to m
the specified text visible. This action is controlled by th
XmNautoShowCursorPosition resource. This resource has a default value ofTrue ,
which means that the Text widget adjusts the visible text to make sure that the curs
always visible. When the resource is set toFalse , the widget does not scroll to compensat
for the cursor’s invisibility. This resource also works in single-line Text widgets a
TextField widgets; these widgets may scroll their displays horizontally to display
insertion cursor.

It is easy to scroll a Text widget to a particular position in the text stream by setting
cursor position and then callingXmTextShowPosition() . This routine takes the
following form:

void XmTextShowPosition (Widget text_w , XmTextPosition position)

To scroll to the end of the text, you need to scroll to the last position, which can be retrie
usingXmTextGetLastPosition() . It is also possible to perform relative scrolling usin
the functionXmTextScroll() , which takes the following form:

void XmTextScroll (Widget text_w , int lines)

A positive value forlines causes a Text widget to scroll upward by that many lines, wh
a negative value causes downward scrolling. The Text widget does not have to be a
of ScrolledWindow for this routine to work; the widget simply adjusts the viewable te

Now that we have a routine that searches for text, the next logical step is to implem
function that performs a search-and-replace operation. Motif makes this task fairly ea
providing theXmTextReplace() routine, which takes the following form:

void XmTextReplace (Widget text_w ,
XmTextPosition from_pos ,
XmTextPosition to_pos ,
550 Motif Programming Manual

Chapter 18: Text Widgets

tion

s
all

add a
tine
char * value)

This function identifies the text to be replaced in the Text widget starting at the posi
from_pos and ending at, but not including, the positionto_pos . This text is replaced by
the text invalue . If value is NULLor an empty string, the text between the two position
is simply deleted. If you want to remove all of the text from the widget, c
XmTextSetString() with aNULL string as the text value.

To add search-and-replace functionality to the program in Example 18-3, we need to
new TextField widget that prompts for the replacement text and provide a callback rou
for the widget. Example 18-4 shows the additional code that is necessary.

Example 18-4. The search_and_replace() function

Widget text_w, search_w, replace_w, text_output;

main (int argc, char *argv[])
{

...
replace_w = XmCreateTextField (rowcol_h, "replace_text", NULL, 0);
XtManageChild (replace_w);
XtAddCallback (replace_w, XmNactivateCallback,

search_and_replace, NULL);
...

}

void search_and_replace (Widget widget, XtPointer client_data,
XtPointer call_data)

{
char *search_pat, *p, *string, *new_pat, buf[32];
XmTextPosition pos;
int search_len, pattern_len;
int nfound = 0;

string = XmTextGetString (text_w);
if (!*string) {

XmTextSetString (text_output, "No text to search.");
XtFree (string);
return;

}
search_pat = XmTextGetString (search_w);
if (!*search_pat) {

XmTextSetString (text_output, "Specify a search pattern.");
XtFree (string);
XtFree (search_pat);
return;

}
new_pat = XmTextGetString (replace_w);
search_len = strlen (search_pat);
pattern_len = strlen (new_pat);

/* start at beginning and search entire Text widget */
for (p = string; p = index (p, *search_pat); p++)
Motif Programming Manual 551

Chapter 18: Text Widgets

of the
ove

each

in

the
t,
idget

laying
status
ctions
w of

ited

s.
the

user
if (!strncmp (p, search_pat, search_len)) {
nfound++;
/* get the position where pattern was found */
pos = (XmTextPosition) (p-string);
/* replace the text from our position + strlen (new_pat) */
XmTextReplace (text_w, pos, pos + search_len, new_pat);
/* "string" has changed -- we must get the new version */
XtFree (string); /* free the one we had first... */
string = XmTextGetString (text_w);
/* continue search for next pattern -after- replacement */
p = &string[pos + pattern_len];

}

if (!nfound)
strcpy (buf, "Pattern not found.");

else
sprintf (buf, "Made %d replacements.", nfound);

XmTextSetString (text_output, buf);
XtFree (string);
XtFree (search_pat);
XtFree (new_pat);

}

In this routine, the pattern search starts at the beginning of the text and searches all
text in the widget. We are not interested in the cursor position and do not attempt to m
it. The main loop of the function only needs to find the specified pattern and replace
occurrence with the new text. After each call toXmTextReplace() , we reread the text,
since the old value is no longer valid. As with thesearch_text() routine, we could
easily useXmTextFindString() to search for the pattern, as we do in the text editor
Section 18.4.

Output-only Text
The Text and TextField widgets can be used in an output-only mode by setting
XmNeditable resource toFalse . If the user tries to edit the text in a read-only widge
the widget beeps and does not allow the modification. We used an output-only Text w
in our file browsing application.

Our next example addresses a common need for many developers: a method for disp
text messages while an application is running. These messages may include
messages about application actions, as well as error messages from Xlib, Xt, and fun
internal to the application. The message area is an important part of the main windo
many applications, as discussed in Chapter 4,The Main Window. While a message area can
be implemented using a Label widget, an output-only ScrolledText object is better su
for use as a message area because the user can scroll back to previous messages.

Example 18-5 shows thewprint() function that we wrote to handle displaying message
The function acts likeprintf() in that it takes variable arguments and understands
standard string formatting characters. The output goes to a ScrolledText widget so the
552 Motif Programming Manual

Chapter 18: Text Widgets

o it is
play.

,

can review previous messages. All new text is appended to the end of the output, s
immediately visible and the user does not have to manually scroll to the end of the dis

Example 18-5. The wprint() function

#include <stdio.h>
#include <stdargs.h> /* or <varargs.h> */

/* global variable */
Widget text_output;

main (int argc, char *argv[])
{

Arg args[10];
int n;
....
/* Create output_text as a ScrolledText window */
n = 0;
XtSetArg (args[n], XmNrows, 6); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
XtSetArg (args[n], XmNscrollHorizontal, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
text_output = XmCreateScrolledText (rowcol, "text_output", args, n);
XtManageChild (text_output);
....

}

/*PRINTFLIKE1*/
void wprint (const char *fmt, ...)
{

char msgbuf[256];
static XmTextPosition wpr_position;
va_list data;

va_start (data, fmt);
(void) vsprintf (msgbuf, fmt, data);
va_end (args);

XmTextInsert (text_output, wpr_position, msgbuf);
wpr_position = wpr_position + strlen (msgbuf);
XtVaSetValues (text_output, XmNcursorPosition, wpr_position, NULL);
XmTextShowPosition (text_output, wpr_position);

}

Since thewprint() function acts likeprintf() , it takes a variable-length argument list
which requires the inclusion of either <varargs.h> or <stdarg.h>. vsprintf() is a varargs
version ofsprintf() that exists on most modern UNIX machines.*If your machine does

* System V hasvsprintf() , as does SunOS, but older Ultrix and BSD machines may use_doprnt() .
Motif Programming Manual 553

Chapter 18: Text Widgets

r
using
list

utine

all
is
as a
new

g
n to
not havevsprintf() , you can use_doprnt() : consult your system documentation fo
details if you do not have the standard C varargs package available. Whether
vsprintf () or _doprnt (), both of these functions consume all of the arguments in the
and leave the result inmsgbuf .

Now that we have the complete string inmsgbuf , we can append it to the existing text in
the Text widget. We keep track of the end oftext_output with wpr_position . Each
time msgbuf is concatenated to the end of the text, the value ofwpr_position is
incremented appropriately. The new text is added using the convenience ro
XmTextInsert() , which takes the following form:

void XmTextInsert (Widget text_w , XmTextPosition position , char * string)

The function simply inserts the given text at the specified position. Finally, we c
XmTextShowPosition() to make the end position visible within the Text widget. Th
routine may cause the Text widget to adjust its text so that the new text is visible,
convenience to the user so that he does not have to scroll the window to view
messages.

The routines in Example 18-6 show howwprint() can be used to reset the error handlin
functions for Xlib and Xt so that the messages are printed in a Text widget rather tha
stderr .

Example 18-6. The x_error() and xt_error() routines

extern void wprint(const char *fmt, ...);
static void x_error (Display *dpy, XErrorEvent *err_event)
{

char buf[256];
XGetErrorText (dpy, err_event->error_code, buf, (sizeof buf));
wprint ("X Error: <%s>\n", buf);

}

static void xt_error (char *message)
{

 wprint ("Xt Error: %s\n", message);
}

main (int argc, char *argv[])
{

XtAppContext app;
...
/* catch Xt errors */
 XtAppSetErrorHandler (app, xt_error);
XtAppSetWarningHandler (app, xt_error);
/* and Xlib errors */
XSetErrorHandler (x_error);
...

}

554 Motif Programming Manual

Chapter 18: Text Widgets

gh
he

port
dard
ows
rks,
s
s can
and

data

first
dered
can

g the
, and
lity
ary
data

ch as
nes.
ween
d only

tes a
et.
Using the functionsXtAppSetErrorHandler() , XtAppSetWarningHandler() , and
XSetErrorHandler() , we send all X-related error messages to a Text widget throu
wprint() . You can also usewprint() to send any application-specific messages to t
ScrolledText area.

Text Clipboard Functions
Both the Text widget and the TextField widget have convenience routines that sup
communication with the clipboard. Using these functions, you can implement the stan
cut, copy, and paste functionality, as well as support communication with other wind
or applications on the desktop. If you are not familiar with the clipboard and how it wo
see Chapter 21,The Clipboard. Briefly, the clipboard is one of three transient location
where arbitrary data such as text can be stored so that other windows or application
copy the data. For the Text widget, we are only interested in copying textual data
providing visual feedback within the widget. The Text widget can send and receive
from all three of the locations, depending on the interface style that you are using.

As described earlier in this chapter, the user typically selects text by pressing the
mouse button and dragging the pointer across the text. When text is selected, it is ren
in reverse video and automatically copied into the primary selection. Now the user
paste text from the primary selection into any Text widget on the desktop by pressin
middle mouse button. The insertion cursor is moved to the location of the button press
the data is automatically copied into the Text widget at this position. This functiona
works by default within the Text widget. However, the actions operate on the prim
selection, not the clipboard selection. Furthermore, the actions only allow you to copy
to and from the selection, not cut it or clear it.

To provide these features, most applications provide other user-interface controls, su
a PulldownMenu and appropriate menu items, that call Text widget clipboard routi
These routines store text on the clipboard. They also allow the user to move text bet
the clipboard and the primary selection, as well as between windows that are intereste
in the clipboard selection. Typical menu entries includeCut, Copy, Paste, and Clear.
Example 18-7 demonstrates these common editing actions. The application crea
MenuBar with anEditPulldownMenu that contains actions that operate on the Text widg
*

Example 18-7. The cut_paste.c program

/* cut_paste.c -- demonstrate the text functions that handle
** clipboard operations. These functions are convenience routines
** that relieve the programmer of the need to use clipboard functions.
** The functionality of these routines already exists in the Text

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 555

Chapter 18: Text Widgets
** widget, yet it is common to place such features in the interface
** via the MenuBar's "Edit" pulldown menu.
*/

#include <Xm/Text.h>
#include <Xm/LabelG.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>
#include <Xm/MainW.h>

Widget text_w, text_output;

main (int argc, char *argv[])
{

Widget toplevel, main_w, menubar, rowcol_v;
XtAppContext app;
void cut_paste(Widget, XtPointer, XtPointer);
XmString label, cut, clear, copy, paste;
Arg args[10];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
main_w = XmCreateMainWindow (toplevel, "main_w", NULL, 0);
/* Create a simple MenuBar that contains a single menu */
label = XmStringCreateLocalized ("Edit");
menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",

XmVaCASCADEBUTTON, label, 'E', NULL);
XmStringFree (label);
cut = XmStringCreateLocalized ("Cut");
/* create a simple */
copy = XmStringCreateLocalized ("Copy");
/* pulldown menu that */
clear = XmStringCreateLocalized ("Clear");
/* has these menu */
paste = XmStringCreateLocalized ("Paste");
/* items in it. */
XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 0, cut_paste,

XmVaPUSHBUTTON, cut, 't', NULL, NULL,
XmVaPUSHBUTTON, copy, 'C', NULL, NULL,
XmVaPUSHBUTTON, paste, 'P', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, 'l', NULL, NULL,
NULL);

XmStringFree (cut);
XmStringFree (clear);
XmStringFree (copy);
XmStringFree (paste);
XtManageChild (menubar);

/* create a standard vertical RowColumn... */
rowcol_v = XmCreateRowColumn (main_w, "rowcol_v", NULL, 0);
556 Motif Programming Manual

Chapter 18: Text Widgets

The
tines,
n = 0;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNshadowThickness, False); n++;
XtSetArg (args[n], XmNhighlightThickness, 0); n++;
text_output = XmCreateText (rowcol_v, "text_output", args, n);
XtManageChild (text_output);

n = 0;
XtSetArg (args[n], XmNrows, 10); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNscrollHorizontal, False); n++;
XtSetArg (args[n], XmNwordWrap, True); n++;
text_w = XmCreateScrolledText (rowcol_v, "text_w", args, n);
XtManageChild (text_w);

XtManageChild (rowcol_v);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* cut_paste() -- the callback routine for the items in the edit menu */
void cut_paste (Widget widget, XtPointer client_data, XtPointer call_data)
{

Boolean result = True;
int reason = (int) client_data;
XEvent *event = ((XmPushButtonCallbackStruct *) call_data)->event;
Time when;

XmTextSetString (text_output, NULL); /* clear message area */
if (event != NULL) {

switch (event->type) {
case ButtonRelease : when = event->xbutton.time; break;
case KeyRelease : when = event->xkey.time; break;
default : when = CurrentTime; break;

}
}
switch (reason) {

case 0 : result = XmTextCut (text_w, when); break;
case 1 : result = XmTextCopy (text_w, when); break;
case 2 : result = XmTextPaste (text_w); /* FALLTHROUGH */
case 3 : XmTextClearSelection (text_w, when); break;

}
if (result == False)

XmTextSetString (text_output, "There is no selection.");
else

XmTextSetString (text_output, NULL)
}

The application creates a MainWindow widget, so that it can contain the MenuBar.
MenuBar and the PulldownMenu are created using their respective convenience rou
Motif Programming Manual 557

Chapter 18: Text Widgets

eri-
pre-
e

the

ard.

oard

oth

with

tion
aced

pro-
apter
as described in Chapter 4,The Main Window, and Chapter 16,Interacting with the Window
Manager. The output of the program is shown in Figure 18-5.

Again, you need to enter some text or paste it from another window if you want to exp
ment with this application. The main window contains the same Text widgets used in
vious examples. TheEdit PulldownMenu allows the user to interact with the clipboard. Th
cut_paste() routine is the callback function for all of the menu items in theEdit menu.
This function uses four Text routines to work with the clipboard:XmTextCut() , XmText-
Copy() , XmTextPaste(), and XmTextClearSelection() . These routines take the
following form:

Boolean XmTextCut (Widget text_w , Time time)
Boolean XmTextCopy (Widget text_w , Time time)
Boolean XmTextPaste (Widget text_w)
void XmTextClearSelection (Widget text_w , Time time)

XmTextCopy() copies the text that is selected in the Text widget and places it on
clipboard.XmTextCut() is similar toXmTextCopy() , except that the Text widget that
owns the selection is instructed to delete the text once it has been copied to the clipbo*

The time parameters should not be set toCurrentTime to avoid race conditions with
other clipboard operations that may be occurring at the same time. Since the clipb
routines are called by menu item callback routines, you can use thetime field of the
XEvent that is passed in the callback structure, as we do in Example 18-7. B
XmTextCopy() andXmTextCut() returnTrue if the operation succeeds.False may be
returned if there is no selected text or an error occurs in attempting to communicate
the clipboard.

XmTextPaste() gets the current selection from the clipboard and inserts it at the loca
of the insertion cursor. If there is some selected text in the Text widget, that text is repl

* The deletion is handled by sending a DELETE protocol request to the window holding the selection. This
tocol is not the same as the WM_DELETE protocol, which indicates that a window is being deleted. See Ch
20, Interacting with the Window Manager, for more information on window manager protocols.

Figure 18-5: Output of the cut_paste program
558 Motif Programming Manual

Chapter 18: Text Widgets

no
n any

t,

freed

a

nks
by the selection from the clipboard.XmTextPaste() returnsTrue if there is a selection
on the clipboard that can be retrieved.

XmTextClearSelection() deselects the text selection in the Text widget. If there is
selected text, nothing happens. The routine does not provide any feedback or retur
value. Any text that is held on the clipboard or in a selection property remains.

One additional convenience routine that operates on the selection isXmTextRemove() .
This function is likeXmTextCut() , in that it removes the selected text from a Text widge
but it does not place the text on the clipboard.

Getting the Selection
You can get the selected text from a Text widget usingXmTextGetSelection() , which
takes the following form:

char *XmTextGetSelection (Widget text_w)

This routine returns allocated data that contains the selected text. This text must be
usingXtFree() when you are through using it. The routine returnsNULLif there is no text
selected in the Text widget.

XmTextGetSelectionPosition() provides information about the selected text in
Text widget. This routine takes the following form:

Boolean XmTextGetSelectionPosition (Widget text_w ,
XmTextPosition * left,
XmTextPosition * right)

If XmTextGetSelectionPosition() returnsTrue , the values forleft and right
specify the boundaries of the selected text. If the routine returnsFalse , the widget does
not contain any selected text, and the values forleft andright are undefined.

Modifying the Selection Mechanisms
The Text widget supports multi-clicking techniques for selecting increasingly large chu
of text. The default multi-clicking actions in the Text widget are shown in Table 18-1.

These default actions can be modified using theXmNselectionArray and
XmNselectionArrayCount resources. TheXmNselectionArray resource specifies an

Table 1-1. Default Selection Actions for Multiple Clicks

User Action Text Widget Action

Single click Resets insertion cursor to position

Double click Selects a word (bounded by whitespace)

Triple click Selects a line (bounded by newlines)

Quadruple click Selects all of the text
Motif Programming Manual 559

Chapter 18: Text Widgets

the

user.

the
r all
sing

d-
e the

ot to
rmine
large

er of
d from

mple
ditor
array of XmTextScanType values, whereXmTextScanType is an enumerated type
defined as follows:

typedef enum {
XmSELECT_POSITION, XmSELECT_WHITESPACE,* XmSELECT_WORD, XmSELECT_LINE,
XmSELECT_PARAGRAPH, XmSELECT_ALL

} XmTextScanType;

Each successive button click in a Text widget selects the text according to
corresponding item in the array. The default array is defined as follows:

static XmTextScanType sarray[] = {
XmSELECT_POSITION, XmSELECT_WORD, XmSELECT_LINE, XmSELECT_ALL

};

You should keep the items in the array in ascending order, so as not to confuse the
The following code fragment shows an acceptable change to the array:

static XmTextScanType sarray[] = {
XmSELECT_POSITION, XmSELECT_WORD, XmSELECT_LINE,
XmSELECT_PARAGRAPH, XmSELECT_ALL

};
...
XtVaSetValues (text_w, XmNselectionArray, selectionArray,

XmNselectionArrayCount, 5, NULL);

The maximum time interval between button clicks in a multi-click action is specified by
multiClickTime resource. This resource is maintained by the X server and set fo
applications; it is not a Motif resource. The value of the resource can be retrieved u
XtGetMultiClickTime() and changed withXtSetMultiClickTime() . For more
discussion on this value, see Chapter 12,Labels and Buttons.

The XmNselectThreshold resource can be used to modify the behavior of click-an
drag actions. This resource specifies the number of pixels that the user must mov
pointer before a character can be selected. The default value is5, which means that the user
must move the mouse at least 5 pixels before the Text widget decides whether or n
select a character. This threshold is used throughout a selection operation to dete
when characters are added or deleted from the selection. If you are using an extremely
font, you may want to increase the value of this resource to cut down on the numb
calculations that are necessary to determine if a character should be added or delete
the selection.

A Text Editor
Before we describe the Text widget callback routines, we are going to present an exa
that combines all the information covered so far. The example is a full-featured text e

* XmSELECT_WHITESPACE works in the same way asXmSELECT_WORD.
560 Motif Programming Manual

Chapter 18: Text Widgets

f the
m the
e is
built from the examples presented so far in this chapter. You should recognize most o
code in the example; the code that you don’t recognize should be understandable fro
context in which it is used. The output of the program is shown in Figure 18-6; the cod

shown in Example 18-8.*

Example 18-8. The editor.c program

/* editor.c -- create a full-blown Motif editor application complete
** with a menubar, facilities to read and write files, text search
** and replace, clipboard support and so forth.
*/

#include <Xm/Text.h>
#include <Xm/TextF.h>
#include <Xm/LabelG.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/Form.h>
#include <Xm/FileSB.h>
#include <X11/Xos.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

Widget text_edit, search_text, replace_text, text_output;

#define FILE_OPEN 0
#define FILE_SAVE 1
#define FILE_EXIT 2
#define EDIT_CUT 0

* XtVaAppInitialize () is considered deprecated in X11R6.XmStringGetLtoR () is deprecated in Motif 2.0
and later.XmRepTypeInstallTearOffModelConverter () is deprecated in Motif 2.0: the converter is in-
stalled internally.

Figure 18-6: Output of the editor program
Motif Programming Manual 561

Chapter 18: Text Widgets
#define EDIT_COPY 1
#define EDIT_PASTE 2
#define EDIT_CLEAR 3
#define SEARCH_FIND_NEXT 0
#define SEARCH_SHOW_ALL 1
#define SEARCH_REPLACE 2
#define SEARCH_CLEAR 3

main (int argc, char *argv[])
{

XtAppContext app_context;
Widget toplevel, main_window, menubar, form, search_panel,

label_w;
void file_cb(Widget, XtPointer, XtPointer);
void edit_cb(Widget, XtPointer, XtPointer);
void search_cb(Widget, XtPointer, XtPointer);
Arg args[10];
int n = 0;
XmString open, save, exit, exit_acc, file, edit, cut, clear, copy,

paste, search, next, find, replace;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app_context, "Demos", NULL, 0, &argc,

argv, NULL,sessionShellWidgetClass,
NULL);

main_window = XmCreateMainWindow (toplevel, "main_window", NULL, 0);
/* Create a simple MenuBar that contains three menus */
file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
search = XmStringCreateLocalized ("Search");
menubar = XmVaCreateSimpleMenuBar (main_window, "menubar",

XmVaCASCADEBUTTON, file, 'F',
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, search, 'S',
NULL);

XmStringFree (file);
XmStringFree (edit);
XmStringFree (search);

/* First menu is the File menu -- callback is file_cb() */
open = XmStringCreateLocalized ("Open...");
save = XmStringCreateLocalized ("Save...");
exit = XmStringCreateLocalized ("Exit");
exit_acc = XmStringCreateLocalized ("Ctrl+C");
XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaPUSHBUTTON, save, 'S', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, exit, 'x', "Ctrl<Key>c", exit_acc,
NULL);

XmStringFree (open);
XmStringFree (save);
XmStringFree (exit);
562 Motif Programming Manual

Chapter 18: Text Widgets
XmStringFree (exit_acc);

/*...create the "Edit" menu -- callback is edit_cb() */
cut = XmStringCreateLocalized ("Cut");
copy = XmStringCreateLocalized ("Copy");
clear = XmStringCreateLocalized ("Clear");
paste = XmStringCreateLocalized ("Paste");
XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1, edit_cb,

XmVaPUSHBUTTON, cut, 't', NULL, NULL,
XmVaPUSHBUTTON, copy, 'C', NULL, NULL,
XmVaPUSHBUTTON, paste, 'P', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, 'l', NULL, NULL,
NULL);

XmStringFree (cut);
XmStringFree (copy);
XmStringFree (paste);

/* create the "Search" menu -- callback is search_cb() */
next = XmStringCreateLocalized ("Find Next");
find = XmStringCreateLocalized ("Show All");
replace = XmStringCreateLocalized ("Replace Text");
XmVaCreateSimplePulldownMenu (menubar, "search_menu", 2, search_cb,

XmVaPUSHBUTTON, next, 'N', NULL, NULL,
XmVaPUSHBUTTON, find, 'A', NULL, NULL,
XmVaPUSHBUTTON, replace, 'R', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, 'C', NULL, NULL,
NULL);

XmStringFree (next);
XmStringFree (find);
XmStringFree (replace);
XmStringFree (clear);
XtManageChild (menubar);

/* create a form work are */
form = XmCreateForm (main_window, “form", NULL, 0);

/* create horizontal RowColumn inside the form */
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
XtSetArg (args[n], XmNpacking, XmPACK_TIGHT); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
search_panel = XmCreateRowColumn (form, "search_panel", args, n);

/* Create two TextField widgets with Labels... */
label_w = XmCreateLabelGadget (search_panel, "Search Pattern:",

NULL, 0);
XtManageChild (label_w);
search_text = XmCreateTextField (search_panel, "search_text", NULL, 0);
XtManageChild (search_text);
label_w = XmCreateLabelGadget (search_panel, "Replace Pattern:"
Motif Programming Manual 563

Chapter 18: Text Widgets
NULL, 0);
XtManageChild (label_w);
replace_text = XmCreateTextField (search_panel, "replace_text",

NULL, 0);
XtManageChild (replace_text);
XtManageChild (search_panel);

n = 0;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
text_output = XmCreateTextField (form, "text_output", args, n);
XtManageChild (text_output);

n = 0;
XtSetArg (args[n], XmNrows, 10); n++;
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNtopWidget, search_panel); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNbottomWidget, text_output); n++;
text_edit = XmCreateScrolledText (form, "text_edit", args, n);
XtManageChild (text_edit);
XtManageChild (form);
XtManageChild (main_window);
XtRealizeWidget (toplevel);
XtAppMainLoop (app_context);

}

/* file_select_cb() -- callback routine for "OK" button in
** FileSelectionDialogs.
*/
void file_select_cb (Widget dialog, XtPointer client_data,

XtPointer call_data)
{

char buf[256], *filename, *text;
struct stat statb;
long len;
FILE *fp;
int reason = (int) client_data;
XmFileSelectionBoxCallbackStruct *cbs;

cbs = (XmFileSelectionBoxCallbackStruct *) call_data;

if (!(filename = XmStringUnparse (cbs->value, XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT, XmCHARSET_TEXT, NULL, 0,
XmOUTPUT_ALL)))

return; /* must have been an internal error */
564 Motif Programming Manual

Chapter 18: Text Widgets
if (*filename == NULL) {
XtFree (filename);
XBell (XtDisplay (text_edit), 50);
XmTextSetString (text_output, "Choose a file.");
return; /* nothing typed */

}
if (reason == FILE_SAVE) {

if (!(fp = fopen (filename, "w"))) {
perror (filename);
sprintf (buf, "Can't save to %s.", filename);
XmTextSetString (text_output, buf);
XtFree (filename);
return;

}
/* saving -- get text from Text widget... */
text = XmTextGetString (text_edit);
len = XmTextGetLastPosition (text_edit);
/* write it to file (check for error) */
if (fwrite (text, sizeof (char), len, fp) != len)

strcpy (buf, "Warning: did not write entire file!");
else {

/* make sure a newline terminates file */
if (text[len-1] != '\n')

fputc ('\n', fp);
sprintf (buf, "Saved %ld bytes to %s.", len, filename);

}
}
else {/* reason == FILE_OPEN */

/* make sure the file is a regular text file and open it */
if (stat (filename, &statb) == -1 || (statb.st_mode & S_IFMT) !=

S_IFREG || !(fp = fopen (filename, "r"))) {
perror (filename);
sprintf (buf, "Can't read %s.", filename);
XmTextSetString (text_output, buf);
XtFree (filename);
return;

}
/* put the contents of the file in the Text widget by
** allocating enough space for the entire file, reading the
** file into the space, and using XmTextSetString() to show
** the file.
*/
len = statb.st_size;
if (!(text = XtMalloc ((unsigned)(len+1)))) /* +1 for NULL */

sprintf (buf, "%s: XtMalloc (%ld) failed", len, filename);
else {

if (fread (text, sizeof (char), len, fp) != len)
sprintf (buf, "Warning: did not read entire file!");

else
sprintf (buf, "Loaded %ld bytes from %s.", len, filename);

text[len] = 0; /* NULL-terminate */
XmTextSetString (text_edit, text);

}
}

Motif Programming Manual 565

Chapter 18: Text Widgets
XmTextSetString (text_output, buf);
/* purge output message */
/* free all allocated space. */
XtFree (text);
XtFree (filename);
(void) fclose (fp);
XtUnmanageChild (dialog);

}

/* popdown_cb() -- callback routine for "Cancel" button. */
void popdown_cb (Widget w, XtPointer client_data, XtPointer call_data)
{

XtUnmanageChild (w);
}

/* file_cb() -- a menu item from the "File" pulldown menu was selected */
void file_cb (Widget w, XtPointer client_data, XtPointer call_data)
{

static Widget open_dialog, save_dialog;
Widget dialog = NULL;
XmString button, title;
int reason = (int) client_data;

if (reason == FILE_EXIT)
exit (0);

XmTextSetString (text_output, NULL); /* clear message area */

if (reason == FILE_OPEN && open_dialog)
dialog = open_dialog;

else if (reason == FILE_SAVE && save_dialog)
dialog = save_dialog;

if (dialog) {
XtManageChild (dialog);
/* make sure that dialog is raised to top of window stack */
XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));
return;

}
dialog = XmCreateFileSelectionDialog (text_edit, "Files", NULL, 0);
XtAddCallback (dialog, XmNcancelCallback, popdown_cb, NULL);
XtAddCallback (dialog, XmNokCallback, file_select_cb,

(XtPointer) reason);
if (reason == FILE_OPEN) {

button = XmStringCreateLocalized ("Open");
title = XmStringCreateLocalized ("Open File");
open_dialog = dialog;

}
else {/* reason == FILE_SAVE */

button = XmStringCreateLocalized ("Save");
title = XmStringCreateLocalized ("Save File");
save_dialog = dialog;

}
XtVaSetValues (dialog, XmNokLabelString, button, XmNdialogTitle,

title, NULL);
566 Motif Programming Manual

Chapter 18: Text Widgets
XmStringFree (button);
XmStringFree (title);
XtManageChild (dialog);

}

/* search_cb() -- a menu item from the "Search" pulldown menu selected */
void search_cb (Widget w, XtPointer client_data, XtPointer call_data)
{

char *search_pat, *p, *string, *new_pat, buf[256];
XmTextPosition pos = 0;
int len, nfound = 0;
int search_len, pattern_len;
int reason = (int) client_data;
Boolean found = False;

XmTextSetString (text_output, NULL); /* clear message area */
if (reason == SEARCH_CLEAR) {

pos = XmTextGetLastPosition (text_edit);
XmTextSetHighlight (text_edit, 0, pos, XmHIGHLIGHT_NORMAL);
return;

}
if (!(string = XmTextGetString (text_edit)) || !*string) {

XmTextSetString (text_output, "No text to search.");
return;

}
if (!(search_pat = XmTextGetString (search_text)) ||

!*search_pat) {
XmTextSetString (text_output, "Specify a search pattern.");
XtFree (string);
return;

}
new_pat = XmTextGetString (replace_text);
search_len = strlen (search_pat);
pattern_len = strlen (new_pat);

if (reason == SEARCH_FIND_NEXT) {
pos = XmTextGetCursorPosition (text_edit) + 1;
found = XmTextFindString (text_edit, pos, search_pat,

XmTEXT_FORWARD, &pos);

if (!found)
found = XmTextFindString (text_edit, 0, search_pat,

XmTEXT_FORWARD, &pos);
if (found)

nfound++;
}
else {/* reason == SEARCH_SHOW_ALL || reason == SEARCH_REPLACE */

do {
found = XmTextFindString (text_edit, pos, search_pat,

XmTEXT_FORWARD, &pos);
if (found) {

nfound++;
if (reason == SEARCH_SHOW_ALL)

XmTextSetHighlight (text_edit, pos,
Motif Programming Manual 567

Chapter 18: Text Widgets
pos + search_len,
XmHIGHLIGHT_SELECTED);

else
XmTextReplace (text_edit, pos, pos + search_len,

new_pat);
pos++;

}
} while (found);

}

if (nfound == 0)
XmTextSetString (text_output, "Pattern not found.");

else {
switch (reason) {

case SEARCH_FIND_NEXT :
sprintf (buf, "Pattern found at position %ld.", pos);
XmTextSetInsertionPosition (text_edit, pos);
break;

case SEARCH_SHOW_ALL :
sprintf (buf, "Found %d occurrences.", nfound);
break;

case SEARCH_REPLACE :
sprintf (buf, "Made %d replacements.", nfound);

}

XmTextSetString (text_output, buf);
}

XtFree (string);
XtFree (search_pat);
XtFree (new_pat);

}

/* edit_cb() -- the callback routine for the items in the edit menu */
void edit_cb (Widget widget, XtPointer client_data, XtPointer call_data)
{

Boolean result = True;
int reason = (int) client_data;
XEvent *event;
Time when;

event = ((XmPushButtonCallbackStruct *) call_data)->event;

XmTextSetString (text_output, NULL); /* clear message area */
if (event != NULL && reason == EDIT_CUT || reason == EDIT_COPY ||

reason == EDIT_CLEAR) {
switch (event->type) {

case ButtonRelease : when = event->xbutton.time; break;
case KeyRelease : when = event->xkey.time; break;
default : when = CurrentTime; break;

}
}
switch (reason) {

case EDIT_CUT : result = XmTextCut (text_edit, when);
568 Motif Programming Manual

Chapter 18: Text Widgets

otif
text

e that
, we

ext

get.
an
break;
case EDIT_COPY : result = XmTextCopy (text_edit, when);

break;
case EDIT_PASTE : result = XmTextPaste (text_edit);

/* FALLTHROUGH */
case EDIT_CLEAR : XmTextClearSelection (text_edit, when);

break;
}

if (result == False)
XmTextSetString (text_output, "There is no selection.");

}

Text Callbacks
The Text and TextField widgets use callback routines in the same way as other M
widgets. The widgets provide callbacks for a number of different purposes, such as
modification, activation, and selection ownership. Some of the routines, such as thos
monitor keyboard input, may be invoked rather frequently. In the next few sections
introduce several of the callback routines for the widgets.

The Activation Callback
We begin by exploring the callback routine that is most commonly used for single-line T
widgets and TextField widgets. This callback is theXmNactivateCallback , which is
invoked when the user presses RETURN in a TextField widget or a single-line Text wid
The callback is not called for multiline Text widgets. The callback routine for
XmNactivateCallback receives the commonXmAnyCallbackStruct as thecall_
data parameter to the function. The callback reason is alwaysXmCR_ACTIVATE. Example
18-9 shows a callback function for some TextField widgets.*

Example 18-9. The text_box.c program

/* text_box.c -- demonstrate simple use of XmNactivateCallback
** for TextField widgets. Create a rowcolumn that has rows of Form
** widgets, each containing a Label and a Text widget. When
** the user presses Return, print the value of the text widget
** and move the focus to the next text widget.
*/

#include <Xm/TextF.h>
#include <Xm/LabelG.h>
#include <Xm/Form.h>
#include <Xm/RowColumn.h>

char *labels[] = { "Name:", "Address:", "City:", "State:", "Zip:" };

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 569

Chapter 18: Text Widgets
main (int argc, char *argv[])
{

Widget toplevel, text_w, form, rowcol, label_w;
XtAppContext app;
int i;
void print_result(Widget, XtPointer, XtPointer);
Arg args[8];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

for (i = 0; i < XtNumber (labels); i++) {
n = 0;
XtSetArg (args[n], XmNfractionBase, 10); n++;
XtSetArg (args[n], XmNnavigationType, XmNONE); n++;
form = XmCreateForm (rowcol, "form", args, n);

n = 0;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, 3); n++;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_END); n++;
XtSetArg (args[n], XmNnavigationType, XmNONE); n++;
label_w = XmCreateLabelGadget (form, labels[i], args, n);
XtManageChild (label_w);

n = 0;
XtSetArg (args[n], XmNtraversalOn, True); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNleftPosition, 4); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNnavigationType, XmTAB_GROUP); n++;
text_w = XmCreateTextField (form, "text_w", args, n);
XtManageChild (text_w);

/* When user hits return, print the label+value of text_w */
XtAddCallback (text_w, XmNactivateCallback, print_result,

(XtPointer) labels[i]);
XtManageChild (form);

}

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* print_result() -- callback for when the user hits return in the
570 Motif Programming Manual

Chapter 18: Text Widgets

rows
gure

the

we
. See

otif

URN
n
also
o be
lled
** TextField widget.
*/

void print_result (Widget text_w, XtPointer client_data,
XtPointer call_data)
{

char *value = XmTextFieldGetString (text_w);
char *label = (char *) client_data;

printf ("%s %s\n", label, value);
XtFree (value);

XmProcessTraversal (text_w, XmTRAVERSE_NEXT_TAB_GROUP);
}

The program displays a data form using a RowColumn widget that manages several
of Form widgets. Each Form contains a Label and a TextField widget, as shown in Fi
18-7.

When the user enters a value for a field and presses RETURN, theprint_result()
callback routine is invoked. The routine prints the value of the field and advances
keyboard focus to the next widget usingXmProcessTraversal() . This function takes a
widget and a traversal direction as its two parameters. We use theXmTRAVERSE_NEXT_
TAB_GROUPdirection because each TextField widget is a tab group in and of itself, so
need to move to the next tab group, rather than to the next item in the same tab group
Section 8.8 for more information on tab groups.

When a single-line Text widget or a TextField widget is used as part of a predefined M
dialog, theXmNactivateCallback for the widget is automatically hooked up to theOK
button in the dialog. As a result, the same callback is called when the user presses RET
in the widget or when the user selects theOK button. This convenience can confuse a
unsuspecting programmer who may find that his callback is being invoked twice. It is
possible to overestimate what the Motif toolkit is going to do and expect a callback t
invoked when it isn’t. The point is to be sure to verify that these callbacks are getting ca
at the appropriate times. See Chapter 6,Selection Dialogs, for examples of this feature in
SelectionDialogs, PromptDialogs, and CommandDialogs.

Figure 18-7: Output of the text_box program
Motif Programming Manual 571

Chapter 18: Text Widgets

l text
the

ce
ked

ay be

table
rces,
ou

r
ple
Text Modification Callbacks
In this section, we discuss the callback routines that can be used to monitor and contro
modification. Monitoring occurs both when the user types into a Text widget and when
text is changed using a convenience routine such asXmTextInsert() . These callbacks
work for both single-line and multiline Text widgets, as well as TextField widgets. Sin
the text in a widget is modified by each keystroke, the modification callbacks are invo
quite frequently.

There are two callbacks for text modification:XmNmodifyVerifyCallback is called
before the text is modified, andXmNvalueChangedCallback is called after the text has
been changed. Depending on the needs of an application, either or both callbacks m
used on the same widget. You should never callXtVaSetValues() in one of these
callbacks on the widget that is being modified because the state of the widget is uns
during these callbacks. Avoid adding or deleting callbacks or changing resou
especially theXmNvalue resource, in a callback routine. If a recursive loop occurs, y
may get very unpredictable results.

Installing anXmNmodifyVerifyCallback function is useful when you need to monito
or change the user’s input before it actually gets inserted into a Text widget. In Exam
18-10, we demonstrate using this callback to convert text to uppercase.*

Example 18-10. The allcaps.c program

/* allcaps.c -- demonstrate the XmNmodifyVerifyCallback for
** Text widgets by using one to convert all typed input to
** capital letters.
*/

#include <Xm/Text.h>
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <ctype.h>

void allcaps(Widget, XtPointer, XtPointer);

main (int argc, char *argv[])
{

Widget toplevel, text_w, rowcol, label_w;
XtAppContext app;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNorientation, XmHORIZONTAL);

* XtVaAppInitialize() is considered deprecated in X11R6.
572 Motif Programming Manual

Chapter 18: Text Widgets

t, as

The

. The
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, 1);

label_w = XmCreateLabelGadget (rowcol, "Enter Text:", NULL, 0);
XtManageChild (label_w);
text_w = XmCreateText (rowcol, "text_w", NULL, 0);
XtManageChild (text_w);

XtAddCallback (text_w, XmNmodifyVerifyCallback, allcaps, NULL);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* allcaps() -- convert inserted text to capital letters. */
void allcaps (Widget text_w, XtPointer client_data, XtPointer call_data)
{
int len;

XmTextVerifyCallbackStruct *cbs =
(XmTextVerifyCallbackStruct *) call_data;

if (cbs->text->ptr == NULL)
return;

/* convert all input to upper-case if necessary */
for (len = 0; len < cbs->text->length; len++)

if (islower (cbs->text->ptr[len]))
cbs->text->ptr[len] = toupper (cbs->text->ptr[len]);

}

The program creates a RowColumn widget that contains a Label and a Text widge
shown in Figure 18-8.

The Text widget uses theallcaps() routine as itsXmNmodifyVerifyCallback
function. The routine is actually quite simple, but there are a lot of details to examine.
call_data parameter to the function is of typeXmTextVerifyCallbackStruct . This
data structure provides information about the modification that may be done to the text
data structure is defined as follows:

typedef struct {
int reason;
XEvent *event;
Boolean doit;
XmTextPosition currInsert, newInsert;
XmTextPosition startPos, endPos;
XmTextBlock text;

} XmTextVerifyCallbackStruct;

Figure 18-8: Output of the allcaps program
Motif Programming Manual 573

Chapter 18: Text Widgets

the
e

e
on or
d. For

text

o the

e

hen

re
of the

in
nt:

ouse,
use
With an XmNmodifyVerifyCallback , the reason field has the valueXmCR_
MODIFYING_TEXT_VALUE. Theevent field contains theXEvent that caused the callback
to be invoked; this field isNULL if the modification is programmatic, for example, if the
text is changed through a convenience function*. The values forcurrInsert and
newInsert are always the same for a modification callback. These fields specify
location of the insertion cursor, so they are only different for th
XmNmotionVerifyCallback when the user moves the insertion point.

The values forstartPos andendPos indicate the range of text that is affected by th
modification. For insertion, these values are always the same. However, for text deleti
replacement, the values specify the beginning and end of the text about to be delete
example, if the user selects some text and presses the BACKSPACE key, thestartPos
andendPos values indicate the boundaries of the text about to be deleted. We discuss
deletion in detail in an up coming section.

The text field points to a data structure that describes the text about to be added t
widget. The field is a pointer of typeXmTextBlock , which is defined as follows:

typedef struct {
char *ptr;
int length;
XmTextFormat format;

} XmTextBlockRec, *XmTextBlock;

The text being added is accessible throughptr ; it is dynamically allocated using
XtMalloc() for each callback invocation. Theptr field is notNULL-terminated, so you
should not usestrlen() or strcpy() to copy the data. The length is stored in th
length field, so if you want to copy the text, you should usestrncpy() . If the user is
deleting text,length is 0. While ptr should also beNULL in this case, the field isn’t
always set this way, so you shouldn’t rely on it. Theformat field specifies the width of
the text characters and can have the valueFMT8BIT or FMT16BIT.

Let’s review the simple case of adding new text, as demonstrated in Example 18-10. W
new text is inserted into the Text widget, the values forcurrInsert , newInsert ,
startPos , andendPos all have the same value, which is the position in the widget whe
the new text will be added. Since the new text has not yet been added to the value
widget, the application can change the value ofptr in the text block. In theallcaps()
routine, we modify the input to be all capital letters by looping through the valid bytes
theptr field of the text block that is going to be added, as shown in the following fragme

for (len = 0; len < cbs->text->length; len++)
if (islower (cbs->text->ptr[len]))

cbs->text->ptr[len] = toupper (cbs->text->ptr[len]);

* There is a persistent bug in the toolkit such that if the user pastes characters into a Text widget using the m
the event field is alsoNULL. It is therefore not possible to differentiate between a programmatic and mo
change of the Text contents by inspecting only the information contained within the callback data.
574 Motif Programming Manual

Chapter 18: Text Widgets

der
get,
nt
s.

by a
vent
is to

et to

vide
ndent
of

ation
ture.
this

ents

e
user
The islower() andtoupper() macros are found in the <ctype.h> header file.

Sinceallcaps() is called each time new text is added to the widget, you might won
how length can ever be more than one. If the user pastes a block of text into the wid
the entire block is added at once, soptr points to that text, and length specifies the amou
of text. Our loop handles both single-character typing and text-block paste operation

Preventing Text Modification

Example 18-10 demonstrates how an application can modify the text that is entered
user before it is displayed. An application may also want to filter the new text and pre
certain characters from being inserted. The easiest way to prevent a text modification
set the doit field in the XmTextVerifyCallbackStruct to False . When the
modification callback routine returns, the Text widget checks this field. If it has been s
False , the widget discards the new text, and the widget is left unmodified.

When a text modification is vetoed, the Text widget can sound the console bell to pro
audio feedback informing the user that the input has been rejected. This action is depe
on the value of theXmNverifyBell resource. The default value is based on the value
theXmNaudibleWarning resource of the VendorShell, so it is set toTrue by default. You
should allow a user to set this resource in a resource file, so he can turn off error notific
if he doesn’t want it. If you hard-code the resource value, users cannot control this fea
You should provide documentation with your application that explains how to set
resource or provide a way to set the value from the application.

Example 18-11 demonstrates a modification callback routine that filters input and prev
certain characters from being entered. Thecheck_zip() routine would be used as the
XmNmodifyVerifyCallback for a Text widget that prompts for a ZIP code. We want th
user to type only digits; all other input should be ignored. We also want to keep the
from typing a string that is longer than five digits.

Example 18-11. The check_zip() routine

/* check_zip() -- limit the user to entering a ZIP code. */
void check_zip (Widget text_w, XtPointer client_data,

XtPointer call_data)
{

XmTextVerifyCallbackStruct *cbs =
(XmTextVerifyCallbackStruct *) call_data;

int len = XmTextGetLastPosition (text_w);

if (cbs->startPos < cbs->currInsert) /* backspace */
return;

if (len == 5) {
cbs->doit = False;
return;

}

Motif Programming Manual 575

Chapter 18: Text Widgets

se
ince
call
e

e not
ne
and

lock

e
the
a

a text
the
ask
/* check that the new additions won’t put us over 5 */
if (len + cbs->text->length > 5) {

cbs->text->ptr[5 - len] = 0;
cbs->text->length = strlen (cbs->text->ptr);

}

for (len = 0; len < cbs->text->length; len++) {
/* make sure all additions are digits. */
if (!isdigit (cbs->text->ptr[len])) {

/* not a digit-- move all chars down one and
** decrement cbs->text->length.
*/
int i;

for (i = len; (i+1) < cbs->text->length; i++)
cbs->text->ptr[i] = cbs->text->ptr[i+1];

cbs->text->length--;
len--;

}
}

if (cbs->text->length == 0)
cbs->doit = False;

}

The first thing we do incheck_zip() is to see if the user is backspacing, in which ca
we simply return. If text is not being deleted, then new text is definitely being added. S
the length of the current text is not available in the callback structure, we
XmTextGetLastPosition() to determine it. If the string is already five digits long, w
don’t want to add more digits, so we setdoit to False and return.

Otherwise, we loop through the length of the new text and check for characters that ar
digits. If any exist, we remove them by shifting all of the characters that follow down o
place, overwriting the undesirable character. If we loop through all of the characters
find that none of them are digits, the length ends up being zero, so we setdoit to False .

Handling Text Deletion

A modification callback can determine if the user is backspacing or deleting a large b
of text by checking to see ifstartPos is less thancurrInsert . Alternatively, the routine
could check to see iftext->length is 0. For backspacing, the values differ by one. If th
user selects a large block of text and deletes the selection,
XmNmodifyVerifyCallback is invoked once to delete the text and may be invoked
second time if the user has typed new text to replace the selected text.

Our next example program demonstrates how to process character deletions in
modification callback. Example 18-12 creates a single-line Text widget that prompts
user for a password. We don’t provide any encryption for the password; we simply m
576 Motif Programming Manual

Chapter 18: Text Widgets

s
e the
what the user is typing by displaying an asterisk (*) for each character. The actual text i
stored in a separate internal variable. The challenge for this application is to captur
input text, store it internally, and modify the output, even for backspacing.*

Example 18-12. The password.c program

/* password.c -- prompt for a password. All input looks like
** a series of *’s. Store the actual data typed by the user in
** an internal variable. Don’t allow paste operations. Handle
** backspacing by deleting all text from insertion point to the
** end of text.
*/

#include <Xm/TextF.h>
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <ctype.h>

void check_passwd(Widget, XtPointer, XtPointer);
char *passwd = (char *) 0; /* store user-typed passwd here. */

main (int argc, char *argv[])
{

Widget toplevel, text_w, label_w, rowcol;
XtAppContext app;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNorientation, XmHORIZONTAL);
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, 1);

label_w = XmCreateLabelGadget (rowcol, "Password:", NULL, 0);
XtManageChild (label_w);

text_w = XmCreateTextField (rowcol, "text_w", NULL, 0);
XtManageChild (text_w);

XtAddCallback (text_w, XmNmodifyVerifyCallback, check_passwd, NULL);
XtAddCallback (text_w, XmNactivateCallback, check_passwd, NULL);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* check_passwd() -- handle the input of a password. */
void check_passwd (Widget text_w, XtPointer client_data,

* XtVaAppInitialize() is considered deprecated in X11R6.
Motif Programming Manual 577

Chapter 18: Text Widgets

t the

ine
e
e

XtPointer call_data)
{

char *new;
int len;
XmTextVerifyCallbackStruct *cbs =

(XmTextVerifyCallbackStruct *) call_data;

if (cbs->reason == XmCR_ACTIVATE) {
printf ("Password: %s\n", passwd);
return;

}

if (cbs->startPos < cbs->currInsert) {/* backspace */
cbs->endPos = strlen (passwd); /* delete from here to end */
passwd[cbs->startPos] = 0;
/* backspace--terminate */
return;

}

if (cbs->text->length > 1) {
cbs->doit = False; /* don’t allow "paste" operations */
return; /* make the user *type* the password! */

}

new = XtMalloc (cbs->endPos + 2); /* new char + NULL terminator */

if (passwd) {
strcpy (new, passwd);
XtFree (passwd);

} else
new[0] = NULL;

passwd = new;
strncat (passwd, cbs->text->ptr, cbs->text->length);
passwd[cbs->endPos + cbs->text->length] = 0;

for (len = 0; len < cbs->text->length; len++)
cbs->text->ptr[len] = ’*’;

}

As you can see in Figure 18-9, the Text widget only displays asterisks, no matter wha
user has typed.

We use thecheck_passwd() function for both theXmNactivateCallback and the
XmNmodifyVerifyCallback callbacks. When the user presses RETURN, the rout
prints what has been typed tostdout . If the user is not backspacing through the text, w
know we can add the new text topasswd , which is the internal variable we use to store th

Figure 18-9: Output of the password program
578 Motif Programming Manual

Chapter 18: Text Widgets

annot

d of
licks
acters
t he is

,
inally

e set

ped
US

ash
igits,
from

racter,
ction

using
digits.
text. Once the new text has been copied, we convert it into asterisks, so that the user c
see what has been typed.

We need to handle two different cases for deletion. If the insertion cursor is at the en
the typed string and the user backspaces, we simply allow the action. If the user c
somewhere in the middle of the string and then backspaces, we delete all of the char
from that point in the string to the end, since the user cannot see the characters tha
deleting.

To handle the different forms of text deletion, we test to see ifstartPos is less than
currInsert . SincestartPos andendPos specify the range of text that is being deleted
we can change these values and effectively delete more text than the user orig
intended. By settingendPos to the string length of the internal variablepasswd , we handle
both of the cases that we just described. If we had wanted to, we could also hav
startPos to 0 and deleted all of the text.

Extending Text Modification

We can expand on the ZIP code example that we used for filtering non-digits from ty
input by providing an input field for an area code and phone number. The format for a
phone number is as follows:

123-456-7890

We want to filter out all non-digits for a phone number, but we also want to add the d
character (-) automatically as it is needed. For example, after the user enters three d
the Text widget should automatically insert a dash, so that the next character expected
the user is still a digit. Similarly, when the user backspaces and deletes a dash cha
the widget should delete the preceding digit as well. Table 18-2 shows how the intera
should work.

We can continue to use the same type of algorithm that we used incheck_zip() to filter
digits, and we can use some of the code fromcheck_passwd() to handle backspacing.
The only remaining problem is adding the necessary dash characters. Since we are
US phone numbers, we know that the dashes should occur after the third and seventh

Table 1-2. Phone Number Input Interaction

User Types Text Widget Displays

4 4

1 41

5 415-

4 415-4

BACKSPACE 415-

BACKSPACE 41
Motif Programming Manual 579

Chapter 18: Text Widgets

d

Tex-
Therefore, whencurrInsert is either 2 or 6, the new digit should be added first, followe
by the dash. Example 18-13 shows the program that implements this functionality.*

Example 18-13. The prompt_phone.c program

/* prompt_phone.c -- a complex problem for XmNmodifyVerifyCallback.
** Prompt for a phone number by filtering digits only from input.
** Don’t allow paste operations and handle backspacing.
*/

#include <Xm/Text.h>
#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
#include <ctype.h>

void check_phone(Widget, XtPointer, XtPointer);

main (int argc, char *argv[])
{

Widget toplevel, text_w, label_w, rowcol;
XtAppContext app;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

XtSetArg (args[0], XmNorientation, XmHORIZONTAL);
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, 1);

label_w = XmCreateLabelGadget (rowcol, "Phone Number:", NULL, 0);
XtManageChild (label_w);

text_w = XmCreateText (rowcol, "text_w", NULL, 0);
XtManageChild (text_w);

XtAddCallback (text_w, XmNmodifyVerifyCallback, check_phone, NULL);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* check_phone() -- handle phone number input. */
void check_phone (Widget text_w, XtPointer client_data,

XtPointer call_data)
{

char c;
int len = XmTextGetLastPosition (text_w);
XmTextVerifyCallbackStruct *cbs =

* XtVaAppInitialize () is considered deprecated in X11R6. Note that this program does not work using a
tField: due to a bug, deleting the dash character paints the text contents blank.
580 Motif Programming Manual

Chapter 18: Text Widgets

be to
en
m

the
is

ates

e end
he
n a
his
it is
(XmTextVerifyCallbackStruct *) call_data;

/* no backspacing or typing in the middle of string */
if (cbs->currInsert < len) {

cbs->doit = False;
return;

}

if (cbs->text->length == 0) {/* backspace */
if (cbs->startPos == 3 || cbs->startPos == 7)

cbs->startPos--;
/* delete the hyphen too */

return;
}

if (cbs->text->length > 1) {/* don’t allow clipboard copies */
cbs->doit = False;
return;

}

/* don’t allow non-digits or let the input exceed 12 chars */
if (!isdigit (c = cbs->text->ptr[0]) || len >= 12)

cbs->doit = False;
else if (len == 2 || len == 6) {

cbs->text->ptr = XtRealloc (cbs->text->ptr, 2);
cbs->text->length = 2;
cbs->text->ptr[0] = c;
cbs->text->ptr[1] = ’-’;

}
}

There are a couple of ways that you could think to add the dashes. One way would
use theXmNvalueChangedCallback to keep track of the phone number after it has be
entered and then useXmTextInsert() to add the dashes when appropriate. The proble
with this approach is thatXmTextInsert() activates theXmNmodifyVerifyCallback
function again, so the dash would be subject to the input filtering.

As a result, the only way to handle the situation is to actually add the dashes in
XmNmodifyVerifyCallback routine at the same time the digits are added. Th
approach involves modifying theptr andlength fields of theXmTextBlock structure in
theXmTextVerifyCallbackStruct . Thecheck_phone() routine checks the current
length of the phone number. If it is either two or six characters long, the routine realloc
ptr to hold two characters, adds the dash, and incrementslength to account for the dash.

When the Text widget adds the digit and the dash, it positions the insertion cursor at th
of the new text. Although we haven’t demonstrated its use, t
XmNvalueChangedCallback is useful when you need to keep track of the changes i
Text widget, but you don’t need to monitor or change the input before it is displayed. T
callback is invoked after the text has been modified in any way, which means that
Motif Programming Manual 581

Chapter 18: Text Widgets

d
sible

l of
r the
ation,

n
ouse
text
r or

nction

fied.

r
tion

tion
of the
called for each insertion and deletion. Thecall_data parameter to the routine is of type
XmAnyCallbackStruct ; thereason field is alwaysXmCR_VALUE_CHANGED.

The check_phone() routine is fairly simple, in that it only allows text insertions an
deletions that occur when the insertion cursor is at the end of the text. While it is pos
to handle modifications in the middle of the text, the code quickly becomes a large bow
spaghetti. We do not allow clipboard copies of more than one character at a time fo
same reason. Our routine is sufficient for demonstration purposes, but for a real applic
you should handle these cases.

The Cursor Movement Callback
The XmNmotionVerifyCallback can be used to monitor the position of the insertio
cursor. This callback is invoked when the user moves the location cursor using the m
or the arrow keys, when the user drags the mouse or multi-clicks to extend the
selection, or when the application calls a Text widget function that moves the curso
adds, deletes, or replaces text. However, if the cursor does not move as a result of a fu
being called, the callback is not invoked.TheXmNmotionVerifyCallback allows an
application to intercept and prevent cursor movement.

The XmNmotionVerifyCallback uses theXmTextVerifyCallbackStruct as its
callback structure, just like theXmNmodifyVerifyCallback . However, for motion
callbacks, thereason is XmCR_MOVING_INSERT_CURSORand thestartPos , endPos ,
and text fields are invalid. Thedoit field can be set toFalse to reject requests to
reposition the insertion cursor.

If the cursor motion occurs as a result of a user action, theevent field should point to an
XEvent structure describing the action that caused the cursor position to be modi
When the cursor moves as a result of an application action, the field should be set toNULL.
However, theevent field is currently set toNULL regardless of what caused the curso
motion. This bug makes it impossible to tell the difference between a cursor mo
performed by the user and one caused by the application.

We can use theXmNmotionVerifyCallback to tie up a loose end inprompt_phone.c. To
make the text verification simpler, we don’t want to allow the user to move the inser
cursor except by entering digits or backspacing. Example 18-14 shows a new version
check_phone() routine that prevents cursor movement.

Example 18-14. The new check_phone() routine

main (int argc, char *argv[])
{

Widget text_w;
...
XtAddCallback (text_w, XmNmotionVerifyCallback, check_phone, NULL);
...
582 Motif Programming Manual

Chapter 18: Text Widgets

e
set

t can
the

the
an
}

/* check_phone() -- handle phone number input. */
void check_phone (Widget text_w, XtPointer client_data,

XtPointer call_data)
{

char c;
int len = XmTextGetLastPosition (text_w);
XmTextVerifyCallbackStruct *cbs =

(XmTextVerifyCallbackStruct *) call_data;

if (cbs->reason == XmCR_MOVING_INSERT_CURSOR) {
if (cbs->newInsert != len)

cbs->doit = False;
return;

}

/* no backspacing or typing in the middle of string */
if (cbs->currInsert < len) {

cbs->doit = False;
return;

}
...

}

We check the value ofnewInsert against the length of the current string to determin
whether or not the intended cursor position is at the end of the text string. If it is not, we
doit to False to prevent the cursor movement. TheXmNmotionVerifyCallback
function can also be used to monitor pointer dragging for text selections.

Focus Callbacks
The XmNfocusCallback and XmNlosingFocusCallback callback routines can be
used to monitor when a Text widget gains and loses the keyboard focus. A Text widge
receive the input focus if the user intentionally shifts the focus to the widget or if
application moves the focus usingXmProcessTraversal() . When a widget gains the
input focus and the insertion cursor is not visible, we can make it visible and cause
widget to automatically scroll to the current cursor location by installing
XmNfocusCallback routine that callsXmTextShowCursorPosition() , as shown in
the following code fragment:

{
Widget text_w;
void gain_focus(Widget, XtPointer, XtPointer);
...
text_w = XmCreateScrolledText(...);
XtAddCallback (text_w, XmNfocusCallback, gain_focus, NULL);
...

}

void gain_focus (Widget text_w, XtPointer client_data,
Motif Programming Manual 583

Chapter 18: Text Widgets

et
an

he
lity
n

to get
olkit
using

d

t the
oding
ter set)
tin-1
stern
ese text
cters

while
single
cter set

trings
is

rray
XtPointer call_data)
{

XmTextShowCursorPosition (text_w, XmTextGetCursorPosition (text_w));
}

TheXmNfocusCallback is passed a callback structure of typeXmAnyCallbackStruct
with the callback reason set toXmCR_FOCUS.

TheXmNlosingFocusCallback callback can be used to monitor when the Text widg
loses its focus. The callback structure passed to the callback function is
XmTextVerifyCallbackStruct . All of the fields except thetext field are valid, and
thereason field is set toXmCR_LOSING_FOCUS.

Text Widget Internationalization
In Motif, the Text and TextField widgets support internationalized input and output. T
internationalization capabilities of the widgets are layered on top of the functiona
originally provided in X11R5, which is based on the ANSI-C locale model. A
internationalized application uses a library that reads a locale database at runtime
information about the user’s language environment. An application that uses the X To
establishes its language environment (or locale) by registering a language procedure
XtSetLanguageProc() , as explained in Section 2.3.2. See Volume 4,X Toolkit
Intrinsics Programming Manualfor more information on the localization of an Xt-base
application.

Text Representation
One of the important characteristics of a locale is the encoding used to represen
character set for the locale. A character set is simply a set of characters, while an enc
is a numeric representation of these characters. A charset (not the same as a charac
is an encoding in which all of the characters use the same number of bits. The La
charset (ISO8859-1) defines an encoding for all of the characters used in We
languages. However, not all languages can be represented by a single charset. Japan
commonly contains words written using the Latin alphabet, as well as phonetic chara
from thekatakanaandhiriganaalphabets, and ideographickanji characters. Each of these
character sets has its own charset. The phonetic and Latin charsets are 8-bits wide,
the ideographic charset is 16-bits wide. Since the charsets must be combined into a
encoding for Japanese text, the encoding uses shift sequences to specify the chara
for each character in a string.

When an encoding contains shift sequences and characters of non uniform width, s
can still be stored in a standardNULL-terminated array of characters; this representation
known as amultibyte string. Strings can also be stored using awide-charactertype
(wchar_t in ANSI-C) in which each character has a fixed size and occupies one a
584 Motif Programming Manual

Chapter 18: Text Widgets

cter
are

sier to
ke
lized

e
fe to

yte
g

g in

ale,
with

ual
a
ing.
a

tibyte
acter

text
element. ANSI-C provides functions that convert between multibyte and wide-chara
strings and the text output routines in X support both types of strings. Multibyte strings
usually more compact than wide-character strings, but wide-character strings are ea
work with. If an internationalized application performs any text manipulation, it must ta
care to handle all strings properly. Fortunately, many applications can do internationa
text input and output without performing any manipulations on the text.

Multibyte strings areNULL-terminated, while there is no single convention for th
termination of wide-character strings. The following C string-handling routines are sa
use with multibyte strings:strcat() , strcmp() , strcpy() , strlen() , and
strncmp() . The string comparison routines are only useful to check for byte-for-b
equality; usestrcoll() to compare strings for sorting. None of the C string-handlin
routines work with wide-character strings.

Multibyte strings can be written to a file or an output stream. If the terminal is operatin
the current locale, printing a multibyte string tostdout or stderr causes the correct text
to be displayed. Multibyte strings can also be read from a file or thestdin input stream.
If the file is encoded in the current locale, or the terminal is operating in the current loc
the strings that are read are meaningful. For a more complete description of working
multibyte and wide-character strings, see Volume 1,Xlib Programming Manual.

The Motif Text and TextField widgets provide two resources for specifying their text
data:XmNvalue andXmNvalueWcs. TheXmNvalue resource specifies the text string as
char * value, so it can be used to set the value of the widget to a multibyte str
XmNvalueWcs specifies the string as awchar_t * value, so it is used to set the value to
wide-character string. This resource cannot be specified in a resource file. IfXmNvalue and
XmNvalueWcs are both defined, the value ofXmNvalueWcs takes precedence.

Regardless of which resource you set, the widgets store the text internally as a mul
string. The widgets take care of converting between multibyte strings and wide-char
strings when necessary. As a result, you can set the text string using theXmNvalue resource
and retrieve it withXtVaGetValues() using theXmNvalueWcs resource.

The Text widget provides the following convenience routines for manipulating the
value as a wide-character string:

Boolean XmTextFindStringWcs (Widget widget ,
XmTextPosition start ,
wchar_t * wc,
XmTextDirection dir ,
XmTextPosition * pos)

wchar_t *XmTextGetSelectionWcs (Widget widget)
wchar_t *XmTextGetStringWcs (Widget widget)
int XmTextGetSubstringWcs (Widget widget ,

XmTextPosition start ,
int num_chars ,
int buf_size ,
wchar_t * buffer)
Motif Programming Manual 585

Chapter 18: Text Widgets

ides
es
e or

string
lume

ck,
e
The

lar

the
void XmTextInsertWcs (Widget widget ,
XmTextPosition position ,
wchar_t * wc)

void XmTextReplaceWcs (Widget widget ,
XmTextPosition from ,
XmTextPosition to ,
wchar_t * wc)

void XmTextSetStringWcs (Widget widget , wchar_t * wc)

These routines work for both Text and TextField widgets. The TextField also prov
corresponding functions that only work with TextField widgets. All of these routin
function identically to their regular character string counterparts, except that they tak
return wide-character string values. If you have specified the text string usingXmNvalue ,
you can still use the wide-character string routines because they handle any necessary
conversions. For more information on the different wide-character routines, see Vo
6B, Motif Reference Manual.

The widgets also provide a wide-character version of the text modification callba
XmNmodifyVerifyCallbackWcs . This callback is invoked before the value of th
widget is modified, so an application can use it to monitor changes in the widget.
callback is passed a callback structure of typeXmTextVerifyCallbackStructWcs ,
which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Boolean doit;
XmTextPosition currInsert, newInsert;
XmTextPosition startPos, endPos;
XmTextBlockWcs text;

} XmTextVerifyCallbackStructWcs;

With this structure thereason field has the valueXmCR_MODIFYING_TEXT_VALUE. All
of the fields have the same meaning as the fields in the regu
XmTextVerifyCallbackStruct , except that thetext field is a pointer of type
XmTextBlockWcs . This structure is defined as follows:

typedef struct {
wchar_t *wcsptr;
int length;

} XmTextBlockRecWcs, *XmTextBlockWcs;

If callback routines are registered for both theXmNmodifyVerifyCallback and the
XmNmodifyVerifyCallbackWcs , the routines for theXmNmodifyVerifyCallback
are invoked first. The resulting data, which may have been modified, is passed to
XmNmodifyVerifyCallbackWcs routines.
586 Motif Programming Manual

Chapter 18: Text Widgets

tput
To

xt
nder

y text

using
ching

e first
font

ost
any
ocale
s and
tween
in the

HIFT
umber
cented
other
these
ecial

ring a
Text Output
The Text and TextField widgets do not use compound strings, so their text ou
functionality is based directly on Xlib’s internationalized text output capabilities.
support languages that use multiple charsets, X11R5 introduced theXFontSet abstraction
for its text output routines. AnXFontSet contains all of the fonts necessary to display te
in the current locale. The new text output routines work with font sets, so they can re
text for locales that require multiple charsets. See Volume 1,Xlib Programming Manual,
for more information on internationalized text output.

Each of the widgets has aXmNrenderTable resource for specifying the font that it uses.*

Since the widgets do not use compound strings, they cannot use font list tags to displa
using different fonts as described in Section 25,Compound Strings. However, the render
table can specify a rendition which contains a font set, so the widgets can display text
multiple character sets in a locale that requires them. The widgets pick a font by sear
the render table for a rendition that has the tagXmFONTLIST_DEFAULT_TAG. If the search
finds such a rendition that contains a font set, it is used. Otherwise, the widgets use th
font set specified in the font list. If the render table does not contain a font set, the first
is used. If you specify a rendition entry with the tagXmFONTLIST_DEFAULT_TAG, make
sure that it is appropriate for the encoding of the current locale.†

Text Input
Converting user keystrokes into text in the encoding of the current locale is the m
difficult task of internationalization. An internationalized program cannot assume
particular mapping between keystrokes and input characters, since it must run in any l
on a single workstation, using a single keyboard. The mapping between keystroke
Japanese characters is very different and much more complex than the mapping be
keystrokes and Latin characters, for example. When there are more characters
codeset of a locale than there are keys on a keyboard, some sort ofinput methodis required
for mapping between multiple keystrokes and input characters.

All of the characters for English can be entered using the standard keyboard; the S
key makes it possible to enter both lower case and upper case letters as well as the n
and punctuation characters. For many European languages, the most common ac
characters may appear directly on a keyboard, but there are still a number of
characters that cannot be entered with any single shifted or unshifted keystroke. In
cases, the input method is typically implemented in the keyboard hardware using a sp

* The XmNfontList resource is deprecated as of Motif 2.0.

† This is different to the way in which compound strings are rendered: if a font or tag is absent when rende
compound string, callbacks may be invoked. See Chapter 24,Compound Strings, for more details.
Motif Programming Manual 587

Chapter 18: Text Widgets

ing

ated.
ed onto
user
ese
s and
thod
alent

same

does
d at

th the

s for

of

a

ded

hich
nput
en the

ow

on

its

he
key that puts the keyboard in “compose” mode in which one or more of the follow
keystrokes are combined into a single character.

The Asian ideographic languages are what make internationalized text input complic
Japanese and Korean both have phonetic alphabets that are small enough to be mapp
a keyboard. While it is sometimes adequate to leave text in this representation, the
usually wants the final text to be in the full ideographic language. Input methods for th
languages often have the user type the phonetic symbols for a particular word or word
then signal that the composition or pre-editing is complete. At this point, the input me
can look up the string of phonetic characters in a dictionary and convert it to the equiv
character or characters in the ideographic language. Multiple characters can have the
phonetic representation, so the user may still have to select the desired character.

Since input methods can be large and complex and they vary from locale to locale, it
not make sense to link every application with a generic input method that is localize
runtime. The X Input Method (XIM) abstraction supports the model of aninput manager
that is run as a separate process and that communicates with the X server and wi
application. An application that needs to use an input method callsXOpenIM() to establish
a connection to the input method that is appropriate for the current locale.

An input method needs to provide feedback to the user, so X defines three area
interaction:

• Thestatus areais an output-only window that displays information about the state
the input method interaction.

• The pre-edit areadisplays the intermediate text while the user is composing
character.

• Theauxiliary areais used to display any dialog boxes or popup menus that are nee
by the input method.

An application generally provides the status and pre-edit areas to the input method, w
is responsible for their contents. The auxiliary area is managed entirely by the i
method. The location of the pre-edit area depends on the interaction style used betwe
input method and the application. X defines the following four interaction styles:

• Theroot-windowstyle, where the input method displays the pre-edit data in a wind
that is a child of the root window.

• Theoff-the-spotstyle, in which the input method displays the data at a fixed locati
in the application window, often at the bottom of the window.

• Theover-the-spotstyle, where the input method displays the data in a window of
own that is placed over the current insertion point.

• Theon-the-spotstyle, in which the input method directs the application to display t
pre-edit data, so the application can display the data however it wants.
588 Motif Programming Manual

Chapter 18: Text Widgets

and

can
e
ach

t,
he font

o

zed

and
nd
, the
tand
lib

not
the
orts.
11.

thod
the

tion
ods
the

The

ic.

s a
role

the
An application must choose an interaction style that is supported by the input method
it must provide the pre-edit and status areas as required by that style.

Just as the X server can display multiple windows for a single client, an input method
maintain multipleinput contextsfor an application. A text editor that supports multipl
editing windows within a single top-level window could create an input context for e
window or share a single context among all of the windows. The functionXCreateIC()
creates an X Input Context (XIC) that keeps track of information about the input contex
such as the interaction style, the windows used for the pre-edit and status areas, and t
set for the text.

When an application gets aKeyPress event, it needs to use that event in a call t
XmbLookupString() or XwcLookupString() to get the multibyte or wide-character
string encoded in the current locale. These routines are analogous toXLookupString() ,
but this routine can only return Latin-1 strings, so it is not appropriate for internationali
input.

The support for input methods in Xlib is designed to be incorporated within toolkits
widgets. Accordingly, the internationalized text input capabilities of the Motif Text a
TextField widgets are layered on top of the input method mechanism. Fortunately
widgets encapsulate most of the lower-level functionality, so you don’t need to unders
the details of the Xlib implementation. For a more complete description of the X
functionality, see Volume 1,Xlib Programming Manual.

Motif leaves it to the hardware vendors to supply input methods, so the toolkit does
provide any itself. If you need to provide internationalized text input, consult
documentation for your system for information about the input methods that it supp
Alternately, you can build one of the contributed input methods provided as part of X
X11R5 as shipped from MIT contains two separate implementations of the input me
facilities. The Xsi implementation is the default on all but Sony machines, which use
Ximp implementation. Each implementation defines its own protocol for communica
between Xlib and input methods. Ximp and Xsi each come with contributed input meth
that are not compatible with each other. For X11R6, the X Consortium standardized
input method implementation, allowing for dynamic input method server connectivity.
details of this are beyond the scope of this manual; you are referred to theProgrammer’s
Supplement for Release 6of Volumes 1, 2, 4, and 5 for a complete discussion of the top

When you create an editable Text or TextField widget, it automatically provide
connection to the input method for the current locale. The VendorShell widget plays a
in internationalization as it defines theXmNinputMethod , XmNpreeditType, and
XmNinputPolicy resources for specifying the input method, the interaction style, and
input context creation policy respectively*. A Text or TextField widget is always created

* XmNinputPolicy is only available from Motif 2.0 onwards.
Motif Programming Manual 589

Chapter 18: Text Widgets

up the
use it
thod.

ier
ce is
he

also
is

are
, the
dow
s and
ation

, the
evel
The
area
as an ancestor of a VendorShell, so the widget can access these resources to set
connection to the input method. The resources are defined by the VendorShell beca
handles the geometry management of the pre-edit and status areas for the input me

TheXmNinputMethod resource specifies the input method portion of the locale modif
that is set before an input method is opened. The format of the value for this resour
vendor-defined. TheXmNpreeditType resource sets the interaction style used by t
input method. The syntax, possible values, and default value of this resource are
vendor-dependent. TheXmNinputPolicy resource specifies whether an input context
to be created on a per-shell basis (XmPER_SHELL) or for each widget which requests
connection to an input method (XmPER_WIDGET).

In Motif 1.2, only the over-the-spot, off-the-spot, and root-window interaction styles
supported. Motif 2.0 also supports the on-the-spot style. Under the off-the-spot style
VendorShell positions the pre-edit and status areas below the application’s main win
but inside the shell. The VendorShell handles the geometry management for the area
places a separator between the main window and the input method area. If the applic
sets or gets theXmNheight of the shell usingXtVaSetValues() or XtVaGetValues() ,
the height includes the height of the input method area. With the over-the-spot style
VendorShell still displays the status area at the bottom of the application’s top-l
window, but the pre-edit area is positioned over the insertion cursor in the Text widget.
Text widget passes the insertion position to the input method, so that the pre-edit
moves as with the insertion cursor.

The Motif toolkit implements its internationalized text input functionality using the
following public routines:*

void XmImCloseXIM (Widget widget)
void XmImFreeXIC (Widget widget , XIC xic)
XIC XmImGetXIC (Widget widget , XmInputPolicy policy , ArgList argv ,

Cardinal argc)
XIM XmImGetXIM (Widget widget)
int XmImMbLookupString (Widget widget , XKeyPressedEvent * event ,
char * buffer , int num_bytes , KeySym * keysym , int * status)
void XmImMbResetIC (Widget widget , char ** mb_text)
void XmImRegister (Widget widget , unsigned int reserved)
void XmImSetFocusValues (Widget widget , ArgList argv , Cardinal argc)
void XmImSetValues (Widget widget , ArgList argv , Cardinal argc)
XIC XmImSetXIC (Widget widget , XIC xic)
void XmImUnregister (Widget widget)
void XmImUnsetFocus (Widget widget)
void XmImVaSetFocusValues (Widget widget , resource-value-list, NULL)
void XmImVaSetValues (Widget widget , resource-value-list, NULL)

* XmImCloseXIM (), XmImFreeXIC (), XmImGetXIC(), XmImSetXIC () are only available from Motif 2.0 on-
wards.
590 Motif Programming Manual

Chapter 18: Text Widgets

a
, and
me

ith
nce
ever,
ghly

as

er and
These routines simplify the interaction with the lower-levelXIM and XIC constructs
provided by Xlib. If you need to provide text input in another widget, such as
DrawingArea, you have to handle opening an input method, creating an input context
obtaining input from the input method yourself. A description of each is found in Volu
6B, Motif Reference Manual.

Summary
The Motif Text and TextField widgets can be used to provide an application w
sophisticated text entry capabilities. The widgets come with a full set of convenie
routines that make it easy to perform a number of standard text editing tasks. How
these widgets work best when they are left alone to do their jobs. While they are hi
configurable, the little bits of fine tuning you add may cause your code to grow twice
much to accommodate the new features and the necessary error checking.

Exercises
The following exercises are designed to expand on the ideas described in this chapt
introduce some new directions for using Text widgets.

1. Using the XmNmodifyVerifyCallback , you can add more data to a Text
widget than what is typed by the user. This technique is useful for support-
ing advanced editing features such as file or word completion. The user
should be able to enter the leading part of a word and then type a special
character that completes the word automatically, based on a predefined list
of words in /usr/dict/words. Write an XmNmodifyVerifyCallback routine
that checks each character that is typed and, upon receipt of the special
character, looks backwards in the text until it finds whitespace and checks
this word against the words in the list. If there is a match, modify the text
to complete the word.

2. The function XmTextSetHighlight() can be used to highlight text in the
same fashion as if the user had selected it. This routine is useful for empha-
sizing different pieces of text. Based upon the previous exercise, write a
simple spell-checker program. Use a PushButton or a menu item to get all
of the text from a Text widget and check the words against /usr/dict/words.
Highlight all of the words that are not found in the dictionary so that the
user can find them quickly.

3. Modify the allcaps.cprogram to use the XmNgainFocusCallback and XmN-
losingFocusCallback callback routines. When the widget loses the focus,
all of the characters should be converted to lower case, and when the input
focus is gained, the characters should revert to upper case.
Motif Programming Manual 591

Chapter 18: Text Widgets
4. The XmNsource resource specifies an XmTextSource , which is an internal
object that contains all of the information about the text in a Text widget.
You can set or get the value for this resource using XtVaSetValues() and
XtVaGetValues() . Since the data type is opaque to the programmer, you
cannot create your own source, but you can get one from an existing Text
widget. By getting the XmNsource from one Text widget and setting it in an-
other, you can have two Text widgets that edit the same text. Write a pro-
gram that does just that.
592 Motif Programming Manual

lso
issues

its
r who,
Chapter 1

In this chapter:
• Menu Types
• Creating Simple Menus
• Designing Menu Systems
• General Menu Creation

Techniques
• Summary
• Exercises

This chapter describes the d
presents a number of ways
involved in designing menu s

Menus provide the user with
normal visual appearance. Th
Motif Programming Manual
19
nient

and
ovide

in an
hen

items
rops
m in
rred

default
Menus
ifferent types of menus provided by the Motif toolkit. It a
to create menus in an application and talks about the
ystems.

a set of choices in an application without complicating
ese convenient mini-toolboxes are essential for the use

like an auto mechanic that is busy working under the car, needs quick and conve
access to her tools without having to look or move away from her work. TheMotif Style
Guide provides for three different types of menus: PulldownMenus, PopupMenus,
OptionMenus. Despite the differences between the three types of menus, they all pr
simple and convenient access to application functionality.

Menu Types
PulldownMenus that are posted from the MenuBar are the most common menus
application. Figure 19-1 shows an example of a PulldownMenu.The menu pops up w
the user presses the first mouse button on a CascadeButton.*As described in Chapter 4, The
Main Window, CascadeButtons may be displayed as titles in a MenuBar or as menu
in a PulldownMenu. When the CascadeButton is a child of a MenuBar, the menu d
down below the button when the user clicks on it. When the CascadeButton is an ite
an existing menu, the new menu pops up to the right of the item; it is sometimes refe
to as a cascading menu or a pullright menu.

* The button that posts the menu is typically user-settable, since left-handed users may want to reverse the
button bindings.

Figure 19-1: A PulldownMenu
593

Chapter 19: Menus

ing,
ck to
same
can
g the
ing to
Menu
user-

other
or

ovice

ike a
aced

enu.
shown

use
it.
Under certain conditions, it may be inconvenient for the user to stop what she is do
move the mouse to the MenuBar to pulldown a menu, and then move the mouse ba
where she was working. Having to move the mouse away, even to another part of the
window, can reduce productivity. A PopupMenu is one solution to this problem as it
provide immediate access to application functionality. PopupMenus are posted usin
third mouse button and can be displayed anywhere in an application. Rather than hav
move the mouse, the user can simply press the third mouse button to cause a Popup
to appear on the spot. This type of menu does not need to be associated with a visible
interface element. In fact, PopupMenus are usually popped up from a work area or an
region that is not affiliated with a user-interface component like a PushButton
CascadeButton. The only drawback to this design is that there is no indication to the n
user that the menu exists. Figure 19-2 shows a PopupMenu.

The OptionMenu combines the strengths of a PulldownMenu and a PopupMenu. L
PulldownMenu, it is posted from a CascadeButton, but like a PopupMenu, it can be pl
where it is needed. The CascadeButton is used to display the default choice for the m
When the user presses the button, the alternate choices are displayed in a menu, as
in Figure 19-3. Like a PulldownMenu, an OptionMenu is invoked using the first mo
button, but it is displayed on top of its associated CascadeButton rather than below

Figure 19-2: A PopupMenu

Figure 19-3: An OptionMenu
594 Motif Programming Manual

Chapter 19: Menus

st to
n. It
while
that
ns are
third
ation
in an

d then
at it
ear-
r off
e tear-
many
r-off

the
le, in
The use of the third mouse button to activate PopupMenus is in sharp contra
PulldownMenus and OptionMenus, which are always invoked by the first mouse butto
may seem confusing to the user that some menus are invoked by the first button
others are invoked by the third. However, there is some consistency in the fact
PulldownMenus and OptionMenus are always attached to CascadeButtons, and butto
always activated by the first mouse button. By specifying that PopupMenus use the
mouse button, the first mouse button is free to be used for other activities in an applic
work area, which is important since PopupMenus can be popped up anywhere
application.

When the user posts a menu, it is only displayed until the user makes a selection, an
it is removed. A menu can have an additional feature that allows it to be torn off, so th
remains posted in its own window. The tear-off functionality is activated by a special t
off button in the menu. The button displays a dashed line to indicate that you can tea
the menu, like you would tear a coupon out of a newspaper. When the user presses th
off button, the menu is placed in a separate window, and the user can make as
selections as she would like. Figure 19-4 shows a PulldownMenu that provides the tea
capability.

To make menus even more convenient to use, menu items can havemnemonicsand
acceleratorsassociated with them. These devices are keyboard equivalents that allow
user to activate menu items using the keyboard rather than the mouse. For examp

Tear-off

Figure 19-4: A PulldownMenu with tear-off functionality

control
Motif Programming Manual 595

Chapter 19: Menus

u is
rators
ayed.
ry

d X
and
or

a set

make

the
-and-
enu

menu

ed
either
can

idget
itive
imple
use

nus.

in

le-
Figure 19-1, the underlined letter in each menu item is its mnemonic. While the men
posted, the user can type the specified character to activate that menu item. Accele
are keystroke combinations that invoke a menu item even when the menu is not displ
Accelerators typically use the CTRL or ALT key to distinguish them from ordina
keystrokes that are sent to the application. For example, again in Figure 19-1, theCtrl+X
accelerator allows the user to exit the application without accessing the menu.

Before we plunge into the details of menu creation, a word of warning to experience
Toolkit programmers is in order. Motif does not use Xt’s normal methods for creating
managing menus. In fact, youcannotuse the standard Xt methods for menu creation
management without virtually re-implementing the Motif menu design.*In Xt, you would
typically create an OverrideShell that contains a generic manager widget, followed by
of PushButtons. To display the menu, you would pop up the shell usingXtPopup() . The
Motif toolkit abstracts the menu creation and management process using routines that
the shell opaque to the programmer.

Creating Simple Menus
In Chapter 4, The Main Window, we used the simple menu creation routines to build
MenuBar and its associated PulldownMenus. These routines are designed to be plug
play convenience routines; their only requirements are compound strings for the m
labels and a single callback function that is invoked when the user activates any of the
items.

XmVaCreateSimpleMenuBar() creates a MenuBar, while
XmVaCreateSimplePulldownMenu() generates a PulldownMenu and its associat
items. These functions take a variable-length argument list of parameters that specify
the CascadeButtons for the MenuBar or the menu items for the PulldownMenu. You
also pass RowColumn-specific resource/value pairs to configure the RowColumn w
that manages the items in the menu. The functions are front ends for more prim
routines that actually create the underlying widgets, so they are convenient for many s
menu creation needs. You should review Chapter 4, for more information on how to
these functions.

Motif also provides simple creation routines for creating PopupMenus and OptionMe
BothXmVaCreateSimplePopupMenu() andXmVaCreateSimpleOptionMenu() are
very similar to the routines for creating PulldownMenus, so much of the information
Chapter 4 also applies to these functions.

* If you need to port an Athena or OPEN LOOK-based application to Motif, you will probably have to reimp
ment your menu design.
596 Motif Programming Manual

Chapter 19: Menus

enus
19-1
Popup Menus
The only difference between XmVaCreateSimplePulldownMenu() and
XmVaCreateSimplePopupMenu() is that the latter routine does not have abutton
parameter for specifying the CascadeButton used to display the menu. Since PopupM
are not associated with CascadeButtons, this parameter isn’t necessary. Example
demonstrates the creation of a simple PopupMenu.*

Example 19-1. The simple_popup.c program

/* simple_popup.c -- demonstrate how to use a simple popup menu.
** Create a main window that contains a DrawingArea widget, which
** displays a popup menu when the user presses the third mouse button.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>

main (int argc, char *argv[])
{

XmString line, square, circle, exit_b, exit_acc;
Widget toplevel, main_w, drawing_a, popup_menu;
void popup_cb(Widget, XtPointer, XtPointer);
XtAppContext app;
Arg args[4];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow widget that contains a DrawingArea in
** its work window.
*/
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);

/* Create a DrawingArea -- no actual drawing will be done. */
n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", args, n);
XtManageChild (drawing_a);

line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");

* XtVaAppInitialize() is considered deprecated in X11R6. The XmNpopupEnabled re-
source is modified in Motif 2.0 and later to support the values XmPOPUP_AUTOMATIC,
XmPOPUP_AUTOMATIC_RECURSIVE, XmPOPUP_DISABLED, XmPOPUP_KEYBOARD.
Motif Programming Manual 597

Chapter 19: Menus

get.
ttach

es the
circle = XmStringCreateLocalized ("Circle");
exit_b = XmStringCreateLocalized ("Exit");
exit_acc = XmStringCreateLocalized ("Ctrl+C");
popup_menu = XmVaCreateSimplePopupMenu (drawing_a, "popup", popup_cb,

XmNpopupEnabled, XmPOPUP_AUTOMATIC,
XmVaPUSHBUTTON, line, ’L’, NULL, NULL,
XmVaPUSHBUTTON, square, ’S’, NULL, NULL,
XmVaPUSHBUTTON, circle, ’C’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, exit_b, ’x’, "Ctrl<Key>c",
exit_acc,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (exit_b);
XmStringFree (exit_acc);

XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* popup_cb() -- invoked when the user selects an item in the popup menu */
void popup_cb (Widget menu_item, XtPointer client_data, XtPointer call_data)
{

int item_no = (int) client_data;

if (item_no == 3) /* Exit was selected -- exit */
exit (0);

/* Otherwise, just print the selection */
puts (XtName (menu_item));

}

This program creates a standard MainWindow widget that contains a DrawingArea wid
The program does not do any drawing; it is just a skeleton that demonstrates how to a
a PopupMenu. The PopupMenu is created usingXmVaCreateSimplePopupMenu() with
the DrawingArea widget as its parent. The menu is popped up when the user press
third mouse button in the DrawingArea, as shown in Figure 19-5.

Figure 19-5: Output of the simple_popup program
598 Motif Programming Manual

Chapter 19: Menus

menu

ich
label.

mer

e

d. For

veral

otif
te the

oolkit

e
re

k

s
u is
the
g

The menu contains four items, the last of which has the acceleratorCtrl<Key>C . Any time
the user presses CTRL-C in the application, the callback routine associated with the
is called as if the menu had been popped up and theExit item had been selected. The
popup_cb() routine either prints the name of the menu item or exits, depending on wh
item the user selected. Note that the name of the menu item does not correspond to its
As described in Chapter 4, menu items are automatically given names of the formbutton_
n, wheren is assigned in order of menu item creation, starting at 0 (zero).

In Motif 1.2, PopupMenus are not automatically displayed by the toolkit: the program
must install an event handler, or, for the DrawingArea, anXmNinputCallback , in order
to catch ButtonPress events. Once caught, a call toXmMenuPosition () to place the menu
at the cursor, followed byXtManageChild () of the menu itself are required to effect th
posting.

In Motif 2.0 and later, this is not necessary because automatic popup is now supporte
the simple case, simply setting theXmNpopupEnabled resource toXmPOPUP_
AUTOMATIChas the desired effect. Where there is potentially a choice between se
popup menus in a given context, the resourceXmNpopupHandlerCallback can be used
to discriminate at the appropriate juncture.XmNpopupHandlerCallback is defined in
both the Manager and Primitive classes, and is thus inherited by all widgets in the M
set. Note that the resource is not defined for the Gadget class: you need to manipula
required popup through the Manager parent. Where no callback is registered, the t
will select the menu to display.

The XmNpopupMenuHandler callback is passed a structure of typ
XmPopupHandlerCallbackStruct as the third parameter when invoked. The structu
is defined as follows:

typedef struct
{

int reason;
XEvent *event;
Widget menuToPost;
Boolean postIt;
Widget target;

} XmPopupHandlerCallbackStruct;

The reason and event fields are the familiar elements found in all Motif callbac
structures; here, thereason field will have the valueXmCR_POSTor XmCR_REPOST.
XmCR_POST is the normal value;XmCR_REPOSTwill occur if the menu is reposted as a
result of event replay.menuToPost is the toolkit’s suggestion of the menu to display: thi
element in the structure should be modified appropriately if a different popup men
required. Thetarget field holds the widget or gadget which the Manager believes is
source of the popup request. Lastly,postIt is a flag which indicates whether the postin
action is to continue after the callback completes.
Motif Programming Manual 599

Chapter 19: Menus

ding
uB.

e au-
Example 19-2 creates two popups, and adds anXmNpopupHandlerCallback choose_cb
onto the DrawingArea. This randomly picks one of the two menus to display, depen
upon the x coordinate of the Button event: if even, it displays menuA, otherwise men*

Example 19-2. The choice_popup.c program

/* choice_popup.c -- demonstrate how to use a popup menu handler.
** Create a main window that contains a DrawingArea widget, which
** chooses between two popup menus when the user presses the third
** mouse button.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>

Widget menuA, menuB;

main (int argc, char *argv[])
{

XmString line, square, circle, exit, exit_acc;
XmString red, green, blue;
Widget toplevel, main_w, drawing_a;
void popup_cb(Widget, XtPointer, XtPointer);
void choose_cb(Widget, XtPointer, XtPointer);
XtAppContext app;
Arg args[4];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow widget that contains a DrawingArea in
** its work window.
*/
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);

/* Create a DrawingArea -- no actual drawing will be done. */
n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", args, n);
/* Callback to choose which popup menu to display */
XtAddCallback (drawing_a, XmNpopupHandlerCallback, choose_cb, NULL);
XtManageChild (drawing_a);

line = XmStringCreateLocalized ("Line");

* XtVaAppInitialize() is considered deprecated in X11R6. The XmNpopupHandlerCallback resource, and th
tomatic popup of menus. are only available in Motif 2.0 and later.
600 Motif Programming Manual

Chapter 19: Menus
square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");
exit = XmStringCreateLocalized ("Exit");
exit_acc = XmStringCreateLocalized ("Ctrl+C");
menuA = XmVaCreateSimplePopupMenu (drawing_a, "menuA", popup_cb,

XmNpopupEnabled, XmPOPUP_AUTOMATIC,
XmVaPUSHBUTTON, line, ’L’, NULL, NULL,
XmVaPUSHBUTTON, square, ’S’, NULL, NULL,
XmVaPUSHBUTTON, circle, ’C’, NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, exit, ’x’, "Ctrl<Key>c", exit_acc,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (exit);
XmStringFree (exit_acc);

red = XmStringCreateLocalized ("Red");
green = XmStringCreateLocalized ("Green");
blue = XmStringCreateLocalized ("Blue");

menuB = XmVaCreateSimplePopupMenu (drawing_a, "menuB", popup_cb,
XmNpopupEnabled, XmPOPUP_AUTOMATIC,
XmVaPUSHBUTTON, red, ’R’, NULL, NULL,
XmVaPUSHBUTTON, green, ’G’, NULL, NULL,
XmVaPUSHBUTTON, blue, ’B’, NULL, NULL,
NULL);

XmStringFree (red);
XmStringFree (green);
XmStringFree (blue);

XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* popup_cb() -- invoked when the user selects an item in the popup menu */
void popup_cb (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

int item_no = (int) client_data;

if (item_no == 3) /* Exit was selected -- exit */
exit (0);

/* Otherwise, just print the selection */
puts (XtName (menu_item));

}

/* choose_cb() -- invoked when the user requests a popup menu */
void choose_cb (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

Motif Programming Manual 601

Chapter 19: Menus

from
the

add a

sts a
XmPopupHandlerCallbackStruct *cbs =
(XmPopupHandlerCallbackStruct *) call_data;

XButtonPressedEvent *bp = (XButtonPressedEvent *) cbs->event;

if ((bp->x % 2) == 0) {
cbs->menuToPost = menuA;

}
else {

cbs->menuToPost = menuB;
}

}

Cascading Menus
A cascading menu, or a pullright menu, is implemented as a PulldownMenu displayed
a menu item in another PulldownMenu or PopupMenu. The menu item that posts
cascading menu must be a CascadeButton. Example 19-3 demonstrates how to
cascading menu using the simple menu routines. The program adds aLine Widthmenu item
to the PopupMenu from Example 19-1. This menu item is a CascadeButton that po
PulldownMenu created withXmVaCreateSimplePulldownMenu() .*

Example 19-3. The simple_pullright.c program

/* simple_pullright.c -- demonstrate how to make a pullright menu
** using simple menu creation routines. Create a main window that
** contains a DrawingArea widget that displays a popup menu when the
** user presses the third mouse button.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>

main (int argc, char *argv[])
{

XmString line, square, circle, weight, exit, exit_acc;
XmString w_one, w_two, w_four, w_eight;
Widget toplevel, main_w, drawing_a, cascade, popup_menu,

pullright;
void popup_cb(Widget, XtPointer, XtPointer);
void set_width(Widget, XtPointer, XtPointer);
XtAppContext app;
Arg args[4];
int n;

XtSetLanguageProc (NULL, NULL, NULL);

* XtVaAppInitialize() is considered deprecated in X11R6. The XmNpopupEnabled re-
source is modified in Motif 2.0 and later to support the values XmPOPUP_AUTOMATIC,
XmPOPUP_AUTOMATIC_RECURSIVE, XmPOPUP_DISABLED, XmPOPUP_KEYBOARD.
602 Motif Programming Manual

Chapter 19: Menus
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow widget that contains a DrawingArea in
** its work window.
*/
n = 0;
XtSetArg (args[0], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);

/* Create a DrawingArea -- no actual drawing will be done. */
n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (main_w, "drawing_a", args, n);
XtManageChild (drawing_a);

line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");
weight = XmStringCreateLocalized ("Line Width");
exit = XmStringCreateLocalized ("Exit");
exit_acc = XmStringCreateLocalized ("Ctrl+C");
popup_menu = XmVaCreateSimplePopupMenu (drawing_a, "popup", popup_cb,

XmNpopupEnabled, XmPOPUP_AUTOMATIC,
XmVaPUSHBUTTON, line, ’L’, NULL, NULL,
XmVaPUSHBUTTON, square, ’S’, NULL, NULL,
XmVaPUSHBUTTON, circle, ’C’, NULL, NULL,
XmVaCASCADEBUTTON, weight, ’W’,
XmVaSEPARATOR,
XmVaPUSHBUTTON, exit, ’x’, "Ctrl<Key>c", exit_acc,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (weight);
XmStringFree (exit);

/* create pullright for "Line Width" button -- this is the 4th item! */
w_one = XmStringCreateLocalized ("1");
w_two = XmStringCreateLocalized ("2");
w_four = XmStringCreateLocalized ("4");
w_eight = XmStringCreateLocalized ("8");
pullright = XmVaCreateSimplePulldownMenu (popup_menu, "pullright",

3 /* menu item offset */, set_width,
XmVaPUSHBUTTON, w_one, ’1’, NULL, NULL,
XmVaPUSHBUTTON, w_two, ’2’, NULL, NULL,
XmVaPUSHBUTTON, w_four, ’4’, NULL, NULL,
XmVaPUSHBUTTON, w_eight, ’8’, NULL, NULL,
NULL);

XmStringFree (w_one);
XmStringFree (w_two);
XmStringFree (w_four);
XmStringFree (w_eight);
Motif Programming Manual 603

Chapter 19: Menus

e

f the

ith
types
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* popup_cb() -- invoked when the user selects an item in the popup menu */
void popup_cb (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

int item_no = (int) client_data;
if (item_no == 4) /* Exit was selected -- exit */

exit (0);
/* Otherwise, just print the selection */
puts (XtName (menu_item));

}

/* set_width() -- called when items in the Line Width pullright menu
** are selected.
*/
void set_width (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

int item_no = (int) client_data;
printf ("Line weight = %d\n", 1 << item_no);

}

In the call toXmVaCreateSimplePulldownMenu() , the PopupMenu is specified as th
parent of the cascading menu. Thebutton parameter is set to3 to indicate that the fourth
item in the PopupMenu posts the cascading menu. Figure 19-6 shows the output o
program.

Option Menus
An OptionMenu is similar to a PulldownMenu in that they are both associated w
CascadeButtons. However, there are also several major differences between the two

Figure 19-6: Output of the simple_pullright program
604 Motif Programming Manual

Chapter 19: Menus

, it is

d of
enu;
the

le to
have

m an
of menus. In an OptionMenu, the CascadeButton is not part of a MenuBar. Instead
created as the child of a RowColumn widget that also contains a Label gadget.

Another difference is that the menu pops up on top of the CascadeButton, instea
dropping down from it. The label on the CascadeButton is one of the elements in the m
the CascadeButton displays the current menu selection. The Motif toolkit handles
management of the PulldownMenu for the OptionMenu, so its handle is not availab
you, nor does it need to be. Because of the design of the OptionMenu, it cannot
cascading menus.

Example 19-4 demonstrates the use ofXmVaCreateSimpleOptionMenu() . The
program uses a DrawingArea again, but now the user selects the drawing style fro
OptionMenu that is displayed above the DrawingArea*.

Example 19-4. The simple_option.c program

/* simple_option.c -- demonstrate how to use a simple option menu.
** Display a drawing area. The user selects the drawing style from
** the option menu.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/ScrolledW.h>
#include <Xm/DrawingA.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

XmString draw_shape, line, square, circle;
Widget toplevel, main_w, rc, sw, drawing_a, option_menu, pb;
void option_cb(Widget, XtPointer, XtPointer);
void exit(int);
XtAppContext app;
Arg args[4];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow widget that contains a RowColumn
** widget as its work window.
*/
main_w = XmCreateMainWindow (toplevel, "main_w", NULL, 0);
rc = XmCreateRowColumn (main_w, "rowcol", NULL, 0);

/* Inside RowColumn is the Exit pushbutton, the option menu and the
** scrolled window that contains the drawing area.

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 605

Chapter 19: Menus

e use
ains
the
the
*/
pb = XmCreatePushButton (rc, "Exit", NULL, 0);
XtAddCallback (pb, XmNactivateCallback, (void (*)()) exit, NULL);
XtManageChild (pb);

draw_shape = XmStringCreateLocalized ("Draw Mode:");
line = XmStringCreateLocalized ("Line");
square = XmStringCreateLocalized ("Square");
circle = XmStringCreateLocalized ("Circle");
option_menu = XmVaCreateSimpleOptionMenu (rc,

"option_menu", draw_shape, ’D’,
0 /*initial menu selection*/, option_cb,
XmVaPUSHBUTTON, line, ’L’, NULL, NULL,
XmVaPUSHBUTTON, square, ’S’, NULL, NULL,
XmVaPUSHBUTTON, circle, ’C’, NULL, NULL,
NULL);

XmStringFree (line);
XmStringFree (square);
XmStringFree (circle);
XmStringFree (draw_shape);
XtManageChild (option_menu);
/* Create a DrawingArea inside a ScrolledWindow */
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
sw = XmCreateScrolledWindow (rc, "sw", args, n);

n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (sw, "drawing_area", args, n);
XtManageChild (drawing_a);
XtManageChild (sw);
XtManageChild (rc);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* option_cb() -- invoked when the user selects an item in the
** option menu
*/
void option_cb (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

int item_no = (int) client_data;
puts (XtName (menu_item));

}

The layout of the application is different from that in the previous examples because w
a separate ScrolledWindow for the DrawingArea. The RowColumn widget that cont
the Exit button, the OptionMenu, and the ScrolledWindow is the work area for
MainWindow. Figure 19-7 shows the output of the program both before and after
606 Motif Programming Manual

Chapter 19: Menus

select

enus
for

els,

. One
ation
use the
to
nique

le. If
utines
ecify

new
e can
s and
r and
rmore,
ystem

d its
OptionMenu is displayed. Notice how the label of the CascadeButton changes as you
alternate values from the menu.

Designing Menu Systems
The advantages of the simple menu creation routines are clear. It is easy to create m
with them, the code is extremely readable, and the job gets done without much room
error. Once the code is written, it is easy to modify the callback function, lab
mnemonics, and accelerators used by a menu.

There are also some disadvantages to using the simple menu creation functions
problem is that they require a great deal of bulk to create a single menu. If an applic
needs to create a large number of menus, it has to use a lot of redundant code beca
simple creation routines make it difficult to build a looping construct or a function
automate the process. Since the creation routines name the widgets using non-u
names, it is difficult to specify labels, mnemonics, and accelerators in a resource fi
these values are set using a creation routine, this point is irrelevant because the ro
hard-code the values. The simple creation routines also make it impossible to sp
different callback functions for menu items.

To get around the shortcomings of the simple creation routines, we are going to build a
system that is just as simple to use, but more dynamic and easy to modify. Before w
build our new system, we need to examine the advanced Motif menu creation routine
discuss the overall design of a menu system. We are going to start with the MenuBa
PulldownMenus because almost every application uses these components. Furthe
everything there is to know about menus can be adapted from the design of a menu s
that uses these menus.

Let’s begin by examining the steps that you need to take to create a MenuBar an
associated PulldownMenus:

Figure 19-7: Output of the simple_option program

Before After
Motif Programming Manual 607

Chapter 19: Menus

r that
1. Create a RowColumn widget for use as a MenuBar with XmCreateMenu-
Bar() .

2. Create each PulldownMenu using XmCreatePulldownMenu () .

3. Create the menu items (PushButtons, ToggleButtons, Separators, etc.) for
each PulldownMenu.

4. Create a CascadeButton for each menu in the MenuBar and attach the as-
sociated PulldownMenu to it.

5. Manage the MenuBar with XtManageChild() .

The program in Example 19-5 demonstrates these steps by creating a MenuBa
contains a singleFile PulldownMenu.*

Example 19-5. The file_menu.c program

/* file_menu.c -- demonstrate how to create a menu bar and pulldown
** menu using the Motif creation routines.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/CascadeB.h>
#include <Xm/SeparatoG.h>
#include <Xm/PushBG.h>

main (int argc, char *argv[])
{

Widget toplevel, main_w, menu_w, file_w, cascade_w, push_b,
sep_w;

XmString label_str;
XtAppContext app;
Arg a rgs[4];
int n;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, "main_w", args, n);
menu_w = XmCreateMenuBar (main_w, "MenuBar", NULL, 0);

/* create the "File" Menu */
file_w = XmCreatePulldownMenu (menu_w, "FilePullDown", NULL, 0);

/* create the "File" button (attach Menu via XmNsubMenuId) */
label_str = XmStringCreateLocalized ("File");

* XtVaAppInitialize () is considered deprecated in X11R6.
608 Motif Programming Manual

Chapter 19: Menus

f the
he

ld
Bar.
n
te a
d the

label
de it
tine,
r we
n = 0;
XtSetArg (args[n], XmNmnemonic, ‘F’); n++;
XtSetArg (args[n], XmNlabelString, label_str); n++;
XtSetArg (args[n], XmNsubMenuId, file_w); n++;
cascade_w = XmCreateCascadeButton (menu_w, "File", args, n);
XtManageChild (cascade_w);
XmStringFree (label_str);

/* Now add the menu items */
push_b = XmCreatePushButtonGadget (file_w, "Open", NULL, 0);
XtManageChild (push_b);
push_b = XmCreatePushButtonGadget (file_w, "Save", NULL, 0);
XtManageChild (push_b);
sep_w = XmCreateSeparatorGadget (file_w, "separator", NULL, 0);
XtManageChild (sep_w);
push_b = XmCreatePushButtonGadget (file_w, "Exit", NULL, 0);
XtManageChild (push_b);

XtManageChild (menu_w);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The code follows the steps that we just outlined. The MenuBar is created as a child o
MainWindow, and the PulldownMenu is created as a child of the MenuBar. T
CascadeButton acts as theFile title item in the MenuBar, so it is also created as the chi
of the MenuBar. Both the menu title and the PulldownMenu are children of the Menu
The CascadeButton sets itsXmNsubMenuId resource to the PulldownMenu so that whe
the button is selected, it knows which PulldownMenu to display. When you crea
PulldownMenu using the simple menu creation routine, it sets this resource behin
scenes.

We also set the label of the CascadeButton using theXmNlabelString resource. This
value is a compound string, just as in the simple creation function. If we had not set the
directly, the name of the widget itself would appear as the label, and we could overri
with a specification in a resource file. Since we are not using the simple creation rou
we can choose whether or not we hard-code the label for the CascadeButton. Afte
create the items in the menu, we manage the MenuBar usingXtManageChild() . The
Motif Programming Manual 609

Chapter 19: Menus

n in

an be
a
a the
iated
o a
ould
r.

sing
es
dget.
ction
it.

not
n is

the
the
ed in

enu.
the
tains
output of Example 19-5, both before and after the PulldownMenu is posted, is show
Figure 19-8.

Menu Titles
The titles in a MenuBar are actually the labels of the CascadeButtons. The labels c
specified using theXmNlabelString resource, either in the application code or in
resource file. Every CascadeButton must have a submenu associated with it vi
XmNsubMenuId resource. When the user selects the CascadeButton, the assoc
PulldownMenu is displayed. You should never attach a callback function directly t
CascadeButton in the MenuBar as it would confuse the user. Callback functions sh
only be attached to menu items in PulldownMenus that are posted from the MenuBa

The PulldownMenu that is associated with a CascadeButton is created u
XmCreatePulldownMenu() . This routine returns the RowColumn widget that manag
the menu items. The routine creates the RowColumn as a child of a MenuShell wi
Since the routine returns the RowColumn widget, the resource list provided to the fun
only sets resources for the RowColumn widget, not for the MenuShell that contains

Menu titles should not be dynamically created or destroyed. An application should
make the MenuBar disappear or add new titles to the MenuBar while the applicatio
running. All of the titles in the MenuBar must be available to the user when
MainWindow is visible. You can, however, deactivate an entire menu by changing
XmNsensitive resource on the CascadeButton widget that acts as its title, as discuss
Section 19.3.6.

Menu Items
The items in a menu are actually the labels of the PushButtons that make up the m
Unlike theFile title item in the MenuBar, we chose not to use hard-coded values for
menu item strings, so the strings can be set in a resource file. While our menu only con

Figure 19-8: Output of the file_menu program

Before After
610 Motif Programming Manual

Chapter 19: Menus

s, and

ll an
s.

arlier.

ce it
tains

r, the

ithout

-F

ttons

the
ot

t still
se or
nal

et on
item

nce
lback

let’s
e

PushButton gadgets, a PulldownMenu can also contain ToggleButtons, Separator
CascadeButtons.

You can install a callback routine for each of the items in a menu, or you can insta
XmNentryCallback for the RowColumn widget to act on behalf of all the menu item
This resource specifies a callback function that overrides theXmNactivateCallback
used by Pushbuttons and theXmNvalueChangedCallback used byToggleButtons. Using
this resource generates a design that is similar to the simple menu routines described e
See Chapter 8,Manager Widgets, for details on this generic RowColumn resource.

As with the title items, menu items should not be dynamically created or destroyed sin
may confuse the user. However, there is one exception to this guideline. If a menu con
items that keep track of a dynamic list of objects, such as the open files in a text edito
menu items should change to reflect the current state of the application.

Mnemonics
Mnemonics help users traverse the menu system and select actual menu items w
having to use the mouse. In Example 19-5, we used theXmNmnemonicresource to attach
the mnemonic “F” to theFile menu, which allows the user to use the key sequence ALT
to open or close the menu without using the mouse. TheXmNmnemonicresource is defined
by the Label class, but it is only used by PushButtons, ToggleButtons, and CascadeBu
when these objects are used in a menu system.

A mnemonic is represented visually by the underlining of the mnemonic character in
label string. In this case, the “F” in the word “File” is underlined. If the label does n
contain the mnemonic character, there is no visual feedback for the mnemonic, but i
functions. When a mnemonic is specified, the character can be either upperca
lowercase, but the distinction only affects which letter is underlined. For operatio
purposes, mnemonics are case insensitive.

Our example only provided a mnemonic for the entire menu, but mnemonics can be s
menu items as well. When a PulldownMenu is displayed, the user can activate a menu
simply by typing the letter represented by its mnemonic. (The ALT key is not used o
the menu is displayed.) If the user activates a menu item using a mnemonic, the cal
function for the menu is called just as if the user had selected it with the mouse.

Mnemonics are set on MenuBar titles and menu items in the same way. To illustrate,
add a mnemonic to theExit item in ourFile menu. We could, as in Example 19-5, set th
mnemonic directly in the creation of the item, as follows:

n = 0;
XtSetArg (args[n], XmNmnemonic, ‘x’); n++;
push_b = XmCreatePushButtonGadget (file_w, "Exit", args, n);
Motif Programming Manual 611

Chapter 19: Menus

ym,
e Xt

nic is
rce

the
ter-

onic

has a

enu

e

.
s and

sing

or
Strictly speaking, since the internal representation of an XmNmnemonic is as a KeyS
and not a char, the following method of assigning a mnemonic to a widget, using th
conversion mechanisms, is preferred:

XrmValue from_value, to_value; /* For resource conversion */
...
n = 0;
from_value.addr = "x";
from_value.size = strlen(from_value.addr) + 1;
to_value.addr = NULL;
XtConvertAndStore (file_w, XmRString, &from_value, XmRKeySym, &to_value);
if (to_value.addr) {

XtSetArg (args[n], XmNmnemonic, (*((KeySym*) to_value.addr))); n++;
}
push_b = XmCreatePushButtonGadget (file_w, "Exit", args, n);

While these methods accomplish the task, one problem with them is that the mnemo
hard-coded in the widget, while the label is not. Consider the following resou
specification in a resource file:

*Exit.labelString: Quit

This resource sets the label for the item button to “Quit”, but since the mnemonic for
button is hard-coded to “x”, there is visual feedback, and the mnemonic itself is coun
intuitive.

The best way to handle this situation is to specify both the label string and the mnem
in the same place: a resource file or application code. For example:

*Exit.labelString: Exit
*Exit.mnemonic: x

Setting both of these resources in the same way helps ensure that an application
consistent interface.

Accelerators
The purpose of menu accelerators is to provide the user with the ability to activate m
items in a PulldownMenu without having to display the menu at all. In Figure 19-1, theQuit
menu item displayed the acceleratorCtrl+C to indicate that the user could press th
CTRL-C keyboard sequence to activate that menu item and quit the application.

To install a accelerator on a menu item, use theXmNaccelerator resource to specify the
accelerator translation andXmNacceleratorText to provide visual feedback to the user
*These resources are defined by the Label class, but they only work for PushButton

* A side effect of the implementation of Motif accelerators is that you cannot install your own accelerators u
the standard methods provided by the X Toolkit Intrinsics (such asXtInstallAccelerators() or XtIn-
stallAllAccelerators()).These functions will not work, and you may interfere with the Motif accelerat
mechanism by attempting to use them.
612 Motif Programming Manual

Chapter 19: Menus

for a
ence.

erator
splay
e

yable
g.

y the
Both
stent.

s on

uch
for
ToggleButtons in menus. The syntax for the accelerator is exactly the same as
translation table, except that you do not specify an action function with the event sequ
The accelerator for theQuit button in Figure 19-1 is specified as"Ctrl<Key>C" . (For
information on how to specify translation tables, see Volume 4,X Toolkit Intrinsics
Programming Manual.

However, the string that is displayed for the accelerator is not the same as the accel
translation because it would be confusing for most users. Instead, you should di
something like"^C" , "Ctrl-C" , or "Ctrl+C" , as these make it reasonably clear what th
user is expected to type. (The latter is the convention recommended by theMotif Style
Guide, though all three forms are frequently used.) Since this resource specifies displa
text, you cannot use a common C string; the text must be given as a compound strin

For example, the following code demonstrates how to install an accelerator for theExit
button in Example 19-5.

XmString accel_text = XmStringCreateLocalized ("Ctrl+C");
...
n = 0;
XtSetArg (args[n], XmNaccelerator, "Ctrl<Key>C"); n++;
XtSetArg (args[n], XmNacceleratorText, accel_text); n++;
push_b = XmCreatePushButtonGadget (file_w, "Exit", args, n);
XmStringFree (accel_text);

As with mnemonics, the resources for the accelerator itself and the text used to displa
accelerator can either be set directly in application code or specified in a resource file.
of the resources should be specified in the same way, so that they are always consi

The Help Menu
Motif specifies various ways for the user to get help. She can use the HELP or F1 key
the keyboard, theHelp button in a dialog box, or theHelp title on the MenuBar. This title
provides the highest level of help for your application, so it should not provide too m
detail about lower-level functions in the program. When you create a PulldownMenu
Motif Programming Manual 613

Chapter 19: Menus

19-9

e. It
at is
See
this title, it should provide items that give the user access to the help system. Figure
shows a commonHelp menu.

The choices shown in Figure 19-9 are recommended by theMotif Style Guide; if they apply
to your application, you should use them.There is usually an item on theHelp menu that
gives the user a brief overview of how to use the help system. You should consult theMotif
Style Guidefor details on what kind of help each of the above selections should provid
is usually a good idea to have an item that displays an index of the type of help th
available in an application. An example of help index dialog is shown in Figure 19-10.
Chapter 27,Advanced Dialog Programming, for a discussion of help dialogs.

Figure 19-9: A Help menu from the MenuBar

Figure 19-10: A Help index dialog
614 Motif Programming Manual

Chapter 19: Menus

ave

the

uBar

enu
n the

need
ed
the
Creating aHelp menu is just like creating any other menu, except that once you h
created the CascadeButton, you should set theXmNmenuHelpWidget resource for the
MenuBar. This resource specifies which CascadeButton is placed to the far right in
MenuBar, which is where theStyle Guidestates that theHelp menu must be positioned.
Example 19-6 contains a routine that demonstrates how to build aHelpmenu and attach it
to the MenuBar. In this example, we present an alternate approach to creating Men
titles and their associated PulldownMenus.

Example 19-6. The BuildHelpMenu() routine

void BuildHelpMenu (Widget menu_b)
{

void do_help(Widget, XtPointer, XtPointer);
Widget help_m, widget;
Arg args[4];
int i, n;
static char *h_items[] = { "On Context", NULL, "On Help", "On Window",

"On Keys", "Index", "Tutorial", "On Version" };

/* Help menu */
help_m = XmCreatePulldownMenu (menu_b, "HelpPullDown", NULL, 0);

n = 0;
XtSetArg (args[n], XmNsubMenuId, help_m); n++;
widget = XmCreateCascadeButton (menu_b, "Help", args, n);
XtManageChild (widget);

/* tell the MenuBar that this is the help widget */
XtVaSetValues (menu_b, XmNmenuHelpWidget, widget, NULL);

/* Now add the menu items to the pulldown menu */
for (i = 0; i < XtNumber (h_items); i++) {

if (h_items[i] != NULL) {
widget = XmCreatePushButtonGadget (help_m, h_items[i],

NULL, 0);
XtAddCallback (widget, XmNactivateCallback, do_help,

(XtPointer) h_items[i]);
}
else

widget = XmCreateSeparatorGadget (help_m, "sep", NULL, 0);

XtManageChild (widget);
}

}

Much of the work required to create a PulldownMenu is involved in creating the m
items. We can optimize the code by using a loop that creates individual items based o
names provided in a static array. If you want to add a new help item to the list, you just
to add its name to theh_items list. A NULLentry causes a Separator gadget to be add
to the menu. In Example 19-6, we specify the same callback function for each item in
Motif Programming Manual 615

Chapter 19: Menus

we

ally
sing

.

from
onics
s are
way
h has
hile

ense
the
e item
ime.

that
again.

em is

lback
nt in

in sen-
f nec-
menu; theclient_data is the same as the name of the menu item. In Section 19.4,
expand on this approach to build arbitrary menus for the MenuBar.

Sensitivity
As we mentioned earlier, MenuBar titles and menu items should not be dynamic
created or destroyed. They may, however, be activated or deactivated u
XtSetSensitive() . When a CascadeButton or a menu item isinsensitive, it is greyed
out, and the user is unable to display the associated menu or activate the menu item

For CascadeButtons, insensitivity has the additional effect of preventing the user
accessing any of the items on the associated menu, including access through mnem
and accelerators, since the menu cannot be displayed. The menu and all its item
completely unavailable until the sensitivity of the CascadeButton is reset. An alternate
to disable an entire menu is to set the PulldownMenu pane insensitive. This approac
the advantage of still allowing the user to display the menu and see all the items, w
making the items unavailable.

For example, take an editor program. If the user is not editing a file, it doesn’t make s
to have theSaveitem in theFile menu selectable. Once the user starts editing a file,
Savebutton is sensitized so that the user can select it. Since the user cannot select th
until its sensitivity is reset, it is important that the application do so at the appropriate t
Another less realistic example, but one that we can demonstrate, involves a menu item
pops up a dialog. As long as that dialog is up, the user cannot reselect the menu item
For purposes of this demonstration, let’s say that theOpen item pops up a
FileSelectionDialog and desensitizes itself. When the dialog is dismissed, the menu it
re-sensitized.*

To implement this behavior, we specify a callback routine for theOpenmenu item that
creates a FileSelectionDialog and sets the item insensitive. We also specify a cal
routine for the dialog box that resets the menu item’s sensitivity. The code fragme
Example 19-7 shows these callback routines.

Example 19-7. The reset_sensitive() and open_callback() routines

/* reset_sensitive() -- generalized routine that resets the
** sensitivity on the widget passed as the client_data parameter
** in a call to XtAddCallback().
*/
void reset_sensitive (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget reset_widget = (Widget) client_data;

* This behavior is not a great design. The dialog really should be cached, and the menu item should rema
sitive. If the item is reselected, the dialog should be re-mapped or raised to the top of the window stack, i
essary.
616 Motif Programming Manual

Chapter 19: Menus

e, as
enu

s also

e
add

ing in
ects
r 6,
XtSetSensitive (reset_widget, True);
}

/* open_callback() -- the callback routine for when the "Open"
** menu item is selected from the "File" title in the MenuBar.
*/
void open_callback (Widget menu_item, XtPointer client_data,

XtPointer call_data)
{

Widget dialog, parent = menu_item;

/* Get the window manager shell widget associated with item */
while (!XtIsWMShell (parent))

parent = XtParent (parent);

/* turn off the sensitivity for the Open button... */
XtSetSensitive (menu_item, False);

dialog = XmCreateFileSelectionDialog (parent, "files", NULL, 0);

/* Add callback routines to respond to OK button selection here. */
/* Make sure that if the dialog is popped down or destroyed, the
** menu_item’s sensitivity is reset.
*/
XtAddCallback (XtParent (dialog), /* dialog’s _parent_ */

XmNpopdownCallback, reset_sensitive, (XtPointer) menu_item);
XtAddCallback (dialog, XmNdestroyCallback,

reset_sensitive, (XtPointer) menu_item);
XtManageChild (dialog);

}

The open_callback() function is called whenever the user activates theOpenmenu
item on theFile menu. The first thingopen_callback() does is find the nearest
WMShell widget associated with the menu item. We do not want the MenuShell her
we need a non-transient widget to act as the parent for the FileSelectionDialog. If the m
item is used as the parent for the dialog, when the menu is popped down, the dialog i
popped down because it is a secondary window.

We set the menu item’s sensitivity toFalse , which prevents the user from selecting th
item again. In order to be notified when the FileSelectionDialog is dismissed, we
callback routines forXmNpopdownCallback andXmNdestroyCallback . In both cases,
theOpenmenu item needs to be reset so that the user can select it again. The only th
open_callback() is a callback function that opens the selected file when the user sel
the OK button. This functionality is beyond the scope of this chapter; see Chapte
Selection Dialogs, for details.
Motif Programming Manual 617

Chapter 19: Menus

ows.
ctions.
, and
rate

repost

led
is a
ff the
ear-off
ions.
enu
the

as a
ues:

n
owed

all

menu
ome
ram.
as a

it can
state
ould
k of

,

Tear-Off Menus
Motif provides a feature that allows menus to be torn off and placed in separate wind
From the user’s perspective, tear-off menus make it easy to make repeated menu sele
Normally, when the user posts a menu, it is only displayed until she makes a selection
then it is removed. If the menu has been torn off, however, it is displayed in a sepa
window, and the user can make as many selections as she wants without having to
it each time.

Tear-off behavior is provided for all of the Motif menu types, but the behavior is disab
by default. When tear-off functionality is enabled in a menu, the first item in the menu
tear-off button. The button displays a dashed line to indicate that the user can tear o
menu, much as she would tear a coupon out of a newspaper. If the user selects the t
button, the menu is placed in a separate window with limited window manager decorat
The window can be moved, so the user can position it in a convenient location. The m
remains torn off until the user cancels the menu by pressing the ESCAPE key within
window.

Tear-off functionality is controlled by theXmNtearOffModel resource of the
RowColumn widget. This resource is only valid when the RowColumn is being used
PulldownMenu or a PopupMenu. The resource can have one of the following val
XmTEAR_OFF_ENABLEDor XmTEAR_OFF_DISABLED. By default, the resource is set to
XmTEAR_OFF_DISABLED, so if you want to provide tear-off functionality in the menus i
your application, you must set the resource for all of your menu panes. Figure 19-4 sh
a PulldownMenu both before and after being torn off.

You can use the following resource specification to enable tear-off functionality for
menus:*

*tearOffModel: TEAR_OFF_ENABLED

Some applications use menus in such a way that they need to keep track of when the
is popped up and popped down. For example, an application might use s
ToggleButtons in a PulldownMenu to allow the user to set state variables for the prog
If the application also provides another interface for changing the variables, such
command-line, the application needs to know when the menu is popped up so that
make sure the ToggleButtons are set appropriately. If you think that your application
may be affected by the user enabling tear-off functionality in her resource files, you sh
either explicitly disable the feature in your code, or install some callbacks to keep trac
the tear-off state.

* Motif 1.2 does not install a resource converter for theXmNtearOffModel resource: you need to callXmRepTy-
peInstallTearOffModelConverter () manually. Motif 2.0 installs a converter for the type automatically
and thusXmRepTypeInstallTearOffModelConverter () is deprecated in later versions of the toolkit.
618 Motif Programming Manual

Chapter 19: Menus

eep

ecial

on in

ottom

ich is

set

d the
ation,
arge

dard
your
ique
If you
s file
The RowColumn widget provides two callback resources that allow an application to k
track of tear-off menus. TheXmNtearOffMenuActivateCallback routine is called
when a menu is torn off;XmNtearOffMenuDeactivateCallback is called when the
torn-off menu is dismissed. These callbacks provide a way for you to perform any sp
processing that is necessary for handling tear-off menus.

Motif also provides access to the tear-off button with theXmGetTearOffControl()
routine. This routine takes a menu pane and returns the widget ID of the tear-off butt
the menu, if there is one. Otherwise the routine returnsNULL.The tear-off button has a
Separator-like appearance; you can specify its background, foreground, and top and b
shadow colors using the standard resources, as well as theXmNseparatorType resource.
You can also set these resources in a resource file using the name of the button, wh
TearOffControl .

In Motif 2.0 and later, the title of the dialog which contains the torn-off menu can be
through the RowColumn resourceXmNtearOffTitle . This resource is a compound
strings value, and you are referred to Chapter 25,Compound Strings, for more information
on.

General Menu Creation Techniques
Now we have addressed each of the fundamental elements of the MenuBar an
resources used to provide the user with the appropriate feedback. Using this inform
we can generalize the way we build MenuBars, enabling us to create arbitrarily l
MenuBars and PulldownMenus using a substantially smaller amount of code.

In the examples that follow, we use many of the recommended elements for a stan
Motif MenuBar. You can adjust the algorithms and data structures to fit the needs of
own application. Although we use hard-coded values for widget resources, this techn
is by no means a requirement, nor should it be construed as recommended usage.
choose to specify resources in a resource file, you should write an application default
that contains the appropriate resource values.

Building Pulldown Menus
Let’s begin by identifying each of the attributes of a menu item:

• Label

• Mnemonic

• Accelerator

• Accelerator text

• Callback routine
Motif Programming Manual 619

Chapter 19: Menus

rtant

g the
ts for

u
lize
ld

esign
r the
tead

e the
ader
st
ze a

alue.
• Callback data

Using this information, we can construct a data structure that describes all of the impo
aspects of a menu item. We define theMenuItem structure as follows:

typedef struct _menu_item {
char *label; /* the label for the item */
WidgetClass *class; /* pushbutton, label, separator,... */
char mnemonic; /* mnemonic; NULL if none */
char *accelerator; /* accelerator; NULL if none */
char *accel_text; /* to be converted to compound string */
void (*callback)(); /* routine to call; NULL if none */
XtPointer callback_data; /* client_data for callback() */

} MenuItem;

To create a PulldownMenu, all we need to do is initialize an array ofMenuItem structures
and pass it to a routine that iterates through the array and creates the items usin
appropriate information. For example, the following declaration describes the elemen
aFile menu:

MenuItem file_items[] = {
{"New", &xmPushButtonGadgetClass, 'N', NULL, NULL, do_open, NEW},
{"Open...", &xmPushButtonGadgetClass, 'O', NULL, NULL, do_open, OPEN},
{"Save", &xmPushButtonGadgetClass, 'S', NULL, NULL, do_save, SAVE},
{"Save As...", &xmPushButtonGadgetClass, 'A', NULL, NULL, do_save, SAVE_AS},
{"Print...", &xmPushButtonGadgetClass, 'P', NULL, NULL, do_print, NULL},
{"", &xmSeparatorGadgetClass, NULL, NULL, NULL, NULL, NULL},
{"Exit", &xmPushButtonGadgetClass, 'x', "Ctrl<Key>C", "Ctrl+C", do_quit, NULL},
{NULL, NULL, NULL, NULL, NULL, NULL, NULL}
};

Each element in theMenuItem data structure is filled with default values for each men
item. If a resource value is not meaningful, or is not going to be hard-coded, we initia
the field toNULL. If you don’t need a callback function or client data for an item, the fie
may be set toNULL. The only field that cannot beNULLin a valid entry is the widget class.
The final terminatingNULL entry indicates the end of the list.

We have not specified any accelerators except for theExit item. The Separator gadget is
completely unspecified, since none of the resources even apply to Separators. This d
makes modification and maintenance very simple. If you want to add an accelerator fo
Saveitem, all you need to do is change the appropriate fields in the data structure, ins
of having to search through the source code looking for where that item is created.

One particular point of interest is the way theWidgetClass field is initialized. It is
declared as a pointer to a widget class rather than just a widget class, so we initializ
field with the address of the widget class variable that is declared in the widget’s he
file. The use of&xmPushButtonGadgetClass is one such example. The structure mu
be initialized this way because the compiler requires a specific value in order to initiali
static data structure. ThexmPushButtonWidgetClass pointer does not have a value
until the program is actually running, but the address of the variable does have a v
620 Motif Programming Manual

Chapter 19: Menus

Button
Once the program is running, the pointer can be dereferenced to access the real Push
widget class.

Now we can write a routine that uses theMenuItem data structure to create a
PulldownMenu. TheBuildPulldownMenu() function is shown in Example 19-8. The
routine loops through each element in an array of pre-initializedMenuItem structures and
creates menu items based on the information.

Example 19-8. The BuildPulldownMenu() routine

Widget BuildPulldownMenu (Widget parent, char *menu_title,
char menu_mnemonic, Boolean tear_off,
MenuItem *items)

{
Widget pulldown, cascade, widget;
int i, n;
XmString str;
Arg args[4];

pulldown = XmCreatePulldownMenu (parent, "_pulldown", NULL, 0);

if (tear_off)
XtVaSetValues (pulldown,

XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);

str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, pulldown); n++;
XtSetArg (args[n], XmNlabelString, str); n++;
XtSetArg (args[n], XmNmnemonic, menu_mnemonic); n++;
cascade = XmCreateCascadeButton (parent, menu_title, args, n);
XtManageChild (cascade);
XmStringFree (str);

/* Now add the menu items */
for (i = 0; items[i].label != NULL; i++) {

widget = XtVaCreateManagedWidget (items[i].label, *items[i].class,
pulldown, NULL);

if (items[i].mnemonic)
XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);

if (items[i].accelerator) {
str = XmStringCreateLocalized (items[i].accel_text);
XtVaSetValues (widget, XmNaccelerator, items[i].accelerator,

XmNacceleratorText, str, NULL);
XmStringFree (str);

}
if (items[i].callback)

XtAddCallback (widget, XmNactivateCallback, items[i].callback,
(XtPointer) items[i].callback_data);

}

return cascade;
}

Motif Programming Manual 621

Chapter 19: Menus

t

nd

et is
icate
rscore
me
that

s the
ond

em.

in
back

iate
reates
The function takes five parameters.parent is a handle to a MenuBar widget that mus
have already been created,menu_title indicates the title of the menu,menu_mnemonic
specifies the mnemonic,tear_off indicates whether or not the menu can be torn off, a
items is an array ofMenuItem structures.

The first thing the routine does is create a PulldownMenu. Since the name of this widg
not terribly important, we use a predefined name, prefixed with an underscore, to ind
that the name is not intended to be referenced in a resource file. This use of the unde
is our own convention, by the way, not one adopted by the X Toolkit Intrinsics. We ca
up with this “unwritten rule” because Xt has no such naming conventions for widgets
do not wish to have their resources specified externally.

After creating the PulldownMenu, the routine creates the CascadeButton that acts a
title for the menu on the MenuBar. The name of the widget is taken from the sec
parameter,menu_title . The routine also sets the mnemonic and theXmNtearOffModel
resource at this point. All MenuBar titles should have mnemonics associated with th

Now the function loops through the array ofMenuItem structures creating menu items
until it finds an entry with aNULLname. We use this value as an end-of-menu indicator
our initialization. When each widget is created, the mnemonic, accelerator, and call
function are added only if they are specified in theMenuItem structure.

BuildPulldownMenu() must be called from another function that passes the appropr
data structures and other parameters. In our design, this would be the routine that c
the MenuBar itself. Example 19-9 shows the code for theCreateMenuBar() routine. This
simple function creates a MenuBar widget, callsBuildPulldownMenu() for each menu,
manages the MenuBar, and returns it to the calling function.

Example 19-9. The CreateMenuBar() routine

Widget CreateMenuBar (Widget MainWindow)
{

Widget mbar, widget;
Widget BuildPulldownMenu (Widget, char *, char, Boolean , MenuItem *);

mbar = XmCreateMenuBar (MainWindow, "MenuBar", NULL, 0);

(void) BuildPulldownMenu (mbar, "File", ’F’, True, file_items);
(void) BuildPulldownMenu (mbar, "Edit", ’E’, True, edit_items);
(void) BuildPulldownMenu (mbar, "View", ’V’, True, view_items);
(void) BuildPulldownMenu (mbar, "Options", ’O’, True, options_items);
widget = BuildPulldownMenu (mbar, "Help", ’H’, True, help_items);

XtVaSetValues (mbar, XmNmenuHelpWidget, widget, NULL);
XtManageChild (mbar);
return mbar;

}

622 Motif Programming Manual

Chapter 19: Menus

tton
e far

g to
e
n

th a
ing the
the

is
nu.
Each call to BuildPulldownMenu() passes an array of pre-initializedMenuItem
structures. TheHelpmenu is a special case, so we set theXmNmenuHelpWidget resource
to let the MenuBar know which item it is. By setting the resource to the CascadeBu
returned by the function, the MenuBar knows that this button should be placed to th
right. The only parameter to theCreateMenuBar() function is the MainWindow widget
that is the parent of the MenuBar that is returned.

Building Cascading Menus
We can add pullright menus to our menu creation methodology quite easily by addin
the MenuItem data structure and making a slight modification to th
CreatePulldownMenu() function. As we learned from the simple menu creatio
routines, a cascading menu is really a PulldownMenu that is associated wi
CascadeButton. We also know that we can attach a menu to a CascadeButton by sett
XmNsubMenuId resource to the handle of the PulldownMenu. We begin by modifying
MenuItem structure as follows:

typedef struct _menu_item {
char *label; /* the label for the item */
WidgetClass *class; /* pushbutton, label, separator... */
char mnemonic; /* mnemonic; NULL if none */
char *accelerator; /* accelerator; NULL if none */
char *accel_text; /* to convert to compound string */
void (*callback)(); /* routine to call; NULL if none */
XtPointer callback_data; /* client_data for callback() */
struct _menu_item *subitems; /* pullright menu items, if not NULL */

} MenuItem;

The new field at the end of the structure is a pointer to another array ofMenuItem
structures. If this pointer is notNULL, the menu item has a cascading submenu that
described bysubitems . Example 19-10 shows an example of creating a cascading me
This program uses a modified version ofBuildPulldownMenu() that calls itself to create
cascading menus.*

Example 19-10. The build_menu.c program

/* build_menu.c -- Demonstrate the BuildPulldownMenu() routine and
** how it can be used to build pulldown -and- pullright menus.
** Menus are defined by declaring an array of MenuItem structures.
*/

#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/DrawingA.h>
#include <Xm/CascadeBG.h>
#include <Xm/PushB.h>

* XtVaAppInitialize() is considered deprecated in X11R6.
Motif Programming Manual 623

Chapter 19: Menus
#include <Xm/PushBG.h>
#include <Xm/ToggleB.h>
#include <Xm/ToggleBG.h>

typedef struct _menu_item {
char *label; /* the label for the item */
WidgetClass *class; /* pushbutton, label, separator... */
char mnemonic; /* mnemonic; NULL if none */
char *accelerator; /* accelerator; NULL if none */
char *accel_text; /* to be converted to compound string */
void (*callback)(); /* routine to call; NULL if none */
XtPointer callback_data; /* client_data for callback() */
struct _menu_item *subitems; /* pullright menu items, if not NULL */

} MenuItem;

/* Pulldown menus are built from cascade buttons, so this function
** also includes pullright menus. Create the menu, the cascade button
** that owns the menu, and then the submenu items.
*/
Widget BuildPulldownMenu (Widget parent, char *menu_title,

char menu_mnemonic,
Boolean tear_off,
MenuItem *items)

{
Widget PullDown, cascade, widget;
int i;
XmString str;
Arg args[8];
int n;

PullDown = XmCreatePulldownMenu (parent, “_pulldown”, NULL, 0);

if (tear_off)
XtVaSetValues (PullDown,

XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);
str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, PullDown); n++;
XtSetArg (args[n], XmNlabelString, str); n++;
XtSetArg (args[n], XmNmnemonic, menu_mnemonic); n++;
cascade = XmCreateCascadeButtonGadget (parent, menu_title, args, n);
XtManageChild (cascade);
XmStringFree (str);

/* Now add the menu items */
for (i = 0; items[i].label != NULL; i++) {

/* If subitems exist, create the pull-right menu by calling this
** function recursively. Since the function returns a cascade
** button, the widget returned is used.
*/
if (items[i].subitems)

widget = BuildPulldownMenu (PullDown, items[i].label,
items[i].mnemonic, tear_off,
items[i].subitems);
624 Motif Programming Manual

Chapter 19: Menus
else
widget = XtVaCreateManagedWidget (items[i].label,

*items[i].class,
PullDown,
NULL);

/* Whether the item is a real item or a cascade button with a
** menu, it can still have a mnemonic.
*/
if (items[i].mnemonic)

XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);

/* any item can have an accelerator, except cascade menus. But,
** we don’t worry about that; we know better in our declarations.
*/
if (items[i].accelerator) {

str = XmStringCreateLocalized (items[i].accel_text);
XtVaSetValues (widget, XmNaccelerator, items[i].accelerator,

XmNacceleratorText, str, NULL);
XmStringFree (str);

}

if (items[i].callback) {
String resource;

if (XmIsToggleButton (widget) ||
(XmIsToggleButtonGadget (widget))

resource = XmNvalueChangedCallback;
else

resource = XmNactivateCallback;

XtAddCallback (widget, resource, items[i].callback,
(XtPointer) items[i].callback_data);

}
}

return cascade;
}

/* callback functions for menu items declared later... */
void set_weight (Widget widget, XtPointer client_data, XtPointer call_data)
{

int weight = (int) client_data;
printf (“Setting line weight to %d\n”, weight);

}

void set_color (Widget widget, XtPointer client_data, XtPointer call_data)
{

char *color = (char *) client_data;
printf (“Setting color to %s\n”, color);

}

void set_dot_dash (Widget widget, XtPointer client_data,
XtPointer call_data)
Motif Programming Manual 625

Chapter 19: Menus
{
int dot_or_dash = (int) client_data;
printf (“Setting line style to %s\n”, dot_or_dash? “dot” : “dash”);

}

MenuItem weight_menu[] = {
{ “ 1 “, &xmPushButtonGadgetClass, ‘1’, NULL, NULL, set_weight,

(XtPointer) 1, (MenuItem *) NULL },
{ “ 2 “, &xmPushButtonGadgetClass, ‘2’, NULL, NULL, set_weight,

(XtPointer) 2, (MenuItem *) NULL },
{ “ 3 “, &xmPushButtonGadgetClass, ‘3’, NULL, NULL, set_weight,

(XtPointer) 3, (MenuItem *) NULL },
{ “ 4 “, &xmPushButtonGadgetClass, ‘4’, NULL, NULL, set_weight,

(XtPointer) 4, (MenuItem *) NULL },
{ NULL. NULL, NULL, NULL, NULL, NULL, NULL, NULL }

};

MenuItem color_menu[] = {
{ “Cyan”, &xmPushButtonGadgetClass, ‘C’, “Alt<Key>C”, “Alt+C”,

set_color, (XtPointer) “cyan”, (MenuItem *) NULL },
{ “Yellow”, &xmPushButtonGadgetClass, ‘Y’, “Alt<Key>Y”, “Alt+Y”,

set_color, (XtPointer) “yellow”, (MenuItem *) NULL },
{ “Magenta”, &xmPushButtonGadgetClass, ‘M’, “Alt<Key>M”, “Alt+M”,

set color,(XtPointer) “magenta”, (MenuItem *) NULL },
{ “Black”, &xmPushButtonGadgetClass, ‘B’, “Alt<Key>B”, “Alt+B”,

set_color, (XtPointer) “black”, (MenuItem *) NULL },
{ NULL. NULL, NULL, NULL, NULL, NULL, NULL, NULL }

};

MenuItem style_menu[] = {
{ “Dash”, &xmPushButtonGadgetClass, ‘D’, NULL, NULL, set_dot_dash,

(XtPointer) 0, (MenuItem *) NULL },
{ “Dot”, &xmPushButtonGadgetClass, ‘o’, NULL, NULL, set_dot_dash,

(XtPointer) 1, (MenuItem *) NULL },
{ NULL. NULL, NULL, NULL, NULL, NULL, NULL, NULL }

};

MenuItem drawing_menus[] = {
{ “Line Weight”, &xmCascadeButtonGadgetClass, ‘W’, NULL, NULL, 0, 0,

weight_menu },
{ “Line Color”, &xmCascadeButtonGadgetClass, ‘C’, NULL, NULL, 0, 0,

color_menu },
{ “Line Style”, &xmCascadeButtonGadgetClass, ‘S’, NULL, NULL, 0, 0,

style_menu },
{ NULL. NULL, NULL, NULL, NULL, NULL, NULL, NULL }

};

main (int argc, char *argv[])
{

Widget toplevel, main_w, menubar, drawing_a;
XtAppContext app;
Arg args[4];
int n;
626 Motif Programming Manual

Chapter 19: Menus

red in
enu is

e
itself

e return
ve to
d to a
menus
XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Create a MainWindow widget that contains a DrawingArea in
** its work window.
*/
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
main_w = XmCreateMainWindow (toplevel, “main_w”, args, n);
menubar = XmCreateMenuBar (main_w, “menubar”, NULL, 0);
BuildPulldownMenu (menubar, “Lines”, ‘L’, True, drawing_menus);
XtManageChild (menubar);

/* Create a DrawingArea -- no actual drawing will be done. */
n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (main_w, “drawing_a”, args, n);
XtManageChild (drawing_a);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The majority of this program is composed of the new version ofBuildPulldownMenu()
and the menu and submenu declarations. All the menus and menu items are decla
reverse order because the cascading menu declaration must exist before the m
actually referenced. The output of the program is shown in Figure 19-12.

All we have to do to getBuildPulldownMenu() to create a cascading menu is add cod
that checks whether or not the current menu has a submenu. If it does, the routine calls
to create the submenu. Because the function creates and returns a CascadeButton, th
value can be used as the menu item in the menu that is currently being built. We ha
create the cascading menu first because it has to exist before it can be attache
CascadeButton. Recursion handles this problem for us by creating the deepest sub

Figure 19-12: Output of the build_menu program
Motif Programming Manual 627

Chapter 19: Menus

uttons

have

rce in

een
the

to
ady
first, which ensures that all the necessary submenus are built before their CascadeB
require them.

We also added support for ToggleButtons to this version ofBuildPulldownMenu() ,
even though our menus do not contain any ToggleButtons. The only change that we
to make here involves the callback function. Since ToggleButtons havean
XmNvalueChangedCallback , while PushButtons have anXmNactivateCallback ,
we check the class of the item being added and specify the appropriate callback resou
our call toXtAddCallback() .

Building Popup Menus
To further demonstrate the flexibility of our design and to exploit the similarities betw
PulldownMenus, PopupMenus, and cascading menus, we can easily modify
BuildPulldownMenu() routine to support any of these menu types. We only need
specify a new parameter indicating which of the two menu types to use. Since Motif alre
defines the valuesXmMENU_PULLDOWNandXmMENU_POPUPin <Xm/Xm.h>, we use those
values. We have also given the function a more generic name,BuildMenu() , as shown in
Example 19-11.*

Example 19-11. The BuildMenu() routine

Widget BuildMenu (Widget parent, int menu_type, char *menu_title,
char menu_mnemonic, Boolean tear_off, MenuItem *items)

{
Widget menu, cascade, widget;
int i;
XmString str;
Arg args[8];
int n;

if (menu_type == XmMENU_PULLDOWN)
menu = XmCreatePulldownMenu (parent, “_pulldown”, NULL, 0);

else {
n = 0;
XtSetArg (args[n], XmNpopupEnabled, XmPOPUP_AUTOMATIC_RECURSIVE);
n++;
menu = XmCreatePopupMenu (parent, “_popup”, args, n);

}

if (tear_off)
XtVaSetValues (menu, XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);

if (menu_type == XmMENU_PULLDOWN) {
str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, menu); n++;

* Automatic popup as provided by the toolkit is only available from Motif 2.0 onwards.
628 Motif Programming Manual

Chapter 19: Menus
XtSetArg (args[n], XmNlabelString, str); n++;
XtSetArg (args[n], XmNmnemonic, menu_mnemonic); n++;
cascade = XmCreateCascadeButtonGadget (parent, menu_title,

args, n);
XtManageChild (cascade);
XmStringFree (str);

}

/* Now add the menu items */
for (i = 0; items[i].label != NULL; i++) {

/* If subitems exist, create the pull-right menu by calling this
** function recursively. Since the function returns a cascade
** button, the widget returned is used.
*/
if (items[i].subitems)

widget = BuildMenu (menu, XmMENU_PULLDOWN,
items[i].label,
items[i].mnemonic,
tear_off,
items[i].subitems);

else
widget = XtVaCreateManagedWidget (items[i].label,

*items[i].class,
menu,
NULL);

/* Whether the item is a real item or a cascade button with a
** menu, it can still have a mnemonic.
*/
if (items[i].mnemonic)

XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);

/* any item can have an accelerator, except cascade menus. But,
** we don’t worry about that; we know better in our declarations.
*/
if (items[i].accelerator) {

str = XmStringCreateLocalized (items[i].accel_text);
XtVaSetValues (widget, XmNaccelerator, items[i].accelerator,
XmNacceleratorText, str, NULL);
XmStringFree (str);

}

if (items[i].callback) {
String resource;

if (XmIsToggleButton (widget) || (XmIsToggleButtonGadget
(widget))

resource = XmNvalueChangedCallback;
else

resource = XmNactivateCallback;

XtAddCallback (widget, resource, items[i].callback,
(XtPointer) items[i].callback_data);

}

Motif Programming Manual 629

Chapter 19: Menus

up

he
s, we

ould

nly be
make
e third
on an

Xt
is is

In

pup
oose
r an
12

3rd
nu. If
enu
}

return (menu_type == XmMENU_PULLDOWN? cascade: menu);
}

All of the original functionality is maintained; we only added a few lines to support pop
menus. Namely, whenXmMENU_POPUPis passed as themenu_type parameter, the
functionXmCreatePopupMenu() is called, and the menu itself is returned. Otherwise t
routine returns a CascadeButton. If any of the menu items have cascading menu
continue what we were doing before for submenus.

Now we can build PopupMenus, but what we really need to talk about is when you sh
use PopupMenus in an application. TheMotif Style Guidehas very little to say about when
and how popup menus should be used. One guideline is that PopupMenus should o
used as a redundant means of activating application functionality, since they do not
themselves apparent to the user. The single requirement is that PopupMenus use th
mouse button, which leads to the question: how do you get the necessary events
arbitrary widget so that you can pop up a menu?

The design of PopupMenus in the Motif 1.2 toolkit requires you to dig into lower-level
event-handling mechanisms in order to post a PopupMenu. In Motif 2.0 and later, th
not necessary: we can set theXmNpopupEnabled resource toXmPOPUP_AUTOMATICor
XmPOPUP_AUTOMATIC_RECURSIVEon the menu, and the toolkit does the rest.
Example 19-11, we specified the value asXmPOPUP_AUTOMATIC_RECURSIVEso that
widgets in the hierarchy can inherit our popup menus: we may wish to display a po
menu for a Gadget, and inherit the popup from the manager parent. If we need to ch
between a number of popup menus at any given point, we only need to registe
XmNpopupHandlerCallback on the widget where the popup is required. Example 19-
demonstrates how to display a PopupMenu for an arbitrary widget.

In the example, we parent the popup menu off the RowColumn rowcol: pressing the
mouse button over either the PushButton widget or gadget children displays the me
we only wanted to display the menu for the PushButton widget, we would parent the m
off the button itself. This program uses theBuildMenu() routine from Example 19-11, so
we do not show it in this example.*

Example 19-11. The popups.c program

/* popups.c -- demonstrate the use of a popup menus in an arbitrary
** widget. Display two PushButtons. The second one has a popup

* XtVaAppInitialize() is considered deprecated in X11R6. There is no XmNpopupHan-
dlerCallback resource in Motif 1.2: an event handler must be installed in order
to display a popup menu., which means that Gadgets did not support popup menus.
in this version of the toolkit.
630 Motif Programming Manual

Chapter 19: Menus
** menu attached to it that is activated with the third
** mouse button.
*/

#include <Xm/LabelG.h>
#include <Xm/PushBG.h>
#include <Xm/PushB.h>
#include <Xm/ToggleBG.h>
#include <Xm/ToggleB.h>
#include <Xm/SeparatoG.h>
#include <Xm/RowColumn.h>
#include <Xm/FileSB.h>
#include <Xm/CascadeBG.h>

Widget toplevel;
extern void exit(int);
void open_dialog_box(Widget, XtPointer, XtPointer);

/* callback for pushbutton activation */
void put_string (Widget w, XtPointer client_data, XtPointer call_data)
{

String str = (String) client_data;
puts (str);

}

typedef struct _menu_item {
char *label;
WidgetClass *class;
char mnemonic;
char *accelerator;
char *accel_text;
void (*callback)();
XtPointer callback_data;
struct _menu_item *subitems;

} MenuItem;

MenuItem file_items[] = {
{"File Items", &xmLabelGadgetClass, NULL, NULL, NULL, NULL, NULL, NULL},
{"_sep1", &xmSeparatorGadgetClass, NULL, NULL, NULL, NULL, NULL, NULL},
{"New", &xmPushButtonGadgetClass, ’N’, NULL, NULL, put_string, "New", NULL},
{"Open...", &xmPushButtonGadgetClass, ’O’, NULL, NULL, open_dialog_box,
(XtPointer) XmCreateFileSelectionDialog, NULL},
{"Save", &xmPushButtonGadgetClass, ’S’, NULL, NULL, put_string, "Save", NULL},
{"Save As...", &xmPushButtonGadgetClass, ’A’, NULL, NULL, open_dialog_box,
(XtPointer) XmCreateFileSelectionDialog, NULL},
{"Exit", &xmPushButtonGadgetClass, ’x’, "Ctrl<Key>C", "Ctrl+C", exit, NULL,
NULL},
{NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL}
};

/* build_menu.c -- Demonstrate the BuildMenu() routine and
** how it can be used to build pulldown -and- pullright menus.
** Menus are defined by declaring an array of MenuItem structures.
*/
Motif Programming Manual 631

Chapter 19: Menus
/* Pulldown menus are built from cascade buttons, so this function
** also includes pullright menus. Create the menu, the cascade button
** that owns the menu, and then the submenu items.
*/
Widget BuildMenu (Widget parent, int menu_type, char *menu_title,

char menu_mnemonic, Boolean tear_off, MenuItem *items)
{

Widget menu, cascade, widget;
int i;
XmString str;
Arg args[8];
int n;

if (menu_type == XmMENU_PULLDOWN)
menu = XmCreatePulldownMenu (parent, "_pulldown", NULL, 0);

else {
n = 0;
XtSetArg (args[n], XmNpopupEnabled, XmPOPUP_AUTOMATIC_RECURSIVE);
n++;
menu = XmCreatePopupMenu (parent, "_popup", args, n);

}

if (tear_off)
XtVaSetValues (menu, XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);

if (menu_type == XmMENU_PULLDOWN) {
str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, menu); n++;
XtSetArg (args[n], XmNlabelString, str); n++;
XtSetArg (args[n], XmNmnemonic, menu_mnemonic); n++;
cascade = XmCreateCascadeButtonGadget (parent, menu_title,

args, n);
XtManageChild (cascade);
XmStringFree (str);

}

/* Now add the menu items */
for (i = 0; items[i].label != NULL; i++) {

/* If subitems exist, create the pull-right menu by calling this
** function recursively. Since the function returns a cascade
** button, the widget returned is used.
*/

if (items[i].subitems)
widget = BuildMenu (menu, XmMENU_PULLDOWN,

items[i].label,
items[i].mnemonic,
tear_off,
items[i].subitems);

else
widget = XtVaCreateManagedWidget (items[i].label, *items[i].

class, menu, NULL);
632 Motif Programming Manual

Chapter 19: Menus
/* Whether the item is a real item or a cascade button with a
** menu, it can still have a mnemonic.
*/
if (items[i].mnemonic)

XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);

/* any item can have an accelerator, except cascade menus. But,
** we don’t worry about that; we know better in our declarations.
*/
if (items[i].accelerator) {

str = XmStringCreateLocalized (items[i].accel_text);

XtVaSetValues (widget, XmNaccelerator, items[i].accelerator,
XmNacceleratorText, str, NULL);

XmStringFree (str);
}

if (items[i].callback) {
String resource;

if (XmIsToggleButton (widget) ||
XmIsToggleButtonGadget (widget))

resource = XmNvalueChangedCallback;
else

resource = XmNactivateCallback;

XtAddCallback (widget, resource, items[i].callback,
(XtPointer) items[i].callback_data);

}
}

return (menu_type == XmMENU_PULLDOWN)? cascade: menu;
}

main (int argc, char *argv[])
{

Widget button, rowcol, popup;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

/* Build a RowColumn to contain two PushButtons */
rowcol = XtVaCreateManagedWidget ("rowcol", xmRowColumnWidgetClass,
toplevel, NULL);

/* The first PushButton is a gadget, just to show that the Motif 2.x
** popup routines work for Gadgets as well as widgets.
*/
button = XmCreatePushButtonGadget (rowcol, "Button 1", NULL, 0);
XtAddCallback (button, XmNactivateCallback, put_string, "Button 1");
XtManageChild (button);
Motif Programming Manual 633

Chapter 19: Menus
/* This PushButton is a widget.
*/
button = XmCreatePushButton (rowcol, "Button 2", NULL, 0);
XtAddCallback (button, XmNactivateCallback, put_string, "Button 2");
XtManageChild (button);

/* build the menu... */
popup = BuildMenu (rowcol, XmMENU_POPUP, "Stuff", NULL,

True, file_items);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* open_dialog_box() -- callback for some of the menu items declared
** in the MenuItem struct. The client data is the creation function
** for the dialog. Associate the dialog with the menu
** item via XmNuserData so we don’t have to keep a global and
** don’t have to repeatedly create one.
*/
void open_dialog_box (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget (*func)() = (Widget (*)()) client_data;
Widget dialog = NULL;

/* first see if this menu item’s dialog has been created yet */
XtVaGetValues (w, XmNuserData, &dialog, NULL);

if (!dialog) {
/* menu item hasn’t been chosen yet -- create the dialog.
** Use the toplevel as the parent because we don’t want the
** parent of a dialog to be a menu item.
*/
dialog = (*func)(toplevel, "dialog", NULL, 0);
XtVaSetValues (XtParent (dialog), XmNtitle, XtName (w), NULL);
XtVaSetValues (dialog, XmNautoUnmanage, True, NULL);

/* store the newly created dialog in the XmNuserData for the menu
** item for easy retrieval next time. (see get-values above.)
*/
XtVaSetValues (w, XmNuserData, dialog, NULL);

}
XtManageChild (dialog);

/* If the dialog was already open, XtPopup does nothing. In
** this case, at least make sure the window is raised to the top
** of the window tree (or as high as it can get).
*/
XRaiseWindow (XtDisplay (dialog), XtWindow (XtParent (dialog)));

}

634 Motif Programming Manual

Chapter 19: Menus

et. In

w.
rent,

e
tes of
later,
the

lled,
ify

d on
s.
ed to

e

alled
The output of the program is shown in Figure 19-13.

The program displays two PushButtons, one of which is a gadget and the other a widg
Motif 1.2, we would need to catchButtonPress events by specifically asking for them
usingXtAddEventHandler() . This routine requires a widget because it needs a windo
To add an event handler for a gadget, you would have to install it on the gadget’s pa
which is a manager widget. Any time aButtonPress event occurs in the manager, th
event handler would be called, so the event handler would have to check the coordina
the event and see if it happened within the boundaries of the gadget. In Motif 2.0 and
none of this is necessary: the toolkit does it all for us, and we only need to specify
XmNpopupEnabled andXmNpopupHandlerCallback resources as required. Motif 1.2
code will still work, however: XtAddEventHandler() takes the following form:

void XtAddEventHandler (Widget w,
EventMask event_mask ,
Boolean nonmaskable ,
XtEventHandler proc ,
XtPointer client_data)

Thewidget parameter specifies the widget on which the event handler is to be insta
while event_mask identifies the events that are being handled. We would spec
ButtonPressMask to indicate that we are interested inButtonPress events. The
nonmaskable argument indicates whether or not the event handler should be calle
non-maskable events. We would specifyFalse since we are not interested in the event
The final arguments specify the event handler routine and the client data that is pass
it. This routine would have to position the required popup menu (XmMenuPosition ()),
and display it (XtManageChild ()). These are now called by Motif for us internally. Se
Volume 4,X Toolkit Intrinsics Programming Manual, for a complete list of event masks
and more detailed information aboutXtAddEventHandler() .

The RowColumn widget has a resource that you can set on PopupMenus c
XmNmenuPost, which allows you to specify an alternate button to post the menu.

Figure 19-13: Output of the popups program

Before After
Motif Programming Manual 635

Chapter 19: Menus

ators
t that

reate
s
tif
and
ctual
You may have noticed that the PopupMenu shown in Figure 19-13 has acceler
associated with it. These accelerators only take effect if the input focus is in the widge
contains the menu.

Building Option Menus
In this final section on generalized menu creation methods, we examine how to c
OptionMenus using theBuildMenu() function. In this case, the underlying function i
XmCreateOptionMenu() , which is another convenience routine provided by the Mo
toolkit. The routine creates a RowColumn widget that manages the Label
CascadeButton widgets that define the OptionMenu, but we must create the a
PulldownMenu ourselves. The final version of theBuildMenu() function is shown in
Example 19-12.

Example 19-12. The build_option.c program

/* build_option.c -- The final version of BuildMenu() is used to
** build popup, option, pulldown -and- pullright menus. Menus are
** defined by declaring an array of MenuItem structures as usual.
*/

#include <Xm/MainW.h>
#include <Xm/ScrolledW.h>
#include <Xm/PanedW.h>
#include <Xm/RowColumn.h>
#include <Xm/DrawingA.h>
#include <Xm/CascadeBG.h>
#include <Xm/ToggleB.h>
#include <Xm/ToggleBG.h>
#include <Xm/PushB.h>
#include <Xm/PushBG.h>

typedef struct _menu_item {
char *label; /* the label for the item */
WidgetClass *class; /* pushbutton, label, separator... */
char mnemonic; /* mnemonic; NULL if none */
char *accelerator; /* accelerator; NULL if none */
char *accel_text; /* to be converted to compound string */
void (*callback)(); /* routine to call; NULL if none */
XtPointer callback_data; /* client_data for callback() */
struct _menu_item *subitems;/* pullright menu items, if not NULL */

} MenuItem;

/* Build popup, option and pulldown menus, depending on the menu_type.
** It may be XmMENU_PULLDOWN, XmMENU_OPTION or XmMENU_POPUP. Pulldowns
** return the CascadeButton that pops up the menu. Popups return the menu.
** Option menus are created, but the RowColumn that acts as the option
** “area” is returned unmanaged. (The user must manage it.)
** Pulldown menus are built from cascade buttons, so this function
** also builds pullright menus. The function also adds the right
** callback for PushButton or ToggleButton menu items.
636 Motif Programming Manual

Chapter 19: Menus
*/
Widget BuildMenu (Widget parent, int menu_type, char *menu_title,

char menu_mnemonic, Boolean tear_off, MenuItem *items)
{

Widget menu, cascade, widget;
int i;
XmString str;
Arg args[4];
int n;

if (menu_type == XmMENU_PULLDOWN || menu_type == XmMENU_OPTION)
menu = XmCreatePulldownMenu (parent, “_pulldown”, NULL, 0);

else if (menu_type == XmMENU_POPUP) {
n = 0;
XtSetArg (args[n], XmNpopupEnabled, XmPOPUP_AUTOMATIC_RECURSIVE);
n++;
menu = XmCreatePopupMenu (parent, “_popup”, args, n);

}
else {

XtWarning (“Invalid menu type passed to BuildMenu()”);
return NULL;

}

if (tear_off)
XtVaSetValues (menu, XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);

/* Pulldown menus require a cascade button to be made */
if (menu_type == XmMENU_PULLDOWN) {

str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, menu); n++;
XtSetArg (args[n], XmNlabelString, str); n++;
XtSetArg (args[n], XmNmnemonic, menu_mnemonic); n++;
cascade = XmCreateCascadeButtonGadget (parent, menu_title,

args, n);
XtManageChild (cascade);
XmStringFree (str);

}
else if (menu_type == XmMENU_OPTION) {

/* Option menus are a special case, but not hard to handle */
str = XmStringCreateLocalized (menu_title);
n = 0;
XtSetArg (args[n], XmNsubMenuId, menu); n++;
XtSetArg (args[n], XmNlabelString, str); n++;

/* This really isn’t a cascade, but this is the widget handle
** we’re going to return at the end of the function.
*/
cascade = XmCreateOptionMenu (parent, menu_title, args, n);
XmStringFree (str);

}

/* Now add the menu items */
Motif Programming Manual 637

Chapter 19: Menus
for (i = 0; items[i].label != NULL; i++) {
/* If subitems exist, create the pull-right menu by calling this
** function recursively. Since the function returns a cascade
** button, the widget returned is used.
*/

if (items[i].subitems) {
if (menu_type == XmMENU_OPTION) {

XtWarning (“You can’t have submenus from option menus.”);
continue;

}
else {

widget = BuildMenu (menu, XmMENU_PULLDOWN,
items[i].label,
items[i].mnemonic,
tear_off,
items[i].subitems);

}
}
else {

widget = XtVaCreateManagedWidget (items[i].label,
*items[i].class, menu, NULL);

}

/* Whether the item is a real item or a cascade button with a
** menu, it can still have a mnemonic.
*/

if (items[i].mnemonic)
XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);

/* any item can have an accelerator, except cascade menus. But,
** we don’t worry about that; we know better in our declarations.
*/

if (items[i].accelerator) {
str = XmStringCreateLocalized (items[i].accel_text);
XtVaSetValues (widget, XmNaccelerator, items[i].accelerator,

XmNacceleratorText, str, NULL);
XmStringFree (str);

}
if (items[i].callback) {

String resource;

if (XmIsToggleButton (widget) ||
XmIsToggleButtonGadget (widget))

resource = XmNvalueChangedCallback;
else

resource = XmNactivateCallback;

XtAddCallback (widget, resource, items[i].callback,
(XtPointer) items[i].callback_data);

}
}

638 Motif Programming Manual

Chapter 19: Menus
/* for popup menus, just return the menu; pulldown menus, return
** the cascade button; option menus, return the thing returned
** from XmCreateOptionMenu(). This isn’t a menu, or a cascade button!
*/

return (menu_type == XmMENU_POPUP? menu: cascade);
}

MenuItem drawing_shapes[] = {
{ “Lines”, &xmPushButtonGadgetClass, ‘L’, NULL, NULL, 0, 0, NULL },
{ “Circles”, &xmPushButtonGadgetClass, ‘C’, NULL, NULL, 0, 0, NULL },
{ “Squares”, &xmPushButtonGadgetClass, ‘S’, NULL, NULL, 0, 0, NULL },
{ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }

};

main (int argc, char *argv[])
{

Widget toplevel, main_w, pane, sw, drawing_a, menu,
option_menu;

Arg args[4];
int n;
XtAppContext app;
XtWidgetGeometry geom;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

main_w = XmCreateMainWindow (toplevel, “main_w”, NULL, 0);

/* Use a PanedWindow widget as the work area of the main window */
pane = XmCreatePanedWindow (main_w, “pane”, NULL, 0);

/* create the option menu -- don’t forget to manage it. */
option_menu = BuildMenu (pane, XmMENU_OPTION, “Shapes”, ‘S’, True,

drawing_shapes);
XtManageChild (option_menu);

/* Set the OptionMenu so that it can’t be resized */
geom.request_mode = CWHeight;
XtQueryGeometry (option_menu, NULL, &geom);
XtVaSetValues (option_menu, XmNpaneMinimum, geom.height,

XmNpaneMaximum, geom.height, NULL);

/* The scrolled window (which contains the drawing area) is a child
** of the PanedWindow; its sibling, the option menu, cannot be resized,
** so if the user resizes the toplevel shell, *this* window will resize.
*/
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
sw = XmCreateScrolledWindow (pane, “sw”, args, n);

/* Create a DrawingArea -- no actual drawing will be done. */
Motif Programming Manual 639

Chapter 19: Menus

the
e
e
he
u by
be
, as

he

s the

he
h to
rea.
and

dow
the

ation
and
elop

ar that
ys of
n = 0;
XtSetArg (args[n], XmNwidth, 500); n++;
XtSetArg (args[n], XmNheight, 500); n++;
drawing_a = XmCreateDrawingArea (sw, “drawing_a”, args, n);
XtManageChild (drawing_a);

XtManageChild (sw);
XtManageChild (pane);
XtManageChild (main_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

There are two particularly interesting features of this program. First, of course, is
modification of theBuildMenu() function. As the comments in the code indicate, th
function now fully supports all of the Motif menu types.We us
XmCreatePulldownMenu() to create the menu pane that is posted from t
CascadeButton of the OptionMenu.This menu pane is attached to the OptionMen
setting theXmNsubMenuId as usual. As we loop through the menu items that are to
placed in the menu, we prevent the creation of a pullright menu in an OptionMenu
cascading menus are not allowed in OptionMenus.

When BuildMenu() is used to create an OptionMenu, the function returns t
RowColumn widget that is returned byXmCreateOptionMenu() , even though it is not
really a CascadeButton as the variable name might indicate. The calling function need
RowColumn widget so that it can manage the OptionMenu by callingXtManageChild() .
(The call toXtManageChild() might be another automated part ofBuildMenu() if you
want to modify it.)

The other interesting feature of the program is the layout of the MainWindow. T
MainWindow widget has a single PanedWindow widget as its child because we wis
retain the vertical stacking relationship between the OptionMenu and the DrawingA
Another advantage of using the PanedWindow is that we can set the maximum
minimum height of each pane. The user can resize the entire window using the win
manager, but we don’t want the OptionMenu to change size, so we allow
ScrolledWindow to absorb the size fluctuations.

Summary
Menus are basically simple objects that provide the user with access to applic
functionality. While the simple menu creation routines are handy for basic prototyping
other simple application constructs, their usefulness is limited once you begin to dev
larger-scale applications.

We have described the design of a general menu creation routine, so it should be cle
you only need two things to create an arbitrary number of menus: predefined arra
640 Motif Programming Manual

Chapter 19: Menus

han
ed the
e, to

enus.
sign
rself

o the
MenuItem structures and theBuildMenu() function. Since initializing an array of
MenuItem objects is very simple, our method is convenient and also more powerful t
the simple menu creation routines. We have defined our own data type and generaliz
routine to build menus so that you can use and modify these functions however you lik
conform to the needs of your application.

Exercises
This chapter could go on forever discussing more and more things you can do with m
However, the goal was to present you with the fundamental concepts and de
considerations behind menus. From this information, you should be able to teach you
new techniques that we haven’t touched upon.In that spirit, you should be able to d
following exercises based on the material covered in this chapter.

1. Create a MainWindow widget that has a MenuBar that contains at least
the File, Edit, and Helpmenus, an OptionMenu, and a PopupMenu that pops
up from a DrawingArea widget. First implement the menus using the sim-
ple menu creation routines, and then implement them using the Build-
Menu() function.

2. Initialize a MenuItem structure whose fields are all set to NULLexcept for
the menu items’ names, callback routines, and widget classes, and then
write a resource file that generates a usable menu.

3. Modify the MenuItem structure and the BuildMenu routine so that you can
specify the initial sensitivity for menu items.

4. Modify BuildMenu() to recognize when the menu it is about to build is a
RadioBox. You may choose to implement this behavior by passing a new
parameter to the function or by examining the children in the MenuItem list
to see if they are ToggleButtons. You will need to modify the MenuItem
structure by adding another Boolean field to allow each element to indicate
whether it is a radio button or a plain ToggleButton. See Chapter 4, The
Main Window, for a discussion of RadioBoxes in menus.
Motif Programming Manual 641

Chapter 19: Menus
642 Motif Programming Manual

and
m,
ll as
Chapter 1

In this chapter:
• Interclient Communication
• Shell Resources
• VendorShell Resources
• Handling Window Manage

Messages
• Session Management
• Customized Protocols
• Summary
• Exercises

This chapter provides additio
the window manager. In pa
although the information give
Motif Programming Manual
r 20
s how

the
vents
er, and
ager.
ics’
tif’s
otif

ns
p
ces

ay in

the
you

ical
with
tions
es for
ation
tions.
Interacting With the
Window Manager

nal information on the relationship between shell widgets
rticular, it focuses on the Motif window manager, mw
n pertains equally to the CDE desktop manager, as we

other ICCCM-compliant managers. It discusses shell widget resources and describe
to use functions in the Motif toolkit to add and modify window manager protocols.

This chapter provides technical details about how Motif applications can interact with
window manager. It discusses when and how to interpret special window manager e
and client messages, how to set shell resources that act as hints to the window manag
how to add protocols for communication between the application and the window man
In the course of the discussion, we cover the major features of the X Toolkit Intrins
WMShell widget class, which handles basic window manager communication, and Mo
VendorShell widget, which handles window manager events that are specific to the M
window manager (mwm), and the CDE desktop which is derived from it. In the discussio
which follow, wherever the text refers tomwm, you should assume that the CDE deskto
managerdtwm is also included unless otherwise stated. The majority of the differen
between the CDE desktop and the Motif window managermwm are concerned with
consistency of visuals across platforms in any case, and do not overly affect the w
which clients communicate using the standardized ICCCM mechanisms.

The material in this chapter is advanced; you should typically not interfere with
predefined interactions between an application and the Motif window manager. When
do so, you risk interfering with the uniform look and feel that is at the heart of a graph
user interface such as Motif. However, the material in this chapter should provide you
an understanding of some important concepts that may allow you to make your applica
more robust.This chapter also discusses the use of protocols and client messag
window manager communication. These techniques can be used for communic
between instances of the same application or between suites of cooperating applica
643

Chapter 20: Interacting with the Window Manager

n the
ide
. It is
hese
rtain
” of
tions.
have

f their
er is,
ary
ger
ow
from

iates
the
s of

the

ons.
nager
of its
any

sages
with
the

en the

ies.
cess

1,
Interclient Communication
The X Window System is designed so that any user-interface style can be imposed o
display. The X libraries (Xlib and Xt) provide the mechanisms for applications to dec
for themselves how to display information and how to react to user-generated actions
left up to graphical user interface specifications such as Motif to standardize most of t
decisions. However, in order to preserve a baseline of inter-operability, there are ce
standards that an application must conform to if it is to be considered a “good citizen
the desktop. These standards are referred to as interclient communication conven
While X makes no suggestions about the way an application should look or act, it does
a lot to say about how it interacts with other applications on the user’s display.

One such convention is that all applications must negotiate the sizes and positions o
windows with the window manager, rather than with one another. The window manag
in essence, the ultimate ruler of the desktop. While it is mostly benevolent, its prim
function is to prevent anarchy on the display. Communication with the window mana
has various forms. Applications can talk directly to the window manager, or the wind
manager may initiate a conversation with an application. When the user selects a item
the window menu or issues other window manager commands, he or she init
communication between the window manager and the application. Much of
communication between the window manager and the application is carried on in term
properties andprotocols.

A property is an arbitrary-length piece of data associated with a window. It is stored on
server identified by a unique integer value called anAtom.*An application sets properties
on its windows as a way of communicating with the window manager or other applicati
Some properties are referred to as “window manager hints” because the window ma
doesn’t have to obey them. For example, an application can specify the preferred size
top-level window, but the window manager might use this value only in the absence of
other instructions from the user.

A window manager protocol is an agreed-upon procedure for the exchange of mes
between the window manager and an application. Protocols are implemented
ClientMessage events; the window manager sends an event to the application, and
application takes the appropriate action. For example, a protocol exchange occurs wh
user selectsClosefrom the window menu to close an application window.

There are low-level Xlib routines for setting and getting the value of window propert
However, the various shell widgets provided by Xt and Motif define resources that ac

* Atoms are used to avoid the overhead of passing property names as arbitrary-length strings. See VolumeXlib
Programming Manual,and Volume 4,X Toolkit Intrinsics Programming Manualfor a detailed discussion of
properties and atoms.
644 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

tion.

for
rces
ss is
avior
d by
ss

ager

ting
ells
ypes
ll and
You

dget,

nager
gers

ted,

nShell.
most of the predefined properties of interest in window manager/application interac
These resources are the preferred interface to window properties.

The WMShell widget defines many of the generic properties that are used
communication with the window manager. For example, you can use WMShell resou
to specify an icon pixmap and resize increment values. The VendorShell widget cla
defined by Xt as the widget class in which a vendor can define appearance and beh
resources specific to its own window manager. As such, this widget class is customize
every vendor of Xt-compatible toolkits. In the case of Motif, the VendorShell cla
provides resources that control the layout and operation of the Motif window man
decorations, and it supports the Motif window manager protocols.

You never instantiate WMShell or VendorShell widgets; they exist only as suppor
classes for other shells, such as TopLevelShells, SessionShells, and DialogSh*.
However, you frequently need to set WMShell and VendorShell resources on other t
of shell widgets. Remember that the MenuShell widget is not a subclass of VendorShe
WMShell, so it does not have the same provisions for window manager interaction.
can use theXtIsVendorShell() macro defined in <X11/Intrinsic.h>, to determine if a
widget is a subclass of VendorShell. Similarly, theXtIsWMShell() macro indicates
whether or not a widget is a subclass of WMShell. Once you have a handle to a shell wi
you can specify both generic and Motif-resources for it.

Shell Resources
As discussed in Chapter 3,Overview of the Motif Toolkit, the WMShell widget class
handles standard window manager/application communications as established by theInter-
Client Communications Conventions Manual(ICCCM). This document can be found in
Appendix L of Volume 0, X Protocol Reference Manual, by the X Consortium for all
interclient communication. Such conventions are necessary because the window ma
and a client application are two separate programs. Applications and window mana
need to follow these standards to maintain order in the X world.

To give you an idea of the kinds of properties in which the window manager is interes
Table 20-1 shows a partial list of properties that are handled automatically by shells.

* The ApplicationShell widget class is considered deprecated in X11R6, and is superseded by the Sessio

Table 1-1. Some Window Manager Properties

Atom Meaning

WM_NAME The name of the window

WM_CLASS The class name of the window

WM_NORMAL_HINTS Information about the size of the window
Motif Programming Manual 645

Chapter 20: Interacting with the Window Manager

you

ng
t of the
here,
al of

f
gned
ese
that
the

ses

ing
r to
d. For

s;
Xlib provides functions for modifying the values of these atoms on a window so that
can change the visual appearance, size, position, or functionality of the window.*However,
the job of the WMShell is to hide this interface from the programmer by providi
resources that accomplish the same tasks. The next few sections describe how mos
common resources can be used. While we do not cover all of the WMShell resources
most of the ones we have omitted are intuitive, so they do not require a great de
explanation. See the WMShell reference page in Volume 6B,Motif Reference Manual, for
a complete list of resources.

Shell Positions
You can position a shell at a specific location on the screen using theXmNxand XmNy
resources. In addition, you can set theXmNxandXmNyresources of the immediate child o
a shell widget to position the shell. This feature exists because Motif dialogs are desi
to make their shell widgets invisible to the programmer. It is typically easier to set th
resources directly on the child of a shell, as you are more likely to have a handle to
widget. The following code fragment shows how you can position a MessageDialog in
center of the screen:

Widget dialog, parent;
Dimension width, height;
Screen screen = XtScreen (parent);
Position x, y;

dialog = XmCreateMessageDialog (parent, "dialog", NULL, 0);
/* get width and height of dialog */
XtVaGetValues (dialog, XmNwidth, &width, XmNheight, &height, NULL);
/* center the dialog on the screen */
x = (WidthOfScreen (screen) / 2) - (width / 2);
y = (HeightOfScreen (screen) / 2) - (height / 2);
XtVaSetValues (dialog, XmNx, x, XmNy, y, NULL);

You can position a dialog in this way because the Motif BulletinBoard widget pas
positional information to its shell parent. See Chapter 5,Introduction to Dialogs, and
Chapter 7,Custom Dialogs, for further discussion. In most cases, you shouldn’t be sett
theXmNxandXmNyresources for a dialog because it is the job of the window manage
position shells. The user can also have some say in how placement should be handle

WM_ICON_NAME The name of the icon for the window

WM_HINTS Information about the icon pixmap, icon
position, and input model for the window

* See Volume 0,Xlib Programming Manual, for complete details on the properties that can be set on window
see Volume 1,X Toolkit Intrinsics Programming Manual for details on how to set or get these properties.

Table 1-1. Some Window Manager Properties (continued)

Atom Meaning
646 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

the

ing
t to
aint
of
can

d.

of a

ges
e
ixels.
ed

idget
dow
example, if the user has set theinteractivePlacement resource formwmto True , he
gets to place the window himself when it first appears. If you set the position of
window, then you are interfering with the positioning method preferred by the user.

Shell Sizes
In some situations, an application may want to prevent one of its windows from grow
or shrinking beyond certain geometrical limits. For example, an application might wan
keep a dialog box from getting so small that some of its elements are clipped. A p
application might want to restrict its top-level window from growing larger than the size
its canvas. An application can also constrain the increments by which the user
interactively resize the window. For example,xterm only allows itself to be resized in
character-size increments, where the character size is defined by the font being use

The WMShell defines the following resources that can be used to constrain the size
window:

XmNminWidth XmNmaxWidth XmNminHeight XmNmaxHeight
XmNwidthInc XmNheightInc XmNbaseWidth XmNbaseHeight

The XmNminWidth , XmNmaxWidth, XmNminHeight , and XmNmaxHeight resources
specify the minimum and maximum width and height for the shell. TheXmNwidthInc and
XmNheightInc resources control the pixel incrementals by which the window chan
when it is being resized by the user. Whenmwmprovides visual feedback during a resiz
operation, it specifies the width and height in terms of these increments, rather than p
TheXmNbaseWidth andXmNbaseHeight resources specify the base values that are us
when calculating the preferred size of the shell.

Example 20-1 demonstrates incremental resizing. The application displays a shell w
that contains a PushButton. When you click on the button, it displays the sizeof the win
in pixels, but when you resize the window, themwmfeedback window displays the size in
terms ofXmNwidthInc andXmNheightInc .*

Example 20-1. The resize_shell.c program

/* resize_shell.c -- demonstrate the max and min heights and widths.
** This program should be run to really see how mwm displays the
** size of the window as it is resized.
*/

#include <Xm/PushB.h>

main (int argc, char *argv[])
{

Widget toplevel, button;

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 647

Chapter 20: Interacting with the Window Manager

The
ow in
size

t size
size
ere. If

which

ions
lt to
for

comes
ed.
XtAppContext app;
void getsize(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass,
XmNminWidth, 75,
XmNminHeight, 25,
XmNmaxWidth, 150,
XmNmaxHeight, 100,
XmNbaseWidth, 5,
XmNbaseHeight, 5,
XmNwidthInc, 5,
XmNheightInc, 5,
NULL);

/* PushButton's callback prints the dimensions of the shell. */
button = XmCreatePushButton (toplevel, "Print Size", NULL, 0);
XtManageChild (button);
XtAddCallback (button, XmNactivateCallback, getsize,

(XtPointer) toplevel);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

void getsize (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget shell = (Widget) client_data;
Dimension width, height;

XtVaGetValues (shell, XmNwidth, &width, XmNheight, &height, NULL);
printf ("Width = %d, Height = %d\n", width, height);

}

In our example, we arbitrarily specify the minimum and maximum extents of the shell.
width and height increments are each set to five, so the user can only resize the wind
five-pixel increments. As the window is resized, the feedback window displays the
according to these incremental units, rather than using pixel values. If you runresize_shell,
you can press the PushButton to print the size of the shell in pixels and compare tha
with the size reported by the window manager. If you are going to specify the various
resources for a shell, it only makes sense to hard-code the values as we have done h
you specify the resources in an app-defaults file, the user can override the settings,
defeats the whole point of setting them.

The problem with specifying minimum and maximum extents is that most real applicat
contain many components whose sizes cannot be computed easily, making it difficu
determine exactly how large or small the window should be. If the fonts and strings
PushButtons, Labels, and ToggleButtons can be set in a resource file, the equation be
far too difficult to calculate before the window is actually created and display
648 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

re are

uld
mum
trap
nd
d in
Incremental width and height values are even more difficult to estimate because the
margins, border widths, and other resources to consider.

However, all is not lost. If you need to constrain the size of an application, you sho
consider whether the application’s default initial size can be considered either its maxi
or minimum size. If so, you can allow the window to come up using default size and
for ConfigureNotify events on the shell widget. You can then use the default width a
height reported in that event as your minimum or maximum size, as demonstrate
Example 20-2.*

Example 20-2. The set_minimum.c program

/* set_minimum.c -- demonstrate how to set the minimum size of a
** window to its initial size. This method is useful if your program
** is initially displayed at its minimum size, but it would be too
** difficult to try to calculate ahead of time what the initial size
** would be.
*/

#include <Xm/PushB.h>

void getsize(Widget, XtPointer, XtPointer);
void configure(Widget, XtPointer, XEvent *, Boolean *);

main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass,
XmNmaxWidth, 150,
XmNmaxHeight, 100,
XmNbaseWidth, 5,
XmNbaseHeight, 5,
XmNwidthInc, 5,
XmNheightInc, 5,
NULL);

/* Add an event handler to trap the first configure event */
XtAddEventHandler (toplevel, StructureNotifyMask, False, configure, NULL);

/* PushButton’s callback prints the dimensions of the shell. */
button = XmCreatePushButton (toplevel, "Print Size", NULL, 0);
XtManageChild (button);
XtAddCallback (button, XmNactivateCallback, getsize,

(XtPointer) toplevel);
XtRealizeWidget (toplevel);

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 649

Chapter 20: Interacting with the Window Manager

ts

e the

d
able

raints
ately,
the

o be
r can
get
e top-
XtAppMainLoop (app);
}

void getsize (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget shell = (Widget) client_data;
Dimension width, height;

XtVaGetValues (shell, XmNwidth, &width, XmNheight, &height, NULL);

printf ("Width = %d, Height = %d\n", width, height);
}

void configure (Widget shell, XtPointer client_data, XEvent *event,
Boolean *unused)

{
XConfigureEvent *cevent = (XConfigureEvent *) event;

if (cevent->type != ConfigureNotify)
return;

printf ("Width = %d, Height = %d\n", cevent->width, cevent->height);

XtVaSetValues (shell, XmNminWidth, cevent->width,
XmNminHeight, cevent->height, NULL);

XtRemoveEventHandler (shell, StructureNotifyMask, False, configure, NULL);
}

We useXtAddEventHandler() to add an event handler to the top-level shell for even
that satisfy theStructureNotifyMask , which includesConfigureNotify events
indicating the window’s dimensions. Theconfigure() function is called when the
window is initially sized, so we can use thewidth and height fields of the
XConfigureEvent structure as values for theXmNminWidth and XmNminHeight
resources for the shell. To prevent the event handler from being called each tim
window is resized, the event handler removes itself usingXtRemoveEventHandler() .

One problem with this technique occurs when the user has theinteractivePlacement
resource formwmset toTrue . This specification allows the user to set the initial size an
position of an application. However, once the user sets the initial size, she will never be
to make the window any smaller. Although interactive placement adheres to the const
we have set, it cannot enforce a minimum size because we have not set one. Unfortun
there is no way to allow interactive placement without allowing the user to resize
window.

The Shell widget class defines theXmNallowShellResize resource that is inherited by
all of its subclasses. This resource specifies whether or not the shell allows itself t
resized when its widget children are resized, but it does not affect whether the use
resize the window. For example, if the number of items in a List widget grows, the wid
tries to increase its own size, which causes a rippling effect that eventually reaches th
650 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

. This
s not

n its
ay. If

n a
aller
this
ually
ame.
.

s in
level window. If XmNallowShellResize is True for this shell, it grows, subject to the
window manager’s approval, of course. However, if the resource isFalse , the shell does
not even consult the window manager because it knows that it doesn’t want to resize
resource only prevents the shell from resizing after it has been realized, so it doe
interfere with the initial sizing of the shell.

The Shell’s Icon
Shells can be in one of three states: normal, iconic, or withdrawn. When a shell is i
normal state, the user can interact with the user-interface elements in the expected w
a shell is withdrawn, it is still active, but the user cannot interact with it directly. Whe
shell is iconic, its window is not mapped to the screen, but instead it displays a sm
image, or icon, that represents the entire window. The application is still running in
state, but the program does not expect any user interaction. The icon window us
displays a visual image that suggests some connection to the window from which it c
Some window managers, likemwm, also allow a label to be attached to the icon’s window

TheXmNiconPixmap resource specifies the pixmap that is used when an application i
an iconic state. Example 20-3 shows a simple application that sets its icon pixmap.*

Example 20-3. The icon_pixmap.c program

#include <Xm/Xm.h>
#include <X11/bitmaps/mailfull>

main (int argc, char *argv[])
{

Widget toplevel;
XtAppContext app;
Pixmap bitmap;

XtSetLanguageProc (NULL, NULL, NULL);

/* size is irrelevant -- toplevel is iconified */
/* it just can't be 0, or Xt complains */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass,
XmNwidth, 100,
XmNheight, 100,
XmNiconic, True,
NULL);

bitmap = XCreatePixmapFromBitmapData (XtDisplay (toplevel)
RootWindowOfScreen (XtScreen (toplevel)),
(char *) mailfull_bits,
mailfull_width
mailfull_height,
1, 0, 1);

* XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 651

Chapter 20: Interacting with the Window Manager

g
en
hints
if the

r an
any

the
t its
dow
that

utine
age.
XtVaSetValues (toplevel, XmNiconPixmap, bitmap, NULL);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The program creates an ApplicationShell and sets theXmNiconic resource toTrue to
cause the application to appear iconified. Thebitmap variable is initialized to contain the
bitmap described by the file/usr/include/X11/bitmaps/mailfull, and theXmNiconPixmap
resource for the shell is set to the bitmap.

When we set theXmNiconPixmap andXmNiconic resources, we are actually sendin
hints to the window manager that we would like the icon window to display the giv
pixmap and that we would like to be in the iconic state. These requests are called
because the window manager does not have to comply with the requests. However,
icon pixmap or iconic state is ignored, it is most likely a bug in the window manager, o
incomplete implementation of one, which is often the case for older versions of m
window managers, includingmwm (Version 1.0).

One work around for a window manager that ignores the icon pixmap is to set
XmNiconWindow resource. This resource sets the entire icon window, rather than jus
image. In environments where the user may not be running the most up-to-date win
manager, it may be best to create the icon window directly and then paint an image in
window. Example 20-4 contains a routine that demonstrates this technique.This ro
creates a shell’s icon window and can be called repeatedly to dynamically update its im

Example 20-4. The SetIconWindow() routine.

void SetIconWindow (Widget shell, Pixmap image)
{

Window window, root;
unsigned int width, height, border_width, depth;
int x, y;
Display *dpy = XtDisplay (shell);

/* Get the current icon window associated with the shell */
XtVaGetValues (shell, XmNiconWindow, &window, NULL);

if (!window) {
/* If there is no window associated with the shell, create one.
** Make it at least as big as the pixmap we're
** going to use. The icon window only needs to be a simple window.
*/
if (!XGetGeometry (dpy, image, &root, &x, &y, &width, &height, &border_

width, &depth) ||
!(window = XCreateSimpleWindow (dpy, root, 0, 0, width, height,

(unsigned)0, CopyFromParent, CopyFromParent)))
{

XtVaSetValues (shell, XmNiconPixmap, image, NULL);
return;

}

652 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

on
sing
s it.

the

ssary

ow
out a
ave

n
racter
f the

nitor

ion,

ne

get
evious
/* Now that the window is created, set it... */
XtVaSetValues (shell, XmNiconWindow, window, NULL);

}

/* Set the window's background pixmap to be the image. */
XSetWindowBackgroundPixmap (dpy, window, image);
/* cause a redisplay of this window, if exposed */
XClearWindow (dpy, window);

}

SetIconWindow() takes two parameters: ashell and animage . If the icon window for
shell has not yet been set, we create a window usingXCreateSimpleWindow() . The
size of the window is set to the size of theimage , which is retrieved with
XGetGeometry() . This function is used to get the size of the image, but it can be used
windows as well. In the unlikely event that one of these routines fails, we fall back to u
XmNiconPixmap to specify the image and hope the window manager understand
Otherwise, we set theXmNiconWindow resource to the window we just created.

We use theimage pixmap to set the window’s background pixmap, which saves us
hassle of rendering it usingXCopyArea() or XCopyPlane() . If the shell widget
already has an icon window,XSetWindowBackgroundPixmap() is still called so that
the specified image is displayed. The final call toXClearWindow() causes the icon to be
repainted. This call isn’t necessary if the window has just been created, but it is nece
if the window is merely updated with a new image.

TheXmNiconX andXmNiconY resources can be used to set the position of the icon wind
on the screen. However, you probably shouldn’t set these resources arbitrarily with
really good reason. Most window managers deal with positioning icon windows, or le
the positioning for the user to specify, so it is best not to interfere.

The XmNtitle and XmNiconName resources specify the titles used for the applicatio
window and the icon window, respectively. These resources are set to regular cha
strings, not compound strings. These values are typically both set to the name o
program,argv[0] , by default. The values also affect theWM_NAMEproperty for the top-
level window, which is important for session managers and other applications that mo
all top-level windows on a desktop. These programs look for theWM_NAMEproperty to
provide menus or buttons that allow the user to control the desktop in a GUI-like fash
rather than through tty-like shells such asxtermandcsh. It is best to let the user set the
XmNtitle and XmNiconName resources, especially since Xt provides command-li
options such as-name that can be used to set the title of an application.

VendorShell Resources
The VendorShell widget class is subclassed from WMShell, so all of the shell wid
classes subclassed from VendorShell can use the resources described in the pr
Motif Programming Manual 653

Chapter 20: Interacting with the Window Manager

The
efine

iliar

the

lar
r

ows.

of the
section. All of the Motif shells except for MenuShell are subclassed from VendorShell.
VendorShell is designed to be implemented by individual vendors so that they can d
resources specific to their own window manager. For example,mwmhas some window
manager features that are not found in other window managers. You need to be fam
with the Motif window manager in order to understand the discussion that follows.

Window Manager Decorations
The frame around an application’s main window belongs to the window manager;
controls and window menu in it are not part of the application. Themwmwindow manager
decorations for an application window are shown in Figure 20-1.

The user can setmwmresources to control which of these items are available for particu
windows on the desktop. Also,mwmautomatically controls which elements are visible fo
certain windows, in order to maintain compatibility with theMotif Style Guide. As such,
we discourage you from modifying the decorations that are available on specific wind
Nevertheless, the VendorShell does provide theXmNmwmDecorations resource for use in
exceptional cases. The resource can be set to an integer value that is made up of any
following values:

MWM_DECOR_BORDER
This value enables the window manager borders for the frame. These bor-
ders are decorative only; they are not resize handles. Except for non-rectan-
gular windows or programs like a clock, all Motif-style applications should
have decorative borders.

Title Minimize Maximize
Buttonbuttonbar

Window
menu
button

Resize
corner

Vertical
resize
handle

Horizontal
resize
handle

Client
area

Figure 20-1: Motif window manager decorations
654 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

f
er. For
, you

ibed
do

size
MWM_DECOR_RESIZEH
This value enables the resize handles for the frame. If the resize handles
are displayed, the decorative borders are forced to be displayed.

MWM_DECOR_TITLE
This value enables the title bar for the window.

MWM_DECOR_MENU
This value enables the window menu button on the title bar. If this item is
on, the title bar is forced to be displayed.

MWM_DECOR_MAXIMIZE
This value makes the maximize button visible. When this button is select-
ed, the window is expanded to the largest size possible. The size of the win-
dow is constrained by the values for XmNmaxWidth and XmNmaxHeight . If
these resources are not set, the window is expanded to the size of the
screen.

MWM_DECOR_MINIMIZE
This value makes the minimize button visible. This button does not shrink
the window, but rather iconifies it. This item is turned off by default for
TransientShell widgets (dialogs), since they cannot be iconified separately
from their parent shells.

MWM_DECOR_ALL
This value can be used to enable all of the window manager decorations.

All of these values are defined in <Xm/MwmUtil.h>, which must be included before any o
them may be used. The values are bit masks, so they are meant to be ORed togeth
example, if you have a customized dialog that you do not want to have resize handles
can turn them off as shown in the following code fragment:

Widget dialog_shell;
int decor;

XtVaGetValues (dialog_shell, XmNmwmDecorations, &decor, NULL);
decor &= ~MWM_DECOR_RESIZEH;
XtVaSetValues (dialog_shell, XmNmwmDecorations, decor, NULL);

While the programmatic interface is available to make changes in the form descr
above, you really don’t have to resort to this level of complexity. If you want to
something that is allowed by theMotif Style Guide, chances are that the Motif toolkit
provides a more convenient way of doing it. For example, you can turn off the re
handles for a Motif dialog by setting theXmNnoResize resource toTrue , as shown in the
following code:

Widget dialog;
Arg args[5];
int n = 0;
Motif Programming Manual 655

Chapter 20: Interacting with the Window Manager

nt,
o use
here.

well
,
nly
this
n,
d link
For
XtSetArg (args[n], XmNnoResize, True); n++;
dialog = XmCreateFileSelectionDialog (parent, "dialog", args, n);

If Motif doesn’t provide a convenience routine or a resource for doing what you wa
chances are good that you shouldn’t be doing it. On the other hand, you don’t have t
the convenience method; if it seems appropriate, you can use the methods described

Window Menu Functions
The contents of the window menu can be modified using theXmNmwmFunctions resource
defined by the VendorShell. This resource acts likeXmNmwmDecorations , in that the
value is an integer that may be set to one or more of the following values:

MWM_FUNC_RESIZE
This value enables the Sizeitem in the window menu. If this value isn’t set,
the resize handles for the window manager frame are disabled.

MWM_FUNC_MOVE
This value enables the Movemenu item. Disabling this item does not affect
the window manager frame decorations for the window.

MWM_FUNC_MINIMIZE
This value enables the Minimizemenu item. Disabling this item causes the
minimize button to be disabled as well.

MWM_FUNC_MAXIMIZE
This value enables the Maximizemenu item. Disabling this item causes the
corresponding window frame decoration to be disabled.

MWM_FUNC_CLOSE
This value enables the Closemenu item. Disabling this item does not affect
the window manager decorations for the window.

MWM_FUNC_ALL
This value causes all of the standard items in the menu to be displayed and
all the default functionality of the window manager to work.

It is important to remember that the user can specify these window menu functions, as
as new functions, in an.mwmrcfile (See Motif Volume 3,X Window System User’s Guide
Motif Edition). While your settings override any user specifications, you should o
modify the window menu functions if it is absolutely necessary. A common misuse of
functionality is to disable theClosebutton. We strongly discourage disabling this butto
as users expect it to be in the window menu. Rather than disable the button, you shoul
its functionality to another control in your application that has the same meaning.
example, if you are using a standard Motif dialog that providesOK andCancelbuttons, you
can link theClose menu item to theCancel button. We explain how to connect the
functionality of these components in the next section.
656 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

the
ol, the
cols

s the
ivered
that

e is
acro,

the
r
d to
Handling Window Manager Messages
A protocol is a set of rules that governs communication and data transfer. When
window manager sends a message to an application that follows a predefined protoc
client application should respond accordingly. The ICCCM defines a number of proto
for window managers and applications to follow. One such protocol involves theClose
item in the window menu. When the user selects this item, the window manager send
application a protocol message, and the application must comply. The message is del
through the normal event-handling mechanisms provided by Xlib. The event
corresponds to this message is called aClientMessage event. The message itself is an
Atom, which is merely a unique integer that is used as an identifier. (The actual valu
unimportant, since you only need to reference the value through the preprocessor m
WM_PROTOCOLS.) The protocol itself takes the form of other atoms, depending on
nature of the message. Table 20-2 lists the atoms that are used as values foWM_
PROTOCOLSclient messages. Although this table is currently complete, it is expecte
grow in future editions of the ICCCM.

Example 20-5 demonstrates how to use theWM_DELETE_YOURSELFprotocol to link the
Close item on the window menu with theCancelbutton in a dialog.*

Example 20-5. The wm_delete.c program.

/* wm_delete.c -- demonstrate how to bind the Close button in the
** window manager's system menu to the "cancel" button in a dialog.
*/

#include <Xm/MessageB.h>
#include <Xm/PushB.h>
#include <Xm/Protocols.h>

main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;
void activate(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);

Table 1-2. Protocol Atoms Defined by the ICCCM

Atom Meaning

WM_TAKE_FOCUS The window is getting the input focus.

WM_DELETE_WINDOW The window is about to be deleted.

WM_SAVE_YOURSELF The application should save its internal state.

* XtVaAppInitialize () is considered deprecated in X11R6.XmMessageBoxGetChild () is deprecated from
Motif 2.0. XmInternAtom () is marked for deprecation from Motif 2.0.
Motif Programming Manual 657

Chapter 20: Interacting with the Window Manager
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

button = XmCreatePushButton (toplevel, "Push Me", NULL, 0);
XtManageChild (button);
XtAddCallback (button, XmNactivateCallback, activate, NULL);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* Create and popup an ErrorDialog indicating that the user may have
** done something wrong. The dialog contains an OK and Cancel button,
** but he can still choose the Close button in the titlebar.
*/
void activate (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget dialog, shell;
void response(Widget, XtPointer, XtPointer);
XmString t = XmStringCreateLocalized ("Warning: Delete All Files?");
Atom WM_DELETE_WINDOW;
Arg args[5];
int n;

/* Make sure the VendorShell associated with the dialog does not
** react to the user's selection of the Close system menu item.
*/
n = 0;
XtSetArg (args[n], XmNmessageString, t); n++;
XtSetArg (args[n], XmNdeleteResponse, XmDO_NOTHING); n++;
dialog = XmCreateWarningDialog (w, "notice", args, n);
XmStringFree (t);
/* add callback routines for ok and cancel -- desensitize help */
XtAddCallback (dialog, XmNokCallback, response, NULL);
XtAddCallback (dialog, XmNcancelCallback, response, NULL);
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
XtManageChild (dialog);
/* Add a callback for the WM_DELETE_WINDOW protocol */
shell = XtParent (dialog);
WM_DELETE_WINDOW = XInternAtom (XtDisplay (w), "WM_DELETE_WINDOW", False);
XmAddWMProtocolCallback (shell, WM_DELETE_WINDOW, response, (XtPointer)

dialog);
}

/* callback for the OK and Cancel buttons in the dialog -- may also be
** called from the WM_DELETE_WINDOW protocol message sent by the wm.
*/
void response (Widget widget, XtPointer client_data, XtPointer call_data)
{

XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
Widget dialog;

if (cbs->reason == XmCR_OK)
puts ("Yes");

else
puts ("No");
658 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

the

a
be

lue
ting
r

e we

client

age

nal
if (cbs->reason == XmCR_PROTOCOLS)
/* we passed the dialog as client data for the protocol callback */
dialog = (Widget) client_data;

else
dialog = widget;

XtDestroyWidget (dialog);
}

When you run the application and click on the button, a dialog is displayed. All
application does is print “Yes” or “No” to standard output based on whether theOK or
Cancelbutton is pressed. However, if you selectClose from the window menu for the
dialog, the dialog disappears, and the “No” message is printed.

When the user selects theClose item on the window menu, the application is sent
ClientMessage event by the window manager indicating that the window is about to
deleted. The value associated with theWM_PROTOCOLSmessage isWM_DELETE_WINDOW.
The application is now responsible for complying with the protocol in some way.

At the highest level of abstraction, the VendorShell resourceXmNdeleteResponse can
be used to control what the application does in response to the user’s selection of theClose
button. The default behavior for a dialog is that the window is dismissed; the va
XmUNMAPis used, and the window is unmapped from the screen. By set
XmNdeleteReponse to XmDESTROY, the window is destroyed; this value is the default fo
ApplicationShells. However, if the resource is set toXmDO_NOTHING, the application
declares that it is going to handle the action itself.

In Example 20-5, we use this value to handle theWM_DELETE_WINDOWprotocol ourselves
by setting up a callback routine that is called whenever the protocol is sent. But befor
can set up the callback, we have to get the atom associated with theWM_DELETE_WINDOW
protocol. We retrieve the atom usingXInternAtom() , which takes the following form:

Atom XInternAtom (Display * display , char * atom_name, Boolean dont_create)

If the atom name described by the stringatom_name exists, then theAtom is returned. If
it does not exist and ifdont_create is True , the function returnsNone. Otherwise, the
routine creates and returns the atom.

Once we have the protocol atom, we can add a callback routine to respond to the
message event generated by that protocol. The functionXmAddWMProtocolCallback()
is used to install a callback routine invoked whenever the window manager sends aWM_
PROTOCOLSclient message to the application. If the protocol sent in the client mess
matches the protocol passed toXmAddWMProtocolCallback() , the associated function
is called. In Example 20-5, we use theresponse() routine as the callback for the dialog
buttons and the protocol. As a result, theCloseitem invokes the same callback as theOK
andCancel buttons.

The form of this callback routine is the same as any other Motif callback. The fi
parameter is a Motif-defined callback structure of some kind, where thereason field
Motif Programming Manual 659

Chapter 20: Interacting with the Window Manager

lback

age,

e

ally

t

to

veto
ot

you
r of
u are

g the
pecial
passed
nts.

e. In
age pro-
specifies why the callback was called. This field is provided because the same cal
function may be invoked by more than one widget. In our example, theresponse()
function’s callback structure may have one of three different values forreason : XmCR_OK
for the OK button,XmCR_CANCELfor the Cancelbutton, orXmCR_PROTOCOLSfor the
Closebutton in the window menu. When the callback is invoked for the protocol mess
theevent field of the callback structure is anXClientMessageEvent .

The widget parameter passed toresponse() also varies depending on whether th
routine is called from the dialog or from theClosebutton. When eitherOK or Cancelis
pressed, the widget is the dialog itself. But the protocol callback routines are re
processed by specialprotocol widgetsthat are attached to VendorShells.*When the
protocol callback is invoked, thewidget field is one of the special widgets, but this widge
has no intrinsic meaning, so it can be ignored. We know that the activation of theWM_
DELETE_WINDOWprotocol causes a protocol widget to be passed as thewidget parameter.
Therefore, we pass a handle to the dialog widget as the client data
XmAddWMProtocolCallback() so that we have access to the dialog.

The purpose, of course, is to destroy the window, but our function could just as easily
the operation and render theClosebutton inoperable. However, this technique is really n
appropriate, as users expect to be able to use theClosebutton to remove a window. If the
Closebutton is not going to unmap the window for some good reason, like an error,
should report the error in another dialog. If you are going to modify the default behavio
standard user-interface controls, you should keep the user informed about what yo
doing.

Adding New Protocols
In general, you can attach a callback routine to any of the published protocols usin
mechanisms we just described. You may also assign new protocols to send yourself s
messages that are pertinent only to your application, as protocol messages can be
from application to application, not just between the window manager and other clie
Handling arbitrary protocols is basically a matter of following these simple steps:

1. Create an atom or retrieve one from the X server using XInternAtom() .

2. Register the atom on the shell with XmAddWMProtocols() , so the event-
handling mechanism can recognize it if it should arrive.

3. Install a callback routine that is invoked when the protocol is sent to the
application using XmAddWMProtocolCallback() .

* A shell can actually have any number of widget children, as long as only one of them is managed at a tim
the case of the Motif VendorShell, these other widgets are not managed but are used to process and man
tocols that are exchanged between the window manager and the application.
660 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

the
Shell
ribed
ay
nce,

you

er,
ions
ate, or
ssion
ouse

ht be
the
The
by
1R6

hould
uest
case,

state

D
s not
mpt
rrent
For the case ofWM_DELETE_WINDOW, the second step has already been taken care of by
VendorShell, since it is an established and standardized ICCCM protocol. The Vendor
has already registered interest in the protocol so it can react to it in the method desc
by itsXmNdeleteResponse resource. However, other protocols (customized or not) m
not be registered. Since it doesn’t hurt to register a protocol with a window more than o
it’s always a good practice to register the protocol usingXmAddWMProtocols() , which
takes the following form:

void XmAddWMProtocols (Widget shell , Atom * protocols, int num_protocols)

This function takes a list of protocols, so you can use it to add as many protocols as
like at one time.

Session Management
A session manageris an application that acts something like a window manager. Howev
rather than controlling only the windows on a screen, it monitors the actual applicat
running on that screen. Frequently, session managers allow the user to start, termin
even restart any program automatically, through a variety of interface controls. Se
managers may even cause a program to “sleep” by terminating all its keyboard and m
input, so as far as the program is concerned, the user is just not interacting with it.

This section discusses one aspect of session manager behavior and how it mig
implemented. This behavior concerns the ability of an application running under
session manager to restart itself at the point where it left off in a previous session.
implementation focuses initially on the functionality inherent in the protocols defined
the ICCCM, and proceeds to a discussion of the new features provided by the X1
SessionShell.

Session Management in X11R5
Under the scheme drafted prior to X11R6, if the session manager decides that it s
terminate (which might result in the entire X connection terminating), it may send a req
to all its applications to save their internal state so they can be restarted later. In this
the session manager sends aWM_SAVE_YOURSELFprotocol message. According to the
ICCCM, client applications that can save their current state and restart from that
should register the atomWM_SAVE_YOURSELFon theWM_PROTOCOLSproperty on one of
their top-level windows.

The ICCCM further stated that after sending theWM_SAVE_YOURSELFmessage to the
application, the session manager should wait until the program updates itsWM_COMMAN
property on the same window that received the protocol message. The application wa
permitted to interact with the user in any way at this time. You were not supposed to pro
for filenames or ask if the user wants to save state. The callback routine saved its cu
Motif Programming Manual 661

Chapter 20: Interacting with the Window Manager

ough

rs that

t
ing

t this
state somehow, possibly in a predefined file that could be made known to the user thr
documentation, rather than a run-time message. It then updated theWM_COMMANDproperty
to reflect the parameters that started the program, as well as any additional paramete
might be required to restart it.

For example, say your application is calledwm_saveand you want to be able to restart i
from a previously-saved file. In this case, your application might parse the follow
command-line option:

% wm_save -restart filename

Example 20-6 contains a code fragment that demonstrates how you would implemen
functionality which is compatible with the X11R5 model.*

Example 20-6. The wm_save.c program

/* wm_save.c -- demonstrate how to save the state of an application
** from a WM_SAVE_YOURSELF session manager protocol. This is not a
** real program -- just a template.
*/

#include <Xm/Xm.h>
#include <Xm/Protocols.h>
#include <stdio.h>

/* save the original argc and argv for possible WM_SAVE_YOURSELF messages */
int save_argc;
char **save_argv;

main (int argc, char *argv[])
{

Widget toplevel;
XtAppContext app;
Atom WM_SAVE_YOURSELF;
void save_state();
char *restart_file;
int i;

/* save argc and argv values */
save_argv = (char **) XtMalloc (argc * sizeof (char *));
for (i = save_argc = 0; i < argc; i++) {

/* we don't need to save old -restart options */
if (!strcmp (argv[i], "-restart"))

i++; /* next arg is filename */
else {

char *copy = XtMalloc (strlen (argv[i]) + 1);
save_argv[save_argc++] = strcpy (copy, argv[i]);

}
}

* XtVaAppInitialize() is considered deprecated in X11R6.XInternAtom () is marked for deprecation from
Motif 2.0.
662 Motif Programming Manual

Chapter 20: Interacting with the Window Manager
XtSetLanguageProc (NULL, NULL, NULL);
/* initialize toolkit: argv has its Xt-specific args stripped */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, XmNwidth, 100,
XmNheight, 100, NULL);

/* get the WM_SAVE_YOURSELF protocol atom and register it with the
** toplevel window's WM_PROTOCOLS property. Also add a callback.
*/
WM_SAVE_YOURSELF = XInternAtom (XtDisplay (toplevel),

"WM_SAVE_YOURSELF", False);
XmAddWMProtocols (toplevel, &WM_SAVE_YOURSELF, 1);
XmAddWMProtocolCallback (toplevel, WM_SAVE_YOURSELF, save_state,

(XtPointer) toplevel);

/* create widgets... */
...
/* now check to see if we are restarting from a previously run state */
for (i = 0; i < argc; i++) {

if (!strcmp (argv[i], "-restart")) {
/* restarting from a previously saved state */
restart_file = argv[++i];

}
/* possibly process other args here, too */

}

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* called if WM_SAVE_YOURSELF client message was sent...
*/

void save_state (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget toplevel = (Widget) client_data;
/* hypothetical function */
extern char *SaveStateAndReturnFileName();
char *filename = SaveStateAndReturnFileName ();

puts("save_state()”);
save_argv = (char **) XtRealloc ((char *) save_argv,

(save_argc+2) * sizeof (char *));
save_argv[save_argc++] = "-restart";
save_argv[save_argc++] = filename;
/* notice the order of XSetCommand() args! */
XSetCommand (XtDisplay (toplevel), XtWindow (toplevel),

save_argv, save_argc);
}

This program registers theWM_SAVE_YOURSELFprotocol usingXmAddWMProtocols()
before it specifies the callback routine. If the session manager sends aWM_SAVE_
YOURSELFmessage to this program then thesave_state() function is called, which
Motif Programming Manual 663

Chapter 20: Interacting with the Window Manager

tion

state

ch

ation

ger

d to
. The
ered

nd the
ager
acks

e
the

lished
cess,
session
or the
g

effect
causes the program to save its internal state using the func
SaveStateAndReturnFileName() . This is a hypothetical function that you would
write yourself to save the state of the program and return the filename that contains the
information. The callback routine also adds the-restart flag and the new filename to the
savedargv from the beginning of the program. The functionXSetCommand() is used to
set theWM_COMMANDproperty on the window associated with the top-level shell, whi
fulfills the program’s obligation to the session manager.

For more information about session managers and the save-yourself communic
protocol, see Volume 0,X Protocol Reference Manual.For more details on
XSetCommand() and other Xlib-based functions that set and get window mana
properties on top-level windows, see Volume 1,Xlib Programming Manual, and Volume
2, Xlib Reference Manual.

Session Management in X11R6
X11R6 introduces the SessionShell widget class, which is specifically designe
encapsulate the interaction between an application and the session manager
SessionShell is a subclass of the ApplicationShell; the ApplicationShell is now consid
obsolete.

Using the SessionShell, handling the interaction between the session manager a
application no longer requires direct programming using the lower level window man
protocols. It is simply a matter of setting some new resources, and providing new callb
where appropriate.

The SessionShell widget class is fully described in theProgrammer’s Supplement for
Release 6 of the X Window System. Only the basics will be described here, in order to giv
sufficient information to describe the X11R6 equivalent of the techniques described in
previous X11R5 section. You are referred to theSupplement for further details.

Connecting to the Session Manager

The connection between the application and the session manager is estab
automatically when you create a SessionShell. The internals of the communicating pro
and the messages passed backwards and forwards between the application and the
manager in performing the initial handshake are beyond the scope of this chapter. F
purposes of this chapter, it is simply sufficient to know that callin
XtVaOpenApplication () or XtOpenApplication (), passing the
sessionShellWidgetClass as a parameter, will establish the connection for us as a side
of creating our first toplevel shell.
664 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

d the
ession

ed by
the

nt to
rnal
ult in
ate is
mand
need
n.

g an
ctory
ent

the
overy

itly

Path

sion
rrent
d

ion is
ot

ion
SessionShell Resources

The most important information which is passed between the session manager an
application is the name of the command, and arguments, which are to be used by the s
manager to restart the application. This is specified using theXtNrestartCommand
resource. The resource is represented internally by an array of strings, and is initializ
default from theargv , andargc parameters of the application which are passed to
XtOpenApplication () or XtVaOpenApplication () call when creating the
SessionShell. For many applications, this default behavior may be considered sufficie
recover the current state of the application. However, for many applications, the inte
state which changes due to various options or actions taken by the user may well res
the need to modify the notional parameters passed to the application if that internal st
to be recovered. Consider an editor, which edits files either passed to it on the com
line, and which dynamically opens files as a result of menu or other actions. We may
to update theXtNrestartCommand resource as each new file is opened in the applicatio

Recovering application state often involves considerably more than simply constructin
array of command line arguments. We may need to take into account the current dire
in which the application was running at the time, or consider the state of environm
variables which affect application behavior, or even explicitly supply the path to
application program. The SessionShell also supports these aspects of application rec
through resources.

The application environment can be explicitly set using theXtNenvironment resource;
this is specified through aNULL-terminated array of strings. The default value isNULL, and
is not initialized in any way from the current environment settings: you must explic
program into the resource any environment which the application requires.

The current working directory can be specified through theXtNcurrentDirectory
resource. Again, this resource has a default value ofNULL, and must be explicitly set if
required.

An explicit path to the application command can be specified through the XtNprogram
resource. UnlikeXtNrestartCommand , this resource is not initialized from the
parameters passed toXtOpenApplication (), and the default value isNULL.

As well as specifying the restart behavior of our application, we can also inform the ses
manager of any commands we may care to execute in order to tidy up the cu
application before it exits. TheXtNshutdownCommand resource specifies a command an
arguments to be called by the session manager after our application terminates.

A unique handle on the interaction between the session manager and the applicat
available through theXtNsessionID resource. The exact syntax of the resource will n
be covered here - you are referred to theSupplementfor more details of this. As far as we
are concerned in the examples which follow, it will be used simply to inform the sess
Motif Programming Manual 665

Chapter 20: Interacting with the Window Manager

it is
re it

the
tion

s the
but the

ters. It

new

er and
ore,

tion
that
r and

arious
eed to
ation
manager that we wish to restart our application in the same logical session in which
currently running. We do this simply by copying the value from the SessionShell (whe
was set up by the session manager) into part of theXtNrestartCommand array.

There is one other interesting resource which may be of use. This is
XtNcloneCommand , which can be used to inform the session manager how the applica
should be started in the general case. By default, if noXtNcloneCommand is specified, the
session manager will clone a new application using theXtNrestartCommand value.
Think of the difference between restart and clone as this: a restart command inform
session manager how to recover as near as possible the current application state,
clone command just starts the application in the normal initial state.

Example 20-7 shows a specimen routine which resets the application restart parame
can be considered as a logical equivalent of thesave_state () routine from Exercise 20-
6. We ignore for the moment the problem of how this routine gets to be called in the
scheme of things: this is covered in the following section on SessionShell callbacks.

Example 20-7. The set_session_restart() routine.

void set_session_restart (Widget w, XtPointer client_data, XtPointer call_data)
{

Widget toplevel = (Widget) client_data;
/* hypothetical function */
extern char *SaveStateAndReturnFileName();
char *filename = SaveStateAndReturnFileName ();

puts("set_session_restart()");
save_argv = (char **) XtRealloc ((char *) save_argv,

(save_argc+3) * sizeof (char *));
save_argv[save_argc++] = "-restart";
save_argv[save_argc++] = filename;
save_argv[save_argc] = (char *) 0; /* NULL terminated */

XtVaSetValues (toplevel, XtNrestartCommand, save_argv, NULL);
}

SessionShell Callbacks

In the X11R5 model, we have to program the interchange between the session manag
the application using protocols. In X11R6, we use SessionShell callbacks. Furtherm
unlike the X11R5 model, we are allowed to interact with the user for whatever confirma
or information we require. User interaction is however strictly controlled in the sense
it should occur only at specific points in the interactions between the session manage
the application.

There are six session management callbacks which can be used to program the v
stages of the interaction between the session manager and the application. Not all n
be programmed for the interactions to work - it all depends on the degree of sophistic
and error recovery required by the application to hand.
666 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

est. The

the
session

ot.

st, any
an

is

n the

exit

an
e

user
at all.
er
de the

d of
The most important callback is theXtNsaveCallback . This is used to perform actual
application state save. It should also initialise theXtNrestartCommand resource if the
application state has changed since the last time the session manager issued a requ
code in Example 20-7 is entirely typical: it simply resets theXtNrestartCommand value
to reflect the current save file name. Note that theXtNsaveCallback is not supposed to
interact with the user. We would ensure that theXtNsaveCallback is active simply by
registering the routine using normal Xt means:

extern Widget sessionShell; /* The application top level */

XtAddCallback (sessionShell, XtNsaveCallback, set_session_restart, NULL);

Once an application has saved its state, it may or may not require notification from
session manager that the message has been received and understood - that is, the
manager has managed to process all changes to theXtNrestartCommand resources for
all the participating applications in the current session. TheXtNsaveCompleteCallback
can be used if this part of the interaction is important. For a typical application, it is n

If the session manager or the application decides to terminate the save state reque
handling of clean-up operations required should be programmed using
XtNcancelCallback . Again, a typical application would not be over-concerned: it
unlikely that you would want to unwind any save operations.

The session manager can request that the application kills itself: it would do this whe
session is closing down. The application can catch this request using anXtNdieCalback .
It should not attempt to interact with the user or save state in this callback, but simply
as cleanly as possible.

When the program does want to interact with the user, it should register
XtNinteractCallback . Typically, this would be used to prompt the user for the nam
of a file into which the application state is to be saved, or indeed to request
confirmation as to whether she really does want the current application state saved
The XtNinteractCallback does not create any graphical interface for the us
interaction - the programmer should create the message dialogs as appropriate insi
callback.

The last SessionShell callback available to the programmer is theXtNerrorCallback ,
which would be used by mission-critical applications that need to be exactly informe
errors in the session manager interaction.

All of the SessionShell callbacks receive as callback data anXtCheckPointToken . This
is a pointer to a data structure, theXtCheckPointTokenRec , defined as follows:

typedef struct _XtCheckpointTokenRec {
int save_type;
int interact_style;
Boolean shutdown;
Boolean fast;
Motif Programming Manual 667

Chapter 20: Interacting with the Window Manager

ully

am

is
nal

ion
r the
ting

tifier
rious

as it
at the
uest
Boolean cancel_shutdown;
int phase;
int interact_dialog_type;
Boolean request_cancel;
Boolean request_next_phase;
Boolean save_success;
int type;
Widget widget;

} XtCheckpointTokenRec, *XtCheckpointToken;

The exact meaning of each of the elements is fully described in theSupplement. For our
purposes, we will confine ourselves to the following elements:save_success ,
request_cancel , cancel_shutdown , interact_style , and interact_dialog_
type .

The save_success element indicates whether the application was able to successf
save its state. This should be set toTRUEor FALSE during theXtNsaveCallback
depending on circumstances.

Therequest_cancel element should be set toTRUEif the application wants to abort the
current save operation for any reason.

Thecancel_shutdown element should be set toTRUEif the application wants to abort
the current shutdown operation for any reason.

The interact_style element is set by the session manager to inform the progr
whether or not it is allowed to interact with the user. The possible values are:

SmInteractStyleNone
SmInteractStyleAny
SmInteractStyleErrors

The program should not attempt to interact with the user if the value
SmInteractStyleNone , and should only interact with the user in the case of an inter
error if the style isSmInteractStyleErrors .

Theinteract_dialog_type is set by the programmer, and indicates back to the sess
manager whether any popup dialogs which will be created by the program are fo
purposes of warning the user of an error, or if the dialog is an ordinary one for collec
user information or confirmation. Possible values are:

SmDialogError SmDialogNormal

Tokens

The session management system works by passing a logical token - an iden
represented in the client by an XtCheckpointToken - between the manager and the va
applications participating in the session. Each application in turn holds the token
attempts to save its state. This token must be returned to the session manager
termination of each deferred save callback. That is, if you pop up a dialog to req
668 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

this
ine
al

. It is
ement
ss of

ally

n in

ment
t reply.

acks
state
information from the user using an interact callback, the callbacks associated with
dialog should return the token, not the interact callback itself. The rout
XtSessionReturnToken () is used to perform this task, and has the following function
signature:

void XtSessionReturnToken (XtCheckpointToken token)

Thetoken parameter is simply the data passed through to the given session callback
also possible to fetch a token. What this means in the context of a session manag
interaction is simply whether or not the session manager is currently in the proce
talking to (Checkpointing) the application. The routineXtSessionGetToken () returns a
token depending upon whether a current checkpoint operation is in force. It is form
defined as follows:

XtCheckpointToken XtSessionGetToken (Widget sessionShell) *

The routine returnsNULLif the session manager does not have a checkpoint operatio
force.

It is very important that you remember to return the token in your session manage
deferred callbacks, otherwise the session manager can hang awaiting a non-existen

An Example

The code in Example 20-8 is a simple application which sets up various session callb
in order to save its state. The application does nothing more than display a spinbox: the
to be saved is the current value of the spinbox.

Example 20-8. The session.c program

/* session.c - outlines the interactions with the session manager
*/

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
#include <Xm/SSpinB.h>
#include <Xm/MessageB.h>

Widget toplevel, spin;

/* The command by which the session manager will restart this application */
char *restart_command[6] = {

NULL,
“-xtsessionID”,
NULL,

* The Solaris (and other) manual pages for this routine list the function in the form

XtCheckpointToken XtSessionGetToken (Widget sessionShell , int type)

This is a bug: there is no type parameter.
Motif Programming Manual 669

Chapter 20: Interacting with the Window Manager
“-value”,
NULL,
NULL

};

/* The “OK” button is pressed in the popup interaction dialog */
/* This does not perform save-yourself actions - */
/* it informs the session manager that we need to do so */
static void msg_ok_callback(Widget w,

XtPointer client_data,
XtPointer call_data)

{
XtCheckpointToken token = (XtCheckpointToken) client_data;

/* Asks the session manager to call the save_callback */
token->save_success = True;
/* Return the token */
XtSessionReturnToken (token);

}

/* The “Cancel” button is pressed in the popup interaction dialog */
static void msg_cancel_callback(Widget w,

XtPointer client_data,
XtPointer call_data)

{
XtCheckpointToken token = (XtCheckpointToken) client_data;

/* Tells the session manager not to call the save_callback */
token->request_cancel = True;
token->save_success = False;
/* Return the token */
XtSessionReturnToken (token);

}

/* Interacts with the user during session shell operations */
static void interact_callback(Widget w,

XtPointer client_data,
XtPointer call_data)

{
static Widget message = (Widget) 0;
XtCheckpointToken token = (XtCheckpointToken) call_data;
XmString xms;
Arg args[8];
int n;

if (token->cancel_shutdown || token->interact_style == None) {
token->save_success = False;
return;

}

if (message == (Widget) 0) {
n = 0;
xms = XmStringCreateLocalized (“Save Changes Before Quitting?”);
XtSetArg (args[n], XmNmessageString, xms); n++;
670 Motif Programming Manual

Chapter 20: Interacting with the Window Manager
message = XmCreateQuestionDialog (toplevel, “message”, args, n);

XtUnmanageChild (XtNameToWidget (message, “Help”));

XtAddCallback (XtNameToWidget (message, “OK”), XmNactivateCallback,
msg_ok_callback, call_data);
XtAddCallback (XtNameToWidget (message, “Cancel”),
XmNactivateCallback, msg_cancel_callback, call_data);

}

XtManageChild (message);

/* Don’t return the token: we are still interacting with the user */
/* The token is returned at a deferred time in the message dialog */
/* callbacks */

}

/* Performs the session manager save-yourself actions */
/* That is, it sets up the XtNrestartCommand array as appropriate */
static void save_callback(Widget w,

XtPointer client_data,
XtPointer call_data)

{
XtCheckpointToken token = (XtCheckpointToken) call_data;
int spin_value;
char buf[20];

XtVaGetValues (spin, XmNposition, &spin_value, NULL);
(void) sprintf (buf, “%d”, spin_value);
restart_command[4] = buf;
XtVaSetValues (toplevel, XtNrestartCommand, restart_command, NULL);

if (token->interact_style != SmInteractStyleNone) {
if (token->interact_style == SmInteractStyleAny)

token->interact_dialog_type = SmDialogNormal;
else

token->interact_dialog_type = SmDialogError;

XtAddCallback (toplevel, XtNinteractCallback,
interact_callback, NULL);

}
}

/* Signals to the session manager that save completed successfully */
/* In this example, there is nothing to do */
static void save_complete_callback(Widget w,

XtPointer client_data,
XtPointer call_data)

{
XtCheckpointToken token = (XtCheckpointToken) call_data;

}

/* Kills this application in response to session manager request */
Motif Programming Manual 671

Chapter 20: Interacting with the Window Manager
static void die_callback(Widget w,
XtPointer client_data,
XtPointer call_data)

{
XtDestroyWidget (toplevel);
exit (0);

}

main (int argc, char *argv[])
{

XtAppContext app;
Arg args[16];
int i, n;
String smcid;
int spin_value = 0;

/* Parse the command-line arguments for -value nnn. */
for (i = 1; i < argc; i++) {

if ((strcmp (argv[i], “-value”) == 0) && (i < argc - 1)) {
spin_value = atoi (argv[++i]);

}
}

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, args, n);

/* Set up the restart command */
XtVaGetValues (toplevel, XtNsessionID, &smcid, NULL);

restart_command[0] = argv[0];
restart_command[2] = XtNewString (smcid);
restart_command[4] = “0”;
XtVaSetValues (toplevel, XtNrestartCommand, restart_command, NULL);

/* Set up the session manager callbacks */
XtAddCallback (toplevel, XtNsaveCallback, save_callback, NULL);
XtAddCallback (toplevel, XtNcancelCallback,

save_complete_callback, NULL);
XtAddCallback (toplevel, XtNsaveCompleteCallback,

save_complete_callback, NULL);
XtAddCallback (toplevel, XtNdieCallback, die_callback, NULL);

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNposition, spin_value); n++;
XtSetArg (args[n], XmNminimumValue, 0); n++;
XtSetArg (args[n], XmNmaximumValue, 99); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;

spin = XmCreateSimpleSpinBox (toplevel, “spin”, args, n);
672 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

in the
her.

the
. To
dow
s the

nd
lse can

hird-
te in

up a
this
XtManageChild (spin);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of this program is given in Figure 20-2.

Customized Protocols
The previous section demonstrated how similar one protocol message is to the next
way they are added to a program. Adding a completely new protocol is not difficult eit
The only changes we have to make are those that would otherwise interfere with
standard protocols and properties that are registered with the X protocol and ICCCM
avoid conflicts, the convention is to begin the name of non-standard atoms and win
properties with at least an underscore, and possibly a more detailed prefix that identifie
atom as a private protocol or property. Accordingly, Motif provides the property_MOTIF_
WM_MESSAGESas a private atom specifically for Motif-based applications that wish to se
private messages to themselves or one another. Private does not mean that no one e
see the messages; it just implies that the protocol is not publicly available for other t
party applications to use, so don’t expect other programs on the desktop to participa
the protocol.

Example 20-8 demonstrates how to register your own protocol with the shell and set
callback routine that is invoked when that protocol is delivered. Like Example 20-6,
program is a skeletal frame only; it does not have any real functionality.*

Example 20-8. The wm_protocols.c program

/* wm_protocol.c -- demonstrate how to add your own protocol to a
** shell. The nature of the protocol isn't important; however, it

* XtVaAppInitialize() is considered deprecated in X11R6.XmInternAtom () is marked for deprecation in
Motif 2.0.

Figure 20-2: Output of session program
Motif Programming Manual 673

Chapter 20: Interacting with the Window Manager
** must be registered with the _MOTIF_WM_MESSAGES property on the
** shell. We also add a menu item to the window manager frame's
** window menu to allow the user to activate the protocol, if desired.
*/

#include <Xm/Xm.h>
#include <Xm/Protocols.h>
#include <stdio.h>

main (int argc, char *argv[])
{

Widget toplevel;
XtAppContext app;
Atom MOTIF_MSGS, MY_PROTOCOL;
void my_proto_callback(Widget, XtPointer, XtPointer);
char buf[64];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass,
XmNwidth, 100,
XmNheight, 100,
NULL);

/* get the MOTIF_MSGS and MY_PROTOCOL atoms */
MY_PROTOCOL = XInternAtom (XtDisplay (toplevel),

"_MY_PROTOCOL", False);
MOTIF_MSGS = XInternAtom (XtDisplay (toplevel),

"_MOTIF_WM_MESSAGES", False);
/* Add MY_PROTOCOL to the _MOTIF_WM_MESSAGES VendorShell-defined
** property on the shell. Add a callback for this protocol.
*/
XmAddProtocols (toplevel, MOTIF_MSGS, &MY_PROTOCOL, 1);
XmAddProtocolCallback (toplevel, MOTIF_MSGS, MY_PROTOCOL,

my_proto_callback, NULL);
/* allow the user to activate the protocol through the window manager's
** window menu on the shell.
*/
sprintf (buf, "MyProtocol _P Ctrl<Key>P f.send_msg %d", MY_PROTOCOL);
XtVaSetValues (toplevel, XmNmwmMenu, buf, NULL);

/* create widgets... */
...

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* called if _MY_PROTOCOL was activated, a client message was sent...
*/
void my_proto_callback (Widget widget, XtPointer client_data,

XtPointer call_data)
{

puts ("My protocol got activated!");
674 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

nd
ay it
enu

hat

shes.
tor is
tring

y the

n.

ng
e

er
}

This program is set up to receive the protocol_MY_PROTOCOL. If the message is sent, the
function my_proto_callback() is called, passing the appropriate client data a
callback structure as before. However, since we just made up the protocol, the only w
can be delivered is by the window manager if (and only if) the user selects the new m
item that we attached to the window menu, as shown in Figure 20-3.

The menu item is added using theXmNmwmMenuresource in the call to
XtVaSetValues() .The syntax of the value for the string used by theXmNmwmMenu
resource is described completely in themwm documentation in Volume 6B,Motif
Reference Manual. Briefly, each of the arguments refers to a single entry in the menu t
is always added after the last standard protocol in the menu, which is usually theClose
button. The syntax for the resource is:

label [mnemonic] [accelerator] function

Only the label and the window manager function (mwm-specific) are required. The label is
always first; if a space needs to be embedded in the label, precede it by two backsla
The next token is parsed as a mnemonic if it starts with an underscore. If an accelera
given, the Motif toolkit parses this string and creates a corresponding accelerator text s
for the menu. Finally, the parser looks for a window manager function as described b
mwmdocumentation. These includef.move , f.raise and f.send_msg , for example.
We usef.send_msg to tellmwm to send the specified client message to the applicatio

It is possible to deactivate a protocol on the window menu usi
XmDeactivateWMProtocol() . Deactivation makes a protocol insensitiv
(unselectable). Protocols may be reactivated byXmActivateWMProtocol() ; new
protocols are automatically activated when they are addedXmActivateProtocol() and
XmDeactivateProtocol() perform an analogous function for non-window manag
protocols.

Figure 20-3: Output of wm_protocol program
Motif Programming Manual 675

Chapter 20: Interacting with the Window Manager

ndy
an
tion
ough
d to
ir own
pate
n the

ress
ume
f

uld
let’s

est in

The
e

use

nd a

the

ving

r the
But what can you do with your own private protocol? These protocols can come in ha
if you want to attach any application-specific functionality to a window so that it c
communicate with similar applications on the desktop. For example, larger applica
suites that contain multiple programs might need to communicate with one another thr
this protocol. If a suite of painting, drawing, and desktop publishing products wante
pass document information to one another, they could pass messages using the
protocol.Whether or not you allow the window manager (and thus the user) to partici
in the protocol can be controlled by whether you make the protocol handle available i
window menu, as shown in Figure 20-2.

Advanced work with protocols is getting beyond the scope of this book. Further prog
requires Xlib-level code that you can research on your own by reading portions of Vol
1, Xlib Programming Manual. However, if you are interested in providing this kind o
functionality, you might consider the following design approach:

• When an application is interested in communicating via a private protocol, it sho
place a property on its top-level windows that express this interest. For example,
call this atom_MYAPP_CLIENT_PROP. The atom can be added to theWM_PROTOCOLS
property already on the window usingXmAddWMProtocol() , just as we did earlier.
An application can also choose to useXChangeProperty() to actually use the atom
as the property itself;XChangeProperty() adds a new property to a window’s list
of existing properties.

• An application interested in seeking out other windows that have expressed inter
_MYAPP_CLIENT_PROPcan callXQueryTree() to start at the root window and
search all of its immediate children for those windows that have that property.
function XGetWindowProperty() can be used to test for the existence of th
property itself.

• When an application finds a window that contains the property, it can
XSendEvent() to send anXClientMessageEvent to that window. When sending
a client message, the application can either do what the Motif toolkit does and se
WM_PROTOCOLSmessage, or it can just send the_MYAPP_CLIENT_PROPatom itself.
If the program uses the first technique, thedata.l[0] field of the
XClientMessageEvent data structure contains the valueWM_PROTOCOLS, and the
data.l[1] field contains_MYAPP_CLIENT_PROP.If the receiving window is part of
a Motif application that has registered a callback function for this protocol,
function is invoked.*

• If the sending application wishes to send any additional data to the recei
application, it should either add or replace the receiving window’s_MYAPP_CLIENT_
PROP property and upgrade or change its value.

* Whether or not the receiving application is a Motif application, it can set up its own event handler to trap fo
client message.
676 Motif Programming Manual

Chapter 20: Interacting with the Window Manager

the
ould
tain
our
o no
ther

data
This

make
ing to
. It is
ams.
twork
to
ould
o you

For

the
and

, be

top-
rger

. The
l and

in this
Remember, since this is your own private protocol, you can do whatever you like in
correspondence process. If you wanted, you could specify that the receiving window w
always test for a newly-defined property on its window, and if that property is set, ob
further information from the primary selection. Using this process, you could write y
own data transfer methods. However, whatever you come up with is strictly private, s
other application can participate in your protocol unless you tell the developer of the o
application what to do.

You can place whatever information you like in properties: a string, an integer, or a
structure. Just make sure that it’s not per-process information like a file descriptor.
type of data cannot be shared among separate processes. You should also try not to
the information host-specific because you are not guaranteed that both clients are go
be running on the same computer, although they will be running on the same server
also a good idea to avoid protocols that involve continuous chatting between progr
Protocols are not a good method for doing interactive talk programs because the ne
can’t handle that kind of traffic. To do this kind of communication, it is typically better
establish your own TCP or STREAM connection between the two applications. You sh
attempt to be as network-portable as possible, but this is your own personal protocol, s
can do anything you like.

Summary
The best applications can still function adequately without a window manager.
portability reasons, you should not assume that the user is runningmwm. Except for dealing
with WM_DELETE_WINDOWprotocol messages to handle the window menu’sClosebutton,
you should avoid interfering with the interaction between your applications and
window manager. Despite this advice, many developers believe they know better
attempt to redesign Motif on a per-application basis. If you attempt to go this route
aware of the guidelines provided by theMotif Style Guide and the ICCCM.

Client messages can be an extremely powerful tool for a large application with many
level windows that need to interact with each other. They can also be useful for la
groups of similar applications by the same vendor that need to talk to one another
secret to making a private protocol work is establishing a good communication channe
being able to transfer a lot of information without having to transfer a lot of data.

Exercises
These exercises are designed to help you understand the material that was presented
chapter.

1. Write a program that always places its error dialogs in the center of the
screen.
Motif Programming Manual 677

Chapter 20: Interacting with the Window Manager
2. Whenever a shell changes from normal state to iconic state, the window
manager changes the shell’s WM_STATEproperty. Write a program that gets
the PropertyNotify event generated from this state change so that you
can track when a shell is iconified and de-iconified. Use XtAddEventHan-
dler() to register a routine that tracks for the event in the same way we
tracked for ConfigureNotify events in set_minimum.c

3. Write a program so that when the user selects the Closebutton from a win-
dow menu, the shell iconifies itself if it is a TopLevelShell, and destroys it-
self if it is a DialogShell.
678 Motif Programming Manual

ta is
sktop
ards,
to the
as
Chapter 1

In this chapter:
• Simple Clipboard Copy an

Retrieval
• Copy by Name
• Clipboard Data Formats
• The Primary Selection an

Clipboard
• Implementation Issues
• Summary

This chapter describes a way
placed on the clipboard, wh
regardless of the applications
many of the functions and me
Uniform Transfer Model, de
Motif Programming Manual
d

d the

21
ed in

ting
und.
one
age to
d the
t was
, but

that
arate
face.

Text
user

g it
et and

text
then

alents.
The Clipboard
for the application to interact with other applications. Da
ere it can be accessed by other windows on the de
with which they are associated. From Motif 2.0 and onw
thods which are described here have been subsumed in

scribed in Chapter 23. Although not officially marked
deprecated, the Motif Toolkit performs some of the housekeeping operations describ
this chapter internally to the model on behalf of the programmer.

Imagine a group of people in a room; the only way for them to communicate is by wri
messages on paper, placing the paper on a clipboard, and passing the clipboard aro
A single person acts as the moderator and holds the clipboard at all times. If some
wants to post a note, she writes the message on a slip of paper and hands the mess
the moderator. The note is now available for anyone to read. However, those who rea
message do not remove the message from the clipboard; rather, they copy wha
written. There is no guarantee that anyone will want to look at any particular message
it is there nonetheless and will remain there until someone writes a new one.

This scenario is the concept behind the Motif clipboard: a data transfer mechanism
enables widgets to make data available for other widgets, including those in sep
applications. Information of any size or type can be passed using the clipboard inter
The most common example of this data transfer model iscut and paste, a method by which
the user can move or copy text between windows. Here, the user interacts with a
widget that contains some text that she wishes to transfer to another Text widget. The
first selectsthe text she wants to transfer by clicking the left mouse button and draggin
across the entire area to be copied. Then, she moves the pointer to the target widg
pastes the text by clicking the middle mouse button.*

This action causes the text to appear to be copied to the new window. However, the
does not actually move; it is copied to the clipboard, from which the second widget

* This is the default cut and paste user model; the user may override it using resources or keyboard equiv
The actual method for performing this task is not the point of discussion here.
679

Chapter 21: The Clipboard

since

cess
o the
ent

s they
Their
this
ore,
t or
red,

at of

a new
data is
ce the

the
ly.
ave
the

n the
nce
uire
one

ister
may

ncing

ection
copies it into its own window. The original data may have been changed or destroyed
it was sent to the clipboard, but that is of no concern to the second widget.

An object that wishes to place data on the clipboard or read data from it is called aclientof
the clipboard (one of the people in our imaginary room). Since only one client may ac
the clipboard at a time, whether it is storing or retrieving data, requesting access t
clipboard implies “locking” it. If another widget already has locked the clipboard, the cli
must wait and ask for it again later (after the current holder has “unlocked” it).

Now, imagine that the people in the room have all sorts of items besides text message
wish to make available for copy. Some may have pictures, records, tapes - anything.
“cargo” must be deliverable by the moderator to anyone who requests it. To deal with
situation, the moderator must know what type of cargo she will be handling. Theref
certain information must be registered with the moderator before cargo may be sen
received through the clipboard mechanism. Once a particular cargo type is registe
anyone may post or request such cargo to or from the moderator.

In the Motif toolkit, different types of cargo are referred to asformats. With respect to the
X server and client applications, text messages are the most commonly used form
clipboard messages and are therefore registered by default.* Application-specific data
structures must be registered separately, perhaps on a per-application basis. Once
data type is registered, even clients that exist on other computer architectures where
not represented identically (e.g., due to byte swapping) can use that data type, sin
clipboard registration handles the proper data conversion.

There are some situations where it is impractical to place complete information on
clipboard. Some people’s cargo may be “too heavy” for the clipboard to hold indefinite
Other people may have perishables that don’t last very long. Still others may h
information that varies with the state of the world. For these cases, the person with
special cargo may choose to leave only some information about their cargo rather tha
cargo itself. This information might include its weight, type, name and/or refere
number, for example. Potential recipients may then examine the clipboard and inq
about the cargo without having to get it or even look at it. Only in the event that some
else wishes to obtain the cargo is the original owner called upon to provide it.

In the Motif world, this scenario describes clipboard data that is availableby name. For
example, if a client wishes to place an entire file on the clipboard, it might choose to reg
the file by name without providing the actual contents unless someone requests it. This
save a lot of time and resources, since it is possible that no one will request it. Refere
data this way is very cheap and is not subject to expiration or obsolescence.

* There are also other types that are automatically registered, such as integers. A complete list is given in S
21.3.
680 Motif Programming Manual

Chapter 21: The Clipboard

lback
otif
dent
may

ons
ing
s not
board
f the
m.

.

port

ions
tions

tent
tails.

we
tions

nner
dary

otif
oard
en it

two

xt
ber of
When posting messages by name, the client must provide the clipboard with a cal
function that returns the actual data. This callback function may be called by the M
toolkit at any time, provided another client requests the data. If the data is time-depen
or subject to other criteria (someone removed or changed the file), the callback routine
respond accordingly.

The Motif clipboard functions are based on X’s Inter-Client Communications Conventi
Manual (ICCCM). Knowledge of these conventions will aid greatly in your understand
of how these functions are implemented. However, knowledge of the implementation i
required in order to understand the concepts involved here or to be able to use the clip
effectively through Motif’s application interface. This chapter does not address many o
issues involved with the ICCCM and the lower-level Xlib properties that implement the
Rather, it only addresses the highest level of interaction provided by the Motif toolkit

Also note that the clipboard is one of three commonly used mechanisms to sup
interclient communication. There are also the primary andsecondaryselections, which are
similar in nature, but are handled differently at the application and user level.

The Motif 1.2 toolkit supports convenience routines that interact with clipboard select
only. To use the other selection mechanisms, you have to use X Toolkit Intrinsics func
discussed in Volume 4,X Toolkit Intrinsics Programming Manual. Note, however, that the
Text widget supports both mechanisms.

The Motif 2.1 toolkit handles primary and secondary selections in a more consis
manner through the Uniform Transfer Model mechanisms. See Chapter 23 for more de

Simple Clipboard Copy and Retrieval
To introduce the application programmer’s interface (API) for the clipboard functions,
demonstrate how to handle simple copy and retrieval of text. The cut and paste func
provided by the Text widgets handle copy and retrieval from the clipboard in the ma
we are about to describe; they also support interaction with the primary and secon
selection mechanisms. However, as pointed out in Chapter 18,Text Widgets, these
functions are usually reserved for interactive actions taken by the user. Fortunately, M
provides many convenience functions that facilitate the task of dealing with the clipb
for Text widgets. This section discusses the techniques used by the Text widget wh
interacts with the clipboard.

Let’s begin with the short program in Example 21-1. This program creates
PushButtons that have complementary callback routines:to_clipbd() copies text to the
clipboard andfrom_clipbd() retrieves text from the clipboard. For this example, the te
copied to the clipboard is arbitrary; we happen to use a string that represents the num
times theCopy to Clipboard button is pressed.*
Motif Programming Manual 681

Chapter 21: The Clipboard

1R6
Example 21-1. The copy_retrieve.c program

/* copy_retrieve.c -- simple copy and retrieve program. Two
** pushbuttons: the first places text in the clipboard, the other
** receives text from the clipboard. This just demonstrates the
** API involved.
*/

#include <Xm/CutPaste.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

static void to_clipbd(Widget, XtPointer, XtPointer);
static void from_clipbd(Widget, XtPointer, XtPointer);

main (int argc, char *argv[])
{

Widget toplevel, rowcol, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit, application context and session shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);
/* manage two buttons in a RowColumn widget */
rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
/* button1 copies to the clipboard */
button = XmCreatePushButton (rowcol, "Copy To Clipboard", NULL, 0);
XtAddCallback (button, XmNactivateCallback, to_clipbd, "text");
XtManageChild (button);
/* button2 retrieves text stored in the clipboard */
button = XmCreatePushButton (rowcol, "Retrieve From Clipboard",
NULL, 0);
XtAddCallback (button, XmNactivateCallback, from_clipbd, NULL);
XtManageChild (button);
/* manage RowColumn, realize toplevel shell and start main loop */
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* copy data to clipboard. */
static void to_clipbd (Widget widget, XtPointer client_data,

XtPointer call_data)
{

long item_id = 0; /* clipboard item id */
int status;
XmString clip_label;
char buf[32];
static int cnt;

* XtVaAppInitialize() is considered deprecated in X11R6. The SessionShell is only available from X1
onwards.
682 Motif Programming Manual

Chapter 21: The Clipboard

oard-
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);
char *data = (char *) client_data;

sprintf (buf, "%s-%d", data, ++cnt); /* make each copy unique */
clip_label = XmStringCreateLocalized ("to_clipbd");

/* start a copy -- retry till unlocked */
do

status = XmClipboardStartCopy (dpy, window, clip_label,
CurrentTime, NULL, NULL, &item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data (buf) -- pass "cnt" as private id for kicks */
do

status = XmClipboardCopy (dpy, window, item_id, "STRING", buf,
(long) strlen (buf)+1, cnt, NULL);

while (status == ClipboardLocked);

/* end the copy */
do

status = XmClipboardEndCopy (dpy, window, item_id);
while (status == ClipboardLocked);

printf ("Copied \"%s\" to clipboard.\n", buf);
}

static void from_clipbd (Widget widget, XtPointer client_data,
XtPointer call_data)

{
int status;
long private_id;
char buf[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardRetrieve (dpy, window, "STRING", buf,

sizeof (buf), NULL, &private_id);
while (status == ClipboardLocked);

if (status == ClipboardSuccess)
printf ("Retrieved \"%s\" (private id = %d).\n", buf, private_id);

}

The program uses the header file <Xm/CutPaste.h> to include the appropriate function
declarations and various constants.* The to_clipbd() callback routine uses the
following clipboard functions to copy data to the clipboard:

* CutPaste.his derived from the phrase “cut and paste,” which historically has been used to describe clipb
type operations.
Motif Programming Manual 683

Chapter 21: The Clipboard

s the
a per-
hich

ests a
an be

e,

ding

s in
oard
ese

the
ber
ples

eters.

get or

e of the
XmClipboardStartCopy ()
XmClipboardCopy ()
XmClipboardEndCopy ()

Copying data to the clipboard is a three-phase process. Each of the functions lock
clipboard so that other clients cannot access it. Since locking the clipboard is done on
window basis, the object that locks the clipboard should have an associated window, w
means that gadgets may not work.* When the clipboard is locked, only requests from
objects with the same window ID can access the clipboard. Each time an object requ
lock on the clipboard, a counter is incremented so that matching unlock requests c
honored.

XmClipboardStartCopy() sets up internal storage for the copy to take plac
XmClipboardCopy() sends the data to the clipboard, andXmClipboardEndCopy()
frees the internal supporting structures. When copying data to the clipboard, inclu
copies by name, all three functions must be used.

The from_clipbd() callback routine usesXmClipboardRetrieveCopy() to retrieve
data from the clipboard. Only a single call is needed for the retrieval of short items, a
this example. However, a three-step process similar to that for copying data to the clipb
is required for the incremental retrieval of large amounts of data. We will cover th
functions shortly.

Copying Data
The syntax of the functions that copy data to the clipboard is outlined below. Due to
intricacies involved in providing data to the clipboard, these functions take a larger num
of parameters than you might expect from the simple examples given so far. Later exam
should clarify the intended usage of these functions and their corresponding param
Each of the routines takes a pointer to theDisplay and theWindow associated with the
object making the clipboard request. These parameters may be derived from any wid
gadget usingXtDisplayOfObject() andXtWindowOfObject() .

XmClipboardStartCopy() takes the following form:

int XmClipboardStartCopy (Display * display ,
Window window ,
XmString label ,
Time timestamp ,
Widget widget ,
XmCutPasteProc callback ,
long * item_id)

* Gadgets happen to work in some cases because of their window-based widget parents. However, som
clipboard functions useXtWindow() rather thanXtWindowOfObject() to get the window of an object. These
functions do not work for gadgets.
684 Motif Programming Manual

Chapter 21: The Clipboard

(see
he

in
ard.

g
e

will
ter

ding

o

ly to

ing
Thewidget andcallback parameters are only used when registering data by name
Section 21.2). Although thelabel parameter is currently unused, its purpose is to label t
data so that certain applications can view the contents of the clipboard. Thetimestamp
identifies the server time when the cut took place (CurrentTime is the typical value). The
item_id parameter is filled in by the toolkit and is returned to the client for use
subsequent clipboard function calls. This value identifies the item’s entry in the clipbo

XmClipboardCopy() has the following form:

int XmClipboardCopy (Display * display ,
Window window ,
long item_id ,
char * format_name ,
XtPointer buffer ,
unsigned long length ,
long private_id ,
long * data_id)

XmClipboardCopy() copies the data inbuffer to the clipboard. The format of the data
is described by theformat_name parameter. This value is not a type, but a strin
describing the type. For example,"STRING" indicates that the data is a text string. Th
length parameter is the size of the data. Text strings can usestrlen (data) .

The item_id parameter is the ID returned byXmClipboardStartCopy() . Thedata_
id parameter returns the format ID. You may passNULLfor this parameter if you are not
interested in the value, however you may need it for other functions. For example, you
need it if you wish to withdraw an item from the clipboard. We will discuss this issue la
when we talk about registration by name. Theprivate_id parameter is an arbitrary
number that is application-defined. The value is passed back to various functions, inclu
those that handle calling by name, so we will address it further in Section 21.2.

When copying is done,XmClipboardEndCopy() is called to free the internal data
structures associated with the clipboard item. The routine takes the following form:

int XmClipboardEndCopy (Display * display ,
Window window ,
long item_id)

The item_id parameter is the ID returned by the call toXmClipboardStartCopy() .

The clipboard copy functions return one of three status values:ClipboardSuccess ,
ClipboardLocked , or ClipboardFail . If the client is successful in gaining access t
the clipboard, the routine returnsClipboardSuccess . If another client is already
accessing the clipboard, the clipboard is locked and the client can loop repeated
attempt to gain access.

Once a copy to the clipboard is complete, you can undo it us
XmClipboardUndoCopy() , which takes the following form:

int XmClipboardUndoCopy (Display * display , Window window)
Motif Programming Manual 685

Chapter 21: The Clipboard

ing

tion

e

n

n

e

e
he

how
data
o each

s:

lier.
You can remove an item that you have placed on the clipboard us
XmClipboardWithdrawFormat() . This routine is discussed in Section 21.2.1,Copying
Incrementally.

Retrieving Data
In Example 21-1, we retrieved the data stored on the clipboard using the func
XmClipboardRetrieve() . This function takes the following form:

int XmClipboardRetrieve (Display * display ,
Window window ,
char * format_name ,
char * buffer ,
unsigned long length ,
unsigned long * num_bytes ,
long * private_id)

When usingXmClipboardRetrieve() , you must provide buffer space to retrieve th
data. In our example, we know that the data is not very large, so we declaredbuffer to
have 32 bytes, which is more than adequate. Thelength parameter tells the clipboard how
much space is available inbuffer . The num_bytes parameter is the address of a
unsigned long variable. This value is filled in byXmClipboardRetrieve() to
indicate how much data it gave us. Theprivate_id parameter is the address of along ;
its value is the same as theprivate_id parameter passed toXmClipboardCopy() . You
can passNULL as this parameter if you are not interested in it.

If the routine is successful in retrieving the data, it returnsClipboardSuccess . If the
clipboard is locked, the function returnsClipboardLocked . A rare internal error may
cause the function to returnClipboardFail . If the routine does not succeed, you ca
choose to loop repeatedly to attempt to retrieve data.

One problem withXmClipboardRetrieve() occurs when there is more data in th
clipboard than buffer space to contain it. In this case, the function copies onlylength
bytes intobuffer and setsnum_bytes to the number of bytes it copied, which should b
the same value aslength if not enough space is available. If this situation arises, t
function returnsClipboardTruncate to indicate that it did not copy everything that is
available. Since we cannot just arbitrarily specify a larger data space without knowing
much data there is, we have two choices: query the clipboard to find out how much
there is or copy the data incrementally. There are advantages and disadvantages t
method. Let’s start by discussing incremental retrieval.

To do an incremental retrieval, we need to introduce two function
XmClipboardStartRetrieve() and XmClipboardEndRetrieve() . These
functions are similar to the start and end copy functions discussed ear
XmClipboardStartRetrieve() takes the following form:

int XmClipboardStartRetrieve (Display * display ,
686 Motif Programming Manual

Chapter 21: The Clipboard

he
to

ue
re the

21-2

typi-
event
Window window ,
Time timestamp)

This function locks the clipboard and notes thetimestamp . Data placed on the clipboard
after this time is considered invalid and the function returnsClipboardFail . The
constant CurrentTime is typically used as this value.*

XmClipboardStartRetrieve() also allocates internal data structures to support t
incremental retrieval operation. Once the function is called, multiple calls
XmClipboardRetrieve() can be made until it returnsClipboardSuccess . While the
routine returnsClipboardTruncate , more data needs to be read and you should contin
to call the function. Be careful to save the data that has already been retrieved befo
next call to the function, or you may overwrite the old data and lose information.

Once all of the data has been retrieved, callXmClipboardEndRetrieve() , which takes
the following form:

int XmClipboardEndRetrieve (Display * display , Window window)

This function unlocks the clipboard and frees the internal data structures. Example
shows a callback routine that retrieves data from the clipboard incrementally. Thefrom_
clipbd_incr() routine could replace thefrom_clipbd() callback routine in Example
21-1.

Example 21-2. Incrementally retrieving data from the clipboard

static void from_clipbd_incr (Widget widget, XtPointer client_data,
XtPointer call_data)

{
int status;
unsigned total_bytes;
unsigned long received;
char *data = NULL, buf[32];
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardStartRetrieve (dpy, window, CurrentTime);

while (status == ClipboardLocked);

/* initialize data to contain at least one byte. */
data = XtMalloc (1);
total_bytes = 1;
do {

/* retrieve data from clipboard -- if locked, try again */
status = XmClipboardRetrieve (dpy, window, "STRING", buf,

sizeof (buf), &received, NULL);
/* reallocate data to contain enough space for everything */

* It is also common to provide the timestamp found in an event structure when available. This technique is
cally used when the clipboard retrieval is initiated as a result of an action or callback routine where an
structure is available.
Motif Programming Manual 687

Chapter 21: The Clipboard

f the
yte
ata

ed to
you
ue is

ually

y be
very
by

data
ere is
if (!(data = XtRealloc (data, total_bytes + received))) {
XtError ("Can't allocate space for data");
break; /* XtError may or may not return */

}
/* copy buf into data. strncpy() does not NULL terminate */
strncpy (&data[total_bytes-1], buf, received);
total_bytes += received;

} while (status == ClipboardTruncate);

if (data)
data[total_bytes] = 0; /* NULL terminate */

if (status == ClipboardSuccess)
printf ("Retrieved \"%s\" from clipboard.\n", data);

status = XmClipboardEndRetrieve (dpy, window);
}

The callback routine works regardless of the amount of data held by the clipboard. I
client placed an entire file on the clipboard, the routine would read all of it in 32-b
increments. It is probably wise to use a larger block size when retrieving d
incrementally; the constantBUFSIZ* is a good default choice.

The primary advantage of using the incremental retrieval method is that you do not ne
allocate a potentially large amount of memory at one time. By segmenting memory,
can reuse some of it, or even discard it as each increment is read. This techniq
especially useful if you are scanning for specific data and you have no intention of act
saving everything that you retrieve.

Querying the Clipboard for Data Size
The problem with incremental retrieval is that numerous round trips to the server ma
necessary in order to obtain the entire contents of the clipboard. If you intend to save e
bit of information you retrieve, the most economical way to handle the retrieval is
reading everything in one fell swoop. A single call toXmClipboardRetrieve() is more
convenient than the three-step process involving locking the clipboard.

However, as pointed out earlier, we have a problem since we do not know how much
there is to read. The solution to the problem is to determine exactly how much data th
by usingXmClipboardInquireLength() . This routine has the following form:

int XmClipboardInquireLength (Display * display ,
Window window ,
char * format ,
unsigned long * length)

* BUFSIZ is defined in <stdio.h>.
688 Motif Programming Manual

Chapter 21: The Clipboard

ified

board

by
to

ata
The function returns the amount of data being held by the clipboard under the spec
format_name . In Example 21-3, we are looking for data in the"STRING" format. If any
data on the clipboard is in this format, the function returnsClipboardSuccess and the
length parameter is set to the number of bytes being held. If there is no data on the clip
in the specified format, the function returnsClipboardNoData . If length is not set to a
value other than 0, the data cannot be read from the clipboard.

If XmClipboardInquireLength() is successful, then the number of bytes specified
length can be allocated and the data can be retrieved in one call
XmClipboardRetrieve() . Example 21-3 shows a callback routine that retrieves d
from the clipboard after querying the size of the data. Thefrom_clipbd_query()
routine could replace thefrom_clipbd() callback routine in Example 21-1.

Example 21-3. The from_clipbd_query() routine

static void from_clipbd_query (Widget widget, XtPointer client_data,
XtPointer call_data)

{
int status;
unsigned long recvd, length;
char *data;
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardInquireLength (dpy, window, "STRING",

&length);
while (status == ClipboardLocked);

if (length == 0)
printf ("No data on clipboard in specified format.\n");

data = XtMalloc (length+1);

do
status = XmClipboardRetrieve (dpy, window, "STRING", data,

length+1, &recvd, NULL);
while (status == ClipboardLocked);

if (status != ClipboardSuccess || recvd != length) {
printf ("Failed to receive all clipboard data\n");
XtFree (data);

}
else

printf ("Retrieved \"%s\" from clipboard.\n", data);
}

Motif Programming Manual 689

Chapter 21: The Clipboard

d until
tified
large
other
. The
ources

rmal

te
t

s the

the

e

me.
Copy by Name
As discussed earlier, there are cases where data should not be copied to the clipboar
it is requested. It is possible to copy data by name, so that the owner of the data is no
through a callback function when the data is needed by the clipboard. Since copying
amounts of data may be expensive, time-consuming, or even impossible due to
constraints in an application, copying data by name may be the only option available
technique is especially advantageous if the data is never requested, since time and res
are saved.

The procedure for copying data by name is quite similar to the procedure for no
copying. The application first callsXmClipboardStartCopy() , but unlike a normal
copy operation, thecallback andwidget parameters are specified. These values indica
that the data is to be copied by name. Thecallback parameter specifies the routine tha
is called when the data is requested by another client. Thewidget parameter specifies the
widget that receives the messages requesting the data. Since the toolkit handle
messages, any valid widget ID can be used.

XmClipboardCopy() is then called with a buffer value of NULL.
XmClipboardEndCopy() is called as usual. When a client requests the data from
clipboard, the callback routine provided toXmClipboardStartCopy() is called and the
application provides the actual data usingXmClipboardCopyByName() .

You can use the convenience functionXmClipboardBeginCopy() instead of
XmClipboardStartCopy() . The only difference between the two routines is that th
convenience function does not take a timestamp parameter; it simply usesCurrentTime
as the timestamp value.

The program shown in Example 21-4 demonstrates copying data to the clipboard by na*

Example 21-4. The copy_by_name.c program

/* copy_by_name.c -- demonstrate clipboard copies "by-name".
** Copying by name requires that the copy *to* clipboard
** functions use the same window as the copy *from* clipboard
** functions. This is a restriction placed on the API by the
** toolkit, not by the ICCCM.
*/

#include <Xm/CutPaste.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>

static void to_clipbd(), from_clipbd();
Widget toplevel;

* XtVaAppInitialize () is considered deprecated in X11R6.
690 Motif Programming Manual

Chapter 21: The Clipboard
main (int argc, char *argv[])
{

Widget rowcol, button;
XtAppContext app;

XtSetLanguageProc (NULL, NULL, NULL);
/* Initialize toolkit, application context and toplevel shell */
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
/* manage two buttons in a RowColumn widget */
rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);
/* button1 copies to the clipboard */
button = XmCreatePushButton (rowcol, "Copy To Clipboard", NULL, 0);
XtAddCallback (button, XmNactivateCallback, to_clipbd, NULL);
XtManageChild (button);
/* button2 retrieves text stored in the clipboard */
button = XmCreatePushButton (rowcol, "Retrieve From Clipboard",

NULL, 0);
XtAddCallback (button, XmNactivateCallback, from_clipbd, NULL);
XtManageChild (button);
/* manage RowColumn, realize toplevel shell and start main loop */
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

static void copy_by_name (Widget widget, int *data_id, int *private_id,
int *reason)

{
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
static int cnt;
int status;
char buf[32];

printf ("Copy by name:\n\treason: %s, id: %d, data_id: %d\n",
*reason == XmCR_CLIPBOARD_DATA_REQUEST? "request" : "delete",
*private_id, *data_id);

if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
sprintf (buf, "stuff-%d", ++cnt); /* make each copy unique */

do
status = XmClipboardCopyByName (dpy, window, *data_id, buf,

strlen (buf)+1, *private_id = cnt);
while (status != ClipboardSuccess);

}
}

/* copy data to clipboard */
static void to_clipbd (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Motif Programming Manual 691

Chapter 21: The Clipboard
long item_id = 0; /* clipboard item id */
int status;
XmString clip_label;
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);

clip_label = XmStringCreateLocalized ("to_clipbd");

/* start a copy. retry till unlocked */
do

status = XmClipboardBeginCopy (dpy, window, clip_label, widget,
copy_by_name, &item_id);

while (status == ClipboardLocked);

/* copy by name by passing NULL as the "data", copy_by_name() as
** the callback and "widget" as the widget.
*/
do

status = XmClipboardCopy (dpy, window, item_id, "STRING", NULL,
8L, 0, NULL);

while (status == ClipboardLocked);

/* end the copy */
do

status = XmClipboardEndCopy (dpy, window, item_id);
while (status == ClipboardLocked);

}

static void from_clipbd (Widget widget, XtPointer client_data,
XtPointer call_data)

{
int status;
unsigned total_bytes;
unsigned long received;
char *data = NULL, buf[32];
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);

do
status = XmClipboardStartRetrieve (dpy, window, CurrentTime);

while (status == ClipboardLocked);

/* initialize data to contain at least one byte. */
data = XtMalloc (1);
total_bytes = 1;

do {
buf[0] = 0;
/* retrieve data from clipboard -- if locked, try again */
status = XmClipboardRetrieve (dpy, window, "STRING", buf,

sizeof (buf), &received, NULL);
if (status == ClipboardNoData) {

puts ("No data on the clipboard");
break;
692 Motif Programming Manual

Chapter 21: The Clipboard

od is
it is

ed in

is
how

ata
ta) to
case,
an
}
/* reallocate data to contain enough space for everything */
if (!(data = XtRealloc (data, total_bytes + received))) {

XtError ("Can't allocate space for data");
break; /* XtError may or may not return */

}
/* copy buf into data. strncpy() does not NULL terminate */
strncpy (&data[total_bytes-1], buf, received);
total_bytes += received;

} while (status == ClipboardTruncate);

data[total_bytes-1] = 0; /* NULL terminate */

if (status == ClipboardSuccess)
printf ("Retrieved \"%s\" from clipboard (%d bytes)\n",

data, total_bytes);

status = XmClipboardEndRetrieve (dpy, window);
}

Just as in Example 21-1, the functionto_clipbd() is used to initiate copying data to the
clipboard. However, rather than passing actual data, we use:

status = XmClipboardBeginCopy (dpy, window, clip_label, widget, copy_
by_name, &item_id);

Passing a valid widget and a callback routine indicates that the copy-by-name meth
being used. Here, the data is provided through the given callback routine when
requested, rather than being provided immediately. Theitem_id parameter is filled in by
the clipboard function to identify the particular data element. The parameter is then us
the call to copy data:

status = XmClipboardCopy (dpy, window, item_id, "STRING", NULL, 8L, 0,
NULL);

PassingNULLas the data also indicates that the data is passed by name. The value8L is
passed as thesize parameter to indicate how much data will be sent if the data
requested. This value is important in case other clients query the clipboard to find out
much data is available to copy.

The callback functioncopy_by_name() is called either when someone requests the d
from the clipboard or when another client copies new data (by name or with actual da
the clipboard. In the first case, the data must be copied to the clipboard; in the second
the clipboard is telling the client that it can now free its data. The callback function is
XmCutPasteProc , which takes the following form:

typedef void (*XmCutPasteProc) (Widget widget,
int * data_id ,
int * private_id ,
int * reason)
Motif Programming Manual 693

Chapter 21: The Clipboard

hree
m has

free
d to
y (in
akes
ject to

cked

pying

e
ould
g one
ding it
as a

ed not
as it

elf
w

call
the

there
using
The widget parameter is the same as that passed toXmClipboardStartCopy() . The
data_id argument is the ID of the data item that is returned byXmClipboardCopy() ,
and private_id is the private data passed toXmClipboardCopy() . The reason
parameter takes the valueXmCR_CLIPBOARD_DATA_REQUEST, which indicates that the
data must be copied to the clipboard, orXmCR_CLIPBOARD_DATA_DELETE, which
indicates that the client can delete the data from the clipboard. Although the last t
parameters are pointers to integer values, the values are read-only and changing the
no effect.

The purpose of the function is either to send the appropriate data to the clipboard or to
the data. The value ofreason determines which action is taken. Since no data is passe
the clipboard until this callback function is called, either the data must be stored locall
the application) or the function must be able to generate it dynamically. The example m
no assumptions or suggestions about how to create the data, since it is entirely sub
the nature of the data and/or the application.

Once the data is obtained, it is sent to the clipboard usingXmClipboardCopyByName() .
This function does not need to lock the clipboard since the clipboard is already being lo
by the window that calledXmClipboardRetrieve() . At this point in time, both routines
are accessing the clipboard. If the same application is both retrieving the data and co
the data, theXmClipboardRetrieve() and XmClipboardCopyByName() routines
must use the same window for their respectivewindow parameters because otherwis
deadlock will occur and the application will hang. There may be cases where you sh
copy data to the clipboard incrementally. The data may be large enough that allocatin
large data space to handle the entire copy is unreasonable; its size may warrant sen
in smaller chunks. Moreover, data may be generated by a slow mechanism such
database library. If the database only returns data in specific block sizes, then you ne
buffer them all up and send to the clipboard with one call; you can send each block
comes through.

Incremental copying requires multiple calls toXmClipboardCopyByName() . Since
XmClipboardCopyByName() does not lock the clipboard, you need to do that yours
by callingXmClipboardLock() . However, you only need to call it once no matter ho
much data is transferred. When you are through copying the data, you need to
XmClipboardUnlock() . In some cases, you may need to stop sending data before
copy is complete. For example, if the database is not responding to your application or
are other extenuating circumstances, you may want to terminate the copy operation
XmClipboardCancelCopy() , which has the following form:

int XmClipboardCancelCopy (Display * display ,
Window window ,
long item_id)

When usingXmClipboardCancelCopy() , you should not unlock the clipboard using
XmClipboardUnlock() .
694 Motif Programming Manual

Chapter 21: The Clipboard

may

ation,

han

hile
and

board,
.

e and
rd is
llows

due

case
the
If you have copied data by name to the clipboard under a specific data format, you
withdraw it by calling XmClipboardWithdrawFormat() . The function takes the
following form:

int XmClipboardWithdrawFormat (Display * display ,
Window window ,
int data_id)

Despite the name of the procedure, its main purpose is not to remove a format specific
but to remove a data element in that format from the clipboard. Thedata_id parameter is
the same value that is returned byXmClipboardCopy() when the data is initially copied
by name. If the specified window holds the clipboard data but it is in a different format t
that specified bydata_id , then the data is not removed from the clipboard.

Clipboard Data Formats
As discussed in the introduction, the clipboard can contain data in arbitrary formats. W
the most commonly used format is text, other formats include integers, pixmaps,
arbitrary data structures. Since all applications on the desktop have access to the clip
any of them may register a new format and place items of that type on the clipboard

When registering a new format, you must also register a corresponding format nam
the format length in bits (8, 16, and 32). Determining the type of data on the clipboa
much easier when there is a descriptive name associated with it. The length a
applications to send and receive data without suffering from byte-swapping problems
to differing computer architectures.

To register a new format, useXmClipboardRegisterFormat() , which takes the
following form:

int XmClipboardRegisterFormat (Display * display ,
char * format_name ,
unsigned long format_length)

The function may returnClipboardBadFormat if the format name isNULLor the format
length is other than 8, 16, or 32. The format length may be specified as 0, in which
Motif will attempt to look up the default length for the given name. Table 21-1 shows
format lengths for some predefined format names.

Table 1-1. Predefined Format Names and Lengths

Format Name Format Length

“TARGETS” 32

“MULTIPLE” 32

“TIMESTAMP” 32

“STRING” 8

“LIST_LENGTH” 32
Motif Programming Manual 695

Chapter 21: The Clipboard

tically
are
e for

data
Although these format names are known, they are not necessarily registered automa
with the server; you may still need to register the one(s) you want to use. If you
specifying your own data structure as a format, you should choose an appropriate nam
it and use 32 as the format size.

The following code fragment shows how you can register a data format and then copy
in that format to the clipboard:

long item_id;
long data_id;
int status;
void my_data_callback(Widget, long *, long *, int *);
Display *dpy = XtDisplay (widget);
Window window = XtWindow (widget);
XmString label = XmStringCreateLocalized ("my data");

/* register our own data structure with clipboard. */

“PIXMAP” 32

“DRAWABLE” 32

“BITMAP” 32

“FOREGROUND” 32

“BACKGROUND” 32

“COLORMAP” 32

“ODIF” 8

“OWNER_OS” 8

“FILE_NAME” 8

“HOST_NAME” 8

“CHARACTER_POSITION” 32

“LINE_NUMBER” 32

“COLUMN_NUMBER” 32

“LENGTH” 32

“USER” 8

“PROCEDURE” 8

“MODULE” 8

“PROCESS” 32

“TASK” 32

“CLASS” 8

“NAME” 8

“CLIENT_WINDOW” 32

“COMPOUND_TEXT” 8

Table 1-1. Predefined Format Names and Lengths (continued)

Format Name Format Length
696 Motif Programming Manual

Chapter 21: The Clipboard

he
y-by-

ing
ed
rmat
on

data
r:

s
the
ugh

s
rmat
XmClipboardRegisterFormat (dpy, "MY_DATA_STRUCT", 32);

/* use the copy-by-name method to transfer data to clipboard */
do

status = XmClipboardStartCopy (dpy, window, label, CurrentTime, my_data_
callback, widget, &item_id);

while (status == ClipboardLocked);

XmStringFree (label); /* don't need this any more */
/* MY_DATA_SIZE is presumed to be defined as the amount of data to transfer */
do

status = XmClipboardCopy (dpy, window, item_id, "MY_DATA_STRUCT",
NULL, MY_DATA_SIZE, 0, &data_id);

/* save the data_id! */
while (status == ClipboardLocked);

do
status = XmClipboardEndCopy (dpy, window, item_id);

while (status == ClipboardLocked);

Once the"MY_DATA_STRUCT"format has been registered with the server, we follow t
standard procedure for copying data to the clipboard. Here, we chose to use the cop
name method discussed earlier. Note that we save the value of thedata_id returned by
XmClipboardCopy() . This value is used so that we may withdraw the data later us
XmClipboardWithdrawFormat() if necessary. Note that formats are never remov
from the clipboard; only data can be removed from the clipboard. Once a particular fo
is registered with the clipboard, it is there until the server goes down. If you plan
retrieving data held by the clipboard, you may wish to inquire about the format of the
it is holding. To do so, you must use two functions togethe
XmClipboardInquireCount() andXmClipboardInquireFormat() . They take the
following form:

int XmClipboardInquireCount (Display * display ,
Window window ,
int * count ,
int * max_length)

int XmClipboardInquireFormat (Display * display ,
Window window ,
int index ,
char * format_name_buf ,
unsigned long buffer_len ,
unsigned long * copied_len)

XmClipboardInquireCount() returns the number of formats the clipboard know
about for the data item it is currently holding. Also returned is the string length of
longest format name. You can iterate through the formats starting from 1 (one) thro
count by calling XmClipboardInquireFormat() . The iteration number is passed a
the index parameter. You should use this value to ensure that you can read all the fo
types in your search for the desired format.
Motif Programming Manual 697

Chapter 21: The Clipboard

may
this

ction
even
board,
it in
d from
cut

del.

tion
iled
get

than
in the
text.
s or
ents

le text
oard
there

sent a

ding
Although there is only one data item stored on the clipboard at anyone time, that item
have multiple formats associated with it. While this is unusual, it is possible to handle
case by providing different formats to successive calls toXmClipboardCopy() or
XmClipboardCopyByName() .

The Primary Selection and the Clipboard
Since text is the most commonly used format in the clipboard, there is a natural intera
between the clipboard and windows that contain text. In most situations, it is usual (
expected) that when the user selects text, the selection should be placed on the clip
which is known as a copy operation. Retrieving text from the clipboard and placing
another window is known as a paste operation. In some cases, after the data is paste
the clipboard, the original window deletes the data it copied, which is classified as a
operation. The clipboard uses what is commonly referred to as the cut and paste mo

The low-level implementation of the clipboard mechanism uses the X Toolkit selec
mechanism. This model has additional properties that provide for more deta
communication between the clients involved. For example, cutting text from a Text wid
and placing it in another widget involves more communication between the widgets
that of the clipboard copy and retrieval mechanism. When the text that was selected
first widget is pasted in the other, the first widget may be notified to delete the selected
This type of communication can be handled either automatically by the Text widget
through low-level X calls where the corresponding windows of the widgets send real ev
called client messages to one another.

Clipboard Functions With Text Widgets
In most cases, you should not need to access the clipboard functions to perform simp
copy and retrieval (cut and paste) for Text widgets. If you need to access the clipb
above and beyond the normal selection mechanisms provided by the Text widgets,
are a number of convenience routines that deal with selections automatically. We pre
brief overview of these functions here; see Chapter 18,Text Widgets, for detailed
information.

The XmTextCut() , XmTextCopy() , and XmTextPaste() routines handles cutting,
copying, and pasting operations for the Text widget. There are also correspon
functions for the TextField widget.XmTextCut() andXmTextCopy() take the following
form:

Boolean XmTextCut (Widget widget , Time time)
Boolean XmTextCopy (Widget widget , Time time)

If there is text selected in the Text widget referred to by thewidget parameter, the selected
text is placed on the clipboard. ForXmTextCut() , the selected text is also deleted from
698 Motif Programming Manual

Chapter 21: The Clipboard

et

erver
you

ee
the

lt of
to the

et.

ade a
ing

ext

s
This

caller
t

se
the Text widget, while forXmTextCopy() it is not. The functions returnTrue if all of
these things happen successfully. IfFalse is returned, it is usually because the Text widg
does not have any selected text.

The time parameter controls when the operation takes place and may be set to any s
timestamp value. For example, if you are calling this function from a callback routine,
may wish to use thetime field from theevent pointer in the callback structure provided
by the Motif toolkit. The valueCurrentTime can also be used, but there is no guarant
that this value will prevent any race conditions between other clients wanting to use
clipboard. Although race conditions are not likely, the possibility does exist. The resu
the race condition is that one widget may appear to have cut or copied selected text
clipboard when in fact another Text widget got there first.

XmTextPaste() takes the following form:

Boolean XmTextPaste (Widget widget)

XmTextPaste() gets the current data from the clipboard and places it in the Text widg
The routine returnsFalse if there is no data on the clipboard.

XmTextCut() and XmTextCopy() only work if there is a current selection in the
specified Text widget, which may be dependent on whether or not the user has m
selection. However, you can force a selection in a Text widget us
XmTextSetSelection() . This routine takes the following form:

void XmTextSetSelection (Widget widget ,
XmTextPosition first ,
XmTextPosition last ,
Time time)

XmTextSetSelection() selects the text between the specified positions in the T
widget. Once the text has been selected, eitherXmTextCut() or XmTextCopy() may be
called to place the selection on the clipboard.

AlthoughXmTextGetSelection() does not deal with the clipboard directly, it provide
a convenient way to get the current selection from the corresponding Text widget.
routine takes the following form:

char *XmTextGetSelection (Widget widget)

Note that the text returned by the routine is allocated data and must be freed by the
usingXtFree() . The function returnsNULLif the specified widget does not own the tex
selection.

To deselect the current selection in a Text widget, you can u
XmTextClearSelection() , which takes the following form:

void XmTextClearSelection (Widget widget , Time time)
Motif Programming Manual 699

Chapter 21: The Clipboard

h of
tion

e
oard

as
have
d an

same
t of
, if
tion,
tion

d as
dard

ndow
r.
Xlib
ny
er.

the
is
tom
iven
The Owner of the Selection
Sometimes, if you have a large number of Text widgets, you may need to know whic
the widgets has the text selection. You can determine this by using the Xlib func
XGetSelectionOwner() :

Window XGetSelectionOwner (Display * display , Atom selection)

The display parameter can be taken from any widget usingXtDisplay() . The
selection argument represents theAtom associated with the kind of selection you ar
looking for. For example, you can determine the Text widget that has the current clipb
selection with the following calls:*

Display *dpy = XtDisplay (widget);
Atom clipboard_atom = XInternAtom (dpy, "CLIPBOARD", False);
Window win = XGetSelectionOwner (dpy, clipboard_atom);
Widget text_w = XtWindowToWidget (dpy, win);

Implementation Issues
The Motif clipboard mechanism relies on an underlying X mechanism referred to
properties. Windows are data structures maintained by the X server; each window can
an arbitrary list of properties associated with it. Each property consists of a name (calle
atom), an arbitrary amount of data, and a format. Property formats are not at all the
thing as the higher-level Motif formats - they simply indicate whether the data is a lis
8-bit, 16-bit, or 32-bit quantities, so that the server can perform byte-swapping
appropriate. Properties are the underlying mechanism for all interclient communica
including interaction between applications and window managers, and inter-applica
interaction such as the transfer of selections.

In order to simplify communication over the network, property names are not passe
arbitrary-length strings, but as defined integers known as atoms. A number of stan
properties (such as those used for communication between applications and wi
managers) are predefined andinterned, or made known to, and cached by the serve
However, application-defined atoms can also be interned with the server by calling the
functionXInternAtom() †. Atoms are not only used to name properties, but to name a
string data that may need to be passed back and forth between a client and the serv

We started this chapter with the analogy that the Motif toolkit is the moderator of
clipboard. In reality, the clipboard itself is a property (called CLIPBOARD) that
automatically maintained by the X server. A property is uniquely identified by both an a
and a window, which means that it is possible for there to be multiple copies of a g

* XmInternAtom () is marked as deprecated from Motif 2.0 onwards.

† XmInternAtom () is marked as deprecated from Motif 2.0 onwards.
700 Motif Programming Manual

Chapter 21: The Clipboard

me,

t by
D

in

dard
rmat
ather
ave
eally
teger
n. At
ions

rd
he

tions:
of

An
dow
ses
is

diately

dent
the
ws,
RD
ther

ween

ties.
the
property. However, there should be only one CLIPBOARD property active at one ti
based on conventions about the use of properties set forth in a document called theInter-
Client Communication Conventions Manualand followed by the deeper layers of X
software.*Among these conventions are that certain properties should only be se
application top-level windows and that only one window should own the CLIPBOAR
property at any one time. When an application makes a call toXmClipboardCopy() , the
data is actually stored in the CLIPBOARD property of the window that was identified
the call toXmClipboardCopy() .

The format of the data stored in a property is defined by another property. The stan
formats are based on those recommended by the ICCCM. For example, the FONT fo
might suggest that an application wants the font that the data string is rendered in, r
than the data string itself. At present, Motif does not support this functionality. You h
to remember that formats (or targets, as they are referred to in the ICCCM) are not r
things that have any functionality. They are simply names that are translated into in
atoms. The meaning of the formats to an application depends entirely on conventio
present, most applications only support the STRING format. But eventually, convent
will doubtless be articulated for doing far more with the selection mechanism.

A further complication that needs some mention is how the Motif clipboa
implementation relates to the underlying X Toolkit implementation of selections. T
ICCCM actually defines three separate properties that can be used for selec
PRIMARY, SECONDARY, and CLIPBOARD. Standard Xt applications, including all
the clients distributed by MIT, use the PRIMARY property for storing selections.

The SECONDARY property is designed for quicker, more transient selections.
application that makes use of this property usually copies data directly to another win
instantly when the owner finishes copying data to the property. The Motif Text widget u
the SECONDARY property when the META key is down while the middle button
clicked and dragged. As soon as the selection is complete, the selected data is imme
sent to the window that has the input focus, which may be the same window.

In the standard MIT implementation, the CLIPBOARD property is used by an indepen
client calledxclipboard. Keep in mind that a property stays around only as long as
window with which it is associated. When you terminate a client and close its windo
any data stored in a property on one of the client’s windows is lost. If the CLIPBOA
property is associated with a client that is kept around between invocations of o
applications, it embodies a consistent repository for information to be passed bet
applications.

The ICCCM blesses the use of both the PRIMARY and CLIPBOARD selection proper
However, you should be aware that the difference between the Motif use of

* Reprinted asAppendix L of Volume 0, X Protocol Reference Manual.
Motif Programming Manual 701

Chapter 21: The Clipboard

Xt
e the
g

ion,
ame

API
our

will
nisms.

with
ystem
nsfer
d for
ethod

n
et of
s the
2.1
ce
d in
CLIPBOARD property and the use of the PRIMARY selection property by other
applications makes inter-operability questionable, unless you take care to handl
PRIMARY selection in your application. The X Toolkit mechanisms for handlin
selections are described in Volume 4,X Toolkit Intrinsics Programming Manual. The
Motif Text widgets support both the Xt mechanism, which uses the PRIMARY select
and the Motif clipboard, depending on the interaction. You should probably do the s
for your application.

While you can manipulate properties and atoms directly using Xlib, the higher-level
provided by Motif and Xt should insulate you from many of the details and ensure that y
applications inter-operate well with others. Eventually, toolkits and applications
doubtless support numerous extensions of the current clipboard and selection mecha

Summary
The clipboard provides a convenient mechanism that allows applications to interact
one another in a way that is independent of the application, operating system, and s
architecture. The clipboard is one of two common mechanisms used to handle data tra
between objects. The primary selection is still regarded as the most common metho
data transfer between applications, mostly because it is the standard cut and paste m
used to move textual data between terminal emulators likexterm. A secondary selection
method is also available, but is not very widely used.

The Motif toolkit tries to compensate for thede factostandard use of the primary selectio
method by integrating both the primary and clipboard selections into the same s
functions. Although users seem to be oblivious to the differences, this technique ha
unfortunate side effect of confusing programmers. This is partly alleviated in the
version of the Motif toolkit, where the Uniform Transfer Model provides a single interfa
to the transference of application data. The Uniform Transfer Model is fully describe
Chapter 23.
702 Motif Programming Manual

rag
sktop.
ines
h is
ata
Chapter 1

In this chapter:
• Using Drag and Drop
• The Drag and Drop Mode
• Customizing Built-in Drag
• Working With Drag Sourc
• Working With Drop Sites
• Summary

This chapter describes the d
and drop can be used to tra
Although not marked as de
described within this chapter
described in Chapter 23. The
Motif Programming Manual
l
 and Drop
es 22
You
ring

of the

at can
a is a
ween
ther.

drop
t is
ether
g out
sier

t have
nse.

style
cture

ng the
is the

ved or
Drag and Drop
rag and drop mechanism provided by the Motif toolkit. D
nsfer data within and between applications on the de
precated, from Motif 2.0 onwards many of the rout
are subsumed into the Uniform Transfer Model, whic
Uniform Transfer Model is concerned primarily with d

transfer; it does not concern itself directly with the visuals associated with a transfer.
should still read this chapter if you are interested in providing customised feedback du
mouse-based data transfer operations, and if you want to gain an understanding
mechanisms which now partly sit underneath the Uniform Transfer Model.

A graphical user interface provides objects that the user can manipulate and actions th
be performed on those objects. The drag and drop mechanism for transferring dat
natural one for a GUI, as drag and drop allows the user to transport data within and bet
applications by dragging an iconic representation of the data from one location to ano

An important question that a developer needs to consider is whether or not drag and
is appropriate for a particular application. You need to think about the data tha
manipulated by the application, the actions that can be performed on the data, and wh
the drag and drop metaphor makes sense in this context. This decision involves figurin
if drag and drop allows you to enhance the usability of your application by making it ea
for the user to perform various tasks.

For example, an electronic mail application might allow the user to drag messages tha
been received into folders for storage or into a text editor for composing a respo
Perhaps the most common use of drag and drop functionality is for desktop-
applications. These programs allow the user to manipulate files in the directory stru
and run other applications by dragging objects around on the desktop.

Using Drag and Drop
From the user’s perspective, drag and drop involves choosing a data source, draggi
data around on the desktop, and dropping the data on a new location. The mechanism
same no matter what type of data is being manipulated. In most cases, the data is mo
703

Chapter 22: Drag and Drop

g an
uld

The
hich is

is
ed.
er, so
mple.

ation
data

g and

ove
hile a

ows

itable
fault
case

, and
copied to the new location. However, an application can also allow the user to dra
object and drop it to invoke an action. For example, dropping a file on a printer icon co
cause the file to be printed.

TheMotif Style Guidespecifies that the middle mouse button is used for drag and drop.
user starts a drag and drop transfer by pressing the second button over the data, w
referred to as thedrag source. While the user is dragging the data, the pointer shape
changed to adrag iconwhich is a picture that represents the type of data being dragg
The drag icon is meant to provide the user with feedback about the current data transf
different drag icons can be used to represent textual data and graphical data, for exa

The user can drag the data to another location within the same application or to a loc
within another application by moving the pointer with the middle button pressed. The
can be dropped in any location that has been registered as adropsite. The drop occurs when
the user releases the mouse button. Figure 22-1 shows the conceptual model of dra
drop.

A drag and drop transfer can result in the data being moved, copied, or linked. A m
operation copies the data to the drop site and then removes it from the drag source, w
copy operation copies the data to the drop site without removing it. A link operation all
the drop site access to the data in the drag source without copying it.

The default operation depends on the type of data that is being manipulated. In an ed
text area, the default operation might be a move, while in a read-only area, the de
operation should be a copy. A drag source can support multiple operations, in which
the user should be able to select the operation that is used. TheMotif Style Guidespecifies
that the SHIFT key selects a move operation, the CTRL key selects a copy operation
CTRL-SHIFT selects a link operation.

Figure 22-1: Drag and drop conceptual model

Drop Sites

Drag Sources

Drag Icon
704 Motif Programming Manual

Chapter 22: Drag and Drop

n also
. The
site.

te the
site,

p site
phical

state
d
be
may

hen
melts
if the

ing
y be

ality.
t your
op in
ay be
and
big

an
p. In
the
o drag
d
these

heir

play
The user can cancel a drag at any time by pressing the ESCAPE key. The user ca
request help on a drop site by pressing the HELP or F1 key before dropping the data
help information should tell the user what will happen if the data is dropped in the drop

Besides representing the type of data being manipulated, the drag icon can also indica
current operation and whether the pointer is over a valid drop site, over an invalid drop
or not over a drop site at all. For a drop site to be valid, the drag source and the dro
must understand at least one common data format. If a drag source only provides gra
data and a drop site only understands text, the data transfer cannot succeed.

The drag icon may change as it enters and leaves drop sites to provide this
information; these changes are calleddrag-overvisuals. For example, the drag icon coul
be displayed without any modification when it is over a valid drop site, but
superimposed with a do-not-enter symbol when the drop site is invalid. A drop site
also change its appearance when the drag icon is within it; these effects are known asdrag-
undervisuals. A “garbage can” drop site might use animation to show the lid opening w
a drag icon moves into the drop site. When the user performs a drop, the drag icon
into the drop site if the data transfer is successful or springs back to the drag source
transfer fails.

The Drag and Drop Model
The Motif implementation of drag and drop introduces a number of new programm
constructs. The interaction between the different components is complex, so it ma
difficult to understand just what needs to be done to implement drag and drop function
Since you need to understand all of the different components before you can see wha
application may need, we’ve decided to describe all of the components of drag and dr
a somewhat abstract way before we present any examples. Although this material m
a bit dry, we think that this approach works better than presenting an example early
then having to jump around a lot to explain all of its parts. Hopefully, once you see the
picture, it will be easier to understand the different pieces more fully.

From the programmer’s perspective, providing drag and drop functionality in
application can be as simple as using the Motif widgets that support drag and dro
Motif, the Text, TextField, and List widgets are all drag sources, which means that
textual data they contain can be dragged. The Label widget and its subclasses are als
sources for both textual and pixmap data*. The Text and TextField widgets are registere
as drop sites, which means that textual data can be dropped in them. When you use
widgets in an application, you do not have to do any extra programming to provide t
drag and drop capabilities since the functionality is built into the widgets.

* Under CDE Motif 2.0 or later, dragging from a Scale, Label, or LabelGadget may be turned off if the XmDis
resourceXmNenableUnselectableDrag is False .
Motif Programming Manual 705

Chapter 22: Drag and Drop

an
r drop
cons
op can
ment
hat is
on,

ion
ag
r, if
lying
plete
drag

ures in

to
are

e data
es so
own in
other
ese
The drag and drop capabilities provided by the Motif toolkit are highly customizable, so
application can also implement custom drag and drop transfers. Drag source and/o
site functionality can be added to any widget. An application can provide custom drag i
and implement custom drag-under effects, such as animated drop sites. Drag and dr
be made to handle any type of data. The amount of programming required to imple
custom drag and drop features varies depending on the degree of customization t
desired. While it is relatively easy to provide a new drop site for textual informati
supporting drag and drop for graphical objects requires quite a bit of work.

The Motif toolkit layers the implementation of drag and drop on top of the select
mechanisms provided by the X Toolkit Intrinsics. If you are simply using the built-in dr
and drop functionality, the implementation details are completely invisible. Howeve
you are customizing drag and drop in any way, you need to understand the under
selection mechanisms because the drag and drop implementation is not a com
abstraction over the Xt mechanisms. For example, an application that uses custom
sources and drop sites must provide certain selection conversion and transfer proced
order for the data transfer to occur.

Since the Xt selection mechanisms are based on X’sInter-Client Communications
Conventions Manual(ICCCM), the Motif implementation of drag and drop also adheres
the ICCCM. Data is transferred using properties on the server, where properties
referenced using atoms. Drag sources and drop sites also use atoms to specify th
formats, or targets, that they support. The ICCCM suggests a list of possible target typ
that applications can understand each other. These targets and their meanings are sh
Table 22-1. You can also define your own targets, but unless you document them,
applications will not necessarily be able to communicate with your application using th
targets.

Table 1-1. Target Types Defined by ICCCM

Atom Type Meaning

TARGETS ATOM List of valid target atoms

MULTIPLE ATOM_PAIR Multiple conversion requests

TIMESTAMP INTEGER Timestamp used to acquire selection

STRING STRING ISO Latin 1 text

COMPOUND_TEXT COMPOUND_TEXT Text in compound text encoding

TEXT TEXT Text in owner’s encoding

LIST_LENGTH INTEGER Number of disjoint parts of selection

PIXMAP DRAWABLE Pixmap ID

DRAWABLE DRAWABLE Drawable ID

BITMAP BITMAP Bitmap ID

FOREGROUND PIXEL Pixel value

BACKGROUND PIXEL Pixel value
706 Motif Programming Manual

Chapter 22: Drag and Drop

g and
mer,

cation
ible
ation
The
d drop

an
l the

esent
s, we
e how
n the
g and
hich
you to
ject
Motif uses some new objects to encapsulate information about various aspects of a dra
drop transfer. These objects act like widgets, in that they are created by the program
they have resources that can be set and retrieved, and they interact with the appli
using callbacks. However, they are unlike traditional widgets in that they are not vis
components of the user interface. The DragContext object is used to store inform
during a drag, while the DropTransfer object keeps track of information during a drop.
DragIcon object is used to represent the pointer shape that is used during a drag an
transfer. The DropSite object maintains information about all of the drop sites in
application. The Display and Screen objects also provide resources that contro
behavior of drag and drop, although they are not specifically part of drag and drop.

The following sections describe all the components of a drag and drop transfer and pr
the Motif objects that are used to implement drag and drop. As we describe the object
mention many of their resources, callbacks, and related functions so that you can se
everything fits together. We describe each of the objects in much greater detail later i
chapter when we talk about how they can be used to customize different aspects of dra
drop. However, this chapter does not attempt to describe all of the possible ways in w
drag and drop can be customized. We present some common situations and leave
explore all of the details on your own. For complete information about each Motif ob

ODIF TEXT ISO Office Document Interchange
Format

OWNER_OS TEXT Operating system of owner

FILE_NAME TEXT Full path name of a file

HOST_NAME TEXT Host name of machine of owner

CHARACTER_POSITION SPAN Start and end of selection in bytes

LINE_NUMBER SPAN Start and end line numbers

LENGTH INTEGER Number of bytes in selection

USER TEXT Name of user running owner

PROCEDURE TEXT Name of selected procedure

MODULE TEXT Name of selected module

PROCESS INTEGER, TEXT Process ID of owner

TASK INTEGER, TEXT Task ID of owner

CLASS TEXT Class of owner (WM_CLASS)

NAME TEXT Name of owner (WM_NAME)

CLIENT_WINDOW WINDOW Top-level window of owner

DELETE NULL True if owner deleted selection

INSERT_SELECTION NULL Insert specified selection

INSERT_PROPERTY NULL Insert specified property

Table 1-1. Target Types Defined by ICCCM (continued)

Atom Type Meaning
Motif Programming Manual 707

Chapter 22: Drag and Drop

,

s the
urce is
on the
data,

ven be
the

s the
le, the

ed to
supply
sing
uld
rs,
so the

ze a
p a
tarts
tion

call

urce
ansfer

to be
he
rce,
used to implement drag and drop, see the appropriate reference pages in Volume 6 BMotif
Reference Manual.

The Drag Source
The widget that contains the data being manipulated with drag and drop is known a
drag source. When the user starts a drag, the application that contains the drag so
considered the initiator of the transfer. The data provided by a drag source depends
type of object the source represents. For example, a Text widget provides textual
while a DrawingArea could provide some form of graphical data.

A drag source can be designed to support and transfer any type of data. There can e
multiple formats for a given piece of data if appropriate. A drag source also specifies
operations (move, copy, or link) that it allows. The type of data, and in some case
widget that contains the data, affects the operations that are supported. For examp
List widget only supports copy operations because it is a read-only component.

In order for a drag and drop transfer to work, the drag source and the drop site ne
understand the same type of data. The drag source announces the data targets it can
to the drop site. A drag source that supports textual data might offer the data u
COMPOUND_TEXT, STRING, and TEXT targets, while a graphical drag source co
provide PIXMAP, FOREGROUND, and BACKGROUND targets. When the drop occu
the drop site can request the data in any of the targets supported by the drag source,
drag source needs to know how to convert between supported types.

In order for a widget to be a drag source, the widget must be able to recogni
ButtonPress event for the second mouse button. Essentially, you need to set u
translation and action or an event handler for this event that invokes a function that s
the drag. The following code fragment shows the definition of a translation and an ac
for a drag source:

static char dragTranslations[] = "#override <Btn2Down>: StartDrag()";
static XtActionsRec dragActions[] = {

{"StartDrag", (XtActionProc) StartDrag}
};

Just as with any translation and action, the application code needs to
XtParseTranslationTable() and XtAppAddActions() . The parsed translation
table can be used to set theXmNtranslations resource for the drag source widget.

The Motif toolkit uses the DragContext object to store information about a drag so
once a drag has started. This object also keeps track of state information about the tr
as it is happening. The routine that starts a drag callsXmDragStart() to create the
DragContext and get things rolling. The DragContext object has resources that need
set at creation time to provide information about the drag source. T
XmNdragOperations resource specifies the operations supported by the drag sou
708 Motif Programming Manual

Chapter 22: Drag and Drop

t

uring
nsfer.

s of
There

rs for

g and
that
ore

t is
ted by
an

are
otif

mal

escribe
while XmNexportTargets andXmNnumExportTargets indicate the data targets tha
are supported.

The DragContext also has a number of resources that control the visual effects used d
the drag. Many of these resources specify various attributes of the drag icon for the tra
For example, the XmNsourceCursorIcon , XmNoperationCursorIcon , and
XmNstateCursorIcon resources indicate the images that are used for different part
the drag icon.If these resources are not specified, the DragContext uses default icons.
are also resources that allow you to specify different foreground and background colo
the drag icon. We describe the drag icon in more detail in Section 22.2.3.

The DragContext also provides callback routines that can be used to monitor the dra
provide custom visual effects. All of the routines use special callback structures
provide information about the current state of the drag. Section 22.4.5 provides m
information about these callbacks.

The XmNconvertProc is a procedure that must be specified when a DragContex
created. This procedure is used to convert the drag source data to the format reques
the drop site when the drop occurs. The convert procedure is either
XtConvertSelectionProc or an XtConvertSelectionIncrProc , depending on
whether or not the drag source is using incremental transfer. If theXmNincremental
resource is set toTrue , the data is transferred incrementally. Both of these procedures
part of the underlying Xt selection mechanism that is not completely hidden by the M
drag and drop abstraction. See Volume 4,X Toolkit Intrinsics Programming Manual, for
more information on these procedures.

The following code fragment shows the creation of a DragContext object with a mini
set of resources:

Atom exportList[1];
Widget widget, dc;
Arg args[5];
int n;
Boolean ConvertProc(Widget, Atom *, Atom *, Atom *, XtPointer *,

unsigned long *, int *);
XEvent *event;
...
n = 0;
exportList[0] = COMPOUND_TEXT;
XtSetArg (args[n], XmNexportTargets, exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, XtNumber (exportList)); n++;
XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNconvertProc, ConvertProc); n++;
dc = XmDragStart (widget, event, args, n);

In Section 22.4, we present an example that creates a custom drag source, and we d
the source code in detail.
Motif Programming Manual 709

Chapter 22: Drag and Drop

tion
g the
ically

cceed
. If the

the
This
so the

n that
fer will
eiving
ke a
ject it

riate.
are to
result
ssage
ffect
nts to

ed by

cts.

drop
later

ing
you

eeds to
Once a DragContext has been created, the Motif toolkit for the initiating applica
assumes control of the drag, so the application itself doesn’t have to do anything durin
drag. If any of the DragContext callbacks have been specified, they are called automat
by the Motif toolkit at the appropriate time.

When the drop occurs, the drop site determines whether or not the data transfer can su
based on the operations and targets supported by the drag source and the drop site
transfer can succeed, the drop site initiates the transfer, which causes
XmNconvertProc to be called for each data target that the drop site has requested.
routine converts the data into the requested format and passes it back to the drop site,
drop site can do whatever it needs with the data.

The Drop Site
Once the user starts a drag and drop transfer, the data can be dropped in any locatio
has been registered as a drop site, and if the drop site understands the data, the trans
succeed. The application that contains the drop site where data is dropped is the rec
client in a drag and drop transfer. A drop site is always associated with a widget. Li
drag source, a drop site supports particular types of data, depending on the type of ob
is.

A drop site can be designed to handle any type of data, or even multiple types if approp
A drop site also specifies the operations that it supports. The standard operations
move, copy, and link data. However, a drop site can instead invoke an action as the
of a drop. For example, a “send message” drop site could send an electronic mail me
when text is dropped in it.The type of object that functions as the drop site also has an e
on the supported operations. In most cases, it only makes sense for writable compone
act as drop sites, since read-only components like Lists and Labels cannot be modifi
the user.

Motif stores information about all of the drop sites in an application using DropSite obje
An application registers a widget as a drop site by callingXmDropSiteRegister() for
the widget. The DropSite object uses resources to keep track of information about the
site. This information can be set when the drop site is registered, or it can be specified
using XmDropSiteUpdate() ; the values of the resources can be retrieved us
XmDropSiteRetrieve() . Since a widget is being used as the handle to the drop site,
cannot useXtVaSetValues() and XtVaGetValues() to set and retrieve drop site
information, as these routines manipulate the widget’s resources.

Just as a drag source specifies the data types that it can process, a drop site also n
provide this information. TheXmNimportTargets and XmNnumImportTargets
resources specify this information, while theXmNdropSiteOperations resource
specifies the operations supported by the drop site.
710 Motif Programming Manual

Chapter 22: Drag and Drop

ts are
such

side
e must
in
ts.

re is
ts and
ment

s
the

rop.

sferred.

e
ype
ne
ets.

nlike
s, the
A drop site provides visual effects when the drag icon passes through it; these effec
called drag-under effects. By default, the widget is highlighted. Other simple effects,
as a shadow border or a special pixmap, can be specified using theXmNanimationStyle
resource. All of these effects are handled automatically by the toolkit on the initiating
once the resource is set. For more sophisticated effects, such as animation, a drop sit
register anXmNdragProc . This callback is invoked whenever there is any drag activity
the drop site, so the application can do whatever it likes in terms of drag-under effec

While the XmNdragProc is optional, every drop site must have aXmNdropProc
registered. This routine is called when a drop occurs in the drop site. The procedu
responsible for determining whether the drop is successful or not, based on the targe
operations supported by the drag source and the drop site. The following code frag
shows how a widget that can handle compound text is registered as a drop site:

Arg args[10];
int n;
Widget label;
Atom importList[1];
void HandleDrop(Widget, XtPointer, XtPointer);
...
n = 0;
importList[0] = COMPOUND_TEXT;
XtSetArg (args[n], XmNimportTargets, importList); n++;
XtSetArg (args[n], XmNnumImportTargets, XtNumber (importList)); n++;
XtSetArg (args[n], XmNdropSiteOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNdropProc, HandleDrop); n++;
XmDropSiteRegister (label, args, n);

When a drop occurs in the drop site, theXmNdropProc is called automatically by the
Motif toolkit. This routine must callXmDropTransferStart() whether or not the drop
is successful.XmDropTransferStart() creates a DropTransfer object that maintain
information about the data transfer. When The DropTransfer object is created,
XmNtransferStatus resource must be set to indicate the success or failure of the d
If the resource is set toXmTRANSFER_FAILURE, XmDropTransferStart() does not
transfer any data and merely cleans up after the drag and drop transfer.

If XmNtransferStatus is set toXmTRANSFER_SUCCESSwhen the DropTransfer object
is created, some other resources must also be specified to cause the data to be tran
The XmNdropTransfers and XmNnumDropTransfers resources specify the data
targets to be processed, whileXmNtransferProc indicates the procedure that receives th
converted data from the drag source. This transfer procedure is of t
XtSelectionCallbackProc . Once the data transfer has started, the routi
XmDropTransferAdd() can be used to request the processing of additional data targ
In Section 22.5, we discuss in detail the tasks involved in creating a drop site.

When a drop takes place, visual effects are used to indicate the status of the transfer. U
the different drag effects, these visuals are not customizable. When the drop occur
Motif Programming Manual 711

Chapter 22: Drag and Drop

e drop
elled

ted.

, so
sites.
r a
erlap.
eneath
sing

that is
g and
te the
pical

icon.
nly

might

state
con.

In
upon

t is
pointer shape is changed back to the standard cursor, while the drag icon sits over th
site. If the drop succeeds, the icon melts into the drop site. If the transfer fails or is canc
by the user, the icon snaps back to the drag source.

A drop site is normally the size and shape of the widget with which it is associa
However, a drop site can also be shaped. TheXmNdropRectangles and
XmNnumDropRectangles resources control this feature. Drop sites can also be nested
that a manager widget can be a drop site and can also contain children that are drop
TheXmNdropSiteType resource controls whether the drop site is a simple drop site o
compound drop site. Drop sites have a stacking order, which means that they can ov
When drop sites overlap, the drop site on the top of the stack obscures the drop sites b
it, as you would expect. An application can control the stacking order of drop sites u
the toolkit convenience routinesXmDropSiteQueryStackingOrder() and
XmDropSiteConfigureStackingOrder() .

The Drag Icon
During a drag, the pointer shape is changed into a dragicon that represents the data
being dragged. One of the purposes of the special icon is to make it clear that a dra
drop transfer is in progress. The drag icon can also change during a drag to indica
current status of the transfer. These visual effects are called drag-over visuals. Ty
effects include changing the shape and changing the color of the icon.

A drag icon can be composed of three distinct parts, each of which is really a separate
The source iconrepresents the type of data that is being dragged; this icon is the o
necessary component of a drag icon. The source icon for a drag that manipulates files
be an image of a piece of paper, for example. Thestate iconindicates whether the pointer
is over a valid drop site, over an invalid drop site, or not over a drop site. Theoperation
iconspecifies the current operation. The source icon in a drag icon is static, while the
and operation icons can be dynamic. Figure 22-2 shows the components of a drag i

The Motif toolkit provides default icons for all of the different drag icon components.
Motif 2.0 and later, there are two sets of default icons; which set is displayed depends
the value of the XmDisplay objectXmNenableDragIcon resource. If this isFalse , the
default icons are consistent with Motif 1.2 behavior, otherwise an alternative se

Figure 22-2: A drag icon

Source icon
State Icon

Operation Icon
712 Motif Programming Manual

Chapter 22: Drag and Drop

igure

2-2,
n in

stom

the

f the
that

p

er

d for
from
e the
cons,
for a
this
ntext
displayed. The default source icons for textual data and for generic data are shown in F
22-3.

The default state icon for all of the different states is an arrow, as shown in Figure 2
while the default operation icons for the move, copy, and link operations are show
Figure 22-4.

Motif uses DragIcon objects to represent the parts of a drag icon. In order to use a cu
image, you need to create each part of the icon usingXmCreateDragIcon(). The
XmNblendModel resource of the DragContext for a drag and drop transfer specifies
different pieces that are blended together to create the actual drag icon.

A drag icon is essentially a pixmap, and the DragIcon object encapsulates all o
information about the image. When you create a DragIcon, you specify resources
describe the image. TheXmNpixmap andXmNmaskresources represent the actual pixma
and its mask if you use one. Other resources includeXmNheight , XmNwidth , and
XmNdepth for specifying those attributes of the image, as well asXmNhotXandXmNhotY
for indicating the x, y coordinate of the hotspot for the icon. TheXmNattachment ,
XmNoffsetX , andXmNoffsetY resources specify how the icon is attached to the oth
parts of a drag icon.

There are a number of ways in which you can customize the drag icons that are use
drag and drop. You can specify default icons for all drag and drop transfers that start
your application by setting various resources of the Screen object. When you chang
default drag icons for the Screen, the toolkit handles the drag-over effects using the i
as we discuss in Section 22.3.3. An application can also specify custom drag icons
particular drag and drop transfer by setting resources on its DragContext object. In
case, the application has to manage the drag-over visuals using the different DragCo
callback routines.

Figure 22-3: Default source icons

Generic

Alternative Generic

Text

Alternative Te x

Figure 22-4: Default operation icons

Move Copy Link
Motif Programming Manual 713

Chapter 22: Drag and Drop

lk to
can
to be
drop
n
t

cols,
tion

does
both
efault

well.
the
under

n is
f the
read
e to
n can
es not

tion
does

vide
r this
e any
l).

on’s
toolkit
The
the

of its
Protocols
For drag and drop to work, the initiating and receiving applications must be able to ta
each other. The Motif toolkit supports two different mechanisms by which clients
communicate with each other during drag and drop. The main information that needs
passed back and forth during a drag concerns the location of the drag icon relative to
sites in the receiving application. Thedynamicdrag protocol requires messaging betwee
the two applications, while thepreregisterdrag protocol does not. During the drop, the X
selection protocol is used to transfer the data from one application to the other.

Drag Protocols

An application can quite easily support both the dynamic and preregister drag proto
although it can just support one or neither of the protocols if necessary. If an applica
does not support either of the protocols, it can still participate in drag and drop, but it
not provide any visual effects during the drag. The best approach is to support
protocols so that users can specify the protocol that is used based on their needs. By d
the toolkit supports both protocols, so it is easy for an application to support both as
The code for the initiating client is the same for both protocols, while the code for
receiver is the same except for an additional procedure that can be specified for use
the dynamic protocol.

With the preregister protocol, information about all of the drop sites in an applicatio
stored in a database. This database is kept in a property on the top-level window o
application (or on each top-level window, if there is more than one) so that it can be
by an initiating application. During a drag, the initiator uses information in the databas
manage both drag-over and drag-under visuals. Drop sites in the receiving applicatio
set some resources to control the style of drag-under effect used, but the receiver do
participate directly in the drag.

One benefit of the preregister protocol is that it does not require dynamic communica
between the initiating and receiving applications, so the performance of drag and drop
not suffer if the network is heavily loaded. However, a receiving application cannot pro
sophisticated drag-under effects when the preregister protocol is being used. Unde
protocol, the server is grabbed during the drag, which means that the drag icon can b
size (the size is not limited to the largest cursor size, as it is for the dynamic protoco

Under the dynamic protocol, when the drag icon moves into a receiving applicati
window, the initiator sends a message to the application. Based on this message, the
on the receiving side determines whether or not the drag icon is in a valid drop site.
toolkit also initializes state and operation information for the receiver, although
receiving application can update this information using itsXmNdragProc . Based on the
movement of the drag icon, the initiator receives the updated message back in one
drag-related callbacks.
714 Motif Programming Manual

Chapter 22: Drag and Drop

ide

basic
s that
table
for

ing the

l the
rag

to
cribe
ed in

he Xt
ed by
ct is
te
t

e by
est

when
s are
isms.
sfer

s a
g to
t you
both

igure
The benefit of the dynamic protocol is that the receiving application can prov
sophisticated drag-under effects and drag processing using itsXmNdragProc . However,
the application does not have to provide these effects, as the toolkit provides some
effects by default. The dynamic protocol also has some drawbacks. One drawback i
the messaging is expensive in terms of network traffic and may lead to unaccep
performance if the network is heavily loaded. Another limitation is that the image used
the drag icon can only be as large as the largest cursor supported by the system runn
application.

The Display object provides two resources that can be set to indicate which protoco
toolkit should use when an application is the initiating or the receiving application in a d
and drop transfer. These resources areXmNdragInitiatorProtocolStyle and
XmNdragReceiverProtocolStyle . An application can set the resources if it needs
specify a particular protocol, or they can be set by the user in a resource file. We des
the different values for the resources and how the actual protocols are determin
Section 22.3.1, when we discuss how to customize drag and drop.

Drop Protocol

The protocol that is used to transfer data when the drop occurs encompasses t
incremental and non-incremental selection protocols. The DropTransfer object creat
the receiving application handles the drop protocol. When the DropTransfer obje
created usingXmDropTransferStart() , the receiver specifies resources that indica
the list of desired targets, as well as anXmNtransferProc that handles the data once i
has been converted by the initiator. The toolkit processes the requests one at a tim
calling theXmNconvertProc of the initiating client. This procedure processes the requ
and passes the data back to theXmNtransferProc .

The DragContext and DropTransfer objects both haveXmNincremental resources that
specify whether or not the data transfer is incremental. Incremental transfers are used
the data is too large for a single X protocol request. No matter how the two resource
set, the toolkit handles the transfer of data using the underlying Xt selection mechan
Both the initiator and the receiver are informed about the completion of the entire tran
once all of the subtransfers are done, if there are any.

The Programming Model
If you review what we’ve just covered and put all of the pieces together, it create
complex picture from the programmer’s perspective. Fortunately, unless you are tryin
do something really complicated, you can ignore many of the pieces and only use wha
need. This section describes the complete picture by laying out the responsibilities of
the initiating and receiving applications for each step of a drag and drop operation. F
22-5 shows the steps graphically.
Motif Programming Manual 715

Chapter 22: Drag and Drop

nse to
h are
Even though most applications contain both drag sources and drop sites, it makes se
think about the two roles separately, as the programming requirements for eac
separate.

- Provides custom drag-under
 visuals (optional)

- Checks drop site information
- Calls XmNdragProc (if registered)

- Sets protocol (optional)
- Establishes translations/actions
- Creates drag icons with
 XmCreateDragIcon() (optional)

Initiator

- Creates DragContext and
 specifies XmNconvertProc
 with XmDragStart()

- Calls XmNdropFinishCallback

 and XmNdragDropFinishCallback
 (if registered)

- Invokes action routine

- Provides custom drag-over
 visuals (optional)

- Sets protocol (optional)
- Registers drop sites and
 specifies XmNdropProc with
 XmDropSiteRegister()

Receiver

- Returns information about

 drop site

- Calls XmNdropProc

- Performs custom visuals (optional)

- Calls XmNdropStartCallback

 (if registered)

- Calls XmNconvertProc for each target

- Process converted data

- Requests conversion for each target

- Calls XmNtransferProc with
converted data- Returns converted data

When
Drag
Starts

During
Drag

When
Drop
Occurs

Before
Drag

During
Data
Transfer

After
Transfer

Toolkit

Application

Figure 22-5: Drag and drop programming model

- Determines action
 HELP - Posts dialog
 CANCEL - Cancels transfer
 DROP - proceeds with transfer
- Verifies if drop is possible and
 sets status information
- Starts transfer, registers XmNtransferProc
 with XmDropTransferStart()

- Handles drag-over/
drag-under visuals by
default

- Calls DragContext callbacks

- Sends message to
receiver (Dynamic

 Protocol only)

- Performs clean-up (optional)

- Passes drop site and status

 information

- Converts data to requested format
716 Motif Programming Manual

Chapter 22: Drag and Drop

d by

s to
tiator

ol if

e, the

. The
date

The

r
t are
drop
step.

der
ol is
tion
backs
ncel

lients
If the

he
ssing.
the
any
If the initiator and receiver are in the same application, then the same toolkit is use
both parties. Otherwise, each application is using a separate toolkit.

Before a Drag Starts

During the initialization and setup of the user interface, the initiating application need
create any custom drag icons that it wants to use for drag-over visual effects. The ini
also needs to set up translations or event handlers to deal withButtonPress events for
the second mouse button. The initiator (or the user) can specify the drag protoc
necessary.

The receiving application needs to register widgets as drop sites. For each drop sit
receiver must specify the valid data targets and theXmNdropProc that takes over when a
drop occurs in the dropsite. The receiver can also specify anXmNdragProc to handle
special processing during the drag and custom drag-under visuals for the drop site
receiver can query and modify the stacking order of drop sites, as well as up
information about drop sites while the application is running.

When a Drag Starts

When the user starts a drag operation, the toolkit on the initiating side takes control.
application needs to create a DragContext by callingXmDragStart() . It must specify the
valid targets for the operation and theXmNconvertProc that processes data transfe
requests from the receiving client. The application can also specify callbacks tha
invoked at various points during the drag, custom drag-over visual effects, and a
callback that is called when the drop occurs. Receiving clients are not involved in this

During the Drag

By default, the toolkit on the initiating side handles all of the drag-over and drag-un
visuals under both the preregister and dynamic protocols. If the preregister protoc
being used, the receiving client is not involved during the drag, but the initiating applica
can provide custom drag-over effects. These effects are handled by the various call
that can be specified fora DragContext. At any point during the drag, the initiator can ca
the transfer by callingXmDragCancel() .

Under the dynamic protocol, the initiating application sends messages to receiving c
to get drop site information. The toolkit on the receiving side handles these messages.
receiver has registered anXmNdragProc , it is invoked each time a message is sent to t
receiver. This routine can provide custom drag-under visuals and other special proce
After theXmNdragProc is finished, information about the drop site is passed back to
initiator, and the DragContext callbacks are invoked, so the initiator can still perform
special processing and provide custom drag-overvisuals.
Motif Programming Manual 717

Chapter 22: Drag and Drop

olkit
er
a help
does

y

ng
d

no

a
pecify
he

iver’s
e

sses
n
rag
drop

nent
drag

ever,
These

a user

Xm-
When a Drop Occurs

When the user drops the data, the toolkit on the receiving side takes over from the to
on the initiating side. TheXmNdropProc for the drop site determines what action the us
has requested.If the user has requested help, the receiving application should display
dialog and see if the user wants to proceed. If the user cancels the transfer, the drop
not proceed. Otherwise, theXmNdropProc determines if the transfer is possible b
checking the targets supported by drag source.

If the drop is valid, the receiving client starts the transfer of data by calli
XmDropTransferStart() . If the transfer is not valid, the routine still needs to be calle
to clean up the operation. If the initiator has registered anXmNdropStartCallback on
its DragContext, it is invoked now. Other than this callback, the initiating client plays
role when the drop occurs.

During the Data Transfer

When the receiver callsXmDropTransferStart() , it must specify a list of data and
target formats that it wants from the initiating application.The routine creates
DropTransfer object that can be updated during the transfer. The receiver must also s
anXmNtransferProc to handle the data once it has been converted by the initiator.T
receiver can cancel the transfer at any point.

For each target requested by the receiver, theXmNconvertProc of the initiator is called to
convert the data to the specified format. The formatted data is passed back to the rece
XmNtransferProc . Once the entire data transfer is complete, th
XmNdropFinishCallback and XmNdragDropFinishCallback callbacks of the
initiating client’s DragContext are invoked, if they have been specified.

Customizing Built-in Drag and Drop
The Text and TextField widgets, the List widget, and the Label widget and its subcla
all support drag and drop functionality by default*. When you use these widgets in a
application, they provide built-in drag and drop capabilities. All of the widgets are d
sources for textual data, while just the Text and TextField widgets are registered as
sites for text.

With a Label widget or a button, the user can drag the entire text string of the compo
by starting a drag in the component. The Label widget and its subclasses are also
sources for graphical data, but there are no built-in drop sites for graphical data. How
when these components are in a menu, they do not function as drag sources.
components are not drop sites because they are meant to be read-only components in

* In Motif 2.0 and later, drag and drop for the Scale, Label and LabelGadget are by default turned off if the
Display resourceXmNenableUnselectableDrag is True .
718 Motif Programming Manual

Chapter 22: Drag and Drop

on a
, it
ibe in

et. If
em is
sed,
item,

site
er to

 site.

he
ction
tween

ded
, and
the

can
ypes

g a
ut the
n in
tween
r, the

g the

for
uses
the

s an
interface. Most applications would not want the user to be able to change the label
button by dropping text on it. However, if you want to provide this type of functionality
is easy to register a Label or a button as a drop site using the technique we descr
Section 22.5.

The user can drag the text of either a single item or the current selection in a Listwidg
the pointer is over a selected item when the drag is started, the text of the selected it
used for the drag. If multiple items are selected, the text of all of the selected items is u
where the items are separated by newlines. If the drag is started over an unselected
the text of that item is transferred by drag and drop. The List widget is not a drop
because its items are not meant to be modified by the user. If you want to allow the us
modify a List by dropping items in it, however, you can register the widget as a drop

In Motif 1.2, only the Text and TextField widgets have built-in drop site functionality. T
user can drop textual data from any drag source in these widgets. The widgets also fun
as drag sources, so the user can move and copy the current selection within and be
Text and TextField widgets.

In Motif 2.0 and later, the set of widgets supporting built-in drop site capability is expan
to include the Container. In this instance, the data being transferred is widget-based
comes from the Container itself: it allows the user to move IconGadget children within
same Container by dragging with the mouse.

Applications that simply use the built-in drag and drop capabilities of the Motif widgets
still customize various aspects of the functionality. This section explores the different t
of customization that are possible.

Specifying the Drag Protocol
Motif supports two different protocols for communication between applications durin
drag. The dynamic protocol passes messages between the two applications abo
location of drop sites, while the preregister protocol keeps track of drop site informatio
a database. Since the preregister protocol does not require communication be
applications, it can provide better performance on a heavily-loaded network. Howeve
dynamic protocol offers the advantage of sophisticated drag-under visual effects.

The programmer or the user can specify the drag protocol for an application by settin
XmNdragInitiatorProtocolStyle and XmNdragReceiverProtocolStyle
resources defined by the Display object. Motif creates a Display object automatically
an application when it creates the first shell on a particular display. If an application
multiple displays, it has a Display object for each one. An application can retrieve
Display object for a specified display usingXmGetXmDisplay() .

The XmNdragInitiatorProtocolStyle and XmNdragReceiverProtocolStyle
resources indicate the preferred drag protocol for an application when it is acting a
Motif Programming Manual 719

Chapter 22: Drag and Drop

an be

rences
ng a
w the
r.
initiator and as a receiver, respectively, in a drag and drop transfer. Each resource c
set to one of the following values:

XmDRAG_PREREGISTER
This value means that the application can only support the preregister
drag protocol.

XmDRAG_DYNAMIC
This value indicates that the application can only support the dynamic
drag protocol.

XmDRAG_NONE
This value means that drag and drop is disabled for the application.

XmDRAG_DROP_ONLY
This value specifies that the application does not support either drag pro-
tocol, but it does support drag and drop transfers. The user can transfer
data using drag and drop, but there are no visual effects during the drag.

XmDRAG_PREFER_DYNAMIC
This value means that the application supports both the preregister and
dynamic protocols, but it prefers to use the dynamic protocol.

XmDRAG_PREFER_PREREGISTER
This value means that the application supports both drag protocols, but it
prefers to use the preregister protocol. The value is the default value for
XmNdragReceiverProtocolStyle .

XmDRAG_PREFER_RECEIVER
This value indicates that the application supports both the preregister and
dynamic protocols, but it defers to the preference of the receiving applica-
tion. The value can only be specified for the XmNdragInitiatorProtocol-
Style resource, and it is the default value for the resource.

The actual protocol that is used during a drag and drop transfer is based on the prefe
specified by the initiating and receiving applications. The protocol can change duri
drag as the drag icon enters and leaves top-level windows. Table 22-2 shows ho
protocol is resolved based on the preferred protocols for the initiator and the receive

Table 1-2. Drag Protocol Resolution

Initiator
Protocol Style

Receiver Protocol Style

Preregister
Prefer
Preregister Prefer Dynamic Dynamic

Preregister Preregister Preregister Preregister Drop Only

Prefer Preregister Preregister Preregister Preregister Dynamic

Prefer Receiver Preregister Preregister Dynamic Dynamic

Prefer Dynamic Preregister Dynamic Dynamic Dynamic
720 Motif Programming Manual

Chapter 22: Drag and Drop

l drag

seful

user
g icon
drag
icon

(use
re

user
ls by

urces

drag-

n
urces
bject

es in
an

ls
If two applications cannot find an agreeable protocol style, theXmDRAG_DROP_ONLYstyle
is used. In this case, there are no drag-over or drag-under visuals except for the initia
icon. An application can also explicitly set the protocol resources toXmDRAG_DROP_ONLY,
in which case the application does not provide any visual effects during the drag.

If an application sets the resourcesXmNdragInitiatorProtocolStyle or
XmNdragReceiverProtocolStyle to XmDRAG_NONE, the application does not
participate in drag and drop as an initiator or a receiver, respectively. This value is u
for disabling drag and drop functionality, as we discuss in the next section.

The actual protocol used for a drag and drop transfer controls the visual effects that the
sees during the drag. Under the preregister protocol, the server is grabbed so the dra
can be a pixmap of arbitrary size. The drag icon uses the depth and colormap of the
source widget, so it can be a color image. When the dynamic protocol is used, the drag
is implemented using the X cursor, so it must be a bitmap and is limited in size
XQueryBestCursor() to determine the largest size for a particular hardwa
configuration).

An application should support both the dynamic and preregister protocols so that the
can select the protocol based on his needs. Since the toolkit supports both protoco
default, an application can easily support both as well. The code for handling drag so
is the same under both protocols. Drop sites can specify an optionalXmNdragProc routine
that is invoked under the dynamic protocol and can be used to provide sophisticated
under effects.

The only reason that you should specify theXmNdragInitiatorProtocolStyle and
XmNdragReceiverProtocolStyle resources in application code is if your applicatio
is going to support only one of the drag protocols. In this case, you should set the reso
to force the application to use the supported protocol. You can retrieve the Display o
for the application usingXmGetXmDisplay() and then useXtVaSetValues() to
specify the resources. You can also useXtVaGetValues() to check the values of the
protocol resources.

If your application supports both drag protocols, you can specify the protocol resourc
an app-defaults file to indicate the application’s preferred protocol. By default,
application uses the preregister protocol becauseXmNdragInitiatorProtocolStyle
is set toXmDRAG_PREFER_RECEIVERandXmNdragReceiverProtocolStyle is set to
XmDRAG_PREFER_PREREGISTER. If you have implemented custom drag-under visua

Dynamic Drop Only Dynamic Dynamic Dynamic

Table 1-2. Drag Protocol Resolution (continued)

Initiator
Protocol Style

Receiver Protocol Style

Preregister
Prefer
Preregister Prefer Dynamic Dynamic
Motif Programming Manual 721

Chapter 22: Drag and Drop

hese

alues
rence

hould

on-
oth

You
cipat-

nt a
the
ode

e
et the
as

ield
all
ted
able

nd
with an XmNdragProc , you should set the protocol resources toXmDRAG_PREFER_
DYNAMIC so that the dynamic protocol is used whenever possible. You can set t
resources in an app-defaults file as follows:

*DragInitiatorProtocolStyle: DRAG_PREFER_DYNAMIC
*DragReceiverProtocolStyle: DRAG_PREFER_DYNAMIC

If you set the protocol resources in an app-defaults file, users can specify their own v
in a resource file. Users that want to ensure good performance should specify a prefe
for the preregister protocol, while users that want sophisticated drag-under effects s
indicate a preference for the dynamic protocol.

Turning Off Drag and Drop Functionality
If you do not want to provide drag and drop in an application, you can turn off the functi
ality in a number of ways. The most effective way to turn off the functionality is to set b
XmNdragInitiatorProtocolStyle and XmNdragReceiverProtocolStyle to
XmDRAG_NONE. These settings completely disable drag and drop for the application.
can also set just one of the resources to this value to prevent an application from parti
ing in drag and drop as either an initiator or a receiver.

You can also selectively turn off individual drag sources in an application. To preve
widget from providing its default drag source functionality, you need to override
translation for the second mouse button for the widget, as shown in the following c
fragment:

static char dragTranslations[] = "#override <Btn2Down>: DoNothing()";
static XtActionsRec dragActions[] = {

{"DoNothing", (XtActionProc) DoNothing}
};

True to its name, theDoNothing() action routine does nothing. Once you parse th
translation table and add the actions to the application, you can use the translation to s
XmNtranslations resources of all of the widgets that you do not want to function
drag sources.

There are two different ways to disable the drop site functionality of a Text or TextF
widget. If you want to turn off the drop site permanently, you can c
XmDropSiteUnregister() for the widget. This routine removes the drop site associa
with the widget, so you have to reregister it if you want to enable the drop site. To dis
a drop site temporarily, it is easier to use theXmNdropSiteActivity resource defined by
the DropSite object. This resource can be set to eitherXmDROP_SITE_ACTIVEor
XmDROP_SITE_INACTIVE. When a drop site is inactive, it does not participate in drag a
drop. You can set a drop site inactive usingXmDropSiteUpdate() , as shown in the
following code fragment:

Widget text_w;
722 Motif Programming Manual

Chapter 22: Drag and Drop

urces

the

ble.
the

is not
ed. If

play

the
there

text
ty of

e the
creen

ding

shell
ject for
using
Arg args[5];
int n = 0;
...
XtSetArg (args[n], XmNdropSiteActivity, XmDROP_SITE_INACTIVE); n++;
XmDropSiteUpdate (text_w, args, n);
...

Even though drop sites are associated with widgets, you have to set DropSite reso
usingXmDropSiteUpdate() , notXtVaSetValues() .

One situation in which you would probably want to disable a built-in drop site is when
widget is designed to be output-only. If you set theXmNeditable resource of a Text or
TextField widget toFalse , the user cannot drop data in the widget because it is unedita
However, the toolkit still displays the default drag-under visual effects in this case, so
widget appears as though it functions as a drop site. To make it clear that the widget
a drop site, you can disable the drop site using one of the techniques we just describ
the widget is always uneditable, it is fine to useXmDropSiteUnregister() , but if the
widget changes state, you are better off settingXmNdropSiteActivity . For certain other
types of read-only widgets, an alternative exists in Motif 2.0 and later; set the XmDis
resourceXmNenableUnselectableDrag to True to turn off dragging in Label,
LabelGadget, and Scale widgets.

When you set a Text or TextField widget insensitive, the user cannot interact with
widget, so it doesn’t make sense for the widget to function as a drop site. However,
is currently a bug in the implementation of drag and drop such that the user can drop
in an insensitive widget. To prevent this problem, whenever you change the sensitivi
a Text widget, you should set theXmNdropSiteActivity resource to match the
sensitivity.

Modifying the Visual Effects
Motif provides resources that both the user and the programmer can use to chang
default drag-over visual effects that are used during a drag and drop transfer. The S
object provides the following resources:

XmNdefaultSourceCursorIcon XmNdefaultMoveCursorIcon
XmNdefaultCopyCursorIcon XmNdefaultLinkCursorIcon
XmNdefaultValidCursorIcon XmNdefaultInvalidCursorIcon
XmNdefaultNoneCursorIcon

These resources specify the default icons for all the components of a drag icon, inclu
the different operations and states.

Motif creates a Screen object automatically for an application when it creates the first
on a particular screen. If an application accesses multiple screens, it has a Screen ob
each one. An application can retrieve the Screen object for a specified screen
XmGetXmScreen() .
Motif Programming Manual 723

Chapter 22: Drag and Drop

the

ith

. The

uses
ed as
rather

gIcon
icon

en
de

ontext

an be
. Both

ature
rag

h
ified in
The drag icon resources defined by the Screen object only take effect when
XmNsourceCursorIcon , XmNoperationCursorIcon , and XmNstateCursorIcon
resources have not been specified for a particular DragContext. All Motif widgets w
built-in drag source functionality set theXmNsourceCursorIcon resource, so the Screen
resource cannot be used to specify a different source icon for these components
widgets do not set theXmNoperationCursorIcon and XmNstateCursorIcon
resources, so you can set the various default icons for these components.

If neither the DragContext resources nor the Screen resources are specified, Motif
hard-coded default icons. For example, the running figure shown in Figure 22-3 is us
the source icon whenever a source icon has not been specified. Since this icon is
arbitrary, you might want to set theXmNdefaultSourceCursorIcon resource to
something more appropriate for your application.

Before you can set the Screen resources in application code, you must create Dra
objects for the different resources. In Section 22.4.2 we describe how to create a drag
using XmCreateDragIcon() . Once the drag icon exists, you can retrieve the Scre
object usingXmGetXmScreen() and set its resources, as shown in the following co
fragment:

Widget drag_icon, screen, toplevel;
...
screen = XmGetXmScreen (XtScreen (toplevel));
XtVaSetValues (screen, XmNdefaultSourceCursorIcon, drag_icon, NULL);
...

The specified icon is used whenever the source icon has not been set for the DragC
for a drag and drop transfer.

The Screen resources can also be set in a resource file. In this case, the icons c
specified as bitmap files, so the application does not have to create DragIcon objects
the icon and an optional mask can be specified using resources as follows:

*defaultSourceCursorIcon.pixmap: icon.xbm
*defaultSourceCursorIcon.mask: icon_mask.xbm

Although it is convenient to be able to set the Screen resources in a resource file, this fe
really isn’t that useful since the Motif widgets and most applications specify their d
icons using DragContext resources.

The resourcesXmNvalidCursorForeground , XmNinvalidCursorForeground , and
XmNnoneCursorForeground of the DragContext can be used to further distinguis
between the different states in a drag and drop transfer. These resources can be spec
a resource file as follows:

*validCursorForeground: green
*invalidCursorForeground: red
*noneCursorForeground: yellow
724 Motif Programming Manual

Chapter 22: Drag and Drop

hat are
t drop
n and
eed

5 we

rop
ate. In
e use

g the
that
sent a
ider
In this case, the drag icon changes color as the user moves it between components t
valid drop sites, components that are invalid drop sites, and components that are no
sites. While it is possible to modify some aspects of the drag-over effects using Scree
DragContext resources, if you really want to provide customized visual effects, you n
to understand more about the implementation of drag and drop. In Section 22.4.
discuss how to provide custom drag-over effects.

Working With Drag Sources
Many applications work with data other than text. In order to provide drag and d
capabilities, these applications need to create drag sources for the data they manipul
this section, we describe the steps you need to follow to create a new drag source. W
an example program that displays all the files in a directory and allows the user to dra
files. However, in order for this drag to succeed, we need another application
understands files as objects and allows the user to drop files. In Section 22.5, we pre
text editor that handles the dropping of file data, but for now we are just going to cons
the ability to drag a file. Example 22-1 shows thefile_manager.capplication, which we are
going to describe in detail in the following sections.*

Example 22-1. The file_manager.c program

/* file_manager.c -- displays all of the files in the current directory
** and creates a drag source for each file. The user can drag the
** contents of the file to another application that understands
** dropping file data. Demonstrates creating a drag source, creating
** drag icons, and handling data conversion.
*/

#include <Xm/Screen.h>
#include <Xm/ScrolledW.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/Label.h>
#include <Xm/AtomMgr.h>
#include <Xm/DragDrop.h>
#include <X11/Xos.h>
#include <stdio.h>
#include <sys/stat.h>

typedef struct {
char *file_name;
Boolean is_directory;

} FileInfo;

/* global variable -- arbitrarily limit number of files to 256 */

* XtAppInitialize () is considered deprecated in X11R6.XmInternAtom () is marked for deprecation in Motif
2.0 and later.
Motif Programming Manual 725

Chapter 22: Drag and Drop
FileInfo files[256];
void StartDrag(Widget, XEvent *, String *, Cardinal *);

/* translations and actions. Pressing mouse button 2 calls
** StartDrag to start a drag transaction
*/
static char dragTranslations[] = "#override <Btn2Down>: StartDrag()";
static XtActionsRec dragActions[] = {

{"StartDrag", (XtActionProc) StartDrag}
};

main (int argc, char *argv[])
{

Arg args[12];
int num_files, n, i = 0;
Widget toplevel, sw, panel, form, label;
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;
XtAppContext app;
XtTranslations parsed_trans;
char *p, buf[256];
FILE *pp, *popen();
struct stat s_buf;
Pixmap file, dir, pixmap;
Pixel fg, bg;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL, 0);

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DIRECTORY = XInternAtom (dpy, "DIRECTORY", False);

/* use popen to get the files in the directory */
sprintf (buf, "/bin/ls .");
if (!(pp = popen (buf, "r"))) {

perror (buf);
exit (1);

}

/* read output from popen -- store filename and type */
while (fgets (buf, sizeof (buf), pp) && (i < 256)) {

if (p = index (buf, '\n'))
*p = 0;

if (stat (buf, &s_buf) == -1)
continue;

else if ((s_buf.st_mode &S_IFMT) == S_IFDIR)
files[i].is_directory = True;

else if (!(s_buf.st_mode & S_IFREG))
continue;

else
726 Motif Programming Manual

Chapter 22: Drag and Drop
files[i].is_directory = False;
files[i].file_name = XtNewString (buf);
i++;

}
pclose (pp);
num_files = i;

/* create a scrolled window to contain the file labels */
n = 0;
XtSetArg (args[n], XmNwidth, 200); n++;
XtSetArg (args[n], XmNheight, 300); n++;
XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
sw = XmCreateScrolledWindow (toplevel, "sw", args, n);
panel = XmCreateRowColumn (sw, "panel", NULL, 0);
/* get foreground and background colors and create label pixmaps */
XtVaGetValues (panel, XmNforeground, &fg,

XmNbackground, &bg, NULL);
file = XmGetPixmap (XtScreen (panel), "file.xbm", fg, bg);
dir = XmGetPixmap (XtScreen (panel), "dir.xbm", fg, bg);
if (file == XmUNSPECIFIED_PIXMAP || dir == XmUNSPECIFIED_PIXMAP) {

puts ("Couldn't load pixmaps");
exit (1);

}

parsed_trans = XtParseTranslationTable (dragTranslations);
XtAppAddActions (app, dragActions, XtNumber (dragActions));

/* create image and filename Labels for each file */
for (i = 0; i < num_files; i++) {

form = XmCreateForm (panel, "form", NULL, 0);

if (files[i].is_directory) pixmap = dir;
else pixmap = file;

n = 0;
/* specify translation for drag and index into file array */
XtSetArg (args[n], XmNtranslations, parsed_trans); n++;
XtSetArg (args[n], XmNuserData, i); n++;
XtSetArg (args[n], XmNlabelType, XmPIXMAP); n++;
XtSetArg (args[n], XmNlabelPixmap, pixmap); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[n], XmNrightPosition, 25); n++;
label = XmCreateLabel (form, "type", args, n);
XtManageChild (label);

n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_POSITION); n++;
Motif Programming Manual 727

Chapter 22: Drag and Drop
XtSetArg (args[n], XmNleftPosition, 25); n++;
label = XmCreateLabel (form, files[i].file_name, args, n);
XtManageChild (label);
XtManageChild (form);

}

XtManageChild (panel);
XtManageChild (sw);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* StartDrag() -- action routine called by initiator when a drag starts
** (in this case, when mouse button 2 is pressed). It starts
** the drag processing and establishes a drag context.
*/
void StartDrag (Widget widget, XEvent *event, String *params,

Cardinal *num_params)
{

Argargs[10];
int n, i;
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;
Atom exportList[2];
Widget drag_icon, dc;
Pixel fg, bg;
Pixmap icon, iconmask;
XtPointer ptr;
Boolean ConvertProc(Widget, Atom *, Atom *, Atom *,

XtPointer *, unsigned long *, int *);
void DragDropFinish(Widget, XtPointer, XtPointer);

Boolean ConvertProc();
void DragDropFinish();

/* intern the Atoms for data targets */
dpy = XtDisplay (widget);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DIRECTORY = XInternAtom (dpy, "DIRECTORY", False);

/* get background and foreground colors and fetch index into file
** array from XmNuserData.
*/
XtVaGetValues (widget, XmNbackground, &bg, XmNforeground, &fg,

XmNuserData, &ptr, NULL);

/* create pixmaps for drag icon -- either file or directory */
i = (int) ptr;
if (files[i].is_directory) {

icon = XmGetPixmapByDepth (XtScreen (widget), "dir.xbm",
1, 0, 1);

iconmask = XmGetPixmapByDepth (XtScreen (widget),
"dirmask.xbm", 1, 0, 1);
728 Motif Programming Manual

Chapter 22: Drag and Drop
}
else {

icon = XmGetPixmapByDepth (XtScreen (widget), "file.xbm",
1, 0, 1);

iconmask = XmGetPixmapByDepth (XtScreen (widget),
"filemask.xbm", 1, 0, 1);

}
if (icon == XmUNSPECIFIED_PIXMAP ||

iconmask == XmUNSPECIFIED_PIXMAP) {
puts ("Couldn't load pixmaps");
exit (1);

}
n = 0;
XtSetArg (args[n], XmNpixmap, icon); n++;
XtSetArg (args[n], XmNmask, iconmask); n++;
drag_icon = XmCreateDragIcon (widget, "drag_icon", args, n);

/* specify resources for DragContext for the transfer */
n = 0;
XtSetArg (args[n], XmNblendModel, XmBLEND_ALL); n++;
XtSetArg (args[n], XmNcursorBackground, bg); n++;
XtSetArg (args[n], XmNcursorForeground, fg); n++;
XtSetArg (args[n], XmNsourceCursorIcon, drag_icon); n++;

/* establish the list of valid target types */
if (files[i].is_directory) {

exportList[0] = DIRECTORY;
XtSetArg (args[n], XmNexportTargets, exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, 1); n++;

}
else {

exportList[0] = FILE_CONTENTS;
exportList[1] = FILE_NAME;
XtSetArg (args[n], XmNexportTargets, exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, 2); n++;

}
XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNconvertProc, ConvertProc); n++;
XtSetArg (args[n], XmNclientData, widget); n++;

/* start the drag and register a callback to clean up when done */
dc = XmDragStart (widget, event, args, n);
XtAddCallback (dc, XmNdragDropFinishCallback, DragDropFinish,

NULL);
}

/* ConvertProc() -- convert the file data to the format requested
** by the drop site.
*/
Boolean ConvertProc (Widget widget,

Atom *selection,
Atom *target,
Atom *type_return,
XtPointer *value_return,
Motif Programming Manual 729

Chapter 22: Drag and Drop
unsigned long *length_return,
int *format_return)

{
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME, MOTIF_DROP;
XtPointer ptr;
Widget label;
int i;
char *text;
struct stat s_buf;
FILE *fp;
long length;
String str;

/* intern the Atoms for data targets */
dpy = XtDisplay (widget);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
MOTIF_DROP = XInternAtom (dpy, "_MOTIF_DROP", False);

/* check if we are dealing with a drop */
if (*selection != MOTIF_DROP)

return False;

/* get the drag source widget */
XtVaGetValues (widget, XmNclientData, &ptr, NULL);
label = (Widget) ptr;
if (label == NULL)

return False;

/* get the index into the file array from XmNuserData from the
** drag source widget.
*/
XtVaGetValues (label, XmNuserData, &ptr, NULL);
i = (int) ptr;
/* this routine processes only file contents and file name */
if (*target == FILE_CONTENTS) {

/* get the contents of the file */
if (stat (files[i].file_name, &s_buf) == -1 ||

(s_buf.st_mode & S_IFMT) != S_IFREG ||
!(fp = fopen (files[i].file_name, "r")))
return False;

length = s_buf.st_size;

if (!(text = XtMalloc ((unsigned) (length + 1))))
return False;

else if (fread (text, sizeof (char), length, fp) != length)
return False;

else
text[length] = 0;

fclose (fp);

/* format the value for transfer */
*type_return = FILE_CONTENTS;
730 Motif Programming Manual

Chapter 22: Drag and Drop

g on
*value_return = (XtPointer) text;
*length_return = length;
*format_return = 8;
return True;

}
else if (*target == FILE_NAME) {

str = XtNewString (files[i].file_name);
/* format the value for transfer */
*type_return = FILE_NAME;
*value_return = (XtPointer) str;
*length_return = strlen (str) + 1;
*format_return = 8;
return True;

}
else

return False;
}

/* DragDropFinish() -- clean up after a drag and drop transfer. */
void DragDropFinish (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Widget source_icon = NULL;
XtVaGetValues (widget, XmNsourceCursorIcon, &source_icon, NULL);
if (source_icon)

XtDestroyWidget (source_icon);
}

The output of this application is shown in Figure 22-6.

The application gets the names of all of the files in the current directory*and displays the
filenames using Label widgets. Each file has a file or folder image next to it, dependin

* We usepopen() here, but you should useopendir() andreaddir() .

Figure 22-6: The output of the file_manager program
Motif Programming Manual 731

Chapter 22: Drag and Drop

ating
ointer
p site

tures
mes
that
age

s the
ed to

age
ing

scribe

tions
ource
ince
l, we

sing

by
e

that are
whether it is a regular file or a directory. The images are the drag sources for manipul
the files. If the user presses the middle mouse button over one of the symbols, the p
changes to a drag icon and he can drag the file to another application that has a dro
that understands files.

Creating a Drag Source
When the application reads the files in the directory, it creates a global array of struc
that contain information about the files. This information is used to keep track of filena
and file types. For each file, the application creates two Label widgets: an image
represents the type of the file and a string that specifies the filename. To link the im
Labels to the array, the application passes the index of each file in the array a
XmNuserData resource for the associated Label. This value can be retrieved and us
access the information in the array.

Depending on whether a file is a regular file or a directory, the application places an im
of a file or a folder next to the filename Label. Each image is created us
XmGetPixmap() and specified as theXmNlabelPixmap for the appropriate image
Labels. The images are also used for drag icons during the drag operation, as we de
in the next section. For more information onXmGetPixmap() , see Section 3.4.5.

In order to specify that the file images are drag sources, we have to establish transla
for the Label widgets that are used for the images. Label widgets already have drag s
functionality, so we need to decide whether to override or augment this functionality. S
the existing translation merely allows the user to drag the pixmap image for the Labe
override the translation as shown in the following code fragment:

static char dragTranslations[] = “#override <Btn2Down>: StartDrag()";
static XtActionsRec dragActions[] = {

{"StartDrag", (XtActionProc) StartDrag}
};

The application parses the translation table and adds the action u
XtParseTranslationTable() and XtAppAddActions() , respectively. The new
translation table is specified for theXmNtranslations resource for each of the image
Labels.

The only other operation performed inmain() that is relevant for the drag functionality is
the interning of atoms for target types. We use the FILE_NAME target that is defined
the ICCCM, as well as two of our own targets, FILE_CONTENTS and DIRECTORY. W
chose these target names ourselves because the ICCCM does not define any targets
suitable for our purposes. We create atoms for these targets usingXInternAtom() , as
shown in the following code fragment*:

* As of Motif 2.0, XmInternAtom () is marked for deprecation.
732 Motif Programming Manual

Chapter 22: Drag and Drop

ion,

s
te
so we
lue
r

r the
mage

y the
uch
and

r. The
Widget toplevel;
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;

dpy = XtDisplay (toplevel);

FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DIRECTORY = XInternAtom (dpy, "DIRECTORY", False);

Although we don’t actually use the atoms inmain() , we intern them so that they are
cached by the Motif toolkit. When we intern the atoms in other routines in the applicat
they are retrieved from the cache.

Starting the Drag
When the user starts a drag, theDragStart() action routine is called. This routine create
a custom dragicon and callsXmDragStart() to start the drag. To create the appropria
drag icon, we need to know whether the drag source represents a file or a directory,
fetch theXmNuserData from the Label widget that is the drag source. We use this va
to access the appropriate structure in thefiles array and determine the type of file the use
is manipulating.

Once we know what type of file we are dealing with, we can create the source icon fo
drag. We use the same pixmap as for the image Label, so the drag icon is either a file i
or a folder image. We useXmGetPixmapByDepth() to create both the icon and an
iconmask so that we can specify a depth of1. We callXmCreateDragIcon() to create
the drag icon, as shown in the following code fragment from Example 22-1:

n = 0;
XtSetArg (args[n], XmNpixmap, icon); n++;
XtSetArg (args[n], XmNmask, iconmask); n++;
drag_icon = XmCreateDragIcon (widget, "drag_icon", args, n);

The DragIcon is created as a child of the drag source widget. We only need to specif
XmNpixmap andXmNmask resources because the DragIcon sets its other attributes, s
as width and height, based on the pixmap. The DragIcon takes its foreground
background colors from its parent, so we don’t need to specify these resources eithe
XmNmaskresource must be set to a pixmap of depth1, while theXmNpixmap can be any
depth.

Now that we have a DragIcon object for the source icon, we can callXmDragStart() to
start the drag as shown below:

n = 0;
XtSetArg (args[n], XmNblendModel, XmBLEND_ALL); n++;
XtSetArg (args[n], XmNcursorBackground, bg); n++;
XtSetArg (args[n], XmNcursorForeground, fg); n++;
XtSetArg (args[n], XmNsourceCursorIcon, drag_icon); n++;
Motif Programming Manual 733

Chapter 22: Drag and Drop

umber

r the

on

sed

hile
cify
ell

the

we
rag
order
a drop

by
ing
if (files[i].directory) {
exportList[0] = DIRECTORY;
XtSetArg (args[n], XmNexportTargets, exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, 1); n++;

} else {
exportList[0] = FILE_CONTENTS;
exportList[1] = FILE_NAME;
XtSetArg (args[n], XmNexportTargets, exportList); n++;
XtSetArg (args[n], XmNnumExportTargets, 2); n++;

}

XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNconvertProc, ConvertProc); n++;
XtSetArg (args[n], XmNclientData, widget); n++;
dc = XmDragStart (widget, event, args, n);

This routine creates a DragContext object for the drag and drop transfer and sets a n
of resources for the DragContext. TheXmNsourceCursorIcon specifies the source drag
icon that we just created. We also specify the background and foreground colors fo
icon. The DragContext also has the resourcesXmNoperationCursorIcon and
XmNstateCursorIcon for specifying the operation and state icons, but our drag ic
does not use these parts, so we don’t set the resources.

The XmNblendModel resource controls the components of the drag icon that are u
during the drag. This resource can take one of the following values:

XmBLEND_ALL XmBLEND_STATE_SOURCE
XmBLEND_JUST_SOURCE XmBLEND_NONE

XmBLEND_ALLindicates that all three parts of the drag icon should be used, w
XmBLEND_STATE_SOURCEcauses only the state and source icons to be used. We spe
the valueXmBLEND_ALLsince we want our source icon to be used for the drag icon, as w
as the default system operation and status icons.XmBLEND_NONEmeans that the
DragContext does not generate a drag icon.

Another important set of resources are theXmNexportTargets and
XmNnumExportTargets resources. These resources specify the data targets to which
drag source can convert the actual data. TheXmNexportTargets resource contains a list
of target atoms.If the file is a directory, we specify the DIRECTORY target. Otherwise,
specify both the FILE_CONTENTS and FILE_NAME targets, which means that the d
source can provide both a filename and the actual contents of the file to a drop site. In
for the drag to succeed, another application must use at least one of these targets for
site so that the user has some place to drop the data.

TheXmNdragOperations resource specifies all of the operations that are supported
the application. This value is specified as a bit mask formed by combining the follow
possible values:

XmDROP_COPY XmDROP_MOVE XmDROP_LINK XmDROP_NOOP
734 Motif Programming Manual

Chapter 22: Drag and Drop

ion
but
tions
source

ted by

e type

verify
d then
ceive
lable.

l

the
For the limited purpose of this application, we specifyXmDROP_COPYbecause we only
allow the user to copy the contents of a file. A fully-functional file manager applicat
would probably also support moving and copying files within the directory structure,
that functionality is beyond the scope of our discussion. During the drag, the opera
supported by the current drop site are matched against those supported by the drag
to see if the transfer is possible.

The final DragContext resource that we specify is theXmNconvertProc . This resource
indicates the procedure that is called to convert the actual data into the format reques
the drop site when the drop occurs. We specify theConvertProc() routine for our
application; this routine is described in the next section. We also setXmNclientData to
the Label widget that started the drag, so that we have access to the filename and fil
data stored about that Label, as this information is needed to process the drop.

After we create the DragContext and start the drag withXmDragStart() , we register a
callback routine for theXmNdragDropFinishCallback so that we can destroy the
DragIcon that we created. This routine is discussed further in Section 22.4.6.

Converting the Data
When a drop occurs, a procedure that has been registered by the drop site is called to
that the drop can take place. This procedure checks the status of the operation an
starts the data transfer. The receiving application requests the format that it wants to re
the data in; the receiver can even request the data in multiple formats, if they are avai
For each requested data target, the initiating application’sXmNconvertProc is invoked.
In our case, this is theConvertProc() routine. Since we are not using incrementa
transfer, this routine is of typeXtConvertSelectionProc , which takes the following
form:

typedef Boolean (*XtConvertSelectionProc)(Widget widget ,
Atom * selection ,
Atom * target ,
Atom * type_return ,
XtPointer * value_return ,
unsigned long * length_return ,
int * format_return)

The widget parameter is the DragContext for the drag operation,selection is the
selection atom, which in this case is_MOTIF_DROP, and target is the type of information
requested about the selection. Thetype_return , value_return , length_return ,
and format_return parameters return the type, value, length, and format of
converted data. The routine should returnTrue if the conversion succeeds andFalse
otherwise. For more information about this procedure type, see Volume 4,X Toolkit
Intrinsics Programming Manual, and the appropriate reference page in Volume 5,X
Toolkit Intrinsics Reference Manual.
Motif Programming Manual 735

Chapter 22: Drag and Drop

m
the

the
get

le. If

are

d any

have
ation
tem
other

s not
the
the

ting
e the
ETE

elete
this

bel
tion
, there

our
otif

nce the
ll
TheConvertProc() routine in Example 22-1 starts by retrieving the Label widget fro
the XmNclientData resource of the DragContext. The goal is to get an index into
files array so that we can access information about the file. The index is stored in
XmNuserData resource of the Label widget. Once we have the index, we can use it to
the filename from the array.

Our conversion routine only handles requests for a filename or the contents of a fi
target is set to FILE_CONTENTS,ConvertProc() retrieves the contents of the file
and formats the data for transfer back to the receiving client. The contents of the file
passed as a pointer to the text, using thevalue_return parameter. If the drop site has
requested the FILE_NAME target, the routine returns the filename invalue_return . In
either case, thelength_return argument is set to the length of the text, andformat_
return is set to8 to specify the length of each of the elements invalue_return . The
return_type parameter is set to the appropriate target. If the drop site has requeste
other target, the routine returnsFalse to indicate that the transfer has failed.

The conversion routine does not handle the DIRECTORY target, partly because we
not implemented any drop sites that understand the target. A real file manager applic
would want to support the dragging of directories to allow the user to modify the file sys
using drag and drop. In this case, the conversion procedure would need to have an
branch for handling the DIRECTORY target.

Since the drag source only supports the copy operation, the conversion routine doe
have to worry about deleting the existing data. With a copy operation,
XmNconvertProc returns a pointer to the data so that when the operation is done, both
initiator and the receiver have a copy of the data. With a move operation, the initia
application returns a pointer to the data and then waits for the receiver to tell it to delet
data. The receiving application gets the data, stores it, and then specifies the DEL
target to handle this situation. When the initiating client gets this target, it can safely d
the data. With a link operation, the initiator again passes a pointer to the data, but in
case the receiver uses the pointer to establish a link to the data.

Modifying an Existing Drag Source
In file_manager.c, we decided to replace the existing drag capabilities of the image La
widgets and provide our own functionality instead. By default, the Labels would func
as graphical drag sources, but since there are no drop sites that support graphical data
is no reason to preserve this functionality.

However, if you want to provide the default functionality for a drag source as well as y
own functionality, the set up of the drag source becomes more complicated. Each M
widget that acts as a drag source has a translation and action that starts the drag. Si
existing action callsXmDragStart() for the transfer, another action routine cannot ca
736 Motif Programming Manual

Chapter 22: Drag and Drop

at

me
al file
f the
the
the

ion.

ch
ine
-2
XmDragStart() again. The solution to this problem is to write an action routine th
retrieves the DragContext for the transfer and modifies its resources.

In our application, we want to augment the drag source functionality of the filena
Labels. If the user drags the Label to a drop site that understands file objects, the actu
is transferred. Otherwise, the default drag functionality for the Label causes the text o
Label to be passed to the dropsite. The first thing that we need to do is modify
translations for the Label widgets. Since we want to provide the default functionality,
new translation calls the widget’s existing drag action routine followed by our own act
The existing drag action routine for the Label widget isProcessDrag() , so the
translations and actions for the application can be defined as follows:

static char dragTranslations[] = "#override <Btn2Down>: StartDrag()";
static char newdragTranslations[] =

"#override <Btn2Down>: ProcessDrag() UpdateDrag()";
static XtActionsRec dragActions[] = {

{"StartDrag", (XtActionProc) StartDrag},
{"UpdateDrag", (XtActionProc) UpdateDrag}

};

As always, the translations need to be parsed usingXtParseTranslationTable() , and
the actions need to be registered usingXtAppAddActions() . Now, when we create each
of the filename Labels, we can specify the new translation for theXmNtranslations
resource, as shown in the following code fragment:

parsed_trans_text = XtParseTranslationTable (newdragTranslations);
...
n = 0;
XtSetArg (args[n], XmNtranslations, parsed_trans_text); n++;
XtSetArg (args[n], XmNuserData, i); n++;
...
label = XmCreateLabel (form, files[i].file_name, args, n);

Note that we also specify the index in thefiles array as theXmNuserData for these
widgets, just as we did for the image Labels in Example 22-1.

TheUpdateDrag() action routine is invoked after the Label’s default drag action, whi
means thatXmDragStart() has already been called for the operation. Our action rout
retrieves the DragContext for the operation and modifies it, as shown in Example 22*.

Example 22-2. The UpdateDrag() routine

void (*convert_proc) (Widget, Atom *, Atom *, Atom *,
XtPointer *, unsigned long *, int *);

void UpdateDrag (Widget widget, XEvent *event, String *params,
Cardinal *num_params)

* XmInternAtom () is marked for deprecation from Motif 2.0.
Motif Programming Manual 737

Chapter 22: Drag and Drop
{
Arg args[10];
int n, m, i;
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;
Widget drag_icon, dc;
Pixel fg, bg;
Pixmap icon, iconmask;
XtPointer ptr;
Boolean NewConvertProc(Widget, Atom *, Atom *, Atom *,

XtPointer *, unsigned long *, int *);
void DragDropFinish(Widget, XtPointer, XtPointer);
Cardinal numExportTargets;
Atom *exportTargets, *newTargets;

/* intern the Atoms for data targets */
dpy = XtDisplay (widget);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DIRECTORY = XInternAtom (dpy, "DIRECTORY", False);

/* get background and foreground colors and fetch index into file
** array from XmNuserData.
*/
XtVaGetValues (widget, XmNforeground, &fg, XmNbackground, &bg,

XmNuserData, &ptr, NULL);

/* create pixmaps for drag icon -- either file or directory */
i = (int) ptr;
if (files[i].is_directory) {

icon = XmGetPixmapByDepth (XtScreen (widget), "dir.xbm",
1, 0, 1);

iconmask = XmGetPixmapByDepth (XtScreen (widget),
"dirmask.xbm", 1, 0, 1);

}
else {

icon = XmGetPixmapByDepth (XtScreen (widget), "file.xbm",
1, 0, 1);

iconmask = XmGetPixmapByDepth (XtScreen (widget),
"filemask.xbm", 1, 0, 1);

}
if (icon == XmUNSPECIFIED_PIXMAP ||

iconmask == XmUNSPECIFIED_PIXMAP) {
puts ("Couldn't load pixmaps");
exit (1);

}
n = 0;
XtSetArg (args[n], XmNpixmap, icon); n++;
XtSetArg (args[n], XmNmask, iconmask); n++;
drag_icon = XmCreateDragIcon (widget, "drag_icon", args, n);

/* get the DragContext and retrieve info about it */
dc = XmGetDragContext (widget, event->xbutton.time);
n = 0;
738 Motif Programming Manual

Chapter 22: Drag and Drop

ource

ed on
XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
XtSetArg (args[n], XmNconvertProc, &convert_proc); n++;
XtGetValues (dc, args, n);

/* add new targets to the list of targets */
n = 0;
if (files[i].is_directory) {

newTargets = (Atom *) XtMalloc (sizeof (Atom) *
(numExportTargets + 1));

for (m = 0; m < numExportTargets; m++)
newTargets[m] = exportTargets[m];

newTargets[m] = DIRECTORY;
XtSetArg (args[n], XmNexportTargets, newTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, numExportTargets + 1);
n++;

} else {
newTargets = (Atom *) XtMalloc (sizeof (Atom) *

(numExportTargets + 2));
for (m = 0; m < numExportTargets; m++)

newTargets[m] = exportTargets[m];
newTargets[m] = FILE_CONTENTS;
newTargets[m+1] = FILE_NAME;
XtSetArg (args[n], XmNexportTargets, newTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, numExportTargets + 2);
n++;

}

/* modify other DragContext resources */
XtSetArg (args[n], XmNblendModel, XmBLEND_ALL); n++;
XtSetArg (args[n], XmNcursorBackground, bg); n++;
XtSetArg (args[n], XmNcursorForeground, fg); n++;
XtSetArg (args[n], XmNsourceCursorIcon, drag_icon); n++;
XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNconvertProc, NewConvertProc); n++;
XtSetArg (args[n], XmNclientData, widget); n++;
XtSetValues (dc, args, n);
XtAddCallback (dc, XmNdragDropFinishCallback, DragDropFinish,

NULL);
}

This routine performs many of the same tasks as theStartDrag() action routine, such as
accessing the appropriate structure in the files array and creating a DragIcon for the s
icon. The main difference is that we useXmGetDragContext() to retrieve the current
DragContext object, rather than creating one usingXmDragStart() .

The routine retrieves the values of theXmNexportTargets , XmNnumExportTargets ,
and XmNconvertProc resources usingXtGetValues() so that it can preserve the
existing functionality. The appropriate new targets are added to the list of targets bas
the type of the file, andXmNexportTargets is set to the new list. The
NewConvertProc() routine is used for theXmNconvertProc . The rest of the
Motif Programming Manual 739

Chapter 22: Drag and Drop

ent:

to the

use
vents
ntext

ecial
drag

ons,
ite
ld can
DragContext resources are specified as inStartDrag() , and the DragContext is modified
usingXtSetValues() .

There is only one difference between theNewConvertProc() routine and
ConvertProc() in file_manager.c. Instead of simply returningFalse if the requested
target is not FILE_CONTENTS or FILE_NAME,NewConvertProc() calls the
conversion procedure retrieved from the Label widget, as shown in the following fragm

(*convert_proc) (widget, selection, target, type_return, value_return,
length_return, format_return);

Essentially, our conversion routine handles our data targets and passes other targets
Label widget’s default conversion procedure.

Providing Custom Drag-over Visuals
The DragContext has a number of callback routines that the initiating application can
to provide custom drag-over visuals. These callbacks are invoked when different e
occur during the drag, like when the drag icon enters or leaves a drop site. The DragCo
provides the following callback routines for monitoring the drag:

XmNdragMotionCallback XmNdropSiteEnterCallback
XmNdropSiteLeaveCallback XmNoperationChangedCallback
XmNtopLevelEnterCallback XmNtopLevelLeaveCallback

The names of the routines are fairly self-explanatory. Each callback has its own sp
callback structure that contains the relevant information about the current state of the
operation. For example, theXmNdropSiteEnterCallback uses a callback structure of
typeXmDropSiteEnterCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Time timeStamp;
unsigned char operation;
unsigned char operations;
unsigned char dropSiteStatus;
Position x;
Position y;

} XmDropSiteEnterCallbackStruct, *XmDropSiteEnterCallback;

Thereason field in this structure is alwaysXmCR_DROP_SITE_ENTER. Theoperation
andoperations fields specify the current operation and the set of supported operati
respectively. ThedropSiteStatus element indicates whether or not the current drop s
is valid, based on the targets supported by the drag source and the drop site. This fie
have one of the following values:

XmDROP_SITE_VALID XmDROP_SITE_INVALID XmNO_DROP_SITE
740 Motif Programming Manual

Chapter 22: Drag and Drop

p site.
,
allback
cial

vide
he
6

k

r the
hat is
ay to
ntext

 drag.

ize,
e
you

n

iating
ing

ck the
nt’s
The operation , operations , and dropSiteStatus fields are initialized by the
toolkit based on the values of different resources for both the drag source and the dro
If the drop site has registered anXmNdragProc and the dynamic protocol is being used
this routine can update these fields as necessary before the data is passed to the c
routine. A drop site might want to update these fields if it is performing any spe
processing or simulating multiple drop sites.

All of the callback structures for the DragContext callback routines have areason field
that indicates why the callback was invoked. The callback structures also pro
information that is relevant to the particular routine; they are all similar to t
XmDropSiteEnterCallbackStruct . See the DragContext reference page in Volume
B, Motif Reference Manual, for complete information about the different callbac
structures.

When an application creates the DragContext for a drag, it can register routines fo
different callback resources. These routines can perform any special processing t
necessary, as well as handle custom drag-over effects for the transfer. The typical w
handle drag-over effects is to modify the various drag icon resources of the DragCo
during the drag. The XmNsourcePixmapIcon , XmNsourceCursorIcon ,
XmNoperationCursorIcon , and XmNstateCursorIcon resources specify the
different components of the drag icon. TheXmNvalidCursorForeground ,
XmNinvalidCursorForeground , andXmNnoneCursorForeground resources of the
DragContext can be used to further distinguish between the different states during a

TheXmNsourcePixmapIcon is used under the preregister protocol and can be any s
while theXmNsourceCursorIcon is used for the dynamic protocol and is limited to th
size of the largest cursor for a particular platform. If you want to specify a color icon,
must use theXmNsourcePixmapIcon resource. IfXmNsourcePixmapIcon is not
specified, the value ofXmNsourceCursorIcon is used. If this resource has not bee
specified, the default source icon for the Screen object is used.

At any point during a drag, the initiating client can callXmDragCancel() to cancel the
transfer. The user can also cancel the operation by pressing the ESCAPE key.The init
client can retrieve additional information about the current drop site by call
XmDropSiteRetrieve() during the drag.

After the user drops the data in a drop site, the drag source has one last chance to che
status of the transfer and provide custom visual effects. After the receiving clie
XmNdropProc completes, the DragContext’sXmNdropStartCallback is invoked. This
routine has a callback structure of typeXmDropStartCallbackStruct , which is defined
as follows:

typedef struct {
int reason;
XEvent *event;
Time timeStamp;
Motif Programming Manual 741

Chapter 22: Drag and Drop

drop

the

s

on

drop
using

data,
ke the
can
18,
that
hows
unsigned char operation;
unsigned char operations;
unsigned char dropSiteStatus;
unsigned char dropAction;
Position x;
Position y;

} XmDropStartCallbackStruct, *XmDropStartCallback;

The reason field is set toXmCR_DROP_START, while the operation,operations , and
dropSiteStatus fields are set as described previously. ThedropAction field is set to
XmDROPif the user has simply dropped the data,XmDROP_HELPif the user has requested
help on the drop site, orXmDROP_CANCEL if the user has cancelled the transfer.

Cleaning Up
The initiating client can also register callbacks that are invoked after a drag and
transfer has completed. TheXmNdropFinishCallback is called after the receiver’s
XmNtransferProc has finished processing all of the data targets requested by
receiver. This routine receives ascall_data a callback structure of the type
XmDropFinishCallbackStruct , where thereason field isXmCR_DROP_FINISH.

The XmNdragDropFinishCallback is invoked when the entire operation ha
completed, which is immediately after theXmNdropFinishCallback .In this case, the
callback structure is anXmDragDropFinishCallbackStructure , and reason is
XmCR_DRAG_DROP_FINISH. Our application uses this callback to destroy the drag ic
that we created, as shown below:

void DragDropFinish (Widget widget, XtPointer client_data, XtPointer call_data)
{

Widget source_icon = NULL;
XtVaGetValues (widget, XmNsourceCursorIcon, &source_icon, NULL);
if (source_icon)

XtDestroyWidget (source_icon);
}

The widget passed to the callback routine is the DragContext object for the drag and
transfer. The routine retrieves the source icon from the DragContext and destroys it
XtDestroyWidget().

Working With Drop Sites
In order to handle data from drag sources that provide something other than textual
an application has to register drop sites that understand other types of data. To ma
file_manager.capplication useful, we need an application that has drop sites that
handle file objects. In this section, we are going to modify the text editor from Chapter
Text Widgets, so that it understands file data. The application contains two drop sites
handle files: the main text entry area and a filename status area. The Example 22-3 s
742 Motif Programming Manual

Chapter 22: Drag and Drop

in

the main() , HandleDropLabel() , HandleDropText() , and TransferProc()
routines foreditor_dnd.c. The rest of the routines in the application are the same as
Section 18.4, so we have not shown them here.*

Example 22-3. The editor_dnd.c program

/* editor_dnd.c -- create an editor application that contains drop sites
** that understand file data. A file can be dragged from another
** application and dropped in the text entry area or the filename status
** area.
*/

#include <Xm/Text.h>
#include <Xm/TextF.h>
#include <Xm/LabelG.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>
#include <Xm/MainW.h>
#include <Xm/Form.h>
#include <Xm/FileSB.h>
#include <Xm/SeparatoG.h>
#include <Xm/DragDrop.h>
#include <X11/Xos.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FILE_OPEN 0
#define FILE_SAVE 1
#define FILE_EXIT 2
#define EDIT_CUT 0
#define EDIT_COPY 1
#define EDIT_PASTE 2
#define EDIT_CLEAR 3
#define SEARCH_FIND_NEXT 0
#define SEARCH_SHOW_ALL 1
#define SEARCH_REPLACE 2
#define SEARCH_CLEAR 3

/* global variables */
void (*drop_proc) (Widget, XtPointer, XtPointer);
Widget text_edit, search_text, replace_text, text_output;
Widget toplevel, file_label;

main (int argc, char *argv[])
{

XtAppContext app_context;
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
Widget main_window, menubar, form, search_panel, label;

* XtVaAppInitialize () is considered deprecated in X11R6.XmInternAtom () is marked for deprecation from
Motif 2.0.
Motif Programming Manual 743

Chapter 22: Drag and Drop
Widget sep1, sep2;
void file_cb(Widget, XtPointer, XtPointer);
void edit_cb(Widget, XtPointer, XtPointer);
void search_cb(Widget, XtPointer, XtPointer);
Arg args[10];
int n = 0;
XmString open, save, exit, exit_acc, file, edit, cut, clear,

copy, paste, search, next, find, replace;
Cardinal numImportTargets;
Atom *importTargets, *newTargets;
Atom importList[2];
void HandleDropLabel(Widget, XtPointer, XtPointer);
void HandleDropText(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app_context, "Demos", NULL, 0, &argc,

argv, NULL, sessionShellWidgetClass, NULL);
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
main_window = XmCreateMainWindow (toplevel, "main_window", NULL, 0);

/* Create a simple MenuBar that contains three menus */
file = XmStringCreateLocalized ("File");
edit = XmStringCreateLocalized ("Edit");
search = XmStringCreateLocalized ("Search");
menubar = XmVaCreateSimpleMenuBar (main_window, "menubar",

XmVaCASCADEBUTTON, file, 'F',
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, search, 'S',
NULL);

XmStringFree (file);
XmStringFree (edit);
XmStringFree (search);

/* First menu is the File menu -- callback is file_cb() */
open = XmStringCreateLocalized ("Open...");
save = XmStringCreateLocalized ("Save...");
exit = XmStringCreateLocalized ("Exit");
exit_acc = XmStringCreateLocalized ("Ctrl+C");
XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,

XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaPUSHBUTTON, save, 'S', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, exit, 'x', "Ctrl<Key>c",
exit_acc,
NULL);

XmStringFree (open);
XmStringFree (save);
XmStringFree (exit);
XmStringFree (exit_acc);

/* ...create the "Edit" menu -- callback is edit_cb() */
cut = XmStringCreateLocalized ("Cut");
744 Motif Programming Manual

Chapter 22: Drag and Drop
copy = XmStringCreateLocalized ("Copy");
clear = XmStringCreateLocalized ("Clear");
paste = XmStringCreateLocalized ("Paste");
XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1, edit_cb,

XmVaPUSHBUTTON, cut, 't', NULL, NULL,
XmVaPUSHBUTTON, copy, 'C', NULL, NULL,
XmVaPUSHBUTTON, paste, 'P', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, 'l', NULL, NULL,
NULL);

XmStringFree (cut);
XmStringFree (copy);
XmStringFree (paste);

/* create the "Search" menu -- callback is search_cb() */
next = XmStringCreateLocalized ("Find Next");
find = XmStringCreateLocalized ("Show All");
replace = XmStringCreateLocalized ("Replace Text");
XmVaCreateSimplePulldownMenu (menubar, "search_menu", 2, search_cb,

XmVaPUSHBUTTON, next, 'N', NULL, NULL,
XmVaPUSHBUTTON, find, 'A', NULL, NULL,
XmVaPUSHBUTTON, replace, 'R', NULL, NULL,
XmVaSEPARATOR,
XmVaPUSHBUTTON, clear, 'C', NULL, NULL,
NULL);

XmStringFree (next);
XmStringFree (find);
XmStringFree (replace);
XmStringFree (clear);
XtManageChild (menubar);

/* create a form work are */
form = XmCreateForm (main_window, "form", NULL, 0);

/* create horizontal RowColumn inside the form */
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
XtSetArg (args[n], XmNpacking, XmPACK_TIGHT); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
search_panel = XmCreateRowColumn (form, "search_panel", args, n);

/* Create two TextField widgets with Labels... */
label = XmCreateLabelGadget (search_panel, "Search Pattern", NULL, 0);
XtManageChild (label);

search_text = XmCreateTextField (search_panel, "search_text", NULL, 0);
XtManageChild (search_text);

label = XmCreateLabelGadget (search_panel, "Replace Pattern", NULL, 0);
XtManageChild (label);

replace_text = XmCreateTextField (search_panel, "replace_text",
Motif Programming Manual 745

Chapter 22: Drag and Drop
NULL, 0);
XtManageChild (replace_text);
XtManageChild (search_panel);

n = 0;
XtSetArg (args[n], XmNeditable, False); n++;
XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
text_output = XmCreateTextField (form, "text_output", args, n);
XtManageChild (text_output);

n = 0;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNbottomWidget, text_output); n++;
sep2 = XmCreateSeparatorGadget (form, "sep2", args, n);
XtManageChild (sep2);

/* create file status area */
n = 0;
XtSetArg (args[n], XmNalignment, XmALIGNMENT_BEGINNING); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNbottomWidget, sep2); n++;
file_label = XmCreateLabelGadget (form, "Filename:", args, n);
XtManageChild (file_label);

/* register the file status label as a drop site */
n = 0;
importList[0] = FILE_CONTENTS;
importList[1] = FILE_NAME;
XtSetArg (args[n], XmNimportTargets, importList); n++;
XtSetArg (args[n], XmNnumImportTargets, XtNumber (importList));
n++;
XtSetArg (args[n], XmNdropSiteOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNdropProc, HandleDropLabel); n++;
XmDropSiteRegister (file_label, args, n);

n = 0;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNbottomWidget, file_label); n++;
sep1 = XmCreateSeparatorGadget (form, "sep1", args, n);
XtManageChild (sep1);

/* create text entry area */
n = 0;
XtSetArg (args[n], XmNrows, 10); n++;
746 Motif Programming Manual

Chapter 22: Drag and Drop
XtSetArg (args[n], XmNcolumns, 80); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNtopWidget, search_panel); n++;
XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
XtSetArg (args[n], XmNbottomWidget, sep1); n++;
text_edit = XmCreateScrolledText (form, "text_edit", args, n);
XtManageChild (text_edit);

/* retrieve drop site info so that we can modify it */
n = 0;
XtSetArg (args[n], XmNimportTargets, &importTargets); n++;
XtSetArg (args[n], XmNnumImportTargets, &numImportTargets); n++;
XtSetArg (args[n], XmNdropProc, &drop_proc); n++;
XmDropSiteRetrieve (text_edit, args, n);

/* add FILE_CONTENTS and FILE_NAME to the list of targets */
newTargets = (Atom *) XtMalloc (sizeof (Atom) *

(numImportTargets + 2));

for (n = 0; n < numImportTargets; n++)
newTargets[n] = importTargets[n];
newTargets[n] = FILE_CONTENTS;
newTargets[n+1] = FILE_NAME;

/* update the drop site */
n = 0;
XtSetArg (args[n], XmNimportTargets, newTargets); n++;
XtSetArg (args[n], XmNnumImportTargets, numImportTargets+2); n++;
XtSetArg (args[n], XmNdropProc, HandleDropText); n++;
XmDropSiteUpdate (text_edit, args, n);

XtManageChild (form);
XtManageChild (main_window);
XtRealizeWidget (toplevel);
XtAppMainLoop (app_context);

}

/* HandleDropLabel() -- start the data transfer when data is dropped in
** the filename status area.
*/
void HandleDropLabel (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[2];
XmDropTransferEntry transferList;
Arg args[10];
int n, i;
Widget dc;
Motif Programming Manual 747

Chapter 22: Drag and Drop
Cardinal numExportTargets;
Atom *exportTargets;
Boolean file_name = False;
void TransferProc(Widget, XtPointer, Atom *,

Atom *, XtPointer,
unsigned long *, int);

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DropData = (XmDropProcCallback) call_data;
dc = DropData->dragContext;

/* retrieve the data targets and search for FILE_NAME */
n = 0;
XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
XtGetValues (dc, args, n);
for (i = 0; i < numExportTargets; i++) {

if (exportTargets[i] == FILE_NAME) {
file_name = True;
break;

}
}

/* make sure we have a drop that is a copy operation and one of
** the targets is FILE_NAME. if not, set the status to failure.
*/
n = 0;
if ((!file_name) || (DropData->dropAction != XmDROP) ||

(DropData->operation != XmDROP_COPY)) {
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE);
n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
else {

/* set up transfer requests for drop site */
transferEntries[0].target = FILE_CONTENTS;
transferEntries[0].client_data = (XtPointer) text_edit;
transferEntries[1].target = FILE_NAME;
transferEntries[1].client_data = (XtPointer) file_label;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers,

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, TransferProc); n++;

}
XmDropTransferStart (dc, args, n);

}

/* HandleDropText() -- start the data transfer when data is dropped in
748 Motif Programming Manual

Chapter 22: Drag and Drop
** the text entry area.
*/
void HandleDropText (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[2];
XmDropTransferEntry transferList;
Arg args[10];
int n, i;
Widget dc;
Cardinal numExportTargets;
Atom *exportTargets;
Boolean file_contents = False;
void TransferProc(Widget, XtPointer, Atom *,

Atom *, XtPointer,
unsigned long *, int);

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DropData = (XmDropProcCallback) call_data;
dc = DropData->dragContext;

/* retrieve the data targets and search for FILE_CONTENTS */
n = 0;
XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
XtGetValues (dc, args, n);
for (i = 0; i < numExportTargets; i++) {

if (exportTargets[i] == FILE_CONTENTS) {
file_contents = True;
break;

}
}
if (file_contents) {

/* make sure we have a drop that is a copy operation.
** if not, set the status to failure.
*/
n = 0;
if ((DropData->dropAction != XmDROP) ||

(DropData->operation != XmDROP_COPY)) {
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE);
n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
else {

/* set up transfer requests for drop site */
transferEntries[0].target = FILE_CONTENTS;
transferEntries[0].client_data = (XtPointer) text_edit;
transferEntries[1].target = FILE_NAME;
Motif Programming Manual 749

Chapter 22: Drag and Drop

r can
s
ile are
d to
igure
transferEntries[1].client_data = (XtPointer) file_label;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, transferEntries);
n++;
XtSetArg (args[n], XmNnumDropTransfers,

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, TransferProc); n++;

}
XmDropTransferStart (dc, args, n);

}
else

(*drop_proc) (widget, client_data, call_data);
}

/* TransferProc() -- handle data transfer of converted data from drag
** source to drop site.
*/
void TransferProc (Widget widget, XtPointer client_data, Atom *seltype,

Atom *type, XtPointer value, unsigned long *length,
int format)

{
Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
Widget w;
XmString string;
char label[256];

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
w = (Widget) client_data;

if (*type == FILE_CONTENTS)
XmTextSetString (w, value);

else if (*type == FILE_NAME) {
sprintf (label, "Filename: %s", value);
string = XmStringCreateLocalized (label);
XtVaSetValues (w, XmNlabelString, string, NULL);
XmStringFree (string);

}
}

The application basically has the same functionality aseditor.c in Chapter 18,Text
Widgets. The only difference in the interface is theFilename:status area that displays the
name of the current file. This status area is also a drop site for file objects, so the use
drag a file from thefile_manager.capplication and drop it in this area. When a file i
dropped here, the filename is displayed in the status area, and the contents of the f
copied into the ScrolledText object. The ScrolledText object has also been modifie
function as a drop site for file data, so the user can drop a file in the text entry area. F
750 Motif Programming Manual

Chapter 22: Drag and Drop

e file

s by
ing

rces
ciated
22-7 shows the output of the application before and after a file has been dropped in th
status area.

Creating a Drop Site
The file status area is a Label widget, so it does not have any drop site capabilitie
default. In order for the widget to function as a drop site, we have to register it us
XmDropSiteRegister() , as shown below:

n = 0;
importList[0] = FILE_CONTENTS;
importList[1] = FILE_NAME;
XtSetArg (args[n], XmNimportTargets, importList); n++;
XtSetArg (args[n], XmNnumImportTargets, XtNumber (importList)); n++;
XtSetArg (args[n], XmNdropSiteOperations, XmDROP_COPY); n++;
XtSetArg (args[n], XmNdropProc, HandleDropLabel); n++;
XmDropSiteRegister (file_label, args, n);

This routine registers information about the drop site in a DropSite object using resou
that are specified as for a normal widget. Since drop sites are referenced by their asso
widget, however, the resources cannot be set usingXtVaSetValues() .

Before

Figure 22-7: The output of the editor_dnd program

After
Motif Programming Manual 751

Chapter 22: Drag and Drop

dle.
ing
o

is
The

e in

ied to
hat
own
ext
ed to

s

ly from

have
e it

s the
use
TheXmNimportTargets resource specifies the data targets that the drop site can han
We use the FILE_CONTENTS and FILE_NAME targets that we have interned us
XInternAtom() * . The drop site only supports copy operations, s
XmNdropSiteOperations is set toXmDROP_COPY. The final resource that we specify is
the XmNdropProc . This callback is invoked when a drop occurs in the drop site; it
responsible for starting the transfer of data from the drag source to the drop site.
HandleDropLabel() routine handles the drop for the file status area, as we describ
Section 22.5.3.

Modifying an Existing Drop Site
Theeditor_dnd.capplication also allows the user to drag a file fromfile_manager.cto the
main text entry area and drop it. This action causes the contents of the file to be cop
the Text widget. By default, the Text widget also has its own drop site functionality t
allows the user to drop textual data. We want to modify the drop site to incorporate our
functionality but still allow the user to drag and drop textual data in the widget. The T
widget has already been registered as a drop site by the Motif toolkit, so we do not ne
call XmDropSiteRegister() . In fact, if we did call that routine, we would override the
default functionality.

Instead, we callXmDropSiteRetrieve() to get the values of theXmNimportTargets ,
XmNnumImportTargets , andXmNdropProc resources for the Text widget drop site, a
shown in the following fragment:

n = 0;
XtSetArg (args[n], XmNimportTargets, &importTargets); n++;
XtSetArg (args[n], XmNnumImportTargets, &numImportTargets); n++;
XtSetArg (args[n], XmNdropProc, &drop_proc); n++;
XmDropSiteRetrieve (text_edit, args, n);

Although a drop site is always associated with a widget, theXtVaGetValues() routine
cannot be used to retrieve drop site resources, as the resources are stored separate
the widget in a DropSite object. We retrieve theXmNimportTargets resource so that we
can add our own targets to the list of data targets for the drop site. A drop site can only
oneXmNdropProc associated with it, so we need to get the existing routine and stor
before we specify our own routine.

Once we have the data targets for the drop site, we create a new list that contain
existing targets, as well as the FILE_CONTENTS and FILE_NAME targets. We
XmDropSiteUpdate() to modify the drop site:

n = 0;
XtSetArg (args[n], XmNimportTargets, newTargets); n++;
XtSetArg (args[n], XmNnumImportTargets, numImportTargets + 2); n++;

* XmInternAtom () is marked for deprecation as of Motif 2.0.
752 Motif Programming Manual

Chapter 22: Drag and Drop

e

the

re

pe

ne can

ag

al
uss

le

The
as
XtSetArg (args[n], XmNdropProc, HandleDropText); n++;
XmDropSiteUpdate (text_edit, args, n);

TheHandleDropText() routine processes the drops that occur in the Text widget. W
explain this routine in detail in the following section.

If you need to update information for a number of drop sites, you should use
XmDropSiteStartUpdate() and XmDropSiteEndUpdate() routines, as they
optimize the process. After a call to XmDropSiteStartUpdate() ,
XmDropSiteUpdate() can be called repeatedly for different drop sites. When you a
finished updating all of the drop sites, callXmDropSiteEndUpdate() .

Handling the Drop
When a drop occurs, the receiving application takes over and theXmNdropProc for the
drop site is called. This callback provides a callback structure of ty
XmDropProcCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Time timeStamp;
Widget dragContext;
Position x;
Position y;
unsigned char dropSiteStatus;
unsigned char operation;
unsigned char operations;
unsigned char dropAction;

} XmDropProcCallbackStruct, *XmDropProcCallback;

The reason field is alwaysXmCR_DROP_MESSAGE, and dragContext specifies the
DragContext object for the drag operation that caused the drop. ThedropSiteStatus
element is set to eitherXmDROP_SITE_VALIDor XmDROP_SITE_INVALID, depending on
the targets that are supported by the drop site and the drag source. The callback routi
change this value if necessary.

The operations andoperation fields are set to the possible operations for the dr
source data and the current operation, respectively. ThedropAction field specifies the
action requested by the user. If this field is set toXmDROP, the user has requested a norm
drop; if it is set toXmDROP_HELP, the user has requested help for the drop site. We disc
providing help for a drop site in the next section.

The main task of theXmNdropProc is to determine whether or not the operation is possib
and to start the data transfer by callingXmDropTransferStart() . This routine creates a
DropTransfer object that keeps track of information about the data transfer.
HandleDropLabel() routine initiates the data transfer for the file status drop site,
shown in the following code fragment from Example 22-3:
Motif Programming Manual 753

Chapter 22: Drag and Drop

copy
call
is

ant to

pecify
that

alled
 form:
n = 0;
if ((!file_name) || (DropData->dropAction != XmDROP) ||

(DropData->operation != XmDROP_COPY)) {
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
else {

transferEntries[0].target = FILE_CONTENTS;
transferEntries[0].client_data = (XtPointer) text_edit;
transferEntries[1].target = FILE_NAME;
transferEntries[1].client_data = (XtPointer) file_label;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers, XtNumber (transferEntries));
n++;
XtSetArg (args[n], XmNtransferProc, TransferProc); n++;

}
XmDropTransferStart (dc, args, n);

If the action requested by the user is not a normal drop or if the operation is not a
operation, we do not process the data transfer. However, we still have to
XmDropTransferStart() to clean up after the whole drag and drop operation. In th
case, we set theXmNtransferStatus resource toXmTRANSFER_FAILUREto indicate
that the transfer should not proceed. We also setXmNnumDropTransfers to 0.

Otherwise, the drop can proceed, so we establish a list of target data types that we w
receive using theXmNdropTransfers and XmNnumDropTransfer resources. Each
entry in XmNdropTransfers is an XmDropTransferEntryRec , which is defined as
follows:

typedef struct {
XtPointer client_data;
Atom target;

} XmDropTransferEntryRec, *XmDropTransferEntry;

The target field specifies the requested data target, andclient_data passes any
additional data that is necessary to the routine that processes the data transfer. We s
the FILE_CONTENTS and FILE_NAME targets. For each target, we pass the widget
is modified by the data from the drag source asclient_data . For the FILE_CONTENTS
format, the widget is the text entry areatext_edit , while for FILE_NAME, the widget
is the file status areafile_label .

The final resource that we specify for the DropTransfer is theXmNtransferProc routine.
This routine is of typeXtSelectionCallbackProc ; it is responsible for actually
processing the formatted data that is received from the drag source. The routine is c
for each target data type requested by the drop site. This routine takes the following

typedef void (*XtSelectionCallbackProc)(Widget widget,
XtPointer client_data ,
Atom * selection ,
Atom * type ,
754 Motif Programming Manual

Chapter 22: Drag and Drop

s

ced
w
oth

the
the

nal
s a

xtual

an be

e and
, it can

e

drop
e drag
ites
n the
that

it.
XtPointer value ,
unsigned long * length ,
int * format);

Thewidget parameter is the widget that requested the data, andclient_data is the data
specified in theclient_data field of the XmDropTransferEntryRec that is being
processed. Thetype , value , length , andformat arguments contain the data that wa
converted by the drag source in itsXmNconvertProc .

TheTransferProc() routine in Example 22-3 checks thetype to determine what needs
to be done with the data. If the data is FILE_CONTENTS data, the text in value is pla
in the Text widget withXmTextSetString() . Otherwise, the text is used to create a ne
value forXmNlabelString for the file status area. Since the file status area requests b
target data types, both formats are processed byTransferProc() .

The HandleDropText() routine for the ScrolledText object is very similar to
HandleDropLabel() . The main difference is that the routine for the text area checks
XmNexportTargets resource of the DragContext object to determine whether or not
drag source provides file data. If it does,HandleDropText() initiates the data transfer
just as inHandleDropLabel() . Otherwise, the text routine calls theXmNdropProc that
we retrieved from the Text widget when we modified the drop site. By calling the origi
drop routine, we allow the Text widget to process textual data as it would by default. A
result, the user can drop a file object in the text entry area, as well as manipulate te
data in the widget using drag and drop.

Once a data transfer is in progress, additional targets for the DropTransfer object c
specified using XmDropTransferAdd() . The primary use of this routine is for move
operations. In this case, the drop site receives a copy of the data from the drag sourc
then requests that the source delete the data. Once the drop site has stored the data
call XmDropTransferAdd() to specify the DELETE target, which indicates to th
initiating application that it should delete the data.

Providing Help
Since it is not always obvious what will happen when data is dropped on a particular
site, the user can request help on a drop site by pressing the HELP or F1 key when th
icon is over the drop site. An application should provide help information for its drop s
to assist users in understanding the drag and drop capabilities of the application. Whe
user requests help, the drop site should respond by posting an InformationDialog
explains what would happen and allows the user to proceed with the drop or cancel

When the user presses HELP while the drag icon is over a drop site, theXmNdropProc for
the drop site is called with thedropAction field in the callback structure set to to
XmDROP_HELP. Example 22-4 shows a newHandleDropLabel() routine for theeditor_
Motif Programming Manual 755

Chapter 22: Drag and Drop

ows
dnd.capplication that provides help for the file status drop site. The example also sh
theHandleDropOK() andHandleDropCancel() callback routines for the help dialog.*

Example 22-4. The HandleDropLabel(), HandleDropOK(), HandleDropCancel()
routines

/* HandleDropLabel() -- start the data transfer when data is dropped in
** the filename status area.
*/
void HandleDropLabel (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
XmDropProcCallback DropData;
XmDropTransferEntryRec transferEntries[2];
XmDropTransferEntry transferList;
Arg args[10];
int n, i;
Widget dc;
Cardinal numExportTargets;
Atom *exportTargets;
Boolean file_name = False;
static XmDropProcCallbackStruct client;
static Widget dialog = NULL;
XmString message;

void HandleDropOK(Widget, XtPointer, XtPointer);
void HandleDropCancel(Widget, XtPointer, XtPointer);
void TransferProc (Widget, XtPointer, Atom *, Atom *, XtPointer,

unsigned long *, int);

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);
DropData = (XmDropProcCallback) call_data;
dc = DropData->dragContext;
/* retrieve the data targets and search for FILE_NAME */
n = 0;
XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
XtGetValues (dc, args, n);
for (i = 0; i < numExportTargets; i++) {

if (exportTargets[i] == FILE_NAME) {
file_name = True;
break;

}
}

* XmStringCreateLtoR(), XmMessageBoxGetChild() are deprecated from Motif 2.0 onwards.Xm-
StringGenerate () is only available from Motif 2.0 onwards.XmInternAtom () is marked for deprecation
from Motif 2.0 onwards.
756 Motif Programming Manual

Chapter 22: Drag and Drop
/* if one of the targets is not FILE_NAME, transfer fails */
if (!file_name) {

n = 0;
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
/* check if the user has requested help */
else if (DropData->dropAction == XmDROP_HELP) {

/* create a dialog if it doesn't already exist */
if (!dialog) {

n = 0;
message = XmStringGenerate ((XtPointer) help_str,

XmFONTLIST_DEFAULT_TAG, XmCHARSET_TEXT,
NULL);

XtSetArg (args[n], XmNdialogStyle,
XmDIALOG_FULL_APPLICATION_MODAL); n++;

XtSetArg (args[n], XmNtitle, "Drop Help"); n++;
XtSetArg (args[n], XmNmessageString, message); n++;
dialog = XmCreateInformationDialog (toplevel, "help",

args, n);
XmStringFree (message);
XtUnmanageChild (XtNameToWidget (dialog, “Help”));
XtAddCallback (dialog, XmNokCallback, HandleDropOK,

(XtPointer) &client);
XtAddCallback (dialog, XmNcancelCallback, HandleDropCancel,

(XtPointer) &client);
}
/* set up the callback structure for when the user proceeds
** with the drop and pass it as client data to the callbacks
** for the buttons.
*/
client.dragContext = dc;
client.x = DropData->x;
client.y = DropData->y;
client.dropSiteStatus = DropData->dropSiteStatus;
client.operation = DropData->operation;
client.operations = DropData->operations;
XtManageChild (dialog);
return;

}
else if (DropData->operation != XmDROP_COPY) {

/* if the operation is not a copy, the transfer fails */
n = 0;
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
else {

/* set up transfer requests since this is a normal drop */
n = 0;
transferEntries[0].target = FILE_CONTENTS;
transferEntries[0].client_data = (XtPointer) text_edit;
transferEntries[1].target = FILE_NAME;
transferEntries[1].client_data = (XtPointer) file_label;
transferList = transferEntries;
Motif Programming Manual 757

Chapter 22: Drag and Drop
XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers,

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, TransferProc); n++;

}
XmDropTransferStart (dc, args, n);

}

/* HandleDropOK() -- callback routine for OK button in drop site help
** dialog that processes the drop as normal.
*/
void HandleDropOK (Widget widget, XtPointer client_data,

XtPointer call_data)
{

Display *dpy;
Atom FILE_CONTENTS, FILE_NAME;
XmDropProcCallbackStruct *DropData;
XmDropTransferEntryRec transferEntries[2];
XmDropTransferEntry transferList;
Arg args[10];
int n;
Widget dc;
void TransferProc (Widget, XtPointer, Atom *,

Atom *, XtPointer,
unsigned long *, int);

/* intern the Atoms for data targets */
dpy = XtDisplay (toplevel);
FILE_CONTENTS = XInternAtom (dpy, "FILE_CONTENTS", False);
FILE_NAME = XInternAtom (dpy, "FILE_NAME", False);

/* get the callback structure passed via client data */
DropData = (XmDropProcCallbackStruct *) client_data;
dc = DropData->dragContext;

n = 0;
/* if operation is not a copy, the transfer fails */
if (DropData->operation != XmDROP_COPY) {

XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;

}
else {

/* set up transfer requests to process data transfer */
transferEntries[0].target = FILE_CONTENTS;
transferEntries[0].client_data = (XtPointer) text_edit;
transferEntries[1].target = FILE_NAME;
transferEntries[1].client_data = (XtPointer) file_label;
transferList = transferEntries;
XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
XtSetArg (args[n], XmNnumDropTransfers,

XtNumber (transferEntries)); n++;
XtSetArg (args[n], XmNtransferProc, TransferProc); n++;

}
XmDropTransferStart (dc, args, n);
758 Motif Programming Manual

Chapter 22: Drag and Drop

help

ot

e
re
ed a

r not.
}
/* HandleDropCancel() -- callback routine for Cancel button in drop site
** help dialog that cancels the transfer.
*/
void HandleDropCancel (Widget widget, XtPointer client_data,

XtPointer call_data)
{

XmDropProcCallbackStruct *DropData;
Arg args[10];
int n;
Widget dc;

/* get the callback structures passed via client data */
DropData = (XmDropProcCallbackStruct *) client_data;
dc = DropData->dragContext;
/* user has cancelled the transfer, so it fails */
n = 0;
XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
XtSetArg (args[n], XmNnumDropTransfers, 0); n++;
XmDropTransferStart (dc, args, n);

}

When the user requests help on the file status drop site, the application displays a
dialog, as shown in Figure 22-8.

The newHandleDropLabel() routine handles the case when thedropAction field is
set toXmDROP_HELP. In this case, the routine creates an InformationDialog if it has n
already been created. TheHandleDropOK() and HandleDropCancel() routines are
registered for theOK andCancelbuttons in the dialog. If the dialog already exists, th
necessary fields in theclient structure are specified so that the callback structu
information is passed to the callback routines as client data. If the user has perform
normal drop operation, the drop proceeds just as it did ineditor_dnd.c.

TheHandleDropOK() routine is invoked when the user presses theOK button in the help
dialog. This routine proceeds with the drop by callingXmDropTransferStart(). The
status of the transfer is based on whether the drop performs a copy operation o

Figure 22-8: The drag and drop help dialog
Motif Programming Manual 759

Chapter 22: Drag and Drop

the

The
f the
the

e can

; the
s

an
the
nges

type

red
HandleDropCancel() cancels the drop when the user presses theCancelbutton by
calling XmDropTransferStart() with XmNtransferStatus set toXmTRANSFER_
FAILURE. One thing to note about both of these procedures is that they get
XmDropProcCallbackStruct from the client_data parameter, since thecall_
data parameter is the callback structure for the dialog.

Providing Custom Drag-under Visuals
Under the preregister protocol, the drop site does not participate during the drag.
initiating application handles the drag-under visual effects based on the value o
XmNanimationStyle resource for the drop site. This resource can have one of
following values:

XmDRAG_UNDER_HIGHLIGHT XmDRAG_UNDER_SHADOW_OUT
XmDRAG_UNDER_SHADOW_IN XmDRAG_UNDER_PIXMAP
XmDRAG_UNDER_NONE

The default value isXmDRAG_UNDER_HIGHLIGHT, which means that a highlighting
rectangle is displayed around the drop site when the drag icon enters it. The drop sit
also be displayed with an inset or outset shadow usingXmDRAG_UNDER_SHADOW_OUTand
XmDRAG_UNDER_SHADOW_IN, respectively. The XmDRAG_UNDER_PIXMAPvalue
specifies that a special pixmap is displayed in the drop site when the drag icon is in it
XmNanimationPixmap andXmNanimationMask resources indicate the pixmap that i
used. IfXmNanimationStyle is set toXmDRAG_UNDER_NONE, there are no animation
effects unless they are provided by theXmNdragProc .

Under the dynamic protocol, the drop site can participate in the drag by specifying
XmNdragProc . This callback routine is invoked when the drag icon enters or leaves
drop site, when the drag icon moves within the drop site, and when the operation cha
while the icon is in the drop site. The callback receives a callback structure of the
XmDragProcCallbackStruct , which is defined as follows:

typedef struct {
int reason;
XEvent *event;
Time timeStamp;
Widget dragContext;
Position x;
Position y;
unsigned char dropSiteStatus;
unsigned char operation;
unsigned char operations;
Boolean animate;

} XmDragProcCallbackStruct, *XmDragProcCallback;

The reason field is set to one of the following, depending upon the event that trigge
the callback:

XmCR_DROP_SITE_ENTER_MESSAGE XmCR_DROP_SITE_LEAVE_MESSAGE
760 Motif Programming Manual

Chapter 22: Drag and Drop

e

. The

ecial
e, the
at is
n.

g-

e
of

ual

an
The
cation
rface

ause
you
that

if
,
r the
ingle
XmCR_DRAG_MOTION_MESSAGE XmCR_OPERATION_CHANGED_MESSAGE

The dragContext field specifies the current DragContext object, whil
dropSiteStatus is set to eitherXmDROP_SITE_VALIDor XmDROP_SITE_INVALID,
based on the values ofXmNimportTargets andXmNexportTargets for the drop site
and the drag source, respectively. Theoperations andoperation fields are set to the
possible operations for the drag source data and the current operation, respectively
value ofoperations is based on the value of theXmNdragOperations resource for the
DragContext, while the value ofoperation is based onoperations and the value of
XmNdropSiteOperations .

The XmNdragProc can change the values of these three fields based on any sp
processing it performs, such as handling simulated drop sites. When the routine is don
toolkit uses these values of the fields to initialize the fields in the callback structure th
passed to the corresponding DragContext callback routine in the initiating applicatio

Theanimate field specifies whether the toolkit or the receiving client is handling dra
under effects for the drop site. If the value isTrue , as it is by default, the toolkit handles
the effects based on theXmNanimationStyle resource. The receiving client can set th
field to False so that it is responsible for providing drag-under effects. The main use
the XmNdragProc is for providing specialized drag-under effects, such as act
animation, that the toolkit itself does not support.

Summary
The drag and drop capabilities provided by Motif are highly customizable, so
application can use the toolkit to implement whatever functionality is necessary.
examples in this chapter have demonstrated many of the techniques that an appli
needs to use to provide drag and drop functionality, but they really just scratch the su
of what is possible.

Our examples implement the drag and drop features directly in application code bec
that is sufficient for our purposes. However, if you are developing real applications,
should think seriously about encapsulating drag and drop functionality in widgets, so
you can reuse the components in all of the applications.

In Chapter 23,The Uniform Transfer Model, we introduce the schemes introduced in Mot
2.0 which build on top of the mechanisms described in this chapter and Chapter 21The
Clipboard. These schemes allow the programmer to transfer data between widgets o
clipboard, either through the primary selection mechanisms or drag and drop, using a s
programming interface.
Motif Programming Manual 761

Chapter 22: Drag and Drop
762 Motif Programming Manual

tion

tinct
Chapter 1

• Overview
• Exporting the Data
• Requesting the Data Form
• Importing the Data
• Batched Data Transfer
• An Example
• Summary

This chapter describes the ne
data in a consistent and unifo

In Motif 1.2, whenever widge
Motif Programming Manual
at 23
gets
o the
k of
the
e the

uld be

any
d to

nts. It
ystem.
the

s. In
and

ugh
re to
, the
r to
ing

tever
types

lt is
The Uniform Transfer
Model

w features introduced in Motif 2.0 for transferring applica
rm manner.

t data needed to be transferred in the application, a dis
set of code had to be written depending upon the nature of the transfer. Since Motif wid
support several styles of data transfer - to the primary or secondary X Selection, t
Motif Clipboard, or to another widget through the Drag and Drop mechanisms - the tas
providing a fully featured interface could be somewhat detailed and repetitive in
implementation. This was repetitive because the data to be transferred might in fact b
same in each case. It was certainly detailed, because several implementations wo
required, one for each of the supported data transfer methods.

From Motif 2.0, the Uniform Transfer Model makes it possible to transfer data using
of the transfer methods using a single programming interface. The UTM is designe
allow applications to use common code for all the supported data transfer requireme
is also designed to ease the way in which new transfer targets can be added to the s
All of the existing pre-Motif 2.0 transfer methodologies have been re-written to utilize
Uniform Transfer Model internally where appropriate.

The Motif data transfer utilities have also been interwoven with the Trait mechanism
the absence of transfer code written by the programmer, the Trait system steps in
provides default data transfer capability for a large range of built-in data types. Altho
the details of Traits are beyond the scope of this book, belonging as they do much mo
a widget authors manual, suffice it to say that because of this default Trait behavior
programmer only needs to consider writing Uniform Transfer Model code in orde
transfer data in a new and application-specific format. The Traits will transfer everyth
else automatically, under the assumption that it is the current widget selection (wha
that may mean) which is the data to be transferred. The set of available built-in target
is given in Table 22-1 of Chapter 22,Drag and Drop, although not all built-in target types
are transferrable in every widget context: what a widget can export or import by defau
widget class specific.
763

Chapter 23: The Uniform Transfer Model

the

is not

he

ta is
lback

also
t a list
ata in
f the
two-
t fire
ferred

ingle
ource

nd
and
e the
to a

dget

,
back
ns to

s, the
e X
vel
er, is
the
Overview
The Uniform Transfer Model is implemented through two new callback resources,
XmNconvertCallback , and theXmNdestinationCallback, and a new procedure, the
Transfer procedure, which can also be considered as just another callback, although it
specified using widget resources. In essence, theXmNconvertCallback is responsible
for exporting the data, theXmNdestinationCallback requests the import format, the
Transfer procedure performs the actual import of the arriving data. T
XmNdestinationCallback routine negotiates with theXmNconvertCallback to find
the best data format, and then sets up the Transfer callback to do the work. Da
transferred to and from the source and destination through elements in the cal
structure supplied to each callback. In addition to transferring data, the callbacks can
transfer protocol when and if required. The destination of the data transfer can reques
of target types in which the source is prepared to export data, as well as requesting d
a particular and specific target format. The source in turn can inform the destination o
available export data types, as well as actually delivering the data itself. There is thus a
way communication between the source and destination: each callback may in fac
more than once as the two ends of the transfer communicate and negotiate the pre
format in which the data is to be transferred. TheXmNconvertCallback in particular may
be called multiple times. The simple case, however, need only concern itself with a s
set of transactions: the destination requests data in a specific format, and the s
provides it.

The XmNconvertCallback

The XmNconvertCallback resource is implemented into the Primitive widget class, a
is inherited by all sub-classes. It is also implemented in the DrawingArea, Scale,
Container widget classes. The resource is thus available in all widget contexts wher
user directly interacts - the widgets which the user can actually use, as opposed
Manager which simply lays out other components. The callback is not available for Ga
classes.

The XmNdestinationCallback

The XmNdestinationCallback is directly implemented into the List, Container
DrawingArea, Text and TextField widget classes. It may seem surprising that the call
is not implemented into a wider range of classes, but if we consider what it really mea
have anXmNdestinationCallback in a widget class, the matter becomes clearer.

Recall that the UTM encapsulates three distinct methods of data transfer: X selection
Clipboard, and Drag-and-Drop. The destination of an X Selection transfer is via th
server, and this is also indirectly true for the Motif Clipboard, which is really a higher le
view onto the X selection mechanisms. The destination of a Drag-and-Drop, howev
an application widget. In other words, the toolkit only needs to implement
764 Motif Programming Manual

Chapter 23: The Uniform Transfer Model

d
s the

-and-
these
ved
lt Trait
f this

eral
e

ents
ents

lkit to
oks.
ata

g the
XmNdestinationCallback into widget classes which are not only likely to be require
as a drop site, but also in which it makes sense to allow foreign (non-toolkit) targets a
type of the data transfer.

This is not to say that data cannot be transferred to other widget classes using drag
drop: Motif implements some Trait mechanisms into other widget classes as well, and
implement transfer of the built-in Motif target types. For example, the Label (and deri
classes) and Scale widgets handle data transfer using drag-and-drop by these defau
mechanisms. Again, the details of the Trait implementation are beyond the scope o
book.

Exporting the Data
EachXmNconvertCallback is passed a pointer to anXmConvertCallbackStruct ,
which is defined in the header file <Xm/Transfer.h>. This must be included either directly
or indirectly by the programmer; it can be loaded indirectly simply by including the gen
Motif header <Xm/Xm.h>, as this includes the header internally. Th
XmConvertCallbackStruct is defined as follows:

typedef struct {
int reason;
XEvent *event;
Atom selection;
Atom target;
XtPointer source_data;
XtPointer location_data;
int flags;
XtPointer parm;
int parm_format;
unsigned long parm_length;
Atom parm_type;
int status;
XtPointer value;
Atom type;
int format;
unsigned long length;

} XmConvertCallbackStruct;

At first sight, the structure is somewhat daunting. However, because not all of the elem
of the structure are applicable in any given context (the structure unifies the requirem
of three distinct data transfer types, and some of the elements are used by the too
communicate with itself), programming the callback structure is not as complex as it lo
We will start by looking at the basic common elements before looking at specific d
transfer types.

Firstly, we can deduce the type of the current data transfer if we need to by inspectin
selection element. This will be one ofCLIPBOARD, _MOTIF_DROP, PRIMARY, or
Motif Programming Manual 765

Chapter 23: The Uniform Transfer Model

sfer

o
elves
this
e

t
as an
ta
is in

t it is
e
or to
f the
r: this
us
g the
as

t

this

list of
case,

S
set of

g
rred
the
SECONDARY, expressed as an Atom. In other words, all the possible types of data tran
which the UTM supports.

Secondly, we place the data to transfer into thevalue element. At this address, we need t
dynamically allocate memory to hold the transfer data, but we need not concern ours
with freeing up the memory at the right point in the transfer process: the toolkit does
for us. It is assumed thatvalue points to an allocated array of items of some kind - th
number of such items in the array should be specified using thelength element. The size
of each element in the array is specified using theformat element. This is not a simple
sizeof (data)result, but a logical size: if you are transferring character-based data,format
should be set to 8. For a list of short quantities,format should be set to 16. A list of long
values is expressed by settingformat to 32. A format of zero is reserved to mean tha
value contains no data. The logical type of the data being transferred, expressed
Atom, is placed into thetype element. If we define a new application-specific da
transfer, we need to define a logical (and hopefully unique) name for it, and express th
thetype field.

Thirdly, we need to deduce the actual data to transfer (although we already know tha
placed into thevalue element when we do export it). Normally this will be related to th
widget selection in some way - the default Trait transfer mechanisms assume this -
some application specific data. But it need not be. Depending upon the nature o
transfer, we may be simply asked to convert given data of one type into data of anothe
XmNconvertCallback instance really is a converter. For example, the vario
negotiations between a source and destination might result in the destination askin
source to convert specific supplied data in a specific format. We will know if this h
happened if thelocation_data field is notNULL. The format of the data to convert can
be deduced from thetarget field. In principle, all we have to do is convert the data a
location_data into the requestedtarget format, and place the result into thevalue
field, also specifying the size and length of the data atvalue using the format and
length elements, as specified in the previous paragraph. In practice, thelocation_
data will most likely beNULL: the interpretation oflocation_data is generally widget-
class specific in any case. Whether converting supplied data or providing our own,
holds true: we export our data in the format as requested by thetarget field.

There is a special case. The destination may be requesting of us, the source, the
available data formats in which we are prepared to export our application data. In this
thetarget element will variously be the valueTARGETS, _MOTIF_EXPORT_TARGETS,
_MOTIF_CLIPBOARD_TARGETS, or _MOTIF_DEFERRED_CLIPBOARD_TARGET
expressed as an Atom. In response, we construct a list of Atoms representing the
available export formats, and return this in thevalue field. Thelength field is set to the
number of such Atoms, and theformat field becomes 32, because Atoms are lon
quantities. Hopefully what happens next is that the destination will choose a prefe
export target, and communicate this back to the source, whereupon
766 Motif Programming Manual

Chapter 23: The Uniform Transfer Model

ic
one

a
ns

e

ion,

ndle
data

rop
otif

back.

k,
if the

e

s
ch
XmNconvertCallback is invoked again, this time with a specifictarget chosen from
our supplied list. This part of the negotiation is described below in Section 23.3.

Exporting to the Clipboard

When transferring data to the Motif Clipboard, theparm, parm_format , parm_length ,
andparm_type elements come into play. This is the case when thetarget element is set
to the Atoms representing_MOTIF_CLIPBOARD_TARGETSor _MOTIF_DEFERRED_
CLIPBOARD_TARGETS. The parm element contains an array of Clipboard-specif
elements specifying the type of clipboard transfer required. The elements will each be
of XmCOPY, XmMOVE, XmLINK. Theparam_length field specifies the number of such dat
elements, theparam_format field gives the logical size of such elements. Again, 8 mea
char-sized array items, 16 means short, 32 means long. Theparam_type element specifies
the logical type of theparm data. Much of all this is over-engineering: in practice, th
parm_type field will be the constant AtomXA_INTEGER. These fields do however give a
consistency to the data transfer process: they replicate the logic of thevalue /format /
length /type fields so that incoming and outgoing data is transferred in a similar fash
albeit in different elements of the callback structure. All of theseparm fields are read-only
in any case, and pretty much toolkit internal.

Exporting to a Widget (Drag and Drop)

When exporting data in response to a drag-and-drop operation, thesource_data element
is operative. It points to an XmDragContext object, which gives the programmer a ha
whereby you might specify any customised drag visuals you wish to associate with the
transfer. Drag Context resources are covered in Chapter 22,Drag and Drop. For other types
of data transfer, thesource_data element of the callback structure is simplyNULL.

The status field is also probably a touch of over-engineering, used for drag-and-d
transfers. Recall that there are also widget Traits which know how to convert built-in M
target types. These are called if noXmNconvertCallback is specified by the
programmer. They may, however, be called even if the programmer does supply a call
Whether this is the case or not depends on thestatus element.

If status isXmCONVERT_MERGE, the Trait mechanisms are invoked after the callbac
merging any data so produced with the results of the callback. This can be useful:
destination requests data in a built-in format, we can leave thevalue element asNULLand
setstatus to XmCONVERT_MERGE, so that the toolkit does all the work.

If status isXmCONVERT_DONE, we tell the toolkit not to invoke the Trait mechanisms: th
result of the conversion is only the data we supply to thevalue field. For efficiency
reasons, we should use this if thetarget type is application-specific, otherwise the Trait
will go to the bother of working out that they don’t know how to convert the data: it is mu
better if they are never called in the first place.
Motif Programming Manual 767

Chapter 23: The Uniform Transfer Model

o
r is
a as

s
tion-
, the
the

of
ted.
If status isXmCONVERT_REFUSE, we tell the toolkit that the conversion process is t
terminate immediately after this callback without invoking any Traits. But then neithe
data transfer effective. This is the transfer failure signal - we cannot transmit dat
requested for whatever reason.

The default value ofstatus is XmCONVERT_DEFAULT, which works out to have the same
behavior asXmCONVERT_MERGE. Since the whole point of the Uniform Transfer Model i
that the programmer really only needs to add callbacks when transferring new applica
specific data types, you probably want to change this for a start. On the other hand
default value as it stands makes the built-in behavior work, so we can excuse
implementation.

As an example, the following is a convert procedure which exports a date in the form
three integers. The procedure also exports the list of supported targets when reques

Example 23-1. The convert_callback() procedure

void convert_callback (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
XmConvertCallbackStruct *cptr = (XmConvertCallbackStruct *) call_data;
Atom TARGETS, EXPORTS, CB_TARGETS, DATE_TARGET;
Atom *targets;
Display *display = XtDisplay (widget);

/* Intern the atoms */
TARGETS = XInternAtom (display, “TARGETS”, False);
EXPORTS = XInternAtom (display, “_MOTIF_EXPORT_TARGETS”, False);
CB_TARGETS = XInternAtom (display, “_MOTIF_CLIPBOARD_TARGETS”, False);
DATE_TARGET = XInternAtom (display, “APPLICATION_DATE”, False);

/* If the destination has requested the list of targets */
/* we return this as the convert data */
if ((cptr->target == TARGETS) || (cptr->target == CB_TARGETS) ||
 (cptr->target == EXPORTS)) {

/* A request from the destination for the supported */
/* data types we are willing to handle */
targets = (Atom *) XtMalloc ((unsigned) sizeof (Atom));
targets[0] = DATE_TARGET;
cptr->type = XA_ATOM;
cptr->value = (XtPointer) targets;
cptr->length = 1;
cptr->format = 32;

/* Merge the target with the toolkit Trait-supported targets */
/* If we only wanted to export our own format, we would return */
/* XmCONVERT_DONE at this point */
cptr->status = XmCONVERT_MERGE;

}
else {

/* A request from the destination for a specific data type */
768 Motif Programming Manual

Chapter 23: The Uniform Transfer Model
if (cptr->target == DATE_TARGET) {
/* An unspecified routine to fetch the date */
/* Presumably the current widget is a date field */
/* So we pass the widget parameter to fetch this */
void GetDate (Widget, short *, short *, short *);
short *date;

/* We don’t worry about freeing this - the toolkit does it */
date = (short *) XtMalloc ((unsigned) 3 * sizeof (short));

GetDate (widget, &date[0], &date[1], &date[2]);

cptr->value = (XtPointer) date;
cptr->length = 3;
cptr->type = cptr->target; /* As requested */
cptr->format = 16; /* 8 = char, 16 = short, 32 = long */

/* No point in calling the Trait mechanisms */
/* Since we have already handled the target */
cptr->status = XmCONVERT_DONE;

}
else {

/* Presumably a Trait-supported built-in target */
/* Again, if not interested, return XmCONVERT_DONE */
cptr->status = XmCONVERT_MERGE;

}
}

}

Requesting the Data Format
Turning to the destination site, eachXmNdestinationCallback is passed a pointer to an
XmDestinationCallbackStruct , which is defined in the <Xm/Transfer.h> header file.
The structure is defined as follows:

typedef struct {
in reason;
XEvent *event;
Atom selection;
XtEnum operation;
int flags;
XtPointer transfer_id;
XtPointer destination_data;
XtPointer location_data;
Time time;

} XmDestinationCallbackStruct;

Just as not all elements of theXmConvertCallbackStruct are applicable in any given
data transfer type, so the various fields of theXmNdestinationCallback become
operative at different times.
Motif Programming Manual 769

Chapter 23: The Uniform Transfer Model

the

ame

is
ok or

tion
er,
e

the

he
n

that
ent is

an

bove
ation
Firstly, theselection element specifies the type of data transfer, and it may have
valuesCLIPBOARD, PRIMARY, SECONDARY, or_MOTIF_DROP, expressed as an Atom.

Secondly, theflags element indicates whether the source of the data transfer is the s
as the destination. Possible values areXmCONVERTING_SAMEandXmCONVERTING_NONE,
the latter value indicating different source and destination locations.

The transfer_id element is simply a unique identifier for the current transaction. Th
field is read-only. As far as application programming is concerned, it serves as a ho
identifier which is passed to further transfer functions which are discussed in theTransfer
Routines section below.

Thetime field is a server timestamp, and is read-only and internal to the toolkit.

Thelocation_data field specifies where the data is to be transferred. The interpreta
of this field is widget-class specific. For example, if the destination is a Contain
location_data points to anXPoint structure which describes the x, y coordinates of th
transfer. Iflocation_data is NULL, this should be interpreted as a request to deposit
transfer data at the current cursor location within the destination widget concerned.

Thedestination_data element provides information concerning the destination of t
transfer operation. If the selection is_MOTIF_DROP, the callback has been invoked by a
XmDropProc at a drop site, and thedestination_data element points to an
XmDropProcCallbackStruct . If selection is SECONDARY, destination_data
contains an Atom which represents the format to which the selection owner believes
the data should be converted. Otherwise, for clipboard or primary selection, the elem
NULL.

The operation field indicates the type of data transfer; for a clipboard transfer, it c
have the valuesXmCOPY, XmLINK, or XmMOVE. Otherwise, the value isXmOTHER, and
destination_data will indicate the type of transfer required where appropriate.

Transfer Routines

As far as application programming of drag-and-drop is concerned, much of the a
information is irrelevant, and can be treated as toolkit internal. The average destin
callback simply performs the following tasks:

— it either asks the source of the data to provide a list of available export
targets, or asks for a specific export target,

— it sets up a further routine which will perform the actual data import.

It does both of these things using the routineXmTransferValue (), which is defined as
follows:

void XmTransferValue (XtPointer transfer_id ,
Atom target ,
XtCallbackProc transfer_routine ,
770 Motif Programming Manual

Chapter 23: The Uniform Transfer Model

e

gets,

ny

e

ciated
d to
s out
e

ce of
d the

code
XtPointer client_data ,
unsigned long timestamp)

The transfer_id parameter is simply passed through from thetransfer_id element
of the XmDestinationCallbackStruct passed to the destination callback itself. Th
target parameter specifies the format in which the sourceXmNconvertCallback
should export the data. Specially, it can be a request for the available list of export tar
and this is performed by passingTARGETSexpressed as an Atom. Thetransfer_
routine is a further procedure which will perform the actual data transfer; a
application-specific data which is to be passed to the routine is specified in theclient_
data parameter. Lastly, thetimestamp parameter is a unique server timestamp for th
current transfer. The functionXtLastTimestampProcessed () should be used to
construct this value.

As an example, the following code fragment illustrates anXmNdestinationCallback
which requests the list of available targets from the source.

Example 23-2. The destination_callback() procedure

void destination_callback (Widget w,
XtPointer client_data,
XtPointer call_data)

{
extern void transfer_procedure (Widget, XtPointer, XtPointer);
XmDestinationCallbackStruct *dptr =

(XmDestinationCallbackStruct *) call_data;
Atom TARGETS = XInternAtom (XtDisplay (w), “TARGETS”, False);

XmTransferValue (dptr->transfer_id,
TARGETS,
transfer_procedure,
NULL,
XtLastTimestampProcessed (XtDisplay (w)));

}

Despite the apparent complexity surrounding the various callback structures asso
with the Uniform Transfer Model, and the very dry paragraphs which were require
describe them, when it boils down to a real example, the required application code turn
to be extremely simple. We ignore almost every field of th
XmDestinationCallbackStruct passed to us: only the currenttransfer_id is of
any real interest. We construct an Atom in order to query the list of targets at the sour
the data, we specify a procedure to perform the actual data transfer, and finally sen
request off to the source using the UTM routineXmTransferValue (). The procedure to
perform the data transfer,transfer_procedure , is described in the following section.
Whether requesting a list of available targets or asking for a specific data format, the
is essentially the same: only the Atom changes.
Motif Programming Manual 771

Chapter 23: The Uniform Transfer Model

llect
in an

have
d it is
.

res: a
nsfer

ould

ically
sks,
, and

ransfer
asting
n

e

fields
Importing the Data
A Transfer Procedure has to be prepared to perform two tasks. Its primary role is to co
the exported data passed to it from callback structure fields, and process this
appropriate fashion. However, there is a second possibility: the source of the data may
sent a list of available export formats in response to a destination callback request, an
also the responsibility of the transfer procedure to choose from the available options

Note that it is not strictly necessary to have separate destination and transfer procedu
single callback could in fact perform all the destination side tasks, in which case the tra
procedure as specified throughXmTransferValue () would be the destination callback
itself. This however makes the destination callback unnecessarily complex, you w
have to discriminate between the various states of the transfer using the callbackreason
field, and maintain a separate block of code in the callback for each case. Since log
theXmNdestinationCallback and the transfer procedure are performing separate ta
we prefer to split the destination side into separate destination and transfer callbacks
recommend that you do the same. In any case, the callback structure passed to a t
and a destination callback is not the same: you would have to perform some suitable c
of the callbackcall_data to each type if you insist on maintaining a single destinatio
side routine.

Each transfer procedure (as registered throughXmTransferValue ()) is passed an
XmSelectionCallbackStruct when invoked. Again, the structure is defined in th
header file <Xm/Transfer.h>. The definition is as follows:

typedef struct {
int reason;
XEvent *event;
Atom selection;
Atom target;
Atom type;
XtPointer transfer_id;
int flags;
int remaining;
XtPointer value;
unsigned long length;
int format;

} XmSelectionCallbackStruct;

The interpretation of each of the elements is exactly the same as the corresponding
in the XmConvertCallbackStruct and XmDestinationCallbackStruct
definitions. Thevalue , length , andformat fields specify the incoming data from the
source of the transfer. The type of the transfer is expressed in thetarget element: this will
either be a specific export data target, orTARGETSif the incoming data is a reply to a
request for the supported range of export types.
772 Motif Programming Manual

Chapter 23: The Uniform Transfer Model

, as
r the
The following example is a transfer procedure which is hoping to receive a date
exported in the code of Example 23-1. On receipt of the date, it simply displays it unde
assumption that this destination is a TextField widget.

Example 23-3 The transfer_callback() routine

void transfer_callback (Widget w, /* The destination widget */
XtPointer client_data,
XtPointer call_data)

{
XmSelectionCallbackStruct *sptr =

(XmSelectionCallbackStruct *) call_data;
Atom TARGETS, EXPORTS, CB_TARGETS, DATE_TARGET;
Display *display = XtDisplay (w);
Atom *targets, choice;
int i;

choice = (Atom) 0;
TARGETS = XInternAtom (display, “TARGETS”, False);
EXPORTS = XInternAtom (display, “_MOTIF_EXPORT_TARGETS”, False);
CB_TARGETS = XInternAtom (display, “_MOTIF_CLIPBOARD_TARGETS”, False);
DATE_TARGET = XInternAtom (display, “APPLICATION_DATE”, False);

if ((sptr->type == XA_ATOM) &&
((sptr->target == TARGETS) || (sptr->target == CB_TARGETS) ||
 (sptr->target == EXPORTS))) {

/* The source has sent us a list of available data formats */
/* in which it is prepared to export the data */
/* We get to choose one */
/* The value field contains the list of available targets */
targets = (Atom *) sptr->value;

for (i = 0; i < sptr->length; i++) {
if (targets[i] == DATE_TARGET) {

/* We like this: its our own preferred format */
choice = targets[i];

}
}

/* If the source is not prepared to export in a format */
/* of our choice, we can either let the toolkit handle it */
/* under the assumption its a built-in data type */
/* or we can signal that the transfer is no good */

/* Lets assume we are only interested in our own data transfer */
if (choice == (Atom) 0) {

XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_FAIL);
return;

}

/* On the other hand, if we have chosen a target */
/* We simply go back to the source asking for it */
Motif Programming Manual 773

Chapter 23: The Uniform Transfer Model

utine
he
f the
llback
s
data

ssed

the
XmTransferValue (sptr->transfer_id,
choice,
transfer_callback, /* Round we go again */
NULL,
XtLastTimestampProcessed (display));

}
else {

/* The source has sent us a specific data format */
/* It **ought** to be DATE_TARGET, but better check... */
if (sptr->target == DATE_TARGET) {

/* Three integers, we assume */
/* We really ought to check sptr->length */
short *date = (short *) sptr->value;
char buf[32];

/* Not pretty, but it will do for here */
(void) sprintf (buf, “%d/%d/%d”, date[0], date[1], date[2]);
XmTextFieldSetString (w, buf);
XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_SUCCEED);

}
else {

/* We should not be here. Someone has written a */
/* UTM procedure which is out of step. */
XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_FAIL);

}
}

}

The example is straight forward. The top half of thetransfer_callback () returns to the
source the preferred import target. The list of available options has been sent to the ro
in thevalue element of the callback structure. All the routine has to do is pick from t
list, and go back to the source asking for the preferred data format. The bottom half o
routine is the case where the source has sent the data in the preferred format. The ca
only has to extract the data from thevalue field, and process it. The only other issue i
how the callback terminates the transfer, whether if there has been an error, or if the
has all been processed. It does this through the routineXmTransferDone (), which is
specified as follows:

void XmTransferDone (XtPointer transfer_id , XmTransferStatus status)

The transfer_id parameter is the unique handle on the current transfer, and is pa
through from of the relevant callback structure element. Thestatus field indicates why
the transfer is terminated. Possible values are:

XmTRANSFER_DONE_SUCCEED XmTRANSFER_DONE_FAIL
XmTRANSFER_DONE_CONTINUE XmTRANSFER_DONE_DEFAULT

XmTRANSFER_DONE_SUCCEED, XmTRANSFER_DONE_FAILare self-evident. The value
XmTRANSFER_DONE_DEFAULTrequests that the Trait mechanisms take over to handle
current transfer target.XmTRANSFER_DONE_CONTINUEis complex to describe, involving
774 Motif Programming Manual

Chapter 23: The Uniform Transfer Model

f
nal.

r, we

urce
imply
pes.
ks at
e of

up
e

s

nd a
s the
as it does Motif_MOTIF_SNAPSHOToperations, which are part of the implementation o
deferred clipboard data transfer. We are going to treat all this as entirely toolkit inter

Batched Data Transfer
If we need to send multiple separate pieces of information as part of the data transfe
can in principle simply callXmTransferValue () multiple times from within the UTM
callbacks. This is not necessarily efficient or transfer-order safe. For example, if a so
declares that it can support export multiple targets, the destination might choose not s
to pick one from the list, but decide to ask for more than one of the available target ty
Each data type will involve a separate invocation of the convert and transfer callbac
each end, so that many messages will go back and forth. A certain degre
synchronization is required to make all this work successfully.

To get round this problem, there are two routines available which batch
XmTransferValue () requests. To initiate a new batch, call the routin
XmTransferStartRequest (). Then callXmTransferValue () as needed. To end the
batch, use the routineXmTransferSendRequest (). These routines are defined a
follows:

void XmTransferStartRequest (XtPointer transfer_id)
void XmTransferSendRequest (XtPointer transfer_id, Time time)

These are extremely simple to use: thetransfer_id is taken from the current callback
data structure, and the time is specified usingXtLastTimestampProcessed ().

An Example
Example 23-4 creates two components: a SpinBox configured to display the date, a
TextField. The SpinBox we will treat as the source of the transfer, and the TextField a
destination.

Example 23-4. The utm.c program

/* utm.c: transfers data between a specimen SpinBox and
** a TextField using the Uniform Transfer Model
*/

#include <X11/Intrinsic.h>
#include <Xm/Transfer.h>
#include <Xm/RowColumn.h>
#include <Xm/SpinB.h>
#include <Xm/TextF.h>
#include <Xm/Label.h>

/*
** GetDate(): fetches the various elements of a date from multiple
** SpinBox TextField children.
Motif Programming Manual 775

Chapter 23: The Uniform Transfer Model
*/
void GetDate (Widget text, short *day, short *month, short *year)
{

int d, m, y;
Widget spinb = XtParent (text);

XtVaGetValues (XtNameToWidget (spinb, “days”), XmNposition, &d, 0);
XtVaGetValues (XtNameToWidget (spinb, “months”), XmNposition, &m, 0);
XtVaGetValues (XtNameToWidget (spinb, “years”), XmNposition, &y, 0);

*day = (short) d;
*month = (short) m;
*year = (short) y;

}

/*
** convert_callback(): exports data in the format requested
** by the destination of the data transfer.
*/
void convert_callback (Widget widget,

XtPointer client_data,
XtPointer call_data)

{
XmConvertCallbackStruct *cptr = (XmConvertCallbackStruct *) call_data;
Atom TARGETS, EXPORTS, CB_TARGETS, DATE_TARGET;
Atom *targets;
Display *display = XtDisplay (widget);

/* Intern the atoms */
TARGETS = XInternAtom (display, “TARGETS”, False);
EXPORTS = XInternAtom (display, “_MOTIF_EXPORT_TARGETS”, False);
CB_TARGETS = XInternAtom (display, “_MOTIF_CLIPBOARD_TARGETS”, False);
DATE_TARGET = XInternAtom (display, “APPLICATION_DATE”, False);

/* If the destination has requested the list of targets */
/* we return this as the convert data */
if ((cptr->target == TARGETS) || (cptr->target == CB_TARGETS) ||

(cptr->target == EXPORTS)) {
/* A request from the destination for the supported */
/* data types we are willing to handle */

targets = (Atom *) XtMalloc ((unsigned) sizeof (Atom));
targets[0] = DATE_TARGET;
cptr->type = XA_ATOM;
cptr->value = (XtPointer) targets;
cptr->length = 1;
cptr->format = 32;
cptr->status = XmCONVERT_MERGE;

}
else {

/* A request from the destination for a specific data type */
if (cptr->target == DATE_TARGET) {

short *date;
date = (short *) XtMalloc ((unsigned) 3 * sizeof (short));
776 Motif Programming Manual

Chapter 23: The Uniform Transfer Model
GetDate (widget, &date[0], &date[1], &date[2]);

cptr->value = (XtPointer) date;
cptr->length = 3;
cptr->type = cptr->target; /* As requested */
cptr->format = 16; /* 8 = char, 16 = short, 32 = long */
cptr->status = XmCONVERT_DONE;

}
else {

/* Presumably toolkit built-in type */
/* Let the Traits take over */
cptr->value = (XtPointer) 0;
cptr->length = 0;
cptr->format = 0;
cptr->type = cptr->target;
cptr->status = XmCONVERT_MERGE;

}
}

}

/*
** transfer_callback(): performs the import of the data at
** the destination site.
*/
void transfer_callback (Widget w, /* The destination widget */

XtPointer client_data,
XtPointer call_data)

{
XmSelectionCallbackStruct *sptr =

(XmSelectionCallbackStruct *) call_data;
Atom EXPORTS, TARGETS, CB_TARGETS, DATE_TARGET;
Display *display = XtDisplay (w);
Atom *targets, choice;
int i;

choice = (Atom) 0;
TARGETS = XInternAtom (display, “TARGETS”, False);
EXPORTS = XInternAtom (display, “_MOTIF_EXPORT_TARGETS”, False);
CB_TARGETS = XInternAtom (display, “_MOTIF_CLIPBOARD_TARGETS”, False);
DATE_TARGET = XInternAtom (display, “APPLICATION_DATE”, False);

if ((sptr->type == XA_ATOM) && ((sptr->target == TARGETS) ||
(sptr->target == CB_TARGETS) ||
(sptr->target == EXPORTS))) {

/* The source has sent us a list of available data formats */
/* in which it is prepared to export the data */
/* We get to choose one */
/* The value field contains the list of available targets */
targets = (Atom *) sptr->value;

for (i = 0; i < sptr->length; i++) {
if (targets[i] == DATE_TARGET) {

/* We like this: its our own preferred format */
Motif Programming Manual 777

Chapter 23: The Uniform Transfer Model
choice = targets[i];
}

}

/* If the source is not prepared to export in a format */
/* of our choice, we can either let the toolkit handle it */
/* under the assumption its a built-in data type */
/* or we can signal that the transfer is no good */

/* Lets assume we are only interested in our own data transfer */
if (choice == (Atom) 0) {

XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_FAIL);
return;

}

/* On the other hand, if we have chosen a target */
/* We simply go back to the source asking for it */
XmTransferValue (sptr->transfer_id,

choice,
transfer_callback, /* Round we go again */
NULL,
XtLastTimestampProcessed (display));

}
 else {

/* The source has sent us a specific data format */
/* It **ought** to be DATE_TARGET, but better check... */
if (sptr->target == DATE_TARGET) {

/* Three integers, we assume */
/* We really ought to check sptr->length */
short *date = (short *) sptr->value;
char buf[32];

/* Not pretty, but it will do for here */
(void) sprintf (buf, “%d/%d/%d”, date[0], date[1], date[2]);
XmTextFieldSetString (w, buf);

XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_SUCCEED);
}
else {

/* We should not be here. Someone has written a */
/* convert procedure which is out of step. */

XmTransferDone (sptr->transfer_id, XmTRANSFER_DONE_FAIL);
}

}
}

/*
** destination_callbvack: simply asks the source for the
** set of formats it is prepared to send the data in,
** and sets up a transfer procedure to import the data when sent.
*/
void destination_callback (Widget w,

XtPointer client_data,
778 Motif Programming Manual

Chapter 23: The Uniform Transfer Model
XtPointer call_data)
{

XmDestinationCallbackStruct *dptr =
(XmDestinationCallbackStruct *) call_data;

Atom TARGETS = XInternAtom (XtDisplay (w), “TARGETS”, False);

XmTransferValue (dptr->transfer_id,
TARGETS,
transfer_callback,
NULL,
XtLastTimestampProcessed (XtDisplay (w)));

}

main (int argc, char *argv[])
{

Widget toplevel, spin, rowcol;
Widget day, month, year, text;
XtAppContext app;
Arg args[8];
int n;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv,
NULL, sessionShellWidgetClass, NULL);

rowcol = XmCreateRowColumn (toplevel, “rowcol”, NULL, 0);

/* Create the SpinBox */
spin = XmCreateSpinBox (rowcol, “spin”, NULL, 0);

/* Create the Days field */
n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1); n++;
XtSetArg (args[n], XmNmaximumValue, 31); n++;
XtSetArg (args[n], XmNposition, 1); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;

day = XmCreateTextField (spin, “days”, args, n);
XtManageChild (day);

/* Create the Months field */
n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 2); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1); n++;
XtSetArg (args[n], XmNmaximumValue, 12); n++;
XtSetArg (args[n], XmNposition, 1); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
Motif Programming Manual 779

Chapter 23: The Uniform Transfer Model

any
month = XmCreateTextField (spin, “months”, args, n);
XtManageChild (month);

n = 0;
XtSetArg (args[n], XmNspinBoxChildType, XmNUMERIC); n++;
XtSetArg (args[n], XmNcolumns, 4); n++;
XtSetArg (args[n], XmNeditable, FALSE); n++;
XtSetArg (args[n], XmNminimumValue, 1900); n++;
XtSetArg (args[n], XmNmaximumValue, 2100); n++;
XtSetArg (args[n], XmNposition, 2000); n++;
XtSetArg (args[n], XmNwrap, TRUE); n++;
year = XmCreateTextField (spin, “years”, args, n);
XtManageChild (year);

/* The destination of the data transfer */
n = 0;
XtSetArg (args[n], XmNeditable, FALSE); n++;
text = XmCreateTextField (rowcol, “drop-site”, args, n);
XtManageChild (text);

/* Now program the UTM */
XtAddCallback (day, XmNconvertCallback, convert_callback, NULL);
XtAddCallback (month, XmNconvertCallback, convert_callback, NULL);
XtAddCallback (year, XmNconvertCallback, convert_callback, NULL);
XtAddCallback (text, XmNdestinationCallback, destination_callback, NULL);

XtManageChild (spin);
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

The output of the example is as given in Figure 23-1.

It should be possible to transfer the formatted SpinBox date to the lower TextField by
of the supported transfer methods.

• selecting any SpinBox TextField, pressing theCOPYkey, moving the cursor over the
lower TextField, then press thePASTE key.

• drag-and-drop out of one of any SpinBox TextField into the lower TextField

Figure 23-1: Output of the utm program
780 Motif Programming Manual

Chapter 23: The Uniform Transfer Model

r the

otif
ngle
n. The

t data
first

ndicate
s are
er in
quite
• select data in any SpinBox TextField, then press the middle mouse button ove
lower TextField.

Summary
The Uniform Transfer Model rationalises the various means of data transfer in the M
toolkit into a coherent single methodology. The model is simple to understand: a si
callback resource at the source of the data, a single callback resource at the destinatio
destination callback negotiates with the source in order to determine the best impor
format. It then sets up a transfer procedure to perform the actual data import. While a
glance at the callback structures associated with each of these procedures seems to i
an unwarranted degree of complexity, in actual practice many of the data element
internal to Motif, and are the means by which it unifies the various types of data transf
the toolkit. The actual tasks we need to perform in order to transfer data turn out to be
simple.
Motif Programming Manual 781

Chapter 23: The Uniform Transfer Model
782 Motif Programming Manual

und

string
Chapter 1

In this chapter:
• Introduction to Render Ta

Renditions
• Renditions
• Render Tables
• Tab Lists
• An Example
• Render Tables and Reso
• Missing Fonts and Rendit
• Summary

This chapter describes the n
strings.

In Motif 1.2, compound strin
encapsulates a list of X fonts a
Motif Programming Manual
bles and

urce Files

24
und

and
er

ch a
nar

e a
ally
ion.

dently
ing a

y

ions Render Tables

ew features introduced in Motif 2.0 for rendering compo

gs were rendered with respect to anXmFontList , which
nd font sets. By separating the contents of a compound

from the fonts with which it is associated, it was possible to display the same compo
string in different ways in distinct widget contexts, simply by changing theXmFontList
for each context.

In Motif 2.0 and later, the separation of content from rendition information is continued
extended. TheXmFontList is however now obsolete. In its place is the notion of a Rend
Table, represented by theXmRenderTable type. Throughout Motif, all the places which
used to contain anXmFontList resource also now support anXmRenderTable
equivalent.

A Render table consists of a sequence ofXmRendition objects. Unlike anXmFontList ,
however, a Rendition object describes rather more than simply the fonts with whi
compound string is drawn. A Rendition also describes color, line style, and colum
information. In Motif 2.0 and later, we can have multi-color compound strings insid
multi-column List. A Rendition object is also optimized: fonts can be loaded dynamic
at the point of rendition rather than having to be pre-loaded at or before widget creat

Render Tables and Rendition objects are shareable across contexts, and indepen
reference-counted. They are also inherited within the widget hierarchy, thus enabl
degree of consistent appearance for the application.

For backwards compatibility, theXmFontList is maintained as a type, although internall
it is re-implemented as a skeletonXmRenderTable containing only font information. Any
specifiedXmRenderTable resource for the widget concerned takes precedence.
783

Chapter 24: Render Tables

of
dition

new
er,

are

e
plied

ose

set

is is

is
Renditions
An XmRendition object is a pseudo-widget. Although not a true widget, it has many
the properties of one, namely resource attributes and a resource-style interface. Ren
attributes can also be specified in a resource file.

Creating Renditions

An XmRendition object is created through the routineXmRenditionCreate (), defined
as follows:

XmRendition XmRenditionCreate (Widget widget ,
XmStringTag tag ,
Arg * argList ,
Cardinal argCount)

Thewidget parameter does not have to be related in any way to the place where the
XmRendition object is to be applied: it is simply used to find a connection to the X serv
so that font and color resources of theXmRendition can be loaded. Thetag parameter
identifies theXmRendition object: compound strings which contain embedded tags
matched against this name when deciding whether to apply theXmRendition to the
rendering process of the string. In effect, theXmRendition tag takes the place of the
deprecatedXmFontList tag. If tag is NULL, the value_MOTIF_DEFAULT_LOCALEis
assigned. TheargList and argCount parameters specify the resources of th
XmRendition object, and are in exactly the same format as the usual argument lists sup
to widget creation routines.

Rendition Resources

XmRendition resources fall mainly into three groups: those which specify the font, th
which specify the color, and those which specify the tab or multi-columnar data.

The font is specified through either theXmNfontName of the XmNfont resource. The
XmNfontName resource is specified using a standardXLFD font description string. The
XmNfont resource can be specified either as an X font (XFontStruct *) or an X font
(XFontSet); whichever you supply, you also need to set theXmNfontType resource to
eitherXmFONT_IS_FONTorXmFONT_IS_FONTSETrespectively. Specifying theXmNfont
resource means of course that you need to load the font beforehand usingXLoadFont (),
XLoadQueryFont () or similar, described in Volume 1,Xlib Programming Manual. An
alternative is to arrange to load the font when it is actually needed for rendering. Th
done by specifying theXmNfontName in conjunction with theXmNloadModel resource.
If the load model isXmLOAD_IMMEDIATE, the font name is loaded when the rendition
created. Otherwise, with a load model ofXmLOAD_DEFERRED, the font is loaded when
actually required. The following code fragment creates anXmRendition object which is
configured with a deferred font.
784 Motif Programming Manual

Chapter 24: Render Tables

rline
any

are

r later

rk in
of an
tag

table,
tion
not
may

rent
n of

r of
er of
extern Widget widget;
XmRendition rendition;
Arg args[4];
Cardinal n = 0;

XtSetArg (args[n], XmNfontName, “-*-courier-bold-o-*--*-140-*”); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_DEFERRED); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
rendition = XmRenditionCreate (widget, “my_bold_font”, args, n);

If an XmNfont resource is specified, it takes precedence over anyXmNfontName which is
also specified. In addition to specifying the font, it is also possible to specify an unde
or strike-through style for the font rendition. The resource XmNunderlineType controls
underlining. It has the following possible values:

XmDOUBLE_DASHED_LINE XmDOUBLE_LINE
XmSINGLE_DASHED_LINE XmSINGLE_LINE
XmNO_LINE

Similarly, a strike-through line can be specified using theXmNstrikethruType
resource*. This resource has exactly the same range of values as theXmNunderlineType
resource.

There are two color resources which can be specified for a rendition. These
XmNrenditionBackground and XmNrenditionForeground , which are Pixel -
valued.

Multi-column specification is performed using theXmNtabList resource. Since this
subject requires knowledge of other object types, theXmTaband XmTabList , each of
which really require a section to themselves, discussion of this resource is reserved fo
in the chapter, in Section 24.3.

At this point something needs to be said about the way in which Render Tables wo
order to understand the default values associated with each of the resources
XmRendition object. When a particular compound string component is rendered, any
associated with the component is matched against renditions in the current render
starting at the head of the table. Any given rendition in the table may only specify a por
of the rendition information, for example just the foreground color. However, we can
just draw a color, we also need to draw using a font, and maybe also a line style. There
indeed be renditions in the table which specify these, but they can all have diffe
rendition tags which do not match the current component tag. This is where the notio
inheritance comes in. If any resource in a rendition has the reserved valueXmAS_IS, its
actual value is calculated by moving back up through the render table. The orde
renditions in a render table is therefore important because it determines the ord

* It ought to have been properly namedXmNstrikeThroughType , in our humble opinion.
Motif Programming Manual 785

Chapter 24: Render Tables

,
ulated

e

using
inheritance. The default value for all resources is indeedXmAS_IS, except for the color
resources, which default toXmUNSPECIFIED_PIXEL.

The lastXmRendition attribute to mention is theXmNtag resource. This is simply the
name passed through from theXmRenditionCreate () routine, and it defaults to_
MOTIF_DEFAULT_LOCALE. The valueNULL is therefore never applied to this resource
although an empty string can be used as the tag. This resource should not be manip
by the programmer, who should treat the attribute as private to the toolkit.

The following code fragment fully specifies every resource for anXmRendition object.
The rendition is unnamed when created, so that it defaults to_MOTIF_DEFAULT_LOCALE.
Again, discussion of theXmTabList is reserved until later in the chapter.

extern Widget widget;
XmRendition rendition;
Arg args[10];
Cardinal n = 0;
Pixel fg = ...; /* Whatever */
Pixel bg = ...; /* Whatever */
XmNtabList tlist = ...; /* Discussed later */

XtSetArg (args[n], XmNfontName, “fixed”); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_DEFERRED); n++;
XtSetArg (args[n], XmNunderlineType, XmNO_LINE); n++;
XtSetArg (args[n], XmNstrikethruType, XmNO_LINE); n++;
XtSetArg (args[n], XmNrenditionForeground, fg); n++;
XtSetArg (args[n], XmNrenditionBackground, bg); n++;
XtSetArg (args[n], XmNtabList, tlist); n++;
rendition = XmRenditionCreate (widget, NULL, args, n);

Retrieving Rendition Resources

The attributes of anXmRendition object can be fetched using the routin
XmRenditionRetrieve (). This routine has the following signature:

void XmRenditionRetrieve (XmRendition rendition ,
Arg * argList ,
Cardinal argCount)

Juts as we need to pass the address of a variable when fetching resources
XtGetValues (), so we need to pass an address to fetch arendition resource. The
following code fragment outlines the scheme:

extern XmRendition rendition;
Arg args[4];
Cardinal n = 0;
Pixel fg;
unsigned char underline;

XtSetArg (args[n], XmNunderlineType, &underline); n++;
XtSetArg (args[n], XmNrenditionForeground, &fg); n++;
786 Motif Programming Manual

Chapter 24: Render Tables

e

tine

tine

ltiple
cause

t
d in

tion
XmRenditionRetrieve (rendition, args, n);

All resources for anXmRendition object can be fetched at any time, except for th
XmNtag resource, which should not be touched.

Updating Rendition Resources

Updating the rendition resources is also straightforward, and involves the rou
XmRenditionUpdate (), which is defined as follows:

void XmRenditionUpdate (XmRendition rendition ,
Arg * argList ,
Cardinal argCount)

Again, all rendition resources can be dynamically changed exceptXmNtag. If the
XmNfontName resource is changed, theXmNfont value is immediately set toNULL
internally irrespective of whether the load model isXmLOAD_DEFERREDor XmLOAD_
IMMEDIATE.

Freeing a Rendition

When a rendition object is no longer required, it should be freed using the rou
XmRenditionFree (). This function has the prototype:

void XmRenditionFree (XmRendition rendition)

Note that rendition objects are shareable: we can add the same rendition object to mu
render tables, and remove the rendition from a table, freeing as and when required, be
the rendition is reference counted:XmRenditionFree () does not actually free the objec
until the count is zero. How we add or remove a rendition from a render table is covere
the next section.

Render Tables
A render table, represented by the opaque typeXmRenderTable , is a set of rendition
objects. AnXmRenderTable is not simply an array ofXmRendition objects, but a
distinct opaque type into which rendition objects must be explicitly merged.

Creating Render Tables

Rendition objects are added to a render table using the func
XmRenderTableAddRenditions (), which is defined thus:

XmRenderTable
XmRenderTableAddRenditions (XmRenderTable old_table ,

XmRendition * merge_renditions ,
Cardinal new_rendition_count ,
XmMergeMode merge_mode)
Motif Programming Manual 787

Chapter 24: Render Tables

ed

are

l
g the
, is
two
Theold_table parameter is the table into which we want to add the renditionsmerge_
renditions . If old_table is NULL, a new render table is formed from themerge_
renditions . Otherwise themerge_renditions are merged into theold_table .
Clearly it is possible to have potential conflicts, because a rendition in theold_table and
in themerge_renditions may have the same tag. How to resolve conflicts is determin
by themerge_mode parameter. Ifmerge_mode is XmMERGE_REPLACE, any rendition in
old_table with the same tag as a rendition in themerge_renditions is ignored:merge_
renditions take precedence. Ifmerge_mode is XmMERGE_SKIP, theold_table takes
precedence, and renditions are merged frommerge_renditions if and only if old_
table does not contain a rendition with a matching tag. These two cases
straightforward: use only the rendition in theold_table , or in the new merge list. More
complex however are the cases described by themerge_mode valuesXmMERGE_NEWand
XmMERGE_OLD. The valueXmMERGE_NEWgives precedence to renditions in themerge_
renditions list, except that if any resources associated with a rendition in themerge_
renditions list have the valueXmAS_IS, the value is copied from any rendition in the
old_table with a matching tag.XmMERGE_OLDis similar: old_table renditions take
precedence, but any resource in a rendition inold_table which is XmAS_IS takes its
value from any rendition inmerge_renditions with the same tag. The degree of contro
which can be exercised over the creation and manipulation of render tables usin
various merge_mode values is quite complex. The simple case, however
straightforward: the following specimen code creates a new render table by merging in
newly allocated rendition objects, then applies it to an unspecified widget:

extern Widget widget;
XmRendition renditions[2];
XmRenderTable rtable;
Arg args[4];
Cardinal n;

n = 0;
XtSetArg (args[n], XmNfontName, “fixed”); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_IMMEDIATE); n++;
renditions[0] = XmRenditionCreate (widget, NULL, args, n);

n = 0;
XtSetArg (args[n], XmNfontName, “-*-courier-bold-o-*--*-140-*”); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_DEFERRED); n++;
renditions[1] = XmRenditionCreate (widget, “bold”, args, n);

rtable = XmRenderTableAddRenditions (NULL, renditions,
XtNumber (renditions),
XmMERGE_NEW);

XtVaSetValues (widget, XmNrenderTable, rtable, NULL);
788 Motif Programming Manual

Chapter 24: Render Tables

mory
tion

nted

ro.
be

dget
the
code
Freeing Render Tables

An XmRenderTable is a dynamically allocated object. We must arrange to free the me
ourselves when we are finished using the table. This is done through the func
XmRenderTableFree(), which is simply defined as follows:

void XmRenderTableFree (XmRenderTable table)

Render tables, like the rendition objects which they contain, are reference-cou
internally by Motif. The table may not in fact be freed after calling
XmRenderTableFree () unless the reference count becomes ze
XmRenderTableFree () does not free the constituent renditions: these need to
deallocated separately in their own right. Note that if we apply a render table to a wi
through theXmNrenderTable resource, the widget takes a copy (or rather, updates
reference count) of the table and the renditions which it contains, and so the following
outlines the correct scheme when creating widgets using render tables:

extern Widget parent;
Widget new_widget;
XmRenderTable render_table;
XmRendition renditions[MAX_RENDITIONS];
Arg args[MAX_ARGS];
int i, n;

/* Create the renditions we require */
for (i = 0; i < MAX_RENDITIONS; i++) {

...
renditions[i] = XmRenditionCreate (parent, “some_tag”, args, n);
...

}

/* Create the Render Table */
render_table = XmRenderTableAddRenditions (NULL, renditions,

XtNumber (renditions),
XmMERGE_NEW);

/* Create a new widget with the given render table */
/* Or indeed apply to an existing widget using XtSetValues() */
/* Either way, the widget “takes a copy” */
n = 0;
XtSetArg (args[n], XmNrenderTable, render_table); n++;
...
new_widget = XmCreatePushButton (parent, “name”, args, n);

/* Free the allocated space */
/* Firstly, the constituent renditions */
for (i = 0; i < MAX_RENDITIONS; i++) {

XmRenditionFree (renditions[i]);
}

/* Now the render table itself */
XmRenderTableFree (render_table);
Motif Programming Manual 789

Chapter 24: Render Tables

ion

ll
er

2.1

thin
can

y of

er
n the
e not

ing
Copying Render Tables

A copy of an existing render table can be achieved using the funct
XmRenderTableCopy (), which is defined thus:

XmRenderTable XmRenderTableCopy (XmRenderTable old_table ,
XmStringTag * tags ,
Cardinal num_tags)

The routine allocates storage for, and returns, a new render table based uponold_table .
The tags parameter can be used as a filter: iftags is not NULL, only renditions within
old_table whose tag is contained within thetags array are copied over. Otherwise, a
renditions within theold_table are cloned. We could, for example, create a new rend
table which only contains the “fixed” rendition from the code fragment in Section 24.
using this routine:

XmRenderTable fixed_table;
XmStringTag tag = “fixed”;
...
fixed_table = XmRenderTableCopy (new_table, &tag, 1);

Retrieving Renditions from Render Tables

Supposing we want to modify a rendition (or indeed multiple renditions) contained wi
an arbitrary render table. If we know the tag (or tags) associated with the rendition, we
fetch the renditions using either of the following routines:

XmRendition XmRenderTableGetRendition (XmRenderTable table ,
XmStringTag tag)

XmRendition *XmRenderTableGetRenditions (XmRenderTable table,
XmStringTag *tags,
Cardinal num_tags)

Fetching a single rendition usingXmRenderTableGetRendition () is straightforward
enough. The complexity arises where we need to fetch multiple renditions. The arra
renditions returned byXmRenderTableGetRenditions () is sized to the list of requested
tags , and it may containNULLentries if a given tag does not match anything in the rend
table . There is a one-to-one correspondence between the position of a given tag i
tags array and the returned render table list. In other words, the returned renditions ar
necessarily in the order in which they appear intable , but most certainly are in the order
in which thetags data appears. Therefore if, say, the first tag intags does not match
anything intable , the first element in the returned rendition array will beNULL. Both
XmRenderTableGetRendition () and XmRenderTableGetRenditions () allocate
memory which must be freed at an appropriate point by the programmer. The follow
code clarifies the situation:

extern XmRendertable render_table;
XmStringTag *tags[3];
XmRendition *renditions;
int i;
790 Motif Programming Manual

Chapter 24: Render Tables

re this
utine

in
oint.
ing
tags[0] = (XmStringTag) “bold”;
tags[1] = (XmStringTag) “red”;
tags[2] = (XmStringTag) “no such rendition”;

renditions = XmRendertableGetRenditions (render_table,
tags,
XtNumber (tags));

if (renditions != (XmRendition *) 0) {
/* The returned renditions array is the same size as the tags array */
/* Furthermore, the renditions are in tag-array order */
for (i = 0; i < XtNumber (tags); I++) {

/* But an entry can be NULL if a given tag does not match */
if (renditions[i] == (XmRendition) 0) {

printf (“Warning: no such rendition %s\n”, tags[i]);
}
else {

/* Process the rendition, then free the allocated space */
...
XmRenditionFree (renditions[i]);

}
}
/* Free the allocated array pointer */
XtFree ((char *) renditions);

}

This all assumes that we know the names of the tags in an arbitrary render table. Whe
is not the case, we need to query the set of tags in a render table using the ro
XmRenderTableGetTags (), which has the following functional prototype:

int XmRenderTableGetTags (XmRenderTable table,
XmStringTag ** tags)

The routine returns the number of renditions in the parametertable , and places the list of
tags at the address specified by thetags parameter. The returned array is placed
dynamically allocated memory which the programmer should free at the appropriate p
The tags are in the order in which the renditions occur in the render table. The follow
routine simply lists all the tags in a given render table:

void ListRenditionTags (XmRenderTable table)
{

int count, i;
XmStringTag *tags;

count = XmRenderTableGetTags (table, &tags);

for (i = 0; i < count; i++) {
printf (“Tag %d is %s\n”, i, tags[i]);
XtFree (tags[i]);

}
XtFree ((char *) tags);

}

Motif Programming Manual 791

Chapter 24: Render Tables

, we
ne

ny
ented
the

y the

nd
here
ing a

s the
Removing Renditions

If we know the tag or tags associated with a group of rendition objects in a render table
can remove the renditions from the table through the routi
XmRenderTableRemoveRenditions (), defined as follows:

XmRenderTable XmRenderTableRemoveRenditions (XmRenderTable old_table ,
XmStringTag * tags ,
int tag_count)

The function returns a new render table formed by copying all renditions inold_table
which do not have a matching tag in thetags array. A side effect of calling
XmRenderTableRemoveRenditions () is that the reference count associated withold_
table is decremented. An exception to this is where thetags array isNULL: the old_
table is returned unmodified in any way, so that in effect the routine does nothing. A
renditions which are removed from old_table also have their reference counts decrem
by the routine. Which means that if we remove the last rendition from a table, and
rendition is only referenced by this table, both the rendition and the table are freed b
toolkit.

Tab Lists
A TabList is the means by which Motif implements multi-column layout for compou
strings. TabLists consist of Tab objects; a Tab is simply an offset across the widget w
the compound string is rendered. The Tab represents a location at which to start draw
compound string segment.

There are four aspects to achieving a multi-column layout.

1. The Tab objects themselves, describing specific locations across a widget.
Each Tab specifies a single logical column starting point.

2. The TabList, which is an ordered set of Tabs.The TabList taken as a whole
provides the multi-column appearance.

3. Compound string components of type XmSTRING_COMPONENT_TAB; these can
be embedded into a compound string, informing the toolkit that the follow-
ing compound string text component is to be drawn dependent upon the
current Tab information.

4. A Render Table, which contains a TabList as a constituent Rendition re-
source.

Tabs and TabLists are inoperative unless the compound string to be drawn contain
specialXmSTRING_COMPONENT_TAG component.
792 Motif Programming Manual

Chapter 24: Render Tables

ing is
d in

ance

nly

oint.

tring

be
Tabs
Tabs are implemented through theXmTabobject. TheXmTabobject is an opaque handle
onto a structure which describes an offset across the widget where a compound str
rendered. EachXmTab is a shareable, reference counted resource which can be use
multiple tablists.

Creating an XmTab

An XmTab is created using the functionXmTabCreate (), which is defined as follows:

XmTab XmTabCreate (float value ,
unsigned char units ,
XmOffsetModel offset_model ,
unsigned char alignment ,
char * decimal)

Thevalue parameter is interpreted in terms ofunits , which can be one of the following:

XmPIXELS
XmMILLIMETERS Xm100TH_MILLIMETERS
XmINCHES Xm1000TH_INCHES
XmCENTIMETERS
XmPOINTS Xm100TH_POINTS
XmFONT_UNITS Xm!00th_FONT_UNITS

Theoffset_model parameter determines whether the tab position is an absolute dist
across the widget where rendering is to take place (XmABSOLUTE), or whether the tab
position is calculated relative to the previous tab stop (XmRELATIVE). The alignment
parameter specifies how text is aligned with respect to the tab location. O
XmALIGNMENT_BEGINNINGis implemented as of Motif 2.1.10. Thedecimal parameter
specifies the multi-byte character in the current locale which is used as a decimal p
This is currently unused.

The following code fragment creates a tab stop 1.5 inches from the start of compound s
rendering:

XmTab tab;

tab = XmTabCreate ((float) 1.5,
XmINCHES,
XmABSOLUTE,
XmALIGNMENT_BEGINNING,
“.”);

Freeing an XmTab

When anXmTabis no longer required, the memory associated with the object should
freed using the routineXmTabFree(), which is defined as follows:

void XmTabFree (XmTab tab)
Motif Programming Manual 793

Chapter 24: Render Tables

e

the

er

tine
et
ations,
new

.

Fetching XmTab values

The values associated with anXmTab object can be fetched using the routin
XmTabGetValues (). This routine is defined as follows:

float XmTabGetValues (XmTab tab ,
unsigned char * units ,
XmOffsetModel * model ,
unsigned char * alignment ,
char ** decimal)

The interpretation of each of the parameters is directly analogous toXmTabCreate (),
except that in each case an address is required to hold the returned data. Thetab parameter
is the object for which the values are required. The following code fragment outlines
basic usage of the routine:

extern XmTab tab;
XmOffsetModel offset_model;
unsigned char units;
unsigned char alignment;
char *decimal;
float value;

value = XmTabGetValues (tab,
&units,
&offset_model,
&alignment,
&decimal);

Note that the returned data at thedecimal address directly points into thetab object
structure:decimal doesnotcontain a dynamically allocated copy, and so it should neith
be modified nor freed by the programmer.

Setting the XmTab value

The value associated with a tab object can be modified using the rou
XmTabSetValues (). There is no routine available to modify the units, alignment, offs
model, or decimal associated with a tab once it has been created. To do these oper
you need to explicitly remove the tab object from the tab list concerned, and create a
tab with the required attributes from scratch.XmTabSetValues () is defined as follows:

void XmTabSetValues (XmTab tab , float value)

TabLists
A Tab List, represented by the opaque typeXmTabList , is an ordered set of tab objects
An XmTabList is not simply an array ofXmTabobjects, but a distinct opaque type into
which tab objects must be explicitly merged.
794 Motif Programming Manual

Chapter 24: Render Tables

ut

e an

f
ified

This

ed

an

f the
Creating TabLists

XmTab objects can be added to anXmTabList using the convenience routine
XmTabListInsertTabs (), which is defined as follows:

XmTabList XmTabListInsertTabs (XmTabList tablist ,
XmTab *tabs ,
Cardinal tab_count ,
int position)

The parametertablist can beNULL, which means that a new tab list is to be formed o
of the XmTabobjects specified through thetabs array. If tabs is NULL, the original
tablist is returned unmodified. This means that in effect that there is no way to creat
XmTabList independently of a set ofXmTabobjects. Theposition parameter specifies
where thetabs are to be inserted intotablist . If position is 0, thetabs are inserted
at the head oftablist . If position is 1, tabs are inserted after the current first tab o
tablist , and so forth. To insert using the end of the tablist, position should be spec
as a negative quantity.* A negative position insertsXmTabobjects in reverse order at the
end of theXmTabList , such that the first new tab in thetabs array becomes the last tab
in the newly formed tab set.

Much of the implementation ofXmTabListInsertTabs () is complex and probably over-
engineered. The simple case, however, is as given in the following code fragment.
creates twoXmTab objects, and forms a newXmTabList from them:

XmTab tabs[2];
XmTabList tabList;

tabs[0] = XmTabCreate ((float) 1.0, XmINCHES, XmABSOLUTE,
XmALIGNMENT_BEGINNING, “.”);

tabs[1] = XmTabCreate ((float) 1.5, XmINCHES, XmRELATIVE,
XmALIGNMENT_BEGINNING, “.”);

tabList = XmTabListInsertTabs (NULL, tabs, XtNumber (tabs), 0);

Freeing TabLists

The XmTabList object uses dynamically allocated memory. This should be reclaim
when no longer in use through the routineXmTabListFree (), which is defined as follows:

void XmTabListFree (XmTabList tablist)

Manipulating Tabs in a TabList

The following routines are available for manipulating the XmTab elements in
XmTabList:

XmTabList XmTabListCopy (XmTabList tablist , int offset , Cardinal count) †

* This is not consistent with other Motif insertion routines, where zero is generally taken to mean the end o
given list of objects, and negative positions are disallowed.
Motif Programming Manual 795

Chapter 24: Render Tables

er
of

y at
XmTab XmTabListGetTab (XmTabList tablist , Cardinal position)
XmTabList XmTabListRemoveTabs (XmTabList tablist ,

Cardinal * positions ,
Cardinal position_count)

XmTabList XmTabListReplacePositions (XmTabList tablist ,
Cardinal * positions ,
XmTab *tabs ,
Cardinal tab_count)

int XmTabListTabCount (XmTabList tablist)

XmTabListCopy () copiescount XmTabobjects from theXmTabList specified by the
tablist parameter, starting with the tab at the position specified byoffset . If offset
is zero, tabs are copied from the start of the list. Ifcount is zero, all tabs fromoffset to
the end of the tablist are copied. If theoffset is negative, tabs are copied in reverse ord
from the end of thetablist . Copying an entire tablist is therefore simply a matter
calling the following code:

extern XmTabList old_tablist;
XmTabList full_copy = XmTabListCopy (old_tablist, 0, 0);

An XmTabobject can be fetched from a tab list using the routineXmTabListGetTab ().
The routine simply fetches the tab at the designatedposition within the giventablist .
The first tab in the list is at position zero. The routine returns acopyof theXmTabobject at
position , and it is the responsibility of the programmer to free the allocated memor
a suitable point usingXmTabFree().

If you wanted to fetch the lastXmTabobject in a tablist, you would need to know the
number of tabs in the list in the first place. The routineXmTabListTabCount () can be
used for this: it simply returns the number of tabs in the specifiedtablist . The following
code therefore fetches the lastXmTab object:

extern XmTabList tablist;
XmTab last_tab;
int count;

count = XmTabListTabCount (tablist);

if (count > 0)
/* TabLists offset from zero */
last_tab = XmTabListGetTab (tablist, count - 1);

...
/* Remember to reclaim the memory: we are returned a copy */
XmTabFree (last_tab);

XmTabobjects can be removed from a tablist using the routineXmTabListRemoveTabs ().
It creates and returns a newXmTabList formed out of an existingtablist , but with tabs
at designatedpositions excluded. The originaltablist has its reference count
internally decremented internally by the routine.

† Erroneously listed asXmTabListTabCopy () in Volume 6B,Motif Reference Manual. Humble Apologies!
796 Motif Programming Manual

Chapter 24: Render Tables

ts
the
e
the

If we
eing
XmTabListReplacePositions () can be used to substitute a set of XmTab objec
within tablist. Thepositions parameter specifies an array of offsets representing
locations where tabs are to be replaced. Thetabs parameter is the set of new tabs to b
merged into thetablist . There is a one-to-one correspondence between the offsets in
positions parameter and thetabs specifier. That is, thenth XmTabin the tabs list is
placed at the offset designated by thenthoffset in thepositions array. For example, the
following code replaces the third and fifth tabs in an unspecified tablist:

extern XmTabList old_tablist;
XmTabList new_tablist;
XmTab new_tabs[2];
Cardinal positions[2];

new_tabs[0] = XmTabCreate (...);
new_tabs[1] = XmTabCreate (...);

positions[0] = 2; /* The third position - offsets are from zero */
positions[1] = 4; /* The fifth position */

new_tablist = XmTabListReplacePositions (old_tablist,
positions,
new_tabs,
XtNumber (new_tabs));

Using TabLists

TabLists are used by specifying them as an attribute of a rendition in a render table.
require a multi-column layout, we need to make sure that the render table which is b
used to render our compound strings contains a TabList.* The following code fragment
outlines the general scheme of things:

XmTab tabs[MAX_TABS];
XmTabList tablist;
XmRendition renditions[MAX_RENDITIONS];
XmRenderTable rendertable;
Arg args[MAX_ARGS];
int i, n;
extern Widget widget;
...
/* Create the XmTab objects */
tabs[i] = XmTabCreate ((float) 1.5, XmINCHES, XmABSOLUTE,
XmALIGNMENT_BEGINNING, ”.”);
...
/* Create the XmTabList from the XmTab objects */
tablist = XmTabListInsertTabs (NULL, tabs, XtNumber (tabs), 0);
...
/* Create an XmRendition that uses the XmTabList */
/* Other XmRendition attributes are ignored here */

* The exception to the rule is the Container widget, which has anXmNdetailTabList resource independent of
its XmNrendertable resource.
Motif Programming Manual 797

Chapter 24: Render Tables

. It
on,
n = 0;
XtSetArg (args[n], XmNtabList, tablist); n++;
...
renditions[i] = XmRenditionCreate (widget, “rendition tag”, args, n);
...
/* Create an XmRenderTable which uses the XmRendition objects */
rendertable = XmRenderTableAddRenditions (NULL,

renditions,
XtNumber (renditions),
XmMERGE_NEW);

...
/* Specify the XmRenderTable for the widget concerned */
XtVaSetValues (widget, XmNrenderTable, rendertable, NULL);
...
/* The compound strings associated with widget are now */
/* drawn in multi-column format if the strings contain */
/* embedded XmSTRING_COMPONENT_TAB components */
...
/* Free the memory used above. */
/* The widget takes a copy of the XmRenderTable */
/* Or rather, increases the reference count */
/* The XmRendition takes a copy of the XmTabList */
/* (increases the reference count) */
for (i = 0; i < XtNumber (tabs); i++) {

XmTabFree (tabs[i]);
}
XmTabListFree (tablist);

for (i = 0; i < XtNumber (renditions); i++) {
XmRenditionFree (renditions[i]);

}

XmRenderTableFree (rendertable);
...

An Example
The code in Example 24-1 creates a multi-column, multi-color, multi-font List widget
brings together all the threads of this chapter by utilizing fully the tab, tab list, renditi
and render table functionality as described above.

Example 24-1. The rendered_list.c program

/* rendered_list.c: illustrates all the features of
** render tables and renditions by creating a
** multi-column, multi-font, multi-color List widget.
*/

#include <Xm/Xm.h>
#include <Xm/RowColumn.h>
#include <Xm/List.h>
798 Motif Programming Manual

Chapter 24: Render Tables
/* ConvertStringToPixel()
** A utility function to convert a color name to a Pixel
*/
Pixel ConvertStringToPixel (Widget widget, char *name)
{

XrmValue from_value, to_value; /* For resource conversion */

from_value.addr = name;
from_value.size = strlen(name) + 1;
to_value.addr = NULL;
XtConvertAndStore (widget,

XmRString, &from_value,
XmRPixel, &to_value);

if (to_value.addr) {
return (*((Pixel*) to_value.addr));

}

return XmUNSPECIFIED_PIXEL;
}

/*
** A convenient structure to hold the data
** for creating various renditions
*/
typedef struct RenditionData_s
{

char *tag;
char *color;
char *font;

} RenditionData_t;

#define MAX_COLUMNS4

RenditionData_t rendition_data[MAX_COLUMNS] =
{

{ “one”, “red”, “fixed” },
{ “two”, “green”,

“-adobe-helvetica-bold-r-normal--10-100-75-75-*-*-iso8859-1” },
{ “three”, “blue”, “bembo-bold” },
{ “four”, “orange”,

“-adobe-*-medium-i-normal--24-240-75-75-*-*-iso8859-1” }
};

/*
** Arbitrary data to display in the List
*/
static char *poem[] =
{

“Mary”, “had a”, “little”, “lamb”,
“Its”, “fleece”, “was white”, “as snow”,
“And”, “everywhere that”, “Mary”, “went”,
“The”, “lamb was”, “sure”, “to follow”,
(char *) 0
Motif Programming Manual 799

Chapter 24: Render Tables
};

/*
** CreateListData(): routine to convert the
** poem into an array of compound strings
*/
XmStringTable CreateListData (int *count)
{

XmStringTable table = (XmStringTable) 0;
int line = 0;
int column = 0;
int index = 0;
XmString entry = (XmString) 0;
XmString row = (XmString) 0;
XmString tmp = (XmString) 0;
XmString tab;

tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, NULL, 0);

while (poem[index] != (char *) 0) {
/* create a compound string, using the rendition tag */
entry = XmStringGenerate ((XtPointer) poem[index],

NULL,
XmCHARSET_TEXT,
rendition_data[column].tag);

if (row != (XmString) 0) {
tmp = XmStringConcat (row, tab);
XmStringFree (row);
row = XmStringConcatAndFree (tmp, entry);

}
else {

row = entry;
}

++column;

if (column == MAX_COLUMNS) {
if (table == (XmStringTable) 0) {

table = (XmStringTable) XtMalloc ((unsigned)
sizeof (XmString));

}
else {

table = (XmStringTable) XtRealloc ((char *) table,
(unsigned) (line + 1) * sizeof (XmString));

}

table[line++] = row;
row = (XmString) 0;
column = 0;

}

index++;
}

800 Motif Programming Manual

Chapter 24: Render Tables
XmStringFree (tab);

table[line] = (XmString) 0;

*count = line;

return table;
}

main (int argc, char *argv[])
{

Widget toplevel, rowcol, list;
XtAppContext app;
Arg args[10];
XmTab tabs[MAX_COLUMNS];
XmTabList tablist;
XmRendition renditions[MAX_COLUMNS];
XmRenderTable rendertable;
XmStringTable xmstring_table;
int xmstring_count;
Pixel pixels[MAX_COLUMNS];
int n, i;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);
rowcol = XmCreateRowColumn (toplevel, “rowcol”, NULL, 0);

/* Create some colors */
for (i = 0; i < MAX_COLUMNS; i++) {

pixels[i] = ConvertStringToPixel (toplevel,
rendition_data[i].color);

}

/* Create tab stops for columnar output */
for (i = 0; i < MAX_COLUMNS; i++) {

tabs[i] = XmTabCreate ((float) 1.5,
XmINCHES,
((i == 0) ? XmABSOLUTE : XmRELATIVE),
XmALIGNMENT_BEGINNING,
“.”);

}

/* Create a tablist table which contains the tabs */
tablist = XmTabListInsertTabs (NULL, tabs, XtNumber (tabs), 0);

/* Create some multi-font/color renditions, and use the tablist */
/* This will be inherited if we use it on the first rendition */
for (i = 0; i < MAX_COLUMNS; i++) {

n = 0;

if (i == 0) {
XtSetArg (args[n], XmNtabList, tablist); n++;
Motif Programming Manual 801

Chapter 24: Render Tables
}

XtSetArg (args[n], XmNrenditionForeground, pixels[i]); n++;
XtSetArg (args[n], XmNfontName, rendition_data[i].font); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
renditions[i] = XmRenditionCreate (toplevel,

rendition_data[i].tag,
args, n);

}

/* Create the Render Table */
rendertable = XmRenderTableAddRenditions (NULL,

renditions,
XtNumber (renditions),
XmMERGE_NEW);

/* Create the multi-column data for the list */

xmstring_table = CreateListData (&xmstring_count);

/* Create the List, using the render table */
n = 0;
XtSetArg (args[n], XmNrenderTable, rendertable); n++;
XtSetArg (args[n], XmNitems, xmstring_table); n++;
XtSetArg (args[n], XmNitemCount, xmstring_count); n++;
XtSetArg (args[n], XmNwidth, 400); n++;
XtSetArg (args[n], XmNvisibleItemCount, xmstring_count + 1); n++;
list = XmCreateScrolledList (rowcol, “list”, args, n);
XtManageChild (list);

/* Free the memory now the widget has the data */
/* First, the compound strings */
for (i = 0; i < xmstring_count; i++)

XmStringFree (xmstring_table[i]);
XtFree ((char *) xmstring_table);

/* Secondly, the XmTab objects */
for (i = 0; i < XtNumber (tabs); i++)

XmTabFree (tabs[i]);

/* Thirdly, the XmTabList object */
XmTabListFree (tablist);

/* Fourthly, the XmRendition objects */
for (i = 0; i < XtNumber (renditions); i++)

XmRenditionFree (renditions[i]);

/* Lastly, the XmRenderTable object */
XmRenderTableFree (rendertable);

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

802 Motif Programming Manual

Chapter 24: Render Tables

the
scale
and

files.
lly by
very
ts are
ats.
the

tions.

plus
of

in the
ss the
The output from the program is given in Figure 24-1. Of course, the color details of
program are lost on a black-and-white printed page, although it is clear even in grey
that the List contains differently colored compound string segments. The multi-font
multi-column aspects of the program are fully in evidence.

Render Tables and Resource Files
RenderTables, Renditions, Tabs, and TabLists can all be specified in resource
Resource converters are installed for each of the various attribute types automatica
the Motif toolkit. Since the rendition objects described in this chapter are implemented
much as pseudo-widgets, the resource specifications required to describe the objec
natural and familiar. Only the specification of Tabs and Tab lists present new form
Since renditions contain tab lists, we should start from the bottom up and describe
specification of a tab list in a resource file first.

Tabs and TabList

In a resource file, a tab list is represented by a comma-separated list of tab specifica
Each tab specification has the formal syntax:

tab := float [WHITESPACE units]
float := [sign] [[DIGIT]*.]DIGIT+
sign := +

Less formally, a tab is represented by a floating point number, optionally preceded by a
sign, and optionally followed by a units description. The following are examples
correctly formed tab specifications:

12.4 in
+1in
+14.56 mm
0.15 font_units
+116.0 pix

The presence of a plus sign indicates that the tab is relative to the previous tab stop
current tab list. If no plus sign is given, the tab is interpreted as an absolute value acro

Figure 24-1: The output of rendered_list
Motif Programming Manual 803

Chapter 24: Render Tables

the

riate

tab

fying
, and
rces
al,
es.
widget wherever it is used. In code, we would write the following in order to duplicate
effect of the tab resource specifications given above:

XmTab a = XmTabCreate (12.4, XmINCHES, XmABSOLUTE, ...)
XmTab b = XmTabCreate (1.0, XmINCHES, XmRELATIVE, ...)
XmTab c = XmTabCreate (14.56, XmMILLIMETERS, XmRELATIVE, ...)

The units descriptions are in the same format as a normal widgetXmNunitType resource.
That is, the following are acceptable to the resource converter:

pixels pix pixel
inches in inch
centimeters cm centimeter
millimeters mm millimeter
points pt point
font_units fu font_unit

Note that the converter does not directly handle the fractional unit types (Xm1000TH_
INCHES, Xm1000TH_MILLIMETERS, Xm100TH_POINTS, Xm100TH_FONT_UNITS). To
specify these in a resource file, you need to divide the float value by the approp
quantity. For example, although we can write in code...

XmTab tab = XmTabCreate (150.0, Xm1000TH_INCHES, XmABSOLUTE, ...)

... in a resource file, we need to specify the following:

0.15 in

A tab list as specified in a resource file is a simple comma separated set of
specifications. The following are examples:

*tabList: 1.5in, +1.5in, +1.5in
XApplication*my_rendition.tabList: 220.0 mm, 450.0 mm, +1.0 in

Rendition Resources

The rendition object is a pseudo-widget, and nowhere is this more true than in speci
external rendition resources. We simply use the rendition tag as the X resource key
thereafter pretend the object is a normal widget. For example, the following resou
specify a rendition whose tag is “my_rendition”. The rendition is filly loaded. As is norm
theXm prefix is stripped off any enumerated types when specifying resource file entri

*my_rendition.fontName: fixed
*my_rendition.fontType: FONT_IS_FONT
*my_rendition.loadModel: LOAD_DEFERRED
*my_rendition.renditionForeground: red
*my_rendition.renditionBackground: blue
*my_rendition.strikethruType: AS_IS
*my_rendition.underlineType: SINGLE_LINE
*my_rendition.tablist: 1in, +1.5in
804 Motif Programming Manual

Chapter 24: Render Tables

cified
e or

tags
in the
d a
rent
g

r by
red

er a
urrent
take

ering
s the

pes,
the

o
rrent

dition
r
not
ition
an

e

RenderTable Resources

Just as a tablist is specified by a comma-separated list of tabs, a render table is spe
externally to code by a list of rendition tags. The list of rendition tags can be whitespac
comma separated. The following are valid render table specifications:

*XmList.renderTable: renditionA, my_rendition
*.renderTable: r1 r2 r3, r4

Missing Fonts and Renditions
In Motif 1.2, whenever an attempt was made to render a compound string, the
associated with the compound string segments were matched against tags with
XmFontList which was being used to display the string. Whenever there occurre
mismatch, if a segment referred to a fontlist tag which was not satisfied by the cur
XmFontList , the toolkit would simply use the first font in the font list. There was nothin
that the programmer could dynamically do at that point to rectify the situation, eithe
directly tendering an alternative font, or indirectly by querying the user for a prefer
alternative.

In Motif 2.1, the situation is entirely different. Whenever an attempt is made to rend
compound string and there is a mismatch between the required string tags and the c
render table, the toolkit now invokes callbacks. In the callback, the programmer can
whatever action is necessary in order to find an appropriate solution to the rend
problem. Once an appropriate font or rendition is found, the programmer simply return
new font or rendition to the toolkit through elements in the callback structure.

The new callbacks are implemented in the XmDisplay object. There are two callback ty
each of which is invoked depending upon the nature of the problem to hand:
XmNnoRenditionCallback , and theXmNnoFontCallback .

The XmNnoRenditionCallback is invoked when an attempt is made by the toolkit t
draw a compound string segment, and no matching rendition can be found in the cu
render table.

TheXmNnoFontCallback is called by the toolkit if anXmRendition object refers to a
font name, and that font cannot be located on the system. Recall that fonts in a ren
object can have the load modelXmLOAD_DEFERRED: this means that the potential exists fo
mis-specifying a font name when creating a rendition. The effects of the error are
apparent until much later, when an attempt is made to actually render using the rend
concerned. This is different to the Motif 1.2 handling of fonts because the fonts within
XmFontList are loaded immediately on creation of the object.

The XmNnoFontCallback is therefore an internal error in the specification of th
attributes of a rendition. TheXmNnoRenditionCallback indicates a flaw in either the
render table itself, or in the tags associated with segments in the compound string.
Motif Programming Manual 805

Chapter 24: Render Tables

hich
h
n
the
of
Callback Structure

Both the XmNnoFontCallback and theXmNnoRenditionCallback are passed the
following structure by the Motif toolkit when invoked:

typedef struct
{

int reason;
XEvent *event;
XmRendition rendition;
char *font_name;
XmRenderTable render_table;
XmStringTag tag;

} XmDisplayCallbackStruct;

Not all the fields of the structure are applicable to each of the callback types. Therender_
table andtag elements are only applicable toXmNnoRenditionCallback callbacks,
and therendition andfont_name fields are only applicable toXmNnoFontCallback
routines. Thereason field will be eitherXmCR_NO_FONT or XmCR_NO_RENDITION.

XmNnoFontCallback

When an attempt is made to render using a rendition which refers to a font name w
cannot be located, theXmNnoFontCallback is called. The programmer can deduce whic
font could not be loaded from thefont_name element of the callback structure. She ca
remedy the problem simply by choosing an alternative font, and then updating
rendition element. The following code fragment outlines the basic scheme
operations:

void no_font_callback (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
XmDisplayCallbackStruct *dptr = (XmDisplayCallbackStruct *) call_data;
Arg args[4];
int n;

printf (“Warning: could not load font %s\n”, dptr->font_name);

/* Just use a simple alternative */
/* A better algorithm would try and find */
/* a close match to the missing font type */

n = 0;
XtSetArg (args[n], XmNfontName, “fixed”); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_IMMEDIATE); n++;

XmRenditionUpdate (dptr->rendition, args, n);
}

...
806 Motif Programming Manual

Chapter 24: Render Tables

rrent

e of
e

ing
extern Display *display;
Widget xmdisplay = XmGetXmDisplay (display);
XtAddCallback (xmdisplay, XmNnoFontCallback, no_font_callback, NULL);
...

XmNnoRenditionCallback

If a compound string segment refers to a rendition tag which is absent from the cu
render table, theXmNnoRenditionCallback is called. Again, the programmer can
deduce the missing information from the callback structure: thetag element identifies
the missing rendition. The programmer simply has to update therender_table
element field of the structure by merging a new rendition. The only issue is on
memory management: therender_table element is allocated for the purpose of th
callback, and so the programmer should make sure that the old value ofrender_
table is freed (reference count reduced) if she modifies the element. The follow
code fragment shows how this can be done:

void no_rendition_callback (Widget widget,
XtPointer client_data,
XtPointer call_data)

{
XmDisplayCallbackStruct *dptr = (XmDisplayCallbackStruct *) call_data;
XmRendition new_rendition;
XmRenderTable new_table;
Arg args[4];
int n;

printf (“Warning: could not find a rendition with tag %s\n”, dptr->tag);

/* Again, this algorithm is slightly defective: */
/* we ought to try and deduce a sensible rendition */
/* given whatever clues that the missing tag can tell us */

n = 0;
XtSetArg (args[n], XmNfontName, “fixed”);
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
XtSetArg (args[n], XmNloadModel, XmLOAD_IMMEDIATE); n++;

/* Make sure we create the rendition using the missing tag */
new_rendition = XmRenditionCreate (widget, dptr->tag, args, n);

/* Merge into the current render table */
new_table = XmRenderTableAddRenditions (dptr->render_table,

&new_rendition, 1,
XmMERGE_NEW);

/* Decrement the old table reference count */
XmRenderTableFree (dptr->render_table);

/* Reset the element */
dptr->render_table = new_table;

}

Motif Programming Manual 807

Chapter 24: Render Tables

ect:

s no
tion
t all.

abstract
the
ly
ater

the
the
of
...
extern Display *display;
Widget xmdisplay = XmGetXmDisplay (display);
XtAddCallback (xmdisplay,
XmNnoRenditionCallback, no_rendition_callback, NULL);
...

Nota Bene

An important difference exists between Motif 1.2 and Motif 2.1 behavior in this resp
whereas Motif 1.2 uses the first font in anXmFontList by default whenever there is a
mismatch between compound string segment and font list tags, in Motif 2.1 there i
default behavior. That is, if a programmer fails to provide an alternative font or rendi
through the appropriate callback then the given compound string is simply not drawn a

Summary
Render tables are shareable resources. They extend the separation between the
representation of a compound string and the way it is rendered which was implicit in
Motif 1.2 XmFontList . What the Render Table provides is the ability to specify not on
font information, but also color and multi-column detail, and as such they offer far gre
control over the presentation and layout of compound strings.

A side effect of the XmFontList deprecation is a greater degree of compatibility with
underlying X Internationalization modules, because the fonts contained within
renditions of a render table are now properly only held internally in the form
XFontStruct or X FontSet data.
808 Motif Programming Manual

cter

d by
ages

ring
Chapter 1

In this chapter:
• Internationalized Text Ou
• Creating Compound Strin
• Manipulating Compound
• Parse Tables
• Rendering Compound Str
• Summary

This chapter describes Mot
directions in the strings that a

Compound strings are des
application designers: the us
and the use of multiple fonts
Motif Programming Manual
tput
gs
Strings

ings

25
for
otif
ut to

e
ble
f 2.0
also

forth.
wing

odel.
t run-
tion

e with

rs
rs.
Compound Strings
if’s technology for encoding font changes and chara
re used by almost all of the Motif widgets.

igned to address two issues frequently encountere
e of foreign character sets to display text in other langu
to render text. With the addition of internationalized st

rendering capabilities in X11R5 onwards, the use of compound strings
internationalization purposes is theoretically no longer necessary. However, the M
widget set still uses compound strings extensively, so applications have no choice b
create them to display text.

From Motif 2.0 onwards, theXmFontList is obsolete, and is replaced by th
XmRenderTable . RenderTables are fully described in Chapter 24; briefly, a RenderTa
describes a complete style by which a compound string can be rendered. In Moti
onwards, not only can we associate different fonts with a compound string, we can
render the various segments of the string in different colors, underline styles, and so
These and other aspects of rendering compound strings are described in the follo
sections.

Internationalized Text Output
The internationalization features in X11R5 onwards are based on the ANSI-C locale m
Under this model, an application uses a library that reads a customization database a
time to get information about the user’s language environment. An Xt-based applica
can establish its language environment (or locale) by registering a language procedur
XtSetLanguageProc() , as described in Chapter 18,Text Widgets. The language
procedure returns a language string that is used byXtResolvePathname() to find locale-
specific resource files. See Volume 4,X Toolkit Intrinsics Programming Manual, for more
information on the localization of the resource database.

One of the important characteristics of a language environment is theencodingthat is used
to represent thecharacter setfor the particular language. In X, character set simply refe
to a set of characters, while an encoding is a numeric representation of these characte* A
809

Chapter 25: Compound Strings

have
as the
rset
e first
ins
in ISO

monly
the

er
the

oding
h

width
is
hich

output
ages

he
t for

ized
ngs.
rrent
parate
f the
on.

ta, a
und

wer-
nly
re
the

sent
charset(not the same as a character set) is an encoding in which all of the characters
the same number of bits. Charsets are often defined by standards bodies such
International Standards Organization (ISO). For example, the ISO Latin-1 cha
(ISO8859-1) defines an encoding for the characters used in all Western languages. Th
half of Latin-1 is standard ASCII, while the second half (with the eighth bit set) conta
accented characters needed for Western languages other than English. Character 65
Latin-1 is an uppercase “A”, while 246 is a lowercase “o” with an umlaut (ö).

However, not all languages can be represented by a single charset. Japanese text com
contains words written using the Latin alphabet, as well as phonetic characters from
katakanaandhiriganaalphabets, and ideographickanji characters. Each of these charact
sets has its own charset; the phonetic and Latin charsets are 8-bits wide, while
ideographic charset is 16-bits wide. The charsets must be combined into a single enc
for Japanese text, so the encoding usesshift sequencesto specify the character set for eac
character in a string.

Strings in an encoding that contains shift sequences and characters with non-uniform
can be stored in a standardNULL-terminated array of characters; this representation
known as a multibyte string. Strings can also be stored using a wide-character type in w
each character has a fixed size and occupies one array element in the string. The text
routines in X11R5 support both multibyte and wide-character strings. To support langu
that use multiple charsets, X developed theXFontSet abstraction for its text output
routines. An XFontSet contains all of the fonts that are needed to display text in t
current locale. The new text output routines work with font sets, so they can render tex
languages that require multiple charsets. See Volume 1,Xlib Programming Manual, for
more information on internationalized text output.

With the addition of these features in X, a developer can write an international
application without using the internationalization features provided by compound stri
In an internationalized application, strings are interpreted using the encoding for the cu
locale. To support a number of locales, the application needs to store string data in se
files from the application code. The application must provide a separate file for each o
locales supported, so that the program can read the appropriate file during localizati

However, since most Motif widgets use compound strings for representing textual da
Motif application has to use compound strings to display text. As we describe compo
strings in this chapter, we’ll discuss how to use them so as not to interfere with the lo
level X internationalization features. However, since Rendition objects in Motif 2.x o
refer to fonts in the form of an X FontStruct or X FontSet, the toolkit is rather mo
compatible with the X11R5 internationalization features than previous versions of
toolkit, and so this is less of an issue.

* Both of these terms are different from the definition of a font, which is a collection of glyphs used to repre
the characters in an encoding.
810 Motif Programming Manual

Chapter 25: Compound Strings

els,
tring
he

ltiple
splay
ities

xt.
string
ince
font

nder
igned
is a
other

ating
ound

to
itions

can
and

rces.

sing
ut
Creating Compound Strings
Almost all of the Motif widgets use compound strings to specify textual data. Lab
PushButtons, and Lists, among others, all require their text to be given in compound s
format, whether or not you require the additional flexibility compound strings provide. T
only widgets that don’t use compound strings are the Text and TextField widgets*. As a
result, you cannot use the compound string techniques for displaying text using mu
fonts. However, these widgets do support internationalized text output, so they can di
text using multiple character sets. For information on the internationalization capabil
of the Text and TextField widgets, see Section 18.6.

A compound string (XmString) is made of three components: a tag, a direction, and te
The tag is an arbitrary name that the programmer can use to associate a compound
with particular rendition data. In Motif 1.1, the tag was referred to as a character set. S
the tag doesn’t necessarily specify a character set, Motif 1.2 referred to the entity as a
list tag. In Motif 2.0 and later, the font list is obsolete, and has been replaced with the re
table. A render table consists of rendition objects: the tag now refers to the name ass
to an individual rendition object. One of the things which a rendition object contains
font. Renditions and Render Tables can be shared between, and inherited from,
widgets.

An application can create a compound string that uses multiple fonts by concaten
separate compound strings with different rendition tags to produce a single comp
string. Concatenating compound strings with different renditions is a powerful way
create graphically interesting labels and captions. More importantly, because rend
and render tables are loosely bound to compound strings via resources, you
dynamically associate new renditions with a widget while an application is running
effectively change text styles on the fly.

The Simple Case
Many applications only need to use compound strings to specify various textual resou
In this case, all that is needed is a routine that converts a standard C-styleNULL-terminated
text string into a compound string. The most basic form of conversion can be done u
the XmStringCreateLocalized() function, as demonstrated in examples througho
this book. This routine takes the following form:

XmString XmStringCreateLocalized (char * text)

Thetext parameter is a common Cchar string. The value returned is of typeXmString ,
which is an opaque type to the programmer.

* The Motif 2.0 CSText widget, which did support compound strings, was removed from Motif 2.1.
Motif Programming Manual 811

Chapter 25: Compound Strings

ch

an
use

to

ue is
file for
that

tion
use
nt

ned to

ave

is
ce and
ing a

ng the
quite
string
your

ng the
t list
XmStringCreateLocalized() creates a compound string in the current locale, whi
is specified by the tagXmFONTLIST_DEFAULT_TAG. This routine interprets thetext
string in the current locale when creating the compound string. If you are writing
internationalized application that needs to support multiple locales, you should
XmStringCreateLocalized() to create compound strings. The routine allows you
take advantage of the lower-level internationalization features of X.

Most applications specify compound string resources in resource files. This techniq
appropriate for an internationalized application, as there can be a separate resource
each language environment that is supported. Motif automatically converts all strings
are specified in resource files into compound strings using the tagXmFONTLIST_
DEFAULT_TAG, so the strings are handled correctly for the current locale. If an applica
needs to create a compound string programmatically, it should
XmStringCreateLocalized() to ensure that the string is interpreted in the curre
locale. The examples in other chapters of this book useXmStringCreateLocalized()
to demonstrate the appropriate technique, even though the examples are only desig
work in the C locale.

With XmStringCreateLocalized() , you cannot explicitly specify the tag or the string
direction that is used for the compound string, and in Motif 1.2, the string cannot h
multiple lines.

XmStringCreateLocalized() allocates memory to store the compound string that
returned. Widgets that have compound string resources always allocate their own spa
store copies of the compound string values you give them. When you are done us
compound string to set widget resources, you must free it usingXmStringFree() . The
following code fragment demonstrates this usage:

XmString str = XmStringCreateLocalized ("Push Me");
Widget push_b;
Arg args[...];
int n = 0;
...
XtSetArg (args[n], XmNlabelString, str); n++;
push_b = XmCreatePushButton (parent, "widget_name", args, n);
XmStringFree (str);
...

The process of creating a compound string, setting a widget resource, and then freei
string is the most common use of compound strings. However, this process involves
a bit of overhead, as memory operations are expensive. Memory is allocated by the
creation function and again by the internals of the widget for its own storage, and then
copy of the string must be deallocated.

The programmatic interface to the string creation process can also be achieved by usi
XtVaTypedArg feature in Xt. This special resource can be used in variable argumen
specifications for functions such asXtVaCreateManagedWidget() and
812 Motif Programming Manual

Chapter 25: Compound Strings

ave
od to
gical

f the
t the

a

a
-step
pens
ally

e are
ction-

ther
of
is in
matic

ry
XtVaSetValues() . It allows you to specify a resource using a convenient type and h
Xt do the conversion for you. In the case of compound strings, we could use this meth
convert a C string to a compound string. The following code fragment has the same lo
effect as the previous example:

push_b = XtVaCreateManagedWidget ("widget_name",
xmPushButtonWidgetClass,
parent,
XtVaTypedArg, XmNlabelString,

XmRString, "Push Me", strlen ("Push Me") + 1,
NULL);

XtVaTypedArg takes four additional parameters: the name of the resource, the type o
value specified for the resource, the value itself, and the size of the value. We se
XmNlabelString resource. We want to avoid converting the character string to
compound string, so we specify achar * value andXmRString as its type.*The string
"Push Me" is the string value; the length of the string, including theNULL-terminating
byte, is 8.

The XtVaTypedArg method for specifying a compound string resource is only
programmatic convenience; it does not save time or improve performance. The three
process of creating, setting, and freeing the compound string still takes place, but it hap
within Motif’s compound string resource converter. Using automatic conversion is actu
slower than converting a string usingXmStringCreateLocalized() . However, unless
you are creating hundreds of strings, the difference may well be negligible.†

The reason none of the examples in this book do not make use of the feature is that w
trying to demonstrate good programming techniques tuned to a large-scale, produ
size, and quality application. Using theXtVaTypedArg method for compound strings is
painfully slow when repeated over hundreds of Labels, PushButtons, Lists, and o
widgets. TheXtVaTypedArg method is perfectly reasonable for converting other types
resources, however. If you are converting a lot of values from one type to another, it
your own best interest to evaluate the conversion process yourself by testing the auto
versus the manual conversion methods.

* This terminology may be confusing to a new Motif programmer. Xt uses the typedef String for
char * . The representation type used by Xt resource converters for this type is XtRString
(XmRString in Motif). A compound string, on the other hand, is of type XmString ; its representa-
tion type is XmRXmString . You just have to read the symbols carefully. Resource converters are
described in detail in Volume 4, X Toolkit Intrinsics Programming Manual, Motif Edition.

† There is some evidence that theXtVaTypedArg method outlined here for compound strings results in memo
leakage, so this should be viewed with some suspicion.
Motif Programming Manual 813

Chapter 25: Compound Strings

d to
ified
e

es

he

n for
te,

icit

e
gs to

ulti-

a
from
tring

as
Rendition Tags
Motif provides compound string creation routines that allow you to specify a tag use
associate the compound string with a rendition. This tag is a programmer-spec
identifier that enables a Motif widget to pick its rendition from a render table at run-tim*.

TheXmStringCreate() routine allows you to specify a rendition tag. The routine tak
the following form:

XmString XmStringCreate (char * text , char * tag)

This routine creates and allocates a new compound string and associates thetag parameter
with that string. As with any compound string, be sure to free it withXmStringFree()
when you are done using it.

XmStringCreate() creates a compound string that has no specified direction. T
default direction of a string may be taken from theXmNlayoutDirection resource†.
This resource is defined by manager widgets; it specifies the layout and string directio
all the children of the manager. If the default direction is not adequa
XmStringDirectionCreate() can be used to create a compound string with an expl
direction, as we’ll discuss shortly.‡

As of Motif 2.0, XmStringGenerate() is now the preferred routine for creating simpl
compound strings. This routine can convert either single or multi-byte character strin
compound string format. The routine is defined as follows:

XmString XmStringGenerate (XtPointer text ,
XmStringTag tag ,
XmTextType type ,
XmStringTag rendition)

The text parameter is the input string to be converted. This can be either single or m
byte data, thetype parameter will inform the function of the suppliedtext type. type
can be eitherXmCHARSET_TEXTor XmMULTIBYTE_TEXT. The tag parameter is simply
the name to be associated with the created compound string: if this isNULL, the default
valueXmFONTLIST_DEFAULT_TAGis used. If the rendition parameter is notNULL, the
compound string which is returned is enclosed within matchingXmSTRING_RENDITION_
BEGIN and XmSTRING_RENDITION_ENDstring components: this is the way that
compound string is created such that it is associated with a particular named rendition
the widgets’ render table. The following code fragment is the simple case: convert a s
to a compound string without explicitly hard-coding a rendition association:

* Prior to Motif 2.0, the tag was associated with a font list rather than a rendition. In Motif 1.1, the font list w
referred to as a character set, but strictly speaking, it did not specify a character set.

† TheXmNstringDirection resource is deprecated as of Motif 2.0, and is subsumed into theXmNlayoutDi-
rection resource.XmNlayoutDirection is available only from Motif 2.0 onwards.

‡ XmStringCreateLtoR () is deprecated as of Motif 2.0.
814 Motif Programming Manual

Chapter 25: Compound Strings

ound
lays

cts
For

der
f 1.2
s, so

irst
ng

The

ion

the

nt or

gets

ulti-
ithin
XmString xms = XmStringGenerate ((XtPointer) “Hello World”,
NULL,
XmCHARSET_TEXT,
NULL);

The actual rendition, and hence the font or font set, that is associated with the comp
string is dependent on the widget that renders the string. Every Motif widget that disp
text has anXmNrenderTable resource. This resource specifies a list of rendition obje
for the widget; each entry in the list may have an optional tag associated with it.
example, a resource file might specify a render table as follows:

*renderTable: renditionA, renditionB, renditionC
renditionA.fontName: --courier-*-r-*--*-120-*
*renditionA.fontType: FONT_IS_FONT
renditionB.fontName: --courier-*-r-*--*-140-*
*renditionB.fontType: FONT_IS_FONT
renditionC.fontName: --courier-*-r-*--*-180-*
*renditionC.fontType: FONT_IS_FONT

At run-time, the compound string is rendered using the rendition in the widget’s ren
table that matches the tag specified in the compound string creation function. In Moti
onwards, the compound string rendering functions use the X11R5 text output function
compound strings are displayed appropriately for the current locale.

In Motif 1.2, if Motif cannot find a match, the compound string is rendered using the f
item in the widget’s font list, regardless of its tag. In Motif 2.0 and later, if no matchi
rendition can be found, the XmDisplay objectXmNnoRenditionCallback is invoked.
This callback, if specified, can be used to supply the missing rendition information.
XmNnoRenditionCallback is discussed in Chapter 24,Render Tables.After invocation
of this callback, if no matching or supplied rendition can still be found, the first rendit
in the render table which has the default tagXmFONTLIST_DEFAULT_TAGis used to render
the compound string, provided it has a font. If this default rendition also has no font,
compound string is not drawn, and a warning message is displayed.

This loose binding between the compound string and the rendition (and hence the fo
font set) used to render it is useful in a number of ways:

• The same compound string can be rendered using different fonts in different wid
simply by specifying a different render table for each widget. For example:

*XmPushButton.renderTable: renditionA
*XmPushButton*renditionA.fontName: -*-courier-*-r-*--*-120-*
*XmList.renderTable: renditionA
*XmList*renditionA.fontName: -*-helvetica-*-r-*--*-120-*

• Compound strings rendered in different fonts can be concatenated to create a m
font compound string. The font for each segment is selected from the renditions w
the widget’s render table by means of a unique tag.
Motif Programming Manual 815

Chapter 25: Compound Strings

tween
for

lized

fonts
• Compound strings can be language-independent, with the tag used to select be
fonts with different character set encodings. This is the least common use
compound strings, and as of X11R5, it is no longer needed to support internationa
text output.

Example 25-1 demonstrates how a compound string can be rendered using different
in different PushButton widgets.*

Example 25-1. The string.c program

/* string.c -- create a compound string with the "MY_TAG" tag.
** The tag defaults to the "9x15" font. Create three pushbuttons:
** pb1, pb2, and pb3. The user can specify resources so that each of the
** widgets has a different font associated with the "MY_TAG" tag
** specified in the compound string.
*/

#include <Xm/RowColumn.h>
#include <Xm/PushBG.h>

String fallbacks[] = { "*MY_TAG.fontName:9x15", NULL };

main (int argc, char *argv[])
{

Widget toplevel, rowcol, push_b;
XtAppContext app;
XmString text;
Display *dpy;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "String", NULL, 0, &argc, argv,

fallbacks, sessionShellWidgetClass, NULL);

rowcol = XmCreateRowColumn (toplevel, "rowcol", NULL, 0);

text = XmStringGenerate ((XtPointer) "Testing, testing...",
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
“MY_TAG”);

XtSetArg (args[0], XmNlabelString, text);
push_b = XmCreatePushButtonGadget (rowcol, "pb1", args, 1);
XtManageChild (push_b);
push_b = XmCreatePushButtonGadget (rowcol, "pb2", args, 1);
XtManageChild (push_b);
push_b = XmCreatePushButtonGadget (rowcol, "pb3", args, 1);
XtManageChild (push_b);
XmStringFree (text);

* XtVaAppInitialize () is considered deprecated in X11R6.XtVaOpenApplication () is only available in
X11R6.XmStringGenerate () is only available from Motif 2.0 onwards.
816 Motif Programming Manual

Chapter 25: Compound Strings

pound

5-1.

s are

e
only

tring
tion
XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

This simple program creates three PushButton gadgets that all use the same com
string for their labels. The rendition tagMY_TAG is associated with the9x15 font in the
fallback resources. By default, all of the buttons look the same, as shown in Figure 2

However, Figure 25-2 shows what happens to the output when the following resource
specified:

*.renderTable: MY_TAG
*.fontType: FONT_IS_FONT
*pb1.*MY_TAG.fontName: -*-courier-*-r-*--*-120-*
*pb2.*MY_TAG.fontName: -*-courier-*-r-*--*-140-*
*pb3.*MY_TAG.fontName: -*-courier-*-r-*--*-180-*

The rendition associated withMY_TAGfor each of the PushButtons is different, so th
compound string for each one is rendered in a different font. Since each render table
contains one rendition, Motif has no choice but to attempt to display the compound s
using the font associated with the single rendition. The following resource specifica
creates the output shown in Figure 25-3:

*.fontType: FONT_IS_FONT
*.renderTable: MY_TAG

pb1.fontName: -*-courier-*-r-*--*-120-*
pb2.renderTable: fixed_rendition, courier_rendition
*pb2.fixed_rendition.fontName: fixed
pb2.courier_rendition.fontName: --courier-*-r-*--*-140-*
*pb3*MY_TAG.fontName: fixed,-*-courier-*-r-*--*-180-*

Figure 25-1: Output of string program

Figure 25-2: Output of string program with rendition resources set
Motif Programming Manual 817

Chapter 25: Compound Strings

since

point
the
fault

st
the
er

ation

e
using
an

ing

ted

le to
n an
s. In
same
In this case, the compound string in the first PushButton uses a 12-point Courier font,
that is the only rendition in the render table, it has the implicit tag_MOTIF_DEFAULT_
LOCALEassigned to it, and this is used as the default. The third button uses the 18-
Courier font associated with MY_TAG. The second PushButton does not render
compound string label because there is no rendition with a matching tag, and no de
unnamed rendition. Motif prints out a warning message:

Warning: No font found.

This behavior is different to that of Motif 1.2. In Motif 1.2, the toolkit would use the fir
font if the compound string contained a tag which did not match any of the fonts in
XmNfontList resource of the widget concerned. In Motif 2.0 and later, the programm
must supply a default font; the XmDisplay objectXmNnoFontCallback is called
whenever this situation arises, and the programmer can supply the missing font inform
in the callback. TheXmNnoFontCallback procedure is discussed in Chapter 24,Render
Tables.

The Default Tag

The constantXmFONTLIST_DEFAULT_TAGis used to tag compound strings that ar
created in the encoding of the current locale. When a compound string is created
XmStringCreateLocalized() , this tag is used. The equivalent compound string c
also be created usingXmStringCreate() with the tag explicitly set toXmFONTLIST_
DEFAULT_TAG. In Motif 2.0 and later, the compound string can also be created us
XmStringGenerate (), with the tag either explicitly set toXmFONTLIST_DEFAULT_TAG,
or implicitly by setting the tag toNULL. Motif looks for a rendition with a matching tag
when it renders the compound string. In Motif 2.0 and later, a rendition which is crea
with a NULLtag is assigned the tag_MOTIF_DEFAULT_LOCALE, and this will match with
a compound string component which has the tagXmFONTLIST_DEFAULT_TAG.

An internationalized application can useXmFONTLIST_DEFAULT_TAGto ensure that
compound strings are rendered correctly for the current locale. However, it is possib
use explicit rendition tags for locale-specific text. Explicit tags are necessary whe
application wants to display compound strings using different point sizes or type style
this case, the compound string and the renditions associated with it need to use the

Figure 25-3: Output of string program with multiple rendition resources set
818 Motif Programming Manual

Chapter 25: Compound Strings

If
nstant

ot be

a

ntry

is

tent

d

t are
the

et.
t, its

ed

rom a
see
tag; the tag can be mapped toXmFONTLIST_DEFAULT_TAG using
XmRegisterSegmentEncoding().

In Motif 1.1, the first font in widget’s font list is the default character set for that widget.
the widget does not have a font list, it uses a default character set referred to by the co
XmSTRING_DEFAULT_CHARSET. If the user has set theLANGenvironment variable, its
value is used for this character set. If this value is invalid or its associated font cann
used, Motif uses the value ofXmFALLBACK_CHARSET, which is vendor-defined but
typically set to “ISO8859-1”.

For backwards compatibility, Motif 1.2 equatedXmFONTLIST_DEFAULT_TAGwith
XmSTRING_DEFAULT_CHARSETwhen it could not find an exact match between
compound string and a font list.XmFONTLIST_DEFAULT_TAGin a compound string or
font list matched the tag used in creating a compound string or specified in a font list e
with the tagXmSTRING_DEFAULT_CHARSET.

Again for backwards compatibility, in Motif 2.0 and later, renditions with the tag_MOTIF_
DEFAULT_LOCALE match against compound string components whose tag
XmFONTLIST_DEFAULT_TAG. A rendition created with aNULLtag is assigned the default
tag_MOTIF_DEFAULT_LOCALE.

RenderTable Resources

Some Motif widgets define rendition resources that allow them to provide a consis
appearance for all of their children.

In Motif 1.2, the VendorShell widget defined theXmNbuttonFontList ,
XmNlabelFontList , andXmNtextFontList resources, while the MenuShell define
XmNbuttonFontList and XmNlabelFontList . These resources referred to
XmFontList data, and were applied to all of the buttons, Labels, and Text widgets tha
descendents of the widget. In Motif 1.1, the VendorShell and MenuShell only defined
XmNdefaultFontList resource; this resource applied to all of the children of the widg
For backwards compatibility, if one of the more specific font list resources was not se
value was taken fromXmNdefaultFontList .

In Motif 2.0 and later, the resourcesXmNbuttonFontList , XmNlabelFontList ,
XmNtextFontList , andXmNdefaultFontList are deprecated, and have been replac
by the resources XmNbuttonRenderTable , XmNlabelRenderTable , and
XmNtextRenderTable . There is no putativeXmNdefaultRenderTable defined by the
MenuShell or VendorShell classes.

The BulletinBoard widget defines the resourcesXmNbuttonRenderTable ,
XmNlabelRenderTable , andXmNtextRenderTable primarily for use in dialog boxes.
These render tables apply to the buttons, Labels, and Text widgets that descend f
BulletinBoard. For more information on the use of the resources in dialog boxes,
Chapter 5,Introduction to Dialogs.
Motif Programming Manual 819

Chapter 25: Compound Strings

rface.
get
ral

us
ent

g.
longer

t uses

a
tion

multi-
the

re
to
from

the
in

ngs,
es. If

it is
o

All of these render table resources are designed to help you maintain a consistent inte
However, you can always specify the font for a particular button, Label, or Text wid
using the widget’sXmNrenderTable resource, as this resource overrides the more gene
ones.

Compound String Segments
A compound string is composed ofsegments, where each segment contains a continuo
sequence of text with no change in rendition tag or direction. A compound string segm
can be terminated by aseparator, which is the equivalent of a newline in a character strin
*Segments can be concatenated with other segments or compound strings to create
strings; each segment can specify a different tag and direction to make a string tha
multiple fonts and directions.

XmStringComponentCreate() provides complete control over the creation of
compound string, as it allows you to specify individual text, rendition tag, tab, and direc
components which can be concatenated together into a whole†. In Motif 2.0 and later, Tab
segments can also be added to a compound string; these can be used to create a
columnar arrangement, and is typically used by the List widget. The routine takes
following form:

XmString XmStringComponentCreate (XmStringComponentType type ,
unsigned int length ,
XtPointer value)

String Directions

Compound strings are rendered either from left-to-right or from right-to-left. If you a
going to use left-to-right strings uniformly in your applications, you really don’t need
read this section.There are several ways to build a compound string that is rendered
right-to-left; the best method is dependent on the nature of your application.

If your application uses right-to-left strings for all of its widgets, you may want to use
XmNlayoutDirection resource‡. This resource specifies the layout of the component
general terms: for Primitive widgets, it also specifies the direction for compound stri
provided that the string direction is not hard-coded in the compound strings themselv
you use this resource, you can continue to useXmStringCreate() or
XmStringCreateLocalized() to create compound strings.

Most right-to-left languages display certain things, like numbers, from left-to-right, so
not always possible to use theXmNlayoutDirection resource. In this case, you have t

* Separators in compound strings should not be confused with the Separator widget and gadget class.

† In Motif 2.0 and later,XmStringSegmentCreate () is deprecated.XmStringComponentCreate () is only
available in Motif2.0 and later.

‡ The resourceXmNstringDirection is considered deprecated in Motif 2.0 and later.
820 Motif Programming Manual

Chapter 25: Compound Strings

can
her

be
nge

ing

other

e way
e can
create compound string segments that hard-code their directional information.You
create individual string segments with a specific direction by using eit
XmStringDirectionCreate() or XmStringComponentCreate() . Both of these
routines take an argument of typeXmStringDirection , which is defined as an
unsigned char . You can specify eitherXmSTRING_DIRECTION_R_TO_L, XmSTRING_
DIRECTION_L_TO_R, or XmSTRING_DIRECTION_DEFAULT for values of this type.

When usingXmStringComponentCreate() , you specify the string direction using the
value parameter. For example, we can change the call toXmStringCreate() in
Example 25-1 to the following:

XmStringDirection direct = XmSTRING_DIRECTION_R_TO_L;
XmString dir = XmStringComponentCreate (XmSTRING_COMPONENT_DIRECTION,

sizeof (XmStringDirection),
(XtPointer) &direct);

char *cptr = “Testing, testing”;
XmString text = XmStringComponentCreate (XmSTRING_COMPONENT_TEXT,

strlen (cptr),
(XtPointer) cptr);

XmString xms = XmStringConcatAndFree (dir, text);

Obviously, you would normally do this only if you were using a font that was meant to
read from right-to-left, such as Hebrew or Arabic. The output that results from this cha
is shown in Figure 25-4.

You can also use the functionXmStringDirectionCreate() to create a compound
string segment that contains only directional information. This routine takes the follow
form:

XmString XmStringDirectionCreate (XmStringDirection direction)

The routine returns a compound string segment that can be concatenated with an
compound string to cause a directional change.

String Separators

Separators are used to break compound strings into multiple lines, in much the sam
that a newline character does in a character string. To demonstrate separators, w
change the string creation line in Example 25-1 to the following:

Figure 25-4: Output of string program using a right-to-left direction
Motif Programming Manual 821

Chapter 25: Compound Strings

ne
the

ingle
e
-6.
be

ple, if
to

ts of a
text = XmStringGenerate ((XtPointer) "Testing,\nTesting...",
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
"MY_TAG");

We can useXmStringGenerate() because this function interprets embedded newli
characters (\n) as separators. The effect of this change is shown in Figure 25-5, where
PushButtons display multiple lines of text.

XmStringCreate() does not interpret newline characters as separators; it creates a s
compound string segment in which the'\n' is treated just like any other character valu
in the associated font or font set, as shown in Figure 25
XmStringComponentCreate() , however, can be told to create a separator which can
embedded into a larger compound string.

Most applications need newline characters to be interpreted as separators. For exam
you are usingfgets() or read() to read the contents of a file, and newlines are read in
the buffer, you should useXmStringGenerate() to convert the buffer into a compound
string that contains separators. Example 25-2 shows a function that reads the conten
file into a buffer and then converts that buffer into a compound string.*

Example 25-2. The ConvertFileToXmString() routine.

XmString ConvertFileToXmString (char *filename, int *lines)
{

struct stat statb;
int fd, len;
char *text;

* XmStringCreateLtoR () is deprecated in Motif 2.0 and later.XmStringGenerate () is only available from
Motif 2.0.

Figure 25-5: Output of string program with multiple lines

Figure 25-6: Output of string program with \n not interpreted as a separator
822 Motif Programming Manual

Chapter 25: Compound Strings

in the

have
hout
ss you
.3.3.

use
eate
eate
reated,
hange
tring
XmString str;

*lines = 0;

if (!(fd = open (filename, O_RDONLY))) {
XtWarning ("Internal error -- can't open file");
return NULL;

}

if (fstat (fd, &statb) == -1 ||
!(text = XtMalloc ((len = statb.st_size) + 1)))

{
XtWarning ("Internal error -- can't show text");
close (fd);
return NULL;

}

(void) read (fd, text, len);
text[len] = 0;

str = XmStringGenerate ((XtPointer) text,
XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
NULL);

XtFree (text);
(void) close (fd);

*lines = XmStringLineCount (str);
return str;

}

Since separators are considered to be line breaks, we can count the number of lines
compound string using the functionXmStringLineCount() . However, this does not
imply that separators terminate compound strings or cause font changes. As we
shown, a separator can be inserted into the middle of a compound string wit
terminating it. The fact that separate segments are created has little significance unle
need to convert compound strings back into C strings, which we discuss in Section 25

Multiple-font Strings
Once multiple renditions with distinctive tags are specified in a render table, you can
the list to display more than one font or font set in a single compound string. You can cr
a multi-font string in one of two ways: create the compound text in segments or cr
separate compound strings. Either way, once the segments or strings have been c
they must be concatenated together to form a new compound string that has font-c
information embedded in it. Example 25-3 demonstrates the creation of a compound s
that uses three fonts.*

* XtVaAppInitialize () is considered deprecated in X11R6.XmStringGenerate () andXmStringConcat-
AndFree () are only available in Motif 2.0 and later.
Motif Programming Manual 823

Chapter 25: Compound Strings
Example 25-3. The multi_font.c program

/* multi_font.c -- create three compound strings using 12, 14 and 18
** point fonts. The user can specify resources so that each of the strings
** use different fonts by setting resources similar to that shown
** by the fallback resources.
*/

#include <Xm/Label.h>

String fallbacks[] = {
"*.renderTable: TAG1, TAG2, TAG3",
"*.fontType: FONT_IS_FONT",
"*TAG1.fontName: -*-courier-*-r-*--*-120-*",
"*TAG2.fontName: -*-courier-bold-o-*--*-140-*",
"*TAG3.fontName: -*-courier-medium-r-*--*-180-*",
NULL

};

main (int argc, char *argv[])
{

Widget toplevel, label;
XtAppContext app;
XmString s1, s2, s3, text, tmp;
Arg args[2];
String string1 = "This is a string ",

string2 = "that contains three ",
string3 = "separate fonts.";

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "String", NULL, 0, &argc, argv,

fallbacks, sessionShellWidgetClass,
NULL);

s1 = XmStringGenerate ((XtPointer) string1, NULL,
XmCHARSET_TEXT, "TAG1");

s2 = XmStringGenerate ((XtPointer) string2, NULL,
XmCHARSET_TEXT, "TAG2");

s3 = XmStringGenerate ((XtPointer) string3, NULL,
XmCHARSET_TEXT, "TAG3");

/* concatenate the 3 strings on top of each other, but we can only
** do two at a time. So do s1 and s2 onto tmp and then do s3.
*/
tmp = XmStringConcatAndFree (s1, s2);
text = XmStringConcatAndFree (tmp, s3);
XtSetArg (args[0], XmNlabelString, text);
label = XmCreateLabel (toplevel, "widget_name", args, 1);
XtManageChild (label);

XmStringFree (text);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

824 Motif Programming Manual

Chapter 25: Compound Strings

nct
.

at
tring.

s a
r, this
g. If
trings

not
d they
rder
racter
The
have

the
ing
The output of this program is shown in Figure 25-7.

The XmNrenderTable resource is specified using three renditions, each with a disti
tag. We create each string usingXmStringGenerate() with the appropriate text and tag
Then we concatenate the strings usingXmStringConcatAndFree() , two at a time until
we have a single compound string that contains all the text.XmStringConcatAndFree()
does not work likestrcat() in C. The Motif function creates a new compound string th
is composed of the two existing strings, rather than appending one string to the other s

It is possible to specify compound string resource values, such as theXmNlabelString
resource of the Label widget, in a resource file as normal C strings. Motif provide
resource converter that converts the character string into a compound string. Howeve
resource converter does not allow you to specify rendition tags in the character strin
you need font changes within a compound string, you need to create the compound s
explicitly in your application as we have done in Example 25-3.

Manipulating Compound Strings
Most C programmers are used to dealing with functions such asstrcpy() , strcmp() ,
andstrcat() to copy, compare, and modify strings. However, these functions do
work with compound strings, as they are not based on a byte-per-character format, an
may haveNULLcharacters as well as other types of information embedded in them. In o
to perform these common tasks, you can either convert the compound string into a cha
string, or you can use the compound string manipulation functions provided by Motif.
method you choose depends largely on the complexity of the compound strings you
and/or the complexity of the manipulation you need to do.

Compound String Functions
Motif provides a number of functions that allow you to treat compound strings in much
same way that you treat C-style character arrays. The toolkit provides the follow
routines:

Boolean XmStringByteCompare (XmString string1 , XmString string2)
Boolean XmStringCompare (XmString string1 , XmString string2)
XmString XmStringConcat (XmString string1 , XmString string2)
XmString XmStringConcatAndFree (XmString string1 , XmString string2)
XmString XmStringCopy (XmString string)
Boolean XmStringEmpty (XmString string)
Boolean XmStringHasSubstring (XmString string , XmString substring)

Figure 25-6: Output of multi_font program
Motif Programming Manual 825

Chapter 25: Compound Strings

s the

es
same
tion.

e
y the

h
th
using

d

turn

ot the

using
d

ab
ors
Boolean XmStringIsVoid (XmString string)
int XmStringLength (XmString string)

Both XmStringCompare() and XmStringByteCompare() compare two compound
strings,string1 , andstring2 . XmStringCompare() simply checks if the strings have
the same text components, directions, and separators; it returnsTrue if they do. This
routine is simpler and more frequently used thanXmStringByteCompare() , which
performs a byte-by-byte comparison of the two compound strings. If each string use
same rendition tags, has the same direction, and contains the same embeddedchar string
internally, the function returnsTrue . The mapping between rendition tags and fonts do
not happen until a compound string is rendered by a widget, so whether or not the
rendition tag actually maps to two different fonts does not affect the results of this func

XmStringConcat() and XmStringConcatAndFree() can be used to concatenat
compound strings. Both of these routines create a new compound string and cop
concatenation ofstring1 and string2 into the newly allocated string. With
XmStringConcat (), the original strings are preserved, but wit
XmStringConcatAndFree () the original parameter strings are internally freed. In bo
cases, you are responsible for freeing the compound string returned by the routines
XmStringFree() * .

You can copy a compound string usingXmStringCopy() , which copies the parameter
string into a newly-allocated compound string.†

XmStringHasSubstring() determines whether or not a compoundstring contains a
particularsubstring . For this function,substring must be a single-segment compoun
string. If its text is completely contained within any single segment ofstring , the function
returnsTrue . The two strings must use the same rendition tags for the routine to re
True .

To get the length of a compound string, useXmStringLength() . This function returns
the number of bytes in the compoundstring including all tags, direction indicators, and
separators. If the structure ofstring is invalid, the routine returns zero. This function
cannot be used to get the length of the text represented by the compound string; it is n
same asstrlen()).

You can determine whether or not a compound string contains any segments
XmStringEmpty() . This function returnsTrue if there are no segments in the specifie
string andFalse otherwise. If the routine is passedNULL, it returnsTrue . The function
XmStringIsVoid () is similar, except that it checks only for text, separator, and t
components‡. Therefore testing a compound string which contains only direction indicat

* XmStringNConcat () is deprecated from Motif 2.0.

† XmStringNCopy () is deprecated from Motif 2.0.

‡ XmStringIsVoid () is only available in Motif 2.0 and later.
826 Motif Programming Manual

Chapter 25: Compound Strings

nt

ust be

und

, you
the

n the

use
e
is to
evel,

elow.

a
ription

tions:
using XmStringEmpty () will return False , whereasXmStringIsVoid () will return
True .

Compound String Retrieval
You can retrieve a compound string from a Motif widget usingXtVaGetValues() .
However, the wayXtVaGetValues() is used for compound string resources is differe
than how it is used for most other resources. The value returned byXtVaGetValues() for
a compound string resource is a copy of the internal data, so the compound string m
freed by the application, as shown in the following code fragment:

XmString str;
extern Widget pushbutton;
char *text;

XtVaGetValues (pushbutton, XmNlabelString, &str, NULL);
...
/* do whatever you want with the compound string */
...
XmStringFree (str); /* must free compound strings from GetValues */

To avoid memory leaks in your application, you must remember to free any compo
strings that you retrieve from a widget usingXtVaGetValues() . You free a compound
string using the routineXmStringFree ().

Compound String Conversion
If the Motif routines described in the previous section are inadequate for your needs
can convert compound strings back into C strings and manipulate them using
conventional C functions. This process can be simple or complicated depending o
complexity of the compound string to be converted.

In Motif 1.2, there were two basic methods of conversion. The simplest method was to
the routineXmStringGetLtoR (), which is sufficient if the compound string has a singl
tag associated with it, and has a left-to-right orientation. The more complex method
walk along the compound string one segment at a time. This technique is rather low l
and requires the creation of a type,XmStringContext , that is used to identify and
maintain the position within the compound string being scanned. This is described b

In Motif 2.0 and later,XmStringGetLtoR () is deprecated. In its place is the notion of
Parse Table, whereby compound strings can be converted using a table-driven desc
of the requisite conversion process. Parse Tables are covered in Section 25.3.4.

The XmStringContext

To cycle through a compound string, you need to use the following sequence of opera
Motif Programming Manual 827

Chapter 25: Compound Strings

d
wing

d
ful

using

s for
he

ing
1. Initialize a string context for the compound string using XmStringInit-
Context() .

2. Iterate through the string by calling XmStringGetNextTriple() to get the
type, length, and value associated with each segment*.

3. Free the string context using XmStringFreeContext() .

XmStringInitContext() initializes a string context that allows an application to rea
the contents of a compound string segment by segment. This routine takes the follo
form:

Boolean XmStringInitContext (XmStringContext * context, XmString string)

The function allocates a newXmStringContext type and sets the pointer that is passe
by the calling function in thecontext parameter to this data. If the allocation is success
and the compound string is valid, the function returnsTrue .

Once the string context has been initialized, the contents of the string can be scanned
XmStringGetNextTriple() :

XmStringComponentType XmStringGetNextTriple (XmStringContext context ,
unsigned int *length,
XtPointer *value)

The routine does not take anXmString parameter because thecontext parameter is used
to keep track of the compound string. The function reads the next segment; the value
length , value are filled in, and the function returns the type of the new segment. T
XmStringComponentType parameter is an enumerated type, and has the follow
possible values:†

XmSTRING_COMPONENT_CHARSET
XmSTRING_COMPONENT_TEXT
XmSTRING_COMPONENT_LOCALE_TEXT
XmSTRING_COMPONENT_WIDECHAR_TEXT
XmSTRING_COMPONENT_DIRECTION
XmSTRING_COMPONENT_SEPARATOR
XmSTRING_COMPONENT_TAB
XmSTRING_COMPONENT_LAYOUT_PUSH
XmSTRING_COMPONENT_LAYOUT_POP
XmSTRING_COMPONENT_RENDITION_BEGIN
XmSTRING_COMPONENT_RENDITION_END
XmSTRING_COMPONENT_UNKNOWN
XmSTRING_COMPONENT_END

* XmStringGetNextComponent () is deprecated as of Motif 2.0.XmStringGetNextTriple () is only availa-
ble in Motif 2.0 or later.

† For backwards compatibility, the valuesXmSTRING_COMPONENT_TAGand XmSTRING_COMPONENT_
FONTLIST_ELEMENT_TAGare mapped ontoXmSTRING_COMPONENT_CHARSET. The Layout push/pop, Ren-
dition push/pop, and Tab component values are only available from Motif 2.0 onwards.
828 Motif Programming Manual

Chapter 25: Compound Strings

ntext

ed as
When you are through scanning the compound string, you need to free the string co
usingXmStringFreeContext() , which takes the following form:

void XmStringFreeContext (XmStringContext context)

Example 25-4 shows a routine that uses these functions to print a compound string us
the label for a widget.

Example 25-4. The PrintLabel() routine

void PrintLabel (Widget widget)
{

XmString str;
XmStringContext context;
char *text, *p, buf[256];
XtPointer data;
unsigned int length;
XmStringComponentType type;

XtVaGetValues (widget, XmNlabelString, &str, NULL);

if (!XmStringInitContext (&context, str)) {
/* compound strings from GetValues still need to be freed! */
XmStringFree (str);
XtWarning ("Can't convert compound string.");
return;

}

/* p keeps a running pointer through buf as text is read */
p = buf;
while ((type = XmStringGetNextTriple (context, &length, &data)) !=

XmSTRING_COMPONENT_END) {
switch (type) {

case XmSTRING_COMPONENT_TEXT :
text = (char *) data;
(void) strcpy (p, text);
p += length;
XtFree ((char *) data);
break;

case XmSTRING_COMPONENT_TAB :
*p++ = ’\t’;
*p = 0;
break;

case XmSTRING_COMPONENT_SEPARATOR :
*p++ = ’\n’;
*p = 0;
break;

}
}

XmStringFreeContext (context);
XmStringFree (str);

printf ("Compound string:\n%s\n", buf);
Motif Programming Manual 829

Chapter 25: Compound Strings

able-
pping
nd a

rn it is

pound
cter,
type

l
s and

nisms
the
f the
le a

so
vel
cases
aration

file
rse
efault
like

slated

tring

nd
te

tines
}

Parse Tables
From Motif 2.0, strings can be converted to and from compound strings by means of t
driven mappings. A Parse Table consists of Parse Mapping objects. What a Parse Ma
defines is a small piece of the conversion process in the form of a match pattern, a
substitution method. Whenever a sequence of input corresponds to the match patte
replaced using the substitution specified in the mapping object.

To be more concrete, a string containing newline characters can be mapped to a com
string by supplying a parse mapping which has a match pattern of the newline chara
and a substitution pattern that is a compound string consisting of a segment of
XmSTRING_COMPONENT_SEPARATOR. The internal implementation of the toolkit
convenience functionXmStringGenerate () does precisely this: it uses the lower leve
parse mapping routines, supplying a default parse table that has mappings for newline
tabs.

You dont need to specify a large Parse Table for most operations. The default mecha
convert text directly into textual compound string components without the need for
programmer to specify Parse Mappings on a character-by-character basis for all o
input. Typically, you only need to create a Parse Mapping when you wish to hand
particular input character specially.

For many conversions, the default internal mappings are entirely sufficient, and
XmStringGenerate () is more than adequate for most tasks: it hides the lower le
details of the table-driven parsing process from the programmer. There are however
where a bespoke converter makes sense. Consider reading a file where the sep
between fields is not by tab characters. A typical example of this is the UNIX/etc/
passwd file, where fields are separated by colons. If we wanted to read lines of this
into a List widget, where each field is in a distinct column, we have to define a pa
mapping which converts colons into compound string tab components because the d
internal parse tables do not handle this specific conversion: they simply treat the colon
any other character, so if you use the default mechanisms the colon will appear untran
in the converted compound string.

Thee two most important procedures for performing table-driven string to compound s
conversion (and vice-versa) areXmStringParseText (), and XmStringUnparse ().
XmStringParseText () converts a single or multi-byte character stream into a compou
string;XmStringUnparse () converts a compound string back into the single or multi-by
character representation.

Where the conversion involves arrays of strings or compound strings, the rou
XmStringTableParseStringArray () andXmStringTableUnparse () are provided.
830 Motif Programming Manual

Chapter 25: Compound Strings

call

fine

ject
h the

le, an
, we
, and

ping
ter,
These are in fact simple convenience routines which do little more than
XmStringParseText () andXmStringUnparse () iteratively across the array of strings
or compound strings.

Examples of all of the above routines will be given in due course. But first, we must de
exactly what Parse Mappings and Parse Tables are, and how to create them.

The XmParseMapping Object
A Parse Mapping object is a pseudo-widget; although not a true widget, it is an ob
which has resources and a resource-style interface. A mapping is created throug
routineXmParseMappingCreate (), which takes the following form:

XmParseMapping XmParseMappingCreate (Arg * argList , Cardinal argCount)

The argList parameter is an array of parse mapping resources,argCount being the
number of resources in the array. This is directly analogous to theArg array passed as a
parameter to standard widget creation routines. The function returns an opaque hand
XmParseMapping , used to designate the object created. To create a Parse Table
simply create an array of these, one for each particular piece of bespoke conversion
pass the array to theXmStringParseText () or XmStringUnparse () routines as
required. AnXmParseTable is nothing more than an array ofXmParseMapping objects.

Once created, the resources associated with anXmParseMapping object can be modified
using theXmParseMappingSetValues () routine. This routine is defined as follows:

void XmParseMappingSetValues (XmParseMapping map,
Arg * argList ,
Cardinal argCount)

Conversely, we can retrieve the values associated with anXmParseMapping object using
theXmParseMappingGetValues () routine:

void XmParseMappingGetValues (XmParseMapping map,
Arg * argList ,
Cardinal argCount)

When we have finished using theXmParseMapping object, we free it using
XmParseMappingFree ():

void XmParseMappingFree (XmParseMapping map)

XmParseMapping Resources
The most important attributes of anXmParseMapping object are theXmNpattern ,
XmNpatternType , XmNsubstitute , and the XmNinvokeParseProc resources.
XmNpattern represents the input associated with thisXmParseMapping object: it is the
data against which the input stream is matched. You specify this to the parse map
object in the form of a pointer to a character (multi-byte character or wide charac
Motif Programming Manual 831

Chapter 25: Compound Strings

any
not

used
e

sing

rting
ts.
ping
n is
depending on what it is you are trying to convert to a compound string), even though
given parse mapping object concerns itself with converting a single piece of input and
a sequence. If the current input matches theXmNpattern resource, it is replaced in the
output stream by either the value of theXmNsubstitute resource, or dynamically
constructed by the procedure specified by theXmNinvokeParseProc resource. Which of
the two methods is adopted depends upon the value of theXmNincludeStatus resource.
If XmNincludeStatus is XmINSERT, the XmNsubstitute resource is used for the
transformation; if XmNincludeStatus is XmINVOKE, the XmNinvokeParseProc
procedure is used; lastly, ifXmNincludeStatus is XmTERMINATE, the conversion
process is terminated at that point in the input stream. TheXmNinvokeParseProc
resource is considered later in Section 25.4.3. Remember that theXmNpattern resource
requires a pointer to an array as its value, although only the first item in the array is
when performing matching.XmNpattern can specify more than just character arrays: w
can parse multi-byte or wide-character input as well. The type of input is specified u
theXmNpatternType resource, and it takes the following values:

XmCHARSET_TEXT XmWIDECHAR_TEXT XmMULTIBYTE_TEXT

To make this clear, the following code fragment creates a parse mapping for conve
colon characters in a simplechar * input stream into compound string tab componen
Since it is only the colon that we are treating specially, we only need one parse map
object to convert the entire input to a compound string: everything except the colo
converted using default internal algorithms:

XmParseMapping map;
XmString tab;
Arg args[4];
Cardinal n = 0;

/* Match against the colon character */
/* Note we specify the string “:” not the character ’:’ */
XtSetArg (args[n], XmNpattern, “:”); n++;

/* XmNpattern contains a simple character array */
/* so we specify the pattern type as XmCHARSET_TEXT */
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;

/* Convert to a tab compound string component */
tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0, NULL);
XtSetArg (args[n], XmNsubstitute, tab); n++;

/* Use the XmNsubstitute resource for conversion */
/* Not the XmNinvokeParseProc resource */
XtSetArg (args[n], XmNincludeStatus, XmINSERT); n++;

/* Create the Parse Mapping object */
map = XmParseMappingCreate (args, n);
832 Motif Programming Manual

Chapter 25: Compound Strings

tched
n

tion,

ed
ream
parse

on
pping
e of

sing,
direct

ter is
r-by-

read
to
The way the parse system works is as follows: each character in the input stream is ma
in turn against theXmNpattern resources for each of the mappings in a give
XmParseTable . Where there is a match, that mapping is used to perform the transla
either by directly replacing the input with theXmNsubstitute value, or by calling the
XmNinvokeParseProc routine to provide the output value. The input stream is advanc
by one character (wide-character or multi-byte character, depending on the input st
type), and the process reiterates until either the end of the input is reached, or some
mapping object specifiesXmTERMINATEas the required match action. The concatenati
of each chunk of output is performed automatically by the parse process: the parse ma
objects only concern themselves with supplying the individual chunks for a given piec
input.

It is important to stress that we only need to provide mapping objects for special proces
because the default action in the absence of a supplied mapping for some input is a
conversion to the output. For example, if we wanted to convert lines of/etc/passwd into
a compound string, we only need to supply a mapping that specifies the colon charac
a logical tab separator. Everything else gets converted implicitly on a simple characte
character basis.

Converting to Compound Strings

Example 25-5 illustrates a simple string to compound string conversion. It loads lines
from the /etc/passwd file into a multi-column List widget. For details of TabLists used
provide the multi-column layout, you are referred to Chapter 24,Render Tables.

Example 25-5. The parse_file.c program

/* parse_file.c: converts a file into
** a multi-column list format. Assumes that
** the file is colon-separated fields.
*/

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/List.h>

/* construct an array of compound strings
** from loading a file using colon as the field separator.
**
** A more generic routine would pass the field separator in.
*/
XmString *load_file (Widget list, char *file, int *count)
{

XmParseMapping map[2];
FILE *fptr;
char buffer[256];
Arg args[8];
char *cptr;
XmString tab;
Motif Programming Manual 833

Chapter 25: Compound Strings
XmString *xms_array = (XmString *) 0;
int xms_count = 0;
int n;

*count = 0;

if ((fptr = fopen (file, “r”)) == (FILE *) 0) {
return NULL;

}

/* Map colons to tabs */
n = 0;
tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0, NULL);
XtSetArg (args[n], XmNpattern, “:”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNsubstitute, tab); n++;
XtSetArg (args[n], XmNincludeStatus, XmINSERT); n++;
map[0] = XmParseMappingCreate (args, n);

/* Throw away newlines by terminating the parse for this line */
n = 0;
XtSetArg (args[n], XmNpattern, “\n”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNincludeStatus, XmTERMINATE); n++;
map[1] = XmParseMappingCreate (args, n);

while ((cptr = fgets (buffer, 255, fptr)) != (char *) 0) {
xms_array = (XmString *) XtRealloc ((char *) xms_array,

(xms_count + 1) * sizeof (XmString));

xms_array[xms_count] = XmStringParseText (cptr, NULL, NULL,
XmCHARSET_TEXT, map, 2, NULL);

xms_count++;
}

(void) fclose (fptr);

XmParseMappingFree (map[0]);
XmParseMappingFree (map[1]);

*count = xms_count;

return xms_array;
}

main (int argc, char *argv[])
{

Widget toplevel, list;
XtAppContext app;
Arg args[8];
XmTabList tlist = NULL;
XmRenderTable rtable;
XmRendition rendition;
834 Motif Programming Manual

Chapter 25: Compound Strings
XmString *data = (XmString *) 0;
int lines = 0;
int n, i;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “Demo”, NULL, 0, &argc, argv, NULL,

sessionShellWidgetClass, NULL);

n = 0;
XtSetArg (args[n], XmNvisibleItemCount, 10); n++;
/* For TabList separation calculations */
XtSetArg (args[n], XmNunitType, XmINCHES); n++;
list = XmCreateScrolledList (toplevel, “list”, args, n);
XtManageChild (list);

/* Load the data from file as an array of compound strings */
data = load_file (list, ((argc > 1) ? argv[1] : “/etc/passwd”), &lines);

XtVaSetValues (list, XmNitems, data, XmNitemCount, lines, NULL);

/* Use the toolkit to propose a tab list for the items */
/* This isn’t ideal but will do for this example */
tlist = XmStringTableProposeTablist (data, lines, list,

(float) 0.1, XmRELATIVE);

/* Create a render table for the List using the tab list */
n = 0;
XtSetArg (args[n], XmNtabList, tlist); n++;
XtSetArg (args[n], XmNfontName, “-*-courier-*-r-*--*-120-*”); n++;
XtSetArg (args[n], XmNfontType, XmFONT_IS_FONT); n++;
rendition = XmRenditionCreate (list, XmFONTLIST_DEFAULT_TAG, args, n);
rtable = XmRenderTableAddRenditions (NULL, &rendition, 1,

XmMERGE_REPLACE);
XtVaSetValues (list, XmNrenderTable, rtable, NULL);

/* Free up the temporarily allocated memory */
XmRenditionFree (rendition);
XmRenderTableFree (rtable);
XmTabListFree (tlist);

for (i = 0; i < lines; i++)
XmStringFree (data[i]);

XtFree ((char *) data);

/* Display the interface */
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

Motif Programming Manual 835

Chapter 25: Compound Strings

er
ned
ow

input.

ese
Sample output from the program is given in Figure 25-7.

The interesting part of the program is the routineload_file (). This parses a file into an
array of compound strings by constructing twoXmParseMapping objects. The first object
converts colons into tab components:

/* Map colons to tabs */
n = 0;
tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0, NULL);
XtSetArg (args[n], XmNpattern, “:”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNsubstitute, tab); n++;
XtSetArg (args[n], XmNincludeStatus, XmINSERT); n++;
map[0] = XmParseMappingCreate (args, n);

The secondXmParseMapping object is used to throw away the trailing newline charact
returned by thefgets () system call. We could just as easily have truncated the retur
string fromfgets () to remove the newline, but it was more interesting to demonstrate h
to terminate parsing of an input sequence using anXmParseMapping object. Here we
simply specify theXmNincludeStatus asXmTERMINATE to throw the newline away:

/* Throw away newlines by terminating the parse for this line */
n = 0;
XtSetArg (args[n], XmNpattern, “\n”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNincludeStatus, XmTERMINATE); n++;
map[1] = XmParseMappingCreate (args, n);

Once the parse table is assembled, we only need to call the right routine to convert the
This is the functionXmStringParseText (), which takes the following form:

XmString XmStringParseText (XtPointer input ,
XtPointer * input_end ,
XmStringTag tag ,
XmTextType input_type ,
XmParseTable parse_table ,
Cardinal parse_table_size ,
XtPointer client_data)

The data to be converted to a compound string is given byinput : this can be an ordinary
C string as in Example 25-5, or a wide-character or multi-byte array. Which of th

Figure 25-7: Output of the parse_file program
836 Motif Programming Manual

Chapter 25: Compound Strings

ate.
an

the

und
ent to
-

n

is
r
the

ess,
tine

the
e

various input types is the case must be specified through theinput_type parameter,
which can be one ofXmCHARSET_TEXT, XmWIDECHAR_TEXT, or XmMULTIBYTE_TEXT.
Theinput_end parameter specifies a point within the input where parsing is to termin
If NULL, parsing continues to the end of the input unless terminated by
XmParseMapping object. If parsing does terminate before the end of theinput , and
input_end is not NULL, the routine resets theinput_end pointer to where parsing
actually finished. Thetag parameter is used to name the created compound string: if
value isNULL, the compound string is created with the default tag_MOTIF_DEFAULT_
LOCALE. Theparse_table andparse_table_count parameters identify the array of
XmParseMapping objects used to control the conversion process. Ifparse_table is
NULL, a default internal parse table is used which simply converts newlines to compo
string separator components, and tabs to tab components (and thus is equival
XmStringGenerate ()). The client_data parameter is used to pass application
specific data to any parse procedures within theparse_table . In particular, theclient_
data is passed to any XmNinvokeParseProc routines specified for the
XmParseMapping objects. TheXmNinvokeParseProc routines are discussed in Sectio
25.4.3.

Another routine for converting strings to compound strings
XmStringTableParseStringArray (). This works using an array of input strings rathe
than a single input. We could have used this routine in Example 25-5 if we loaded
contents of the file into an array of C strings before performing the conversion proc
instead of converting each line as it is encountered. The convenience rou
XmStringTableParseStringArray () is defined as follows:

XmStringTable
XmStringTableParseStringArray (XtPointer * input_array ,

Cardinal input_array_count ,
XmStringTag tag ,
XmTextType input_type ,
XmParseTable parse_table ,
Cardinal parse_table_size ,
XtPointer client_data)

The parameters toXmStringTableParseStringArray () are similar to those of
XmStringParseText (), except that the data to be converted is specified using
input_array and input_array_count parameters. The main difference between th
two routines is thatXmStringTableParseStringArray () does not have aninput_
end parameter. Example 25-6 is a reworking of theload_file () routine to use
XmStringTableParseStringArray ().

Example 25-6. The load_file_array() routine.

/* construct an array of compound strings
** from loading a file using colon as the field separator.
**
** A more generic routine would pass the field separator in.
Motif Programming Manual 837

Chapter 25: Compound Strings
*/
XmString *load_file_array (Widget list, char *file, int *count)
{

XmParseMapping map[2];
FILE *fptr;
char buffer[256];
Arg args[8];
char *cptr;
XmString tab;
XmString *xms_array = (XmString *) 0;
int lines = 0;
char **data = (char **) 0;
int n;

*count = 0;

if ((fptr = fopen (file, “r”)) == (FILE *) 0) {
return NULL;

}

/* Map colons to tabs */
n = 0;
tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0, NULL);
XtSetArg (args[n], XmNpattern, “:”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNsubstitute, tab); n++;
XtSetArg (args[n], XmNincludeStatus, XmINSERT); n++;
map[0] = XmParseMappingCreate (args, n);

/* Throw away newlines by terminating the parse for this line */
n = 0;
XtSetArg (args[n], XmNpattern, “\n”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNincludeStatus, XmTERMINATE); n++;
map[1] = XmParseMappingCreate (args, n);

while ((cptr = fgets (buffer, 255, fptr)) != (char *) 0) {
data = (char **) XtRealloc ((char *) data,

(lines + 1) * sizeof (char *));
data[lines] = XtMalloc ((unsigned) strlen (cptr) + 1);
(void) strcpy (data[lines], cptr);

lines++;
}

(void) fclose (fptr);

xms_array = XmStringTableParseStringArray ((XtPointer *) data, lines, NULL,
XmCHARSET_TEXT, map, 2, NULL);

for (n = 0; n < lines; n++) {
XtFree (data[n]);

}

838 Motif Programming Manual

Chapter 25: Compound Strings

ide/
ngs.
lt
ither

ing on
f

nger

t.

ng
,
e tab

ng
XtFree ((char *) data);

XmParseMappingFree (map[0]);
XmParseMappingFree (map[1]);

*count = lines;

return xms_array;
}

Converting From Compound Strings

Converting compound strings back into a character array, whether to ordinary C or w
multi-byte strings, is very similar to the process for converting strings to compound stri
We construct anXmParseTable with appropriate bespoke mappings if the toolkit defau
maps are insufficient, then call the relevant parsing procedure. In this case, we call e
XmStringUnparse () or XmStringTableUnparse (), depending on whether it is a
simple compound string or an array we need to convert.XmStringUnparse () is defined
as follows:

XtPointer XmStringUnparse (XmString input ,
XmStringTag tag ,
XmTextType tag_type ,
XmTextType output_type ,
XmParseTable parse_table ,
Cardinal parse_table_count ,
XmParseModel parse_model)

The compound string to be converted is specified byinput . How we want the compound
string to be converted depends upon theoutput_type parameter. If we want an ordinary
C string, we specifyoutput_type as XmCHARSET_TEXT. For wide character text or
multi-byte array, specifyXmWIDECHAR_TEXTor XmMULTIBYTE_TEXTrespectively. The
routine returns a generic pointer: cast the result to the appropriate data type depend
the value of output_type . For a normal C style string, the return value o
XmStringUnparse () should be simply cast tochar * . XmStringUnparse () returns
dynamically allocated memory, and thus the return value should be freed when no lo
in use. Only those compound string components which match the designatedtag are
converted: iftag is NULL, all components ofinput are converted.tag_type specifies
the representation oftag , which could be in ordinary, wide character, or multi-byte forma
tag_type takes the same range of values asoutput_type described above. Theparse_
table andparse_table_count parameters specify the parse mappings for controlli
the conversion process. Ifparse_table is NULL, the default internal parse table is used
which converts compound string separators to newlines and tab components to th
character. Theparse_model parameter specifies how non-textual compound stri
components are to be converted. The possible values are:

XmOUTPUT_ALL XmOUTPUT_BEGINNING
XmOUTPUT_END XmOUTPUT_BOTH
Motif Programming Manual 839

Chapter 25: Compound Strings

xt
to a

f
ont.

ulti-
e to
XmOUTPUT_BETWEEN

The value XmOUTPUT_ALLattempts to convert everything. The valueXmOUTPUT_
BETWEENwill convert a non-text component if and only if it appears between two te
components. This can be used as a filter to map multiple adjoining tab components
single tab character, for instance.XmOUTPUT_ENDonly converts non-text components i
they follow a textual one, so this could be used to strip tab components off the fr
XmOUTPUT_BEGINNINGconverts non-text if it precedes text.XmOUTPUT_BOTHis a
combination ofXmOUTPUT_BEGINNING andXmOUTPUT_END.

As an example, consider the reverse of Example 25-5, where the contents of a m
column List is output to file, using the colon character as a field separator. The routin
perform this task is given in Example 25-7:

Example 25-7. The dump_file() routine.

/* Dump the contents of a List to file,
** using colon as the field separator.
**
** A more generic routine would pass the field separator in.
*/
void dump_file (Widget list, char *file)
{

XmParseMapping map;
FILE *fptr;
Arg args[8];
XmString tab;
XmString *xms_array = (XmString *) 0;
int xms_count = 0;
char *output;
int n, i;

if ((fptr = fopen (file, “w”)) == (FILE *) 0) {
return;

}

XtVaGetValues (list, XmNitems, &xms_array,
XmNitemCount, &xms_count, NULL);

/* Map tabs to colons */
n = 0;
tab = XmStringComponentCreate (XmSTRING_COMPONENT_TAB, 0, NULL);
XtSetArg (args[n], XmNpattern, “:”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNsubstitute, tab); n++;
XtSetArg (args[n], XmNincludeStatus, XmINSERT); n++;
map = XmParseMappingCreate (args, n);

for (i = 0; i < xms_count; i++) {
output = (char *) XmStringUnparse (xms_array[i], NULL,

XmCHARSET_TEXT, XmCHARSET_TEXT,
&map, 1, XmOUTPUT_ALL);
840 Motif Programming Manual

Chapter 25: Compound Strings

an
ing.

string

,
lue,

use

he
n the
(void) fprintf (fptr, “%s\n”, output);
}

(void) fclose (fptr);

XmParseMappingFree (map);
}

The important thing to note is that for converting compound strings to strings,
XmParseMapping is set up exactly as though we are converting to a compound str
That is,XmNpattern is the C string we get from the conversion,XmNsubstitute is the
compound string segment to match against. Since we are substituting a compound
for a C string, we might reasonably expectXmNsubstitute to contain the required C
string value, but this is not the case.XmNsubstitute always contains a compound string
XmNpattern contains the equivalent character, wide character or multi-byte va
irrespective of the direction of conversion.

The alternative when converting an array of compound strings is to
XmStringTableUnparse (), which takes the following form:

XtPointer *XmStringTableUnparse (XmStringTable table,
Cardinal table_count,
XmStringTag tag,
XmTextType tag_type,
XmTextType output_type,
XmParseTable parse_table,
Cardinal parse_table_count,
XmParseModel parse_model)

This routine differs fromXmStringUnparse () only in that it takesXmStringTable and
counter parameters, and returns an array. As forXmStringUnparse (),
XmStringTableUnparse () returns allocated memory: you need to free each of t
elements in the returned array, as well as the array itself. We could equally have writte
dump_file () routine to useXmStringTableUnparse () as follows:

char **output;

output = (char **) XmStringTableUnparse (xms_array, xms_count,
NULL, XmCHARSET_TEXT, XmCHARSET_TEXT,
&map, 1, XmOUTPUT_ALL);

...
for (i = 0; i < xms_count; i++) {

(void) fprintf (fptr, “%s\n”, output[i]);
XtFree (output[i]);

}

XtFree ((char *) output);
Motif Programming Manual 841

Chapter 25: Compound Strings

en
tion is
input
ant to
on’t

the
here

ng is

in

at

ta is

cters
. We

map
s the

shows
Parse Procedures
The problems with anXmParseMapping as described so far are that the mapping betwe
the input and output sequences are static, the parse state as far as the applica
concerned is context free, and there is no opportunity to dynamically move the current
pointer around if we decide to skip some sequence of data. For example, we might w
skip a particular field when converting a formatted line read from a file because we d
want to show it to the user. For this kind of task, the simpleXmNsubstitute resource is
insufficient. We need anXmParseProc . The specification of anXmParseProc is as
follows:

typedef XmIncludeStatus (*XmParseProc) (XtPointer * in_out ,
XtPointer text_end ,
XmTextType text_type ,
XmString locale_tag ,
XmParseMapping entry ,
int pattern_length ,
XmString * str_include ,
XtPointer call_data)

The in_out parameter points to the current location within the input stream when
procedure is invoked. The procedure can move the pointer to reset the location w
parsing is to continue after the routine finishes.text_end initially points to the end of the
in_out string, but again the procedure can move the location to indicate where parsi
to continue from after the mapping has been applied to the current input. Thetext_type
parameter is the type of the input stream, and is one ofXmCHARSET_TEXT, XmWIDECHAR_
TEXT, XmMULTIBYTE_TEXT. The locale_tag parameter specifies the tag to be used
creating the result of the mapping.entry is theXmParseMapping associated with the
current matched input.pattern_length is the number of bytes remaining to be parsed
the address specified byin_out . If the XmParseProc wishes to insert a compound string
into the output at this juncture, it returns it at thestr_include address. Lastly, the
application can arrange to pass data to the routine through theclient_data parameter,
thus providing whatever context the function needs to perform its task. The call_da
specified as a parameter to the convenience routine (XmStringParseText () or
XmStringTableParseStringArray ()) which is currently controlling the parsing
process.

As an example, consider converting a UNIX/etc/passwd file to an array of compound
strings, except that the password field is to be hidden. As before, we map colon chara
to tab components, except that this time we skip the second field in each line of the file
add a second parse mapping object to handle newlines - not because we want to
newlines to anything, but because it is a convenient place to reset the field counter a
end of the line is reached. The address of the field counter is passed asclient_data to
the parse routines so that they can inspect and manipulate the value. Example 25-8
how this can be done usingXmParseProc routines.
842 Motif Programming Manual

Chapter 25: Compound Strings
Example 25-8. The load_filtered_passwd() routine.

/* load_filtered_passwd(): converts the /etc/passwd file into
** a multi-column list format, skipping the password field.
*/

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/List.h>

/* reset_field(): used to reset the field context
** when a newline is encountered in the input
*/
XmIncludeStatus reset_field (XtPointer *in_out,

XtPointer text_end,
XmTextType text_type,
XmStringTag locale_tag,
XmParseMapping parse_mapping,
int pattern_length,
XmString *str_include,
XtPointer call_data)

{
/* client data is a pointer to the field counter */
int *field_counter = (int *) call_data;

/* A newline encountered.
**
** Trivial: we reset the field counter for this line
** and terminate the parse sequence
*/

*field_counter = 0;

return XmTERMINATE;
}

/* filter_field(): throws away the second (password) field
** and maps colon characters to tab components.
*/
XmIncludeStatus filter_field (XtPointer *in_out,

XtPointer text_end,
XmTextType text_type,
XmStringTag locale_tag,
XmParseMapping parse_mapping,
int pattern_length,
XmString *str_include,
XtPointer call_data)

{
/* client data is a pointer to the field counter */
int *field_counter = (int *) call_data;
char *cptr = (char *) *in_out;

/* Skip this colon */
cptr += pattern_length;
Motif Programming Manual 843

Chapter 25: Compound Strings
/* If this is the first colon
** then skip the input until after the second.
** Otherwise, we return a TAB component
*/

if (*field_counter == 0) {
/* Skip over the next colon */
while (*cptr != ‘:’) cptr++;

cptr++;
}

*str_include = XmStringComponentCreate (XmSTRING_COMPONENT_TAB,
0, NULL);

*in_out = (XtPointer) cptr;
*field_counter = *field_counter + 1;

return XmINSERT;
}

XmString *load_filtered_passwd (Widget list, char *file, int *count)
{

XmParseMapping map[2];
FILE *fptr;
char buffer[256];
Arg args[8];
char *cptr;
XmString *xms_array = (XmString *) 0;
int xms_count = 0;
/* Used as client data to the XmParseProc routines */
int field_count = 0;
int n;

*count = 0;

if ((fptr = fopen (file, “r”)) == (FILE *) 0) {
return NULL;

}

/* Set up an XmParseProc to handle colons */
n = 0;
XtSetArg (args[n], XmNpattern, “:”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNincludeStatus, XmINVOKE); n++;
XtSetArg (args[n], XmNinvokeParseProc, filter_field); n++;
map[0] = XmParseMappingCreate (args, n);

/* Set up an XmParseProc to handle newlines */
n = 0;
XtSetArg (args[n], XmNpattern, “\n”); n++;
XtSetArg (args[n], XmNpatternType, XmCHARSET_TEXT); n++;
XtSetArg (args[n], XmNincludeStatus, XmINVOKE); n++;
844 Motif Programming Manual

Chapter 25: Compound Strings

uld
ally.

type
XtSetArg (args[n], XmNinvokeParseProc, reset_field); n++;
map[1] = XmParseMappingCreate (args, n);

while ((cptr = fgets (buffer, 255, fptr)) != (char *) 0) {
xms_array = (XmString *) XtRealloc ((char *) xms_array,

(xms_count + 1) * sizeof (XmString));

xms_array[xms_count] = XmStringParseText (cptr,
NULL, NULL, XmCHARSET_TEXT,
map, 2, &field_count);

xms_count++;
}

(void) fclose (fptr);

XmParseMappingFree (map[0]);
XmParseMappingFree (map[1]);

*count = xms_count;

return xms_array;
}

Figure 25-8 shows the result of replacing theload_file () routine of Example 25-5 with
the load_filtered_passwd () function:

Rendering Compound Strings
Motif always renders compound strings automatically within its widgets, so you sho
never find yourself in a situation where you need to render a compound string manu
However, if you are writing your own widget, you may need to incorporate the same
of functionality. Motif provides three functions that render compound strings:

XmStringDraw()
XmStringDrawImage()
XmStringDrawUnderline()

Figure 25-8: Output of the load_filtered_passwd() routine
Motif Programming Manual 845

Chapter 25: Compound Strings

sary,

r the

se
d

h
t, so
bly

that
s.
known

the
From Motif 1.2, all of these routines use the X11R5 text output routines when neces
to ensure that the text is rendered correctly for the current locale.

The most basic rendering function isXmStringDraw() , which takes the following form*:

void XmStringDraw (Display * display,
Window window,
XmRenderTable renderTable,
XmString string,
GC gc,
Position x,
Position y,
Dimension width,
unsigned char alignment,
unsigned char layout_direction,
XRectangle * clip)

As you can see, the function requires a great deal of information to actually rende
string. If you are rendering into a widget, you can specify thedisplay andwindow using
XtWindow() andXtDisplay() . Since a gadget does not have a window, you must u
XtWindowOfObject() with a gadget. TherenderTable parameter can be constructe
using any of the functions described in Chapter 24,Render Tables, or you can retrieve a
render table from a widget usingXtVaGetValues() .

The function also requires a graphics context (GC) so that certain rendering attributes suc
as color can be applied. A graphics context is generally not available through a widge
you have to get one at the Xlib level. If you are writing your own widget, you can proba
use a GC that is cached by Xt and returned byXtGetGC() (see Volume 4,Xlib
Programming Manual). Also, if you are writing your own widget, you may want to
consider exposing theGC to the programmer in the form of a resource.

The x, y, andwidth parameters specify the coordinates and width of the rectangle
contains the compound string. Thewidth parameter is used only for alignment purpose
There is no height parameter because the render table may specify fonts that are un
in size and whose heights are too variable. Theclip parameter defines the drawing
boundary; you can passNULL to indicate that the rendering should not be clipped.

Thealignment parameter can be set to one of the following values:

XmALIGNMENT_BEGINNING XmALIGNMENT_CENTER XmALIGNMENT_END

The value identifies the justification for the text. The effect of the value is modified by
value of thelayout_direction parameter, which can be set to eitherXmSTRING_
DIRECTION_L_TO_R or XmSTRING_DIRECTION_R_TO_L.

* In Motif 1.2, XmStringDraw () takes an XmFontList parameter. In Motif 2.0, theXmFontList is obsolete, and
has been replaced with anXmRenderTable . For backwards compatibility, theXmFontList type is implement-
ed as a skeletonXmRenderTable .
846 Motif Programming Manual

Chapter 25: Compound Strings

e
ile the

as
he
ially
string

er to
ata
vide

ds to
you

h the
idget.
g an
apter

box

d

ngle

uch
o help
ade
ons
The functionXmStringDrawImage() is toXmStringDraw() asXDrawString() is to
XDrawImageString() .The difference is that the image routines overwrite th
background even in places where the font does not set bits in the character image, wh
other routines only render foreground pixels.

The XmStringDrawUnderline() routine takes the same parameters
XmStringDraw() with one addition. The last parameter specifies the portion of t
compound string that should be underlined. A compound string can be wholly or part
underlined depending on whether the last parameter specifies the entire compound
or only a substring of thestring parameter.

It may be necessary to get dimensional information about a compound string in ord
know where to place it within the window when it is drawn. You may also want this d
to determine the optimal or desired width and height of a widget in case you have to pro
a geometry callback method. When a call toXtQueryGeometry() is made, a widget that
contains compound strings may need to tell the calling function the dimensions it nee
render its compound strings adequately. Motif provides the following routines to help
determine compound string dimensions:

Dimension XmStringBaseline (XmRenderTable renderTable , XmString string)
void XmStringExtent (XmRenderTable renderTable , XmString string ,

Dimension * width , Dimension * height)
Dimension XmStringHeight (XmRenderTable renderTable , XmString string)
Dimension XmStringWidth (XmRenderTable renderTable , XmString string)

Each of these functions takesrenderTable (XmRenderTable) and string
(XmString) parameters. The render table is dependent on the widget associated wit
string, but there is no requirement that you must use a string that is associated with a w
If you just want to get the dimensions of a particular compound string rendered usin
arbitrary font or font set, you can create a render table manually, as described in Ch
24,Render Tables.

XmStringBaseline() returns the number of pixels between the top of the character
and the baseline of the first line of text in the compound string.XmStringWidth() and
XmStringHeight() return the width and height, respectively, for the specifie
compound string.XmStringExtent() takes two additional parameters,width and
height . These arguments return the width and height in pixels of the smallest recta
that encloses the compound string specified instring .

Summary
Compound strings can be useful for creating multi-line or multi-font text for widgets s
as Labels, PushButtons, and ToggleButtons. Compound strings were also designed t
in making internationalized applications, but this functionality has basically been m
obsolete by the addition of internationalization features in X11R5. Since Motif applicati
Motif Programming Manual 847

Chapter 25: Compound Strings

g an
er-

es, so
ion. If
use
have to use compound strings to display most textual data, the trick to developin
internationalized application is to use compound strings without interfering with low
level X internationalization functionality.

The best practice is to specify compound string and rendition resources in resource fil
that you can have a separate file for each language that is supported by your applicat
you have to create compound strings in an application, you should
XmStringCreateLocalized() or specify theXmFONTLIST_DEFAULT_TAGrendition
tag to ensure that the strings are interpreted and rendered in the current locale.
848 Motif Programming Manual

UNIX
are

, you

red
In this chapter:
• Handling Signals in X11R
• Handling Signals in X11R
• Additional Issues
• Summary

This chapter describes the te
signals within an X-based app
unsure what a signal is or ho
should consult your operating

In X11R5, handling signals
Motif Programming Manual
5
6 26
your
ss the
at is,
to the
s can
en the
right
nal
which
s can

the
by
afely

some
ut to

layed

gnal,
sually
nal

al de-
ro-
t this
Signal Handling
chniques which should be adopted in order to handle
lication. It is not a lesson in signal handling per se: if you

w to handle one in an ordinary non-X-based application
 system or programming language manuals.

safely could be problematic. UNIX signals are delive
asynchronously in the context of the currently running process. On receipt of a signal,
application branches immediately to any handlers which have been set up to proce
signal concerned, without any consideration to the application state or context. Th
regardless of whatever state the application is in, a new function context is pushed on
process stack in order to immediately handle the signal. This scheme of operation
severely interfere with the transmission and processing of X protocol messages betwe
X server and the application client, because the signal could potentially be delivered
in the middle of an X call which is manipulating the event queue. Any attempt by the sig
handler to call further X routines in these circumstances might garbage any messages
are in progress. Although the probability of this interference is small, because signal
arise from a variety of reasons which in many cases are from events external to
application, mission critical applications have to guard against the possibility
incorporating carefully constructed code to process potentially dangerous signals s
and cleanly. This is particularly important because the default action associated with
signal types causes the termination of the application, and thus we have no option b
install our own handlers to override the system default.

The solution to the problem is to ensure that the processing of received signals is de
until such time as the application knows that it is safe to do so*. In practical terms, this
means that we rewrite our X event loop to take into account the possible receipt of a si
and we only process the signal when we know that the event queue is stable. This u
involves two signal handling routines. The first routine is installed as the normal sig

* It should be noted that BSD-style UNIX systems do provide a system call that effectively suspends sign
livery, but it would be too costly to invoke this routine for each Xlib call. Furthermore, it is considered inapp
priate for X, a windowing system that is designed to be independent of the operating system, to adop
system-specific solution.
849

Chapter 5: Introduction to Dialogs

utine
o so.

r to
are

rfere

ling.
ide to
, or

like

d with
t has
ode

the
handler, but it does nothing more than set a flag on receipt of the signal. The second ro
performs the actual signal processing; we call this at a later date when it is safe to d

In X11R6, the task is much simplified because the toolkit has been rewritten in orde
handle signals safely. There are new toolkit procedures which we can call that
specifically designed to ensure that the receipt and handling of a signal does not inte
with the X queue processing.

In the discussion which follows, we present both X11R5- and X11R6-style signal hand
In the case of X11R5, the issue is complicated by the fact that an application can dec
handle events in two different ways, either using the lower level Xlib mechanisms
through the higher level event procedures provided in the X toolkit.

Handling Signals in X11R5

Handling Signals using Xlib
An application that uses Xlib gets events from the server using a function
XNextEvent() . This function reads the next event in the queue and fills anXEvent data
structure that describes various things about the event, such as the window associate
it, the time it took place, the event type, and so on. When the function returns, the even
been delivered and it is up to the application to decide what to do next. The following c
fragment demonstrates a simplified view of Xlib event handling:

void sigchld_handler(int);

main_event_loop ()
{
...
signal (SIGCHLD, sigchld_handler);

while (1) {
XNextEvent (display, &event);
switch (event.type) {
case ConfigureNotify: /*...*/ break;
case Expose: /*...*/ break;
case ButtonPress: /*...*/ break;
case EnterWindow: /*...*/ break;
case LeaveWindow: /*...*/ break;
case MapNotify: /*...*/ break;
...
}
}
}

If the operating system decides to deliver aSIGCHLDsignal, the signal can arrive at any
time, possibly inside any of the case statements or even inside the call toXNextEvent() .
The signal handler for the signal is called automatically by the operating system. If
850 Motif Programming Manual

Chapter 5: Introduction to Dialogs

ime
gnal
, just
er

hown

ll
hat
ling
.

entary
f the

ation
signal handler makes any Xlib calls, you have no way of knowing if it is doing so at a t
when another Xlib call is being sent to the X server. The solution is to have the si
handler do nothing but set a flag to indicate that the signal has been delivered. Then
before the call toXNextEvent() , the event loop can check the flag to determine wheth
or not to call another function that actually processes the signal. This new design is s
in the following code fragment:

static int sigchld_delivered;
void sigchld_handler(...), real_sigchld_handler(int);

main_event_loop()
{
...
signal (SIGCHLD, real_sigchld_handler);

while (1) {
/* it's safe to handle signals that may have been delivered */
if (sigchld_delivered > 0) {
/* add other parameters as necessary */
sigchld_handler (SIGCHLD);
sigchld_delivered--;
}
XNextEvent (display, &event);
switch (event.type) {
case ConfigureNotify: /*...*/ break;
case Expose: /*...*/ break;
case ButtonPress: /*...*/ break;
case EnterWindow: /*...*/ break;
case LeaveWindow: /*...*/ break;
case MapNotify: /*...*/ break;
...
}
}
}

All that real_sigchld_handler() does is increment thesigchld_delivered flag,
as shown in the following fragment:

/* additional parameters differ between BSD and SYSV */
void real_sigchld_handler (int sig)
{
sigchld_delivered++;
}

The actualsigchld_handler() routine can do whatever it needs to do, including ca
Xlib routines, since it is only called when it is safe to do so. You should note t
XNextEvent() waits until it reads an event from the X server before it returns, so hand
the signal may take a long time if the program is waiting for the user to do something

These code fragments demonstrate the general design for handling signals in a rudim
way. In a real application, the actual signal handler would probably need access to all o
parameters passed to the original signal handling function. One example of this situ
Motif Programming Manual 851

Chapter 5: Introduction to Dialogs

You
ould
ndler
ds for
fill it
the

ion
ctly
at

nity
e are
and
at it
ture
ht

us

des

s to
s are

e the
air bit
work
would be a signal handler that displays the values of all its parameters in a dialog box.
can’t change anything on the display using the original signal handler because it w
require making Xlib calls, so you have to save the parameters until the real signal ha
is called. To save the parameters, you could define a data structure that contains fiel
all of the parameters. The original signal handler could allocate a new structure and
in each time a signal is delivered.* When the real signal handler is called, it can access
data structure and create a dialog using the appropriate Xlib calls.

Handling Signals in Xt
Since this is a book on Motif and Motif is based on Xt, the next step is to find a solut
that is appropriate for Xt-based applications. In Xt, you typically don’t read events dire
from the X server usingXNextEvent() and then branch on the event type to decide wh
to do next. Instead, Xt providesXtAppMainLoop() ; the code for this function is below:

void XtAppMainLoop (XtAppContext app_context)
{
XEvent event;

for (;;) {
XtAppNextEvent (app_context, &event);
XtDispatchEvent (&event);
}
}

Since the event processing loop is internal to the Xt toolkit, we don’t have the opportu
to insert a check to see if any signals have been delivered, as we did with Xlib. Ther
various ways to handle this problem. We could write our own event processing loop
include code that tests for the delivery of a signal. One problem with this solution is th
bypasses a standard library routine. We want to ensure upwards compatibility with fu
versions of Xt, and if we write our own routine, we risk losing any functionality that mig
be introduced later.

Even though it is unlikely thatXtAppMainLoop() will change in the future, we should
find another way to solve the problem. Clearly, the desired effect is to get Xt to notify
just before it’s going to callXNextEvent() , since this is the window of opportunity where
it is safe for a signal handler to make Xlib or Xt calls. It just so happens that Xt provi
two methods that do what we want: work procedures and timers.

A work procedure is a function that is called by Xt when it does not have any event
process. Although an application can register multiple work procedures, the procedure
processed one at a time, with the most recent one being invoked first. We can solv
signal handler problem using a work procedure because most applications spend a f
of time waiting for the user to generate events. In the signal handler, we register a

* As we will discuss later, there can also be problems with memory allocation in a signal handler.
852 Motif Programming Manual

Chapter 5: Introduction to Dialogs

ode

en the

g

oes
s
s, or

e is
n is
procedure usingXtAppAddWorkProc() . When the application is idle, Xt invokes the
work procedure, which does the real work of handling the signal. The following c
fragment uses this approach:

XtAppContext app;
static void real_reset(int);
static Boolean reset(XtPointer);

main (int argc, char *argv[])
{
...
signal (SIGCHLD, real_reset);
...
}

/* reset() -- a program died... */
static void real_reset (int unused)
{
int pid, i;

#ifdef SYSV
int status;
#else /* SYSV */
union wait status;
#endif /* SYSV */

if ((pid = wait (&status)) == -1)
/* an error of some kind (fork probably failed); ignore it */
return;

(void) XtAppAddWorkProc (app, reset, NULL);
}

static Boolean reset (XtPointer client_data)
{
/* handle anything Xt/Xlib-related that needs to be done now */
...
return True; /* remove the work procedure from the list */
}

This example assumes that the application forks off a new process at some point. Wh
child eventually exits, the parent is sent aSIGCHLDsignal, at which point the application
branches directly to thereal_reset() signal handler. This routine reaps the child usin
wait() and then adds a work procedure usingXtAppAddWorkProc() . (The function
normally returns a work procedure ID, but we’re not interested in it here.) When Xt d
not have any events to process, it callsreset() . This routine can perform any other task
necessary for handling the signal, such as calling Xlib routines, popping up dialog
anything it likes.

If the application is waiting for events when it receives the signal, the work procedur
invoked almost immediately after the actual signal handler. However, if the applicatio
Motif Programming Manual 853

Chapter 5: Introduction to Dialogs

l is
n the
ually
ou
riable

ch as
listic
ion
t the

on is
in a callback routine handling an event, the work procedure is not called until contro
passed back to the event loop. While it’s true that there may be some delay betwee
time that the signal is delivered and the time that it is actually processed, the delay is us
small enough that an application doesn’t need to worry about it. If timing is critical, y
can always set a global signal flag when the signal is received, and then test that va
in critical sections of your code to see if the signal has been delivered.

An Example
The signal handling problem can also be solved with a timer, using the same approa
with a work procedure. Example 26-1 demonstrates the use of a timer in a more rea
application.*The program displays an array of DrawnButtons that start applicat
programs. While an application is running, the associated button is insensitive, so tha
user can only run one instance of the application. When the application exits, the butt
reactivated, so that the user can select it again.

Example 26-1. The app_box.c program

/* app_box.c -- make an array of DrawnButtons that, when activated,
** executes a program. When the program is running, the drawn button
** associated with the program is insensitive. When the program dies,
** reactivate the button so the user can select it again.
*/

#include <Xm/DrawnB.h>
#include <Xm/RowColumn.h>
#include <signal.h>

#ifndef SYSV
#include <sys/wait.h>
#else /* SYSV */
#define SIGCHLD SIGCLD
#endif /* SYSV */

#define MAIL_PROG "/bin/mail"

typedef struct {
Widgetdrawn_w;
char*pixmap_file;
char*exec_argv[6]; /* 6 is arbitrary, but big enough */
intpid;
} ExecItem;

ExecItem prog_list[] = {
{ NULL, "terminal", { "xterm", NULL }, 0 },
{ NULL, "flagup", { "xterm", "-e", MAIL_PROG, NULL }, 0 },
{ NULL, "calculator", { "xcalc", NULL }, 0 },

* In X11R6, the routineXtVaAppInitialize () is deprecated, and should be replaced withXtVaOpenAppli-
cation ().
854 Motif Programming Manual

Chapter 5: Introduction to Dialogs
{ NULL, "xlogo64", { "foo", NULL }, 0 }
};

XtAppContext app;/* application context for the whole program */
GC gc;/* used to render pixmaps in the widgets */

void reset (int);
void reset_btn (XtPointer, XtIntervalId *);
void redraw_button (Widget, XtPointer, XtPointer);
void exec_prog (Widget, XtPointer, XtPointer);

main (int argc, char *argv[])
{
Widgettoplevel, rowcol;
Pixmappixmap;
Pixelfg, bg;
Argargs[8];
inti, n;

/* we want to be notified when child programs die */
(void) signal (SIGCHLD, reset);

XtSetLanguageProc (NULL, NULL, NULL);

/* Since this is an X11R5 example...
** For X11R6, use XtVaOpenApplication()
*/
toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0, &argc, argv, NULL, NULL);

n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, "rowcol", args, n);

/* get the foreground and background colors of the rowcol
** so the gc (DrawnButtons) will use them to render pixmaps.
*/
XtVaGetValues (rowcol,
XmNforeground, &fg,
XmNbackground, &bg, NULL);
gc = XCreateGC (XtDisplay (rowcol),
RootWindowOfScreen (XtScreen (rowcol)),
NULL, 0);
XSetForeground (XtDisplay (rowcol), gc, fg);
XSetBackground (XtDisplay (rowcol), gc, bg);

for (i = 0; i < XtNumber (prog_list); i++) {
/* the pixmap is taken from the name given in the structure */
pixmap = XmGetPixmap (XtScreen (rowcol),
prog_list[i].pixmap_file, fg, bg);
/* Create a drawn button 64x64 (arbitrary, but sufficient)
** shadowType has no effect till pushButtonEnabled is false.
*/
n = 0;
XtSetArg (args[n], XmNwidth, 64); n++;
Motif Programming Manual 855

Chapter 5: Introduction to Dialogs
XtSetArg (args[n], XmNheight, 64); n++;
XtSetArg (args[n], XmNpushButtonEnabled, True); n++;
XtSetArg (args[n], XmNshadowType, XmSHADOW_ETCHED_OUT); n++;
prog_list[i].drawn_w = XmCreateDrawnButton (rowcol,
"dbutton",
args, n);
XtManageChild (prog_list[i].drawn_w);

/* if this button is selected, execute the program */
XtAddCallback (prog_list[i].drawn_w, XmNactivateCallback,
exec_prog, (XtPointer) &prog_list[i]);
/* when the resize and expose events come, redraw pixmap */
XtAddCallback (prog_list[i].drawn_w, XmNexposeCallback,
redraw_button, (XtPointer) pixmap);
XtAddCallback (prog_list[i].drawn_w, XmNresizeCallback,
redraw_button, (XtPointer) pixmap);
}

XtManageChild (rowcol);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}

/* redraw_button() -- draws the pixmap into its DrawnButton
** using the global GC. Get the width and height of the pixmap
** being used so we can either center it in the button or clip it.
*/
void redraw_button (Widget button, XtPointer client_data,
XtPointer call_data)
{
Pixmappixmap = (Pixmap) client_data;
intunused, destx, desty;
unsigned intsrcx, srcy, pix_w, pix_h;
intdrawsize, border;
Dimensionbdr_w, w_width, w_height;
shorthlthick, shthick;
Windowroot;
XmDrawnButtonCallbackStruct *cbs =
(XmDrawnButtonCallbackStruct *) call_data;

/* get width and height of the pixmap. don't use srcx and root */
XGetGeometry (XtDisplay (button), pixmap, &root, &unused,
&unused, &pix_w, &pix_h, &srcx, &srcx);
/* get the values of all the resources that affect the entire
** geometry of the button.
*/
XtVaGetValues (button,
XmNwidth, &w_width,
XmNheight, &w_height,
XmNborderWidth, &bdr_w,
XmNhighlightThickness, &hlthick,
XmNshadowThickness, &shthick,
NULL);
/* calculate available drawing area, width first */
856 Motif Programming Manual

Chapter 5: Introduction to Dialogs
border = bdr_w + hlthick + shthick;
/* if window is bigger than pixmap, center it; else clip pixmap */
drawsize = w_width - 2 * border;
if (drawsize > pix_w) {
srcx = 0;
destx = (drawsize - pix_w) / 2 + border;
}
else {
srcx = (pix_w - drawsize) / 2;
pix_w = drawsize;
destx = border;
}
drawsize = w_height - 2 * border;
if (drawsize > pix_h) {
srcy = 0;
desty = (drawsize - pix_h) / 2 + border;
}
else {
srcy = (pix_h - drawsize) / 2;
pix_h = drawsize;
desty = border;
}

XCopyArea (XtDisplay (button), pixmap, cbs->window, gc, srcx, srcy, pix_w, pix_h,
destx, desty);
}

/* exec_proc() -- the button has been pressed; fork() and call
** execvp() to start up the program. If the fork or the execvp
** fails (program not found?), the sigchld catcher will get it
** and clean up. If the program is successful, set the button's
** sensitivity to False (to prevent the user from exec’ing again)
** and set pushButtonEnabled to False to allow shadowType to work.
*/
void exec_prog (Widget drawn_w, XtPointer client_data,
XtPointer call_data)
{
ExecItem *program = (ExecItem *) client_data;
XmDrawnButtonCallbackStruct *cbs =
(XmDrawnButtonCallbackStruct *) call_data;

switch (program->pid = fork ()) {
case 0: /* child */
execvp (program->exec_argv[0], program->exec_argv);
perror (program->exec_argv[0]); /* command not found? */
_exit (255);
case -1:
printf ("fork() failed.\n");
}

/* The child is off executing program... parent continues */
if (program->pid > 0) {
XtVaSetValues (drawn_w, XmNpushButtonEnabled, False, NULL);
XtSetSensitive (drawn_w, False);
Motif Programming Manual 857

Chapter 5: Introduction to Dialogs
}
}

/* reset() -- a program died, so find out which one it was and
** reset its corresponding DrawnButton widget so it can be reselected
*/
void reset (int unused)
{
intpid, i;
#ifdef SYSV
intstatus;
#else /* SYSV */
union waitstatus;
#endif /* SYSV */

if ((pid = wait (&status)) != -1) {
for (i = 0; i < XtNumber (prog_list); i++)
if (prog_list[i].pid == pid) {
/* program died -- now reset item. But not here! */
XtAppAddTimeOut (app, (unsigned long) 0, reset_btn,
(XtPointer) prog_list[i].drawn_w);
break;
}
}

(void) signal (SIGCHLD, reset);
}

/* reset_btn() -- reset the sensitivity and pushButtonEnabled resources
** on the drawn button. This cannot be done within the signal
** handler or we might step on an X protocol packet since signals are
** asynchronous. This function is safe because it's called from a timer
*/
void reset_btn (XtPointer closure, XtIntervalId *unused)
{
Widget drawn_w = (Widget) closure;

XtVaSetValues (drawn_w, XmNpushButtonEnabled, True, NULL);
XtSetSensitive (drawn_w, True);
XmUpdateDisplay (drawn_w);
}

The output of the program is shown in Figure 26-1.

Figure 26-1: Output of the app_box program
858 Motif Programming Manual

Chapter 5: Introduction to Dialogs

used
ses

utton
utton
, the

s the
with
each
ontrol
n the
n

mpt to
same

e data
cause
ds to

ing
er’s
nnot

hild

ling
ly

r
 side.

unt
the

ssed
e

The program in Example 26-1 is almost identical in design to the code fragment that
a work procedure, but it is more like something you might actually write. The program u
DrawnButtons to represent different application programs. The idea is that when a b
is pressed, the program corresponding to the image drawn on the button is run. The b
turns insensitive for as long as the application is alive. When the user exits the program
button’s state is restored so the user can select it again.

Each button has a data structure associated with it that specifies the file that contain
icon bitmap, anargv that represents the program to be run, the process ID associated
the program’s execution, and a handle to the button itself. The callback routine for
button spawns a new process, sets the button to insensitive, and immediately returns c
to the main event loop. The process ID is saved in the button’s data structure. Whe
external process terminates, aSIGCHLDsignal is sent to the main program and the butto
is reset.

As a general note, it is crucial that you understand that the new process does not atte
interact with the widgets in its parent application or read events associated with the
display connection as its parent process. Even though the child has access to the sam
structures as the parent, it cannot use its parent’s connection to the X server be
multiple processes cannot share an X server connection. If a child process inten
interact with the X server, it must close its existing connection and open a new one.

In our application, we play it safe by running a completely new application us
execvp() . This system call executes a program provided it can be found in the us
PATH, so we don’t need to specify full pathnames to the applications. If the program ca
be found for whatever reason, the child process dies immediately and thereset() signal
handler is called by the operating system.

Thereset() signal handler is called whenever a child process dies. At this point, the c
needs to be reaped and the state of the button needs to be reset. Thewait() system call is
used to reap the child; this routine can be called from withinreset() because it doesn’t
make any Xlib calls. However, we cannot reset the button’s state by cal
XtVaSetValues() andXtSetSensitive() because these routines would ultimate
result in Xlib calls. Therefore, rather than actually resetting the button inreset() , we call
XtAppAddTimeOut() to install a timer routine. This Xt call is safe in a signal handle
because it does not make any calls to Xlib; the timer is handled entirely on the client

XtAppAddTimeOut() registers a timer procedure that is called after a specified amo
of time. Xt’s main event processing loop takes care of calling the timer routine after
appropriate time interval. Since we have specified an interval of0 for the reset_btn()
timer, the routine is called immediately after the signal is received and control is pa
back to the main event loop. Thereset_btn() routine handles restoring the state of th
DrawnButton, so that the user can run the associated application again.
Motif Programming Manual 859

Chapter 5: Introduction to Dialogs

ork
s the
al.

ers are
e
als,

does

ead.
as

timer
why

t call
t

ions
IX
al

ng
X
d text
idget,

most
an
er is

are

, the
ever
rrno

r.
y the
is true
pt,
In terms of signal handling, there is really one main difference between using a w
procedure and using an interval timer. The work procedure is called as soon a
application is idle and waiting for input, while the timer is called after a specified interv

Additional Issues
There are several loose ends that we need to address. One issue involves the way tim
implemented. You may be thinking, “Isn’t a timer another signal in UNIX?” While th
answer is yes, what is important is that Xt-timers are not implemented using UNIX sign
but instead using a feature of theselect() system call. In this context,select() is used
to determine if the X server is sending events to the application (although this function
not actually read any events). The last parameter toselect() is a time interval that
specifies how long the routine waits before returning whether there is anything to r
Setting this time interval allows Xt to implement what appears to be a timer. As long
there are events to read from the server, however, the timer is inactive, which is why a
in Xt can only be set in terms of an interval, rather than as a real-time value. It is also
you should never rely on the accuracy of these timers.

Timers are not implemented using UNIX signals for the same reasons that we did no
XtVaSetValues() from within theSIGCHLD signal handler. It is also for this reason tha
you should not use UNIX-based functions such assleep() or setitimer() to modify
widgets or make Xlib calls. We don’t mean to imply that you should not use these funct
at all; it’s just that the same restrictions apply to UNIX timers as they do to other UN
signals. If you need to do any X or Xt-related function calls, don’t do it from a sign
handler. You should install a zero-length interval timeout function usi
XtAppAddTimeOut() and, when the toolkit invokes your function, call whatever
routines are necessary.Timers of this type are used frequently with clock programs an
widgets. In the case of a clock, the timer advances the second hand, while for a text w
it causes the insertion cursor to flash.

Another loose end that needs to be tied up involves System V’s handling of signals. In
modern versions of UNIX (derived from BSD UNIX), when a signal is delivered to
application, any system call that might be going on is interrupted, the signal handl
called, and when it returns, the system call is allowed to continue. For example, if you
reading in the text of a file usingread() and a signal is sent to the application, theread()
is suspended while the signal handler is called. After your signal handler returns
read() is restarted and it returns the actual number of bytes read as if no signal had
occurred. Under System V, all system calls are interrupted and return an error (with e
set toEINTR). In this case, all of the data read by theread() call is lost.

This situation is a problem in X becauseread() is used to read events from the X serve
If read() fails because a signal is delivered, then the protocol that was being sent b
server is lost, as would be anything we were sending to the server, since the same
for calls towrite() . There really isn’t anything you can do about this problem, exce
860 Motif Programming Manual

Chapter 5: Introduction to Dialogs

xist

you

ing
f
tion
r or a

re-

tions
c is to

xt of

at
call

re.

nal.
to
er use.
perhaps, for upgrading to a more modern version of UNIX. This problem does not e
with SVR4 or Solaris.

Even system calls in BSD-derived UNIX systems may have problems. If, for example,
call read() from a signal handler that interrupted anotherread() , you still might not get
what you expected becauseread() is not re-entrant. A function that is re-entrant is one
that can be called at any time, even while the function is already being executed.

We’re pretty safe with the advice we’ve given so far, with one exception: call
XtAppAddTimeOut() or XtAppAddWorkProc() eventually requires the allocation o
memory to add the new timer or work procedure to the respective list. If your applica
happens to be allocating memory when a signal is delivered and you try to add a time
work procedure, you could make another call toalloc() , which is the lowest-level
routine that allocates memory from the system. Unless your version of UNIX has a
entrant memory allocation system call, your memory stack may be corrupted.*There really
isn’t anything that you can do about these problems, and there are no official specifica
anywhere in the X documents that even address these issues, so the best tacti
minimize the exposure using timers or work procedures as described here.

Handling Signals in X11R6
In X11R6, three new functions are added in order to handle signals safely in the conte
the X Toolkit Intrinsics event queue mechanisms.

XtAppAddSignal

Firstly, XtAppAddSignal () registers a handler with the toolkit which is to be invoked
the appropriate safe point in the Xt event mechanisms; the handler is permitted to
further X routines, in the knowledge that it is safe to do so at that junctu
XtAppAddSignal () returns an opaque handle, anXtSignalId , used to keep track of the
registered handler. The full signature of the routine is as follows:

XtSignalId XtAppAddSignal (XtAppContext app,
XtSignalCallbackProc handler ,
XtPointer client_data)

Thehandler parameter is the application-specific routine invoked in response to a sig
As usual,client_data is any application-specific data which you want your handler
be passed when invoked. The returned XtSignalId should be stored for subsequent lat
An XtSignalCallbackProc routine is defined as follows:

typedef void (*XtSignalCallbackProc) (XtPointer closure, XtSignalId *id)

* The GNU version ofmalloc () is re-entrant, so it is safe from this problem.
Motif Programming Manual 861

Chapter 5: Introduction to Dialogs

y
ignal
ent

is the
tine

ng
tine

e

e as

R5
he
The applicationhandler should be registered after the usual operating systemsignal ()
call. Note that the purpose ofhandler is not to catch the signal, but to perform an
processing that is required in the knowledge that it is Xt-event-safe. A standard s
handling routine is still required to catch the signal itself. The following code fragm
outlines the steps:

void my_safe_handler (XtPointer, XtSignalId *);
void my_signal_catcher ();

XtSignalId my_signal_id;
XtAppContext app;
...
/* standard operating system signal() call */
signal (SIGCHLD, my_signal_catcher);

/* register a handler to process the signal safely */
my_signal_id = XtAppAddSignal (app, my_safe_handler, NULL);
...

XtNoticeSignal

If we are still using the standard operating systemsignal () routines to catch a signal, and
a separate application handler to perform safe processing, what then, you may ask,
connecting piece of logic which makes the system work? The answer is the rou
XtNoticeSignal (). We call this inside our normal operating system signal handli
routine to inform Xt that the signal has arrived, secure in the knowledge that this Xt rou
is the only intrinsics function we are guaranteed as to its signal safety.XtNoticeSignal ()
takes as a parameter theXtSignalId of the handler we wish to invoke in response to th
current signal delivery.XtNoticeSignal () therefore has the following form:

void XtNoticeSignal (XtSignalId)

Following on from the previous example, we might sketch our signal catching routin
follows:

void my_signal_catcher (int signo)
{
/* Perform non-X processing */
...

/* Inform the intrinsics of signal arrival */
XtNoticeSignal (my_signal_id);
}

XtNoticeSignal () therefore replaces the various calls toXtAppAddWorkProc () or
XtAppAddTimeOut () within the signal catching routine, as recommended for the X11
examples.XtNoticeSignal () simply arranges to call the handler associated with t
parameterXtSignalId at a safe point in the Xt event processing loop.
862 Motif Programming Manual

Chapter 5: Introduction to Dialogs

ling
en
er the

eme

le of
XtRemoveSignal

We can disassociate a handler from the X Intrinsics at any time by cal
XtRemoveSignal (). We would do this if we are no longer interested in handling the giv
signal, or if we wanted to change the handler. The routine is passed as a paramet
XtSignalId returned from a previous call toXtAppAddSignal (). XtRemoveSignal ()
has the following prototype:

void XtRemoveSignal (XtSignalId)

The source of the signal must be disabled before callingXtRemoveSignal () in order to
prevent possible race conditions. The following code fragment outlines the correct sch
of operations:

XtSignalId my_signal_id;
...
/* Disable the signal source */
signal (SIGCHLD, SIG_IGN);

/* Unregister the Intrinsics signal handler */
XtRemoveSignal (my_signal_id);

An Example
The following fragments of code represent the changes required to modify the examp
Section 26.2.1 to use the X11R6 signal notification mechanisms.*We add a new global
variable for theXtSignalId returned byXtAppAddSignal (), we modifyreset () to call
XtNoticeSignal (), and we changereset_btn () to anXtSignalCallbackProc .

.....
XtAppContextapp;/* application context for the whole program */
GCgc;/* used to render pixmaps in the widgets */
XtSignalIdsign_id;/* X11R6 Signal Registration handle */
ExecItem*reap = NULL;/* the item which has just terminated */
....
/* reset_btn is now an XtSignalCallbackProc */
void reset_btn (XtPointer, XtSignalId *);
...

main (int argc, char *argv[])
{
...

/* we want to be notified when child programs die */
(void) signal (SIGCHLD, reset);

XtSetLanguageProc (NULL, NULL, NULL);
/* Now that we are using X11R6...*/

* XtVaOpenApplication (), the SessionShell widget class,XtAppAddSignal (), andXtNoticeSignal () are
only available in X11R6.XtVaAppInitialize () is considered deprecated in X11R6.
Motif Programming Manual 863

Chapter 5: Introduction to Dialogs
toplevel = XtVaOpenApplication (&app, “Demos”, NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

/* Register our safe signal handler with the Intrinsics */
/* Pass the address of the reap pointer as client data */
sign_id = XtAppAddSignal (app, reset_btn, (XtPointer) &reap);

/* The rest of main() is exactly as before */
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, “rowcol”, args, n);

...
XtAppMainLoop (app);
}

/* reset() -- a program died, so find out which one it was and
** reset its corresponding DrawnButton widget so it can be reselected
**
** The difference between this and the X11R5 example is the replacing
** of XtAppAddTimeOut() with XtNoticeSignal().
*/
void reset (int unused)
{
int pid, i;
#ifdef SYSV
int status;
#else /* SYSV */
union wait status;
#endif /* SYSV */

reap = (ExecItem *) 0;

/* Basically the same loop as X11R5, except for XtNoticeSignal()
** instead of the XtAppAddTimeOut() call
*/
if ((pid = wait (&status)) != -1) {
for (i = 0; i < XtNumber (prog_list); i++)
if (prog_list[i].pid == pid) {
/* program died -- now reset item. But not here! */
/* Set up the client data for our signal procedure */
reap = &prog_list[i];
/* Inform Xt of signal arrival */
XtNoticeSignal (sign_id);
break;
}
}

(void) signal (SIGCHLD, reset);
}

/* reset_btn() -- reset the sensitivity and pushButtonEnabled resources
** on the drawn button.
**
864 Motif Programming Manual

Chapter 5: Introduction to Dialogs

uld
e the
d. In
itical

ent,

are
on a
sitive

ent
(or the
re the
, the
** For X11R6, we have simply changed the signature to that
** of an XtSignalCallbackProc, and pass a pointer to the
** reap ExecItem as client data, instead of a Widget.
*/
void reset_btn (XtPointer closure, XtSignalId *id)
{
ExecItem **reap_ptr = (ExecItem **) closure;
Widget drawn_w = (*reap_ptr)->drawn_w;

XtVaSetValues (drawn_w, XmNpushButtonEnabled, True, NULL);
XtSetSensitive (drawn_w, True);
XmUpdateDisplay (drawn_w);
}

Summary
Up until the release of X11R6, the official advice of the X Consortium was that you sho
not mix signals with X applications. However, there are cases where you must choos
lesser of two evils. The need for signal handling exists and cannot simply be ignore
X11R6, Xt has support for registering signal handlers, so this problem is no longer a cr
issue as far as the support offered by the X Toolkit is concerned. In an X11R5 environm
the approaches given in this chapter should serve you well most of the time.

The most important lesson to learn from this chapter may well be that UNIX signals
potentially dangerous to X applications, or indeed any sort of program that relies
client-server protocol. They can also be a problem for system calls in an extremely sen
or real-time environment. The issue is not X specific; X just happens to be an environm
where the issue arises. Whenever the operating system can interrupt the client side
server side, for that matter), you should be prepared to consider those cases whe
client-server protocol may be breached. Using the X11R6 signal notification scheme
toolkit takes upon itself the task of ensuring X protocol integrity.
Motif Programming Manual 865

Chapter 5: Introduction to Dialogs
866 Motif Programming Manual

st not
tion
r to
Chapter 1

In this chapter:
• Help Systems
• Working Dialogs
• Dynamic Message

Symbols
• Summary

This chapter describes some
completely, in earlier chapters
of multi-stage help systems,
Motif Programming Manual
27
aps

of X
some
te a
be a
pics

so far
g, as
e 1,

ser,
ation.

he
and
user

lves
the
Advanced Dialog
Programming

Motif features that have not been described, or at lea
. The topics, which all deal with dialogs, include the crea
the development of WorkingDialogs that allow the use

interrupt long-running tasks, and a method for dynamically changing the pixm
displayed in a dialog.

In one sense, this chapter isn’t about dialogs at all, but about various aspects
programming that become most evident when working with dialogs. Here we address
issues involved in creating multi-stage help systems, we show you how to crea
WorkingDialogs that allows the user to interrupt a long-running task, and we descri
method for dynamically changing the pixmaps that are displayed in a dialog. These to
explore some of the most interesting problems in this book.

These topics take us deeper into the lower layers of X than anything we’ve discussed
in this book. You should have a good basic understanding of X event-processin
implemented both in Xlib and Xt. Otherwise, be prepared to refer frequently to Volum
Xlib Programming Manual, and Volume 4,X Toolkit Intrinsics Programming Manual,
when faced with references to lower-level functions.

Help Systems
TheMotif Style Guidedoesn’t have much to say about how help is presented to the u
although it does discuss the ways in which the user can request help from an applic
The user can request help by selecting theHelp button in a dialog box, by choosing help
items from theHelp menu in the MenuBar, or by pressing the HELP or F1 key on t
keyboard. Help information should be presented clearly, so that it is accessible
beneficial to users. You should also maintain consistency in a help system, so that the
can become familiar with the style of help that you provide.

The easiest and most straightforward method of presenting help information invo
creating an InformationDialog with the necessary text displayed as
867

Chapter 27: Advanced Dialog Programming

the
XmNmessageString . Example 27-1 demonstrates how to display a help dialog when
user presses theHelp button in another dialog box.*

Example 27-1. The simple_help.c program

/* simple_help.c -- create a PushButton that posts a dialog box
** that entices the user to press the help button. The callback
** for this button displays a new dialog that gives help.
*/

#include <Xm/MessageB.h>
#include <Xm/PushB.h>

main (int argc, char *argv[])
{

Widget toplevel, button;
XtAppContext app;
XmString label;
Arg args[2];
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
label = XmStringCreateLocalized ("Push Me");
XtSetArg (args[0], XmNlabelString, label);
button = XmCreatePushButton (toplevel, "button",args, 1);
XtAddCallback (button, XmNactivateCallback, pushed,

"You probably need help for this item.");
XmStringFree (label);
XtManageChild (button);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

#define HELP_TEXT "This is the help information.\nNow press 'OK'"

/* pushed() -- the callback routine for the main app's pushbutton. */
void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{

char *text = (char *) client_data;
Widget dialog;
XmString t = XmStringCreateLocalized (text);
Arg args[5];
int n;
void help_callback(Widget, XtPointer, XtPointer);
void help_done(Widget, XtPointer, XtPointer);

n = 0;

* XtVaAppInitialize() is considered deprecated in X11R6.XmStringGetLtoR () and XmMessage-
BoxGetChild () are deprecated in Motif 2.0 and later.XmStringGenerate () is only available from Motif 2.
0 onwards.
868 Motif Programming Manual

Chapter 27: Advanced Dialog Programming
XtSetArg (args[n], XmNautoUnmanage, False); n++;
XtSetArg (args[n], XmNmessageString, t); n++;
dialog = XmCreateMessageDialog (XtParent (w), "notice", args, n);
XmStringFree (t);
XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));
XtAddCallback (dialog, XmNokCallback, help_done, NULL);
XtAddCallback (dialog, XmNhelpCallback, help_callback, HELP_TEXT);

/* This also pops up the DialogShell parent */
XtManageChild (dialog);

}

/* help_callback() -- callback routine for the Help button in the
** original dialog box that displays an InformationDialog based on the
** help_text parameter.
*/

void help_callback (Widget parent, XtPointer client_data,
XtPointer call_data)

{
char *help_text = (char *) client_data;
Widget dialog;
XmString text;
void help_done(Widget, XtPointer, XtPointer);
Arg args[5];
int n;

n = 0;
text = XmStringGenerate ((XtPointer) help_text,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
NULL);

XtSetArg (args[n], XmNmessageString, text); n++;
XtSetArg (args[n], XmNautoUnmanage, False); n++;
dialog = XmCreateInformationDialog (parent, "help", args, n);
XmStringFree (text);

XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));
XtSetSensitive (XtNameToWidget (dialog, “Help”), False);
/* the OK button will call help_done() below */
XtAddCallback (dialog, XmNokCallback, help_done, NULL);
/* display the help text */
XtManageChild (dialog);

}

/* help_done() -- called when user presses "OK" in dialogs. */
void help_done (Widget dialog, XtPointer client_data, XtPointer call_data)
{

XtDestroyWidget (XtParent (dialog));
}

Motif Programming Manual 869

Chapter 27: Advanced Dialog Programming

ialog,

this

e

to

exists

with
ey.

n help
for
more
text-

ileage
The main window contains a PushButton that posts a simple MessageDialog. This d
as you can tell from Figure 27-1, contains aHelp button, that pops up an
InformationDialog. This dialog is intended to provide help text for the user.

The callback routine for theHelp button is installed using theXmNhelpCallback . This
routine pops up an InformationDialog that contains some predefined text. Obviously,
text is for demonstration purposes only. We usedXmStringGenerate() to display the
text, instead ofXmStringCreateLocalized() , since the help message contains newlin
characters. See Chapter 25,Compound Strings, for more information on how you can use
compound strings.

The XmNhelpCallback resource serves as the callback for any widget that wishes
provide help information; every Motif widget has anXmNhelpCallback resource
associated with it. Whenever the user presses the HELP key on the keyboard (if one
and the X server is set up correctly*theXmNhelpCallback is invoked for the widget that
has the keyboard focus. The F1 key also serves as a help key for compatibility
Microsoft Windows and to compensate for any computer that may not have a HELP k†

If a widget does not have anXmNhelpCallback function installed, Motif climbs the
widget tree, searching for the nearest ancestor that has a help callback. If you assig
callbacks to widgets, were commend that you provide specific help information
individual interface components, such as PushButtons, Lists, and Text widgets, and
general information for manager widgets. It is possible to design an elaborate con

* Sun workstations do not necessarily generate the proper event when the HELP key is pressed, and your m
may vary for other computers.

† The F1 key works by default, but it may be remapped to perform another function in the user’s.mwmrc file.

Figure 27-1: Output of simple_help.c
870 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

gets

ns

ted,
er can
ince

the

g is
g is
an

wise
ed, it
og,

he
ialog
can
p text
me
sensitive help system for an application by installing help callback routines for the wid
in the interface and providing relevant help information throughout the hierarchy.

Althoughsimple_help.cis rather contrived, we can use it to examine the different actio
the user might take within a help system. You can think of thePush Mebutton as any
widget in an application on which the user might want help. When the button is activa
the user is presented with a MessageDialog that undoubtedly requires help. The us
select theHelp button or press the F1 or HELP keys to access the help information. S
the InformationDialog is modeless, as it should be, the user can either close
InformationDialog or the original MessageDialog.

Since the InformationDialog is a child of the MessageDialog, if the MessageDialo
destroyed, the InformationDialog is also destroyed. Similarly, if the MessageDialo
unmapped, so is the InformationDialog. In general, when you display
InformationDialog, you should remove it if the user unmanages, destroys, or other
disables the dialog from which it was posted because if the help dialog remains post
could confuse the user. By making the InformationDialog the child of the original dial
you can let the parent-child interaction handle this behavior.

Multi-level Help
Developing a help system may involve providing multiple levels of help information. If t
user has already posted an InformationDialog, it is possible to display an additional d
if the user requests help in the original dialog. However, multiple help windows
confuse the user, so they should be avoided. A better solution is to display the new hel
in the same InformationDialog, so that all of the help information is displayed in the sa
place. Example 27-2 shows newhelp_callback() and help_done() routines that
implement this technique.*

Example 27-2. Sample routines to create a single help dialog

#define MAX_HELP_STAGES 3

char *help_text[3][5] = {
{

"You have reached the first stage of the help system.",
"If you need additional help, select the 'More Help' button.",
"You may exit help at any time by pressing 'Done'.",
NULL

},
{

"This is the second stage of the help system. There is",
"more help available. Press 'More Help' to see more.",
"Press 'Previous' to return to the previous help message,",

* XmStringCreateLtoR () andXmMessageBoxGetChild () are deprecated from Motif 2.0.XmStringGen-
erate () is only available from Motif 2.0 onwards.
Motif Programming Manual 871

Chapter 27: Advanced Dialog Programming
"or press 'Done' to exit the help system.",
NULL

},
{

"This is the last help message you will see on this topic.",
"You may either press 'Previous' to return to the previous",
"help level, or press 'Done' to exit the help system.",
NULL

}
};

/* help_callback() -- callback routine for the Help button in the
** original dialog box. The routine also serves as its own help
** callback for displaying multiple levels of help messages.
*/
void help_callback (Widget parent, XtPointer client_data,

XtPointer call_data)
{

static Widget dialog = (Widget) 0; /* prevent multiple dialogs */
XmString text;
char buf[BUFSIZ], *p;
static int index;
int i;
void help_done(Widget, XtPointer, XtPointer);
int index_incr = (int) client_data;

if (dialog && index_incr == 0) {
/* user pressed Help button in MesageDialog again. We're
** already up, so just make sure we're visible and return.
*/
XtManageChild (dialog);
XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));
return;

}

if (dialog)
index += index_incr; /* more/previous help; change index */

else {
/* We're not up, so create new Help Dialog */
Arg args[5];
int n;
/* Action area button labels. */
XmString done = XmStringCreateLocalized ("Done");
XmString cancel = XmStringCreateLocalized ("Previous");
XmString more = XmStringCreateLocalized ("More Help");
n = 0;
XtSetArg (args[n], XmNautoUnmanage, False); n++;
XtSetArg (args[n], XmNokLabelString, done); n++;
XtSetArg (args[n], XmNcancelLabelString, cancel); n++;
XtSetArg (args[n], XmNhelpLabelString, more); n++;
dialog = XmCreateInformationDialog (parent, "help", args, n);
/* pass help_done() the address of "dialog" so it can reset */
XtAddCallback (dialog, XmNokCallback, help_done,

(XtPointer) &dialog);
872 Motif Programming Manual

Chapter 27: Advanced Dialog Programming
/* if more/previous help, recall ourselves with increment */
XtAddCallback (dialog, XmNcancelCallback, help_callback,

(XtPointer) -1);
XtAddCallback (dialog, XmNhelpCallback, help_callback,

(XtPointer) 1);
/* If our parent dies, we must reset "dialog" to NULL! */
XtAddCallback (dialog, XmNdestroyCallback, help_done,

(XtPointer) &dialog);
XmStringFree (done); /* once dialog is created, these */
XmStringFree (cancel); /* strings are no longer needed. */
XmStringFree (more);
/* initialize index--needed for each new help stuff */
index = 0;

}

/* concatenate help text into a single string with newlines */
for (p = buf, i = 0; help_text[index][i]; i++) {

p += strlen (strcpy (p, help_text[index][i]));
*p++ = '\n';
*p = 0;

}
text = XmStringGenerate ((XtPointer) buf,

XmFONTLIST_DEFAULT_TAG,
XmCHARSET_TEXT,
NULL);

XtVaSetValues (dialog, XmNmessageString, text, NULL);
XmStringFree (text); /* after set-values, free unneeded memory */
/* If no previous help msg, set "Previous" to insensitive. */
XtSetSensitive (XtNameToWidget (dialog, ”Cancel”), index > 0);
/* If no more help, set "More Help" insensitive. */
XtSetSensitive (XtNameToWidget (dialog, “Help”),

index < MAX_HELP_STAGES - 1);
/* display the dialog */
XtManageChild (dialog);

}

/* help_done () -- callback used to set the dialog pointer
** to NULL so it can't be referenced again by help_callback().
** This function is called from the Done button in the help dialog.
** It is also our XmNdestroyCallback, so reset our dialog_ptr to NULL.
*/
void help_done (Widget dialog, XtPointer client_data,

XtPointer call_data)
{

Widget *dialog_ptr;

if (!client_data) {
/* destroy original MessageDialog */
XtDestroyWidget (XtParent (dialog));
return;

}

dialog_ptr = (Widget *) client_data;
if (!*dialog_ptr)
Motif Programming Manual 873

Chapter 27: Advanced Dialog Programming

f the
elp

the
pop
vent
the

ttons

se,

ed or
an
e

ay
can
/* prevent unnecessarily destroying twice */
return;

/* this might call ourselves. */
XtDestroyWidget (XtParent (dialog));

*dialog_ptr = NULL;
}

In our help system, each level has a new help string that needs to be displayed. All o
help text is displayed in the same InformationDialog. The dialog for the first level of h
is shown in Figure 27-2.

Thehelp_callback routine addresses several problems that arise when dealing with
added complexity of a multi-level help system. Since many dialogs may be trying to
up the same InformationDialog, the routine uses a static variable for the dialog to pre
multiple instances of the dialog. This variable allows the routine to keep track of when
dialog is active and when it is dormant.

The routine is conceptually recursive, in that it is used as the callback routine for the bu
in the help dialog. Theclient_data is used as an index into thehelp_text array.
When this parameter is0, the routine was called by the original MessageDialog. Otherwi
the routine was invoked as a result of the user pressing thePreviousbutton or theMore
Help button. In this case, theindex is changed so that the help text changes.

If the InformationDialog has already been created and the user presses theHelp button
anyway, the dialog is remapped and raised to the top of the screen usingXMapRaised() .
If the parent dialog is unmapped or destroyed, the InformationDialog is also unmapp
destroyed. In order to maintain the correct state information, we install
XmNdestroyCallback to monitor the destruction of the InformationDialog. When th
dialog is destroyed, we need to reset the handle to the dialog toNULLso that we cannot
reference the destroyed dialog again fromhelp_callback() the next time help is
requested.

All of our help text is fairly short, but if you need to provide help text that longer, you m
want to use a ScrolledText object in your help dialog. With a ScrolledText object, you

Figure 27-2: Displaying multiple levels of help text
874 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

ique

rface
cess
and-

ecified
utine

t

h

display text of an arbitrary length without worrying about screen real estate. This techn
is explained in Chapter 7,Custom Dialogs.

Context-sensitive Help
Although the user can access the help system by using the HELP or F1 keys, this inte
is somewhat cumbersome and it doesn’t work for widgets like Labels that do not pro
input events.You can provide a more intuitive interface that allows the user to point-
click directly on a widget to obtain help. TheMotif Style Guiderefers to this style of help
ascontext-sensitive help.

Context-sensitive help is make possible by theXmTrackingEvent() routine, which takes
the following form:

Widget XmTrackingEvent (Widget widget ,
Cursor cursor ,
Boolean confine_to ,
XEvent * event)

The routine invokes a server-grab on the pointer, changes the pointer shape to that sp
by thecursor parameter, and waits until the user presses a mouse button. The ro
returns the widget on which the user pressed the button. If theconfine_to parameter is
True , the cursor is confined to the window of the specifiedwidget . This window is also
used as the owner of the pointer grab. Theevent parameter returns the actual even
performed by the user.

An application usually provides context-sensitive help through an item on theHelp menu.
Example 27-3 shows thequery_for_help() callback routine that could be used for suc
a menu item.

Example 27-3. The query_for_help() routine

#include <X11/cursorfont.h>

Widget toplevel;

void query_for_help (Widget widget, XtPointer client_data,
XtPointer call_data)

{
Cursor cursor;
Display *display;
Widget help_widget;
XmAnyCallbackStruct *cbs, *newcbs;
XEvent event;

cbs = (XmAnyCallbackStruct *) call_data;
display = XtDisplay (toplevel);
cursor = XCreateFontCursor (display, XC_hand2);
help_widget = XmTrackingEvent (toplevel, cursor, True, &event);
Motif Programming Manual 875

Chapter 27: Advanced Dialog Programming

ual
bject,

ents
dget,

the
e also
ger
kill
ve to
while (help_widget != NULL) {
if (XtHasCallbacks (help_widget, XmNhelpCallback) ==

XtCallbackHasSome)
{

newcbs->reason = XmCR_HELP;
newcbs->event = &event;
XtCallCallbacks (help_widget, XmNhelpCallback,

(XtPointer) newcbs);
help_widget = NULL;

}
else

help_widget = XtParent (help_widget);
}

XFreeCursor (display, cursor);
}

When the user selects the menu item for context-sensitive help,query_for_help() is
invoked. This routine callsXmTrackingEvent() to allow the user to specify a widget on
which to see help information. Theconfine_to parameter is set toTrue , so the pointer
is constrained to the window of thetoplevel widget. We usetoplevel so that the user
can select any component in the entire application.

XmTrackingEvent() changes the pointer to the specified cursor to provide vis
feedback that the application is in a new state. Since the user is expected to click on a o
the routine uses theXC_hand2 glyph that shows a pointing hand. Thecursor is created
using XCreateFontCursor() . See Volume 1,Xlib Programming Manual, for more
information.

If the user clicks on any valid widget within the application,XmTrackingEvent() returns
the ID for that widget. The widget itself is not activated and it does not receive any ev
that indicate that anything has happened at all. If the user does not click on a valid wi
the function returnsNULL. If XmTrackingEvent() returns a widget ID, we use
XtCallCallbacks() to activate theXmNhelpCallback for the widget. If the widget
does not have a help callback,query_for_help() climbs the widget tree looking for an
ancestor widget with a help callback.

While theconfine_to flag makesXmTrackingEvent() useful for constraining mouse
movement, you should use this feature with caution. Once the cursor is confined to
window, the server grab is not released until the user presses the mouse button. W
advise caution if you are using a debugger while working with this function. If the debug
stops at a breakpoint while the function is invoked, you will have to log in remotely and
the debugger process to release the pointer grab. If you kill the process, you will ha
shut down the computer.
876 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

ing,
ple, if

curs
esses
has a
tion
r may

ess
, the

ack
: the
, and
other
take,

ons:

ince
quite
the
ssing
k the

Xt.
ore
the

rval.
d not

ents
esses
plex
Working Dialogs
The Motif WorkingDialog is used to inform the user that an application is busy process
so that it doesn’t have the time to handle other actions the user may take. For exam
your application is busy trying to figure out the complete value ofpi, the user is probably
going to have to wait for the application to respond to her next action. The delay oc
because the application code has control, rather than Xt. When Xt has control, it proc
events and dispatches them to the appropriate widgets in the application. If a widget
callback installed for an event, Xt returns control to the application. While the applica
has control, there is no way for the window system to service any requests the use
happen to make.

In the meantime, the application is faced with the dilemma of how it is going to proc
events that happen in the interim. While your application is busy number-crunching
user is frantically pounding on theStopbutton and hoping that the application will figure
out that she really didn’t want it to figure out the complete value ofpi, but instead to print
out the recipe forcherry pie.

What the application needs to do is to find a way to do the necessary work for callb
routine and process events at the same time. The solution is conceptually simple
application should periodically check to see if there are any events in the input queue
if there are, process and dispatch them. The implementation of this solution, on the
hand, is quite a different story. There are a number of different approaches you can
depending on the nature of the work you are trying to do. Let’s examine four of the opti

• If the task can be broken down into tiny chunks, you can set upwork proceduresthat
are invoked automatically by Xt when there are no events on the event queue. S
events are very infrequent in terms of processor time, this type of processing goes
quickly. This technique works best for tasks that are not critical to the application;
tasks can be done in the background and not interfere with the normal event-proce
loop. To minimize the effect on system performance, you should be sure to brea
task into small components time-wise.

• You can set timer event handlers to go off periodically usingXtAppAddTimeOut() .
As each timer fires, another chunk of work is done before control is returned to
While this method is similar to using work procedures, the time intervals may be m
in tune with the type of processing you are doing. Timers are typically used when
work being done is synchronous with the system clock or some other regular inte
However, timers are not associated directly with the system clock, so a task shoul
rely on their accuracy.

• You can choose to maintain control and use Xlib and Xt functions to process ev
yourself. In this case, your application checks for events in the queue and proc
them. This technique is appropriate for applications that need to perform com
Motif Programming Manual 877

Chapter 27: Advanced Dialog Programming

cess

ursor
e user

dent
disk
, or
with

large

ait.
ter
sing

ation

Xlib

rmal.
en.
ver it
on to

ou

nal
hile
d in

by
sed in
s of
your
me
operations, as it is possible to handle sophisticated looping constructs, pro
recursively, or manage complex state information.

• You can simply choose to ignore events entirely. In this case, it is best to set the c
to a stopwatch or hour glass shape, and/or post a message that indicates that th
must wait. This solution is sometimes the only one available if the task is depen
on some outside entity. Examples include device driver communication (printer,
drives), network communications (NFS), inter-process activity (forks and pipes)
anything that puts the application in a state where it has no control over the object
which it is communicating.

You can mix and match some of these techniques. Say the user wants to send a
PostScript file to a laser printer. When she clicks on thePrint button, you can post a
WorkingDialog that reports that the file is being printed and the user must w
Additionally, you could provide an option that allows the user to send the file to the prin
in the background. In this case, you can send the file to the printer in small chunks u
work procedures.

The four methods fall into two basic categories:

• Xt maintains control, processes events as normal, and periodically calls applic
routines

• The application takes control, performs the necessary tasks, and periodically calls
functions to check the event queue

Work procedures and timers return control to Xt and allow it to process events as no
In turn, Xt gives control back to the application for short intervals every now and th
When the application maintains control, it can query and process X events whene
wants. While this process is more complicated, it does make it easier for the applicati
control its own processing.

In all four situations, you can decide whether or not to display a WorkingDialog. If y
want to give the user the ability to terminate the work in progress, you can provide aStop
button in the dialog. Otherwise, you can simply display the dialog for informatio
purposes. If you do not want the user to interact with other windows in the application w
the WorkingDialog is being displayed, you can make the dialog modal as describe
Section 5.7.1, in Chapter 5,Introduction to Dialogs.

Using Work Procedures
Work procedures in Xt are extremely simple in design. They are typically used
applications that can process tasks in the background. When a work procedure is u
conjunction with a WorkingDialog, the application can provide feedback on the statu
the task.Say the user wants to load a large bitmap into a window. The nature of
application requires you to load the file from disk into client-side memory, perform so
878 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

map.
r to

ure.
is a
this
work
0 to
bitmap manipulation, and then send the bitmap to the X server to be loaded into a pix
If you suspect that this task might take a long time and you want to allow the use
interrupt it, you can use work procedures and a WorkingDialog.

Unfortunately, demonstrating such a task is difficult, due to its extremely complex nat
The bitmap loading operation requires a great deal of image-handling code that
distraction from the issue at hand, which is installing a work procedure. To get around
problem, we present a short, abstract program that demonstrates the use of a
procedure. In Example 27-4, we represent a time-consuming task by counting from
20000.*

Example 27-4. The working.c program

/* working.c -- represent a complicated, time-consuming task by
** counting from 0 to 20000 and provide feedback to the user about
** how far we are in the process. The user may terminate the process
** at any time by selecting the Stop button in the WorkingDialog.
** This demonstrates how a WorkingDialog can be used to allow the
** user to interrupt lengthy procedures.
*/

#include <Xm/MessageB.h>
#include <Xm/PushB.h>

#define MAXNUM 20000

void done(Widget, XtPointer, XtPointer);
/* Global variables */
static int i = 0;
static XtWorkProcId work_id;

main (int argc, char *argv[])
{

XtAppContext app;
Widget toplevel, button;
XmString label;
Arg args[2];
int n;
void pushed(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);

label = XmStringCreateLocalized ("Press To Start A Long Task");
n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
button = XmCreatePushButton (toplevel, "button", args, n);

* XtVaAppInitialize() is considered deprecated in X11R6.XmMessageBoxGetChild() is
deprecated from Motif 2.0.
Motif Programming Manual 879

Chapter 27: Advanced Dialog Programming
XtAddCallback (button, XmNactivateCallback, pushed,
(XtPointer) app);

XmStringFree (label);
XtManageChild (button);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* pushed() -- the callback routine for the main app's pushbutton.*/
void pushed (Widget w, XtPointer client_data, XtPointer call_data)
{

XtAppContext app = (XtAppContext) client_data;
Widget dialog;
XmString stop_txt;
Arg args[5];
int n;
Boolean count(XtPointer);

/* Create the dialog -- the "cancel" button says "Stop" */
n = 0;
stop_txt = XmStringCreateLocalized ("Stop");
XtSetArg (args[n], XmNcancelLabelString, stop_txt); n++;
dialog = XmCreateWorkingDialog (w, "working", args, n);
XmStringFree (stop_txt);

work_id = XtAppAddWorkProc (app, count, dialog);
XtUnmanageChild (XtNameToWidget (dialog, “OK”));
XtUnmanageChild (XtNameToWidget (dialog, “Help”));

/* Use cancel button to stop counting. True = remove work proc */
XtAddCallback (dialog, XmNcancelCallback, done, (XtPointer) True);
XtManageChild (dialog);

}

/* count() -- work procedure that counts to MAXNUM. When we get there,
** change the "Stop" button to say "Done".
*/
Boolean count (XtPointer client_data)
{

Widget dialog = (Widget) client_data;
char buf[64];
XmString str, button;
Boolean finished = False;
/* If we printed every number, the flicker is too fast to read.
** Therefore, just print every 1000 ticks for smoother feedback.
*/
if (++i % 1000 != 0)

return finished;
/* display where we are in the counter. */
sprintf (buf, "Counter: %d", i);
str = XmStringCreateLocalized (buf);
XtVaSetValues (dialog, XmNmessageString, str, NULL);
XmStringFree (str);
if (i == MAXNUM) {
880 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

, the

n is

can
ing

ng
i = 0;
finished = True;
button = XmStringCreateLocalized ("Done");
XtVaSetValues (dialog, XmNcancelLabelString, button, NULL);
XmStringFree (button);
XtRemoveCallback (dialog, XmNcancelCallback, done,

(XtPointer) True);
XtAddCallback (dialog, XmNcancelCallback, done,

(XtPointer) False);
XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));

}
/* Return either True, meaning we're done and remove the work proc,
** or False, meaning continue working by calling this function.
*/
return finished;

}

/* done () -- user pressed "Stop" or "Done" in WorkingDialog. */
void done (Widget dialog, XtPointer client_data, XtPointer call_data)
{

Boolean remove_work_proc = (Boolean) client_data;
if (remove_work_proc) {

i = 0;
XtRemoveWorkProc (work_id);

}
XtDestroyWidget (XtParent (dialog));

}

The main application simply displays a button. When the user presses the button
application starts counting and displays a WorkingDialog. The user can pressStopat any
time during the process. If the user allows the application to finish counting, the butto
changed fromStop to Done. Figure 27-3 shows both states of the WorkingDialog.

This program is designed to demonstrate how a work procedure and a WorkingDialog
interact. The callback for the button in the application creates a WorkingDialog us
XmCreateWorkingDialog() . The callback routine also installs a work procedure usi
XtAppAddWorkProc() . This function takes the following form:

XtWorkProcId XtAppAddWorkProc (XtAppContext app_context ,
XtWorkProc proc ,

Figure 27-3: Output of the working program

While Counting Finished
Motif Programming Manual 881

Chapter 27: Advanced Dialog Programming

n, we

ork

that

turns
ist of

to say
k

ure

e

d, but

dure
one
new

alled
ed is
rtant
onse
ss

not
o be
XtPointer client_data)

The WorkingDialog is used as the client data for thecount() work procedure, so that the
procedure can update the dialog. To allow the user to interrupt the counting operatio
install done() as theXmNcancelCallback resource. If the user presses theStopbutton,
this routine is invoked. The routine stops the counting operation by removing the w
procedure usingXtRemoveWorkProc() .

During the counting operation, Xt calls the work procedure when there are no events
need to be processed. The work procedure increments the global counter variable,i . Each
time i reaches an increment of1000 , theXmNmessageString for the WorkingDialog is
updated to inform the user about the progress of the operation. The work procedure re
True when the task is complete, which causes Xt to remove the procedure from the l
work procedures being called. Whencount() returnsFalse , Xt continues to call the
routine when the application is idle.

If the user allows the task to complete, the work procedure changes the action button
Doneand removes theXmNcancelCallback . The procedure then reinstalls the callbac
in order to change the client data fromTrue to False . The client data must be set toFalse
so thatdone() does not try to remove the work procedure. Since the work proced
returnsTrue in this case, Xt removes the procedure for us.

The work procedure also callsXMapRaised() to ensure that the dialog is visible when th
operation completes. The user must explicitly press theDonebutton to remove the dialog.
Another approach is to callXtDestroyWidget() to remove the dialog when the
processing is done. In this case, the user is not notified that the operation has finishe
she also does not have to respond to the dialog.

An application can install multiple work procedures, but Xt only processes one proce
at a time. The last work procedure installed has the highest priority, so it is the first
called, except if one work procedure installs another work procedure. In this case, the
procedure has a lower priority than the current one.

As you can see from running the program in Example 27-4, work procedures are c
extremely frequently. In any real application, however, the task that is being perform
going to be more sophisticated and time-consuming than our example here. It is impo
that the operations you perform in a work procedure do not take too much time, or resp
time will suffer. A work procedure should return frequently enough to allow Xt to proce
user events, so that the operation of the entire application flows smoothly.

Using Timers
Using timers to process a task is very similar to using work procedures. Timers are
called as frequently as work procedures, so Xt can wait longer for user events t
882 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

timer

ied
imer
gular

ren’t

all
trol
ssed
rtain
s the

olved
sions
nt to
o a
t an

s an

ther
hese
the
t the

ecks
ents,
nts for
generated and processed when the application uses timers. An application can add a
usingXtAppAddTimeOut() , which takes the following form:

XtIntervalId XtAppAddTimeOut (XtAppContext app_context,
unsigned long interval,
XtTimerCallbackProc proc ,
XtPointer client_data)

The interval parameter specifies how long Xt waits before invoking the timer specif
by proc . The main difference between using a timer and a work procedure is that a t
is called once and then automatically unregistered. To have a timer called at a re
interval, an application must callXtAppAddTimeOut() again from within the timer
callback. With this exception, using timers is similar to using work procedures, so we a
going to present a separate example here. See Chapter 12,Labels and Buttons, for some
examples that use timers in various contexts.

Processing Events
If your application needs to start a lengthy process that is difficult to break into sm
pieces, you probably don’t want to return control to Xt. In this case, you never lose con
of your own processing loop, but you need to check for X events that need to be proce
every once in a while. This technique is more convenient than work procedures for ce
algorithms, since the application doesn’t have to break out of its processing loop unles
user terminates the operation or the task completes naturally.

Processing events is somewhat complicated, but not because of the function calls inv
or the design required to support the processing. The complications involve the deci
about which events you want to process, which you want to ignore, and which you wa
put off handling until later. Say you are rendering a complicated graphic directly int
DrawingArea. While you are busy processing, you need to decide what to do if you ge
incomingButtonPress , Expose , or ConfigureNotify event, among others.In many
cases, what you do depends on the widget or the window that receives the event.

When an application starts a lengthy task, it should post a WorkingDialog that display
appropriate message. The WorkingDialog can also provide aStopbutton to allow the user
to terminate the task. During the operation, the user should not be interacting with o
windows in the application. It is a good idea to change the cursor that is used in t
windows, to make it clear that the windows will not respond to user input. When
operation is finished, the application needs to remove the WorkingDialog and rese
cursor.

If you are going to process events yourself, you probably want to write a routine that ch
the event queue for relevant events. This routine would process all of the important ev
such as those that cause widgets to be repainted. The routine should also handle eve
theStop button in the WorkingDialog, so the user can terminate the task.
Motif Programming Manual 883

Chapter 27: Advanced Dialog Programming

or an
The program listed in Example 27-5 supports the requirements that we have laid out f
application that processes its own events.*

Example 27-5. The busy.c program

/* busy.c -- demonstrate how to use a WorkingDialog and to process
** only important events. e.g., those that may interrupt the
** task or to repaint widgets for exposure. Set up a simple shell
** and a widget that, when pressed, immediately goes into its own
** loop. Set a timeout cursor on the shell and pop up a WorkingDialog
** Then enter loop and sleep for one second ten times, checking between
** each interval to see if the user clicked the Stop button or if
** any widgets need to be refreshed. Ignore all other events.
**
** main() and get_busy() are stubs that would be replaced by a real
** application; all other functions can be used as is.
*/

#include <Xm/MessageB.h>
#include <Xm/PushB.h>
#include <X11/cursorfont.h>

Widget shell;
void TimeoutCursors(Boolean, Boolean);
Boolean CheckForInterrupt(void);

main (int argc, char *argv[])
{

XtAppContext app;
Widget button;
XmString label;
Arg args[2];
void get_busy(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
shell = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
label = XmStringCreateLocalized ("Press To Start A Long Task");
XtSetArg (args[0], XmNlabelString, label);
button = XmCreatePushButton (shell, "button", args, 1);
XmStringFree (label);
XtAddCallback (button, XmNactivateCallback, get_busy, NULL);
XtManageChild (button);
XtRealizeWidget (shell);
XtAppMainLoop (app);

}

void get_busy (Widget widget, XtPointer client_data,
XtPointer call_data)

{

* XtVaAppInitialize() is considered deprecated in X11R6.XmMessageBoxGetChild () is deprecated from
Motif 2.0.
884 Motif Programming Manual

Chapter 27: Advanced Dialog Programming
int n;

TimeoutCursors (True, True);

for (n = 0; n < 10; n++) {
sleep ((unsigned) 1);
if (CheckForInterrupt ()) {

puts ("Interrupt!");
break;

}
}
if (n == 10)

puts ("Done");
TimeoutCursors (False, False);

}

/* The interesting part of the program -- extract and use at will */
static Boolean stopped; /* True when user wants to stop task */
static Widget dialog; /* WorkingDialog displayed */

/* TimeoutCursors() -- turns on the watch cursor over the application
** to provide feedback for the user that she's going to be waiting
** a while before she can interact with the application again.
*/
void TimeoutCursors (Boolean on, Boolean interruptible)
{

static int locked = False;
static Cursor cursor = (Cursor) 0;
extern Widget shell;
XSetWindowAttributes attrs;
Display *dpy = XtDisplay (shell);
XEvent event;
Arg args[5];
int n;
XmString str;
void stop(Widget, XtPointer, XtPointer);
/* "locked" keeps track if we've already called the function.
** This allows recursion and is necessary for most situations.
*/
if (on)

locked++;
else

locked--;
if (locked > 1 || (locked == 1 && on == False))

return;
/* already locked and we're not unlocking */
stopped = False;
if (!cursor)

cursor = XCreateFontCursor (dpy, XC_watch);
/* if on is true, then turn on watch cursor, otherwise, return
** the shell's cursor to normal.
*/
attrs.cursor = on ? cursor : None;
/* change the main application shell's cursor to be the timeout
Motif Programming Manual 885

Chapter 27: Advanced Dialog Programming
** cursor or to reset it to normal. If other shells exist in
** this application, they will have to be listed here in order
** for them to have timeout cursors too.
*/
XChangeWindowAttributes (dpy, XtWindow (shell), CWCursor, &attrs);
XFlush (dpy);
if (on) {

/* we're timing out, put up a WorkingDialog. If the process
** is interruptible, allow a "Stop" button. Otherwise, remove
** all actions so the user can't stop the processing.
*/
n = 0;
str = XmStringCreateLocalized ("Busy -- Please Wait.");
XtSetArg (args[n], XmNmessageString, str); n++;
dialog = XmCreateWorkingDialog (shell, "busy", args, n);
XmStringFree (str);
XtUnmanageChild (XtNameToWidget (dialog, “OK”));
XtUnmanageChild (XtNameToWidget (dialog, “Help”));
if (interruptible) {

str = XmStringCreateLocalized ("Stop");
XtVaSetValues (dialog, XmNcancelLabelString, str, NULL);
XmStringFree (str);
XtAddCallback (dialog, XmNcancelCallback, stop, NULL);

}
else

XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));
XtManageChild (dialog);

}
else {

/* get rid of all button and keyboard events that occurred
** during the time out. The user shouldn't have done anything
** during this time, so flush for button and keypress events.
** KeyRelease events are not discarded because accelerators
** require the corresponding release event before normal input
** can continue.
*/
while (XCheckMaskEvent (dpy, ButtonPressMask |

ButtonReleaseMask | ButtonMotionMask |
PointerMotionMask | KeyPressMask,
&event)) {

/* do nothing */;
}
XtDestroyWidget (dialog);

}
}

/* stop() -- user pressed the "Stop" button in dialog. */
void stop (Widget dialog, XtPointer client_data, XtPointer call_data)
{

stopped = True;
}

/* CheckForInterrupt() -- check events in event queue and process
** the interesting ones.
886 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

atter,
rt the
rts a
e

ion
e the
s the

til a

r
the
*/
Boolean CheckForInterrupt (void)
{

extern Widgetshell;
Display *dpy = XtDisplay (shell);
Window win = XtWindow (dialog);
XEvent event;
/* Make sure all our requests get to the server */
XFlush (dpy);
/* Let Motif process all pending exposure events for us. */
XmUpdateDisplay (shell);
/* Check the event loop for events in the dialog ("Stop"?) */
while (XCheckMaskEvent (dpy, ButtonPressMask | ButtonReleaseMask |

ButtonMotionMask | PointerMotionMask |
KeyPressMask, &event)) {

/* got an "interesting" event. */
if (event.xany.window == win)

XtDispatchEvent (&event); /* it's in our dialog. */
else

/* uninteresting event--throw it away and sound bell */
XBell (dpy, 50);

}
return stopped;

}

This program is obviously for demonstration purposes only. To keep to the subject m
we have made the main part of the program quite unrealistic and only use it to suppo
functions we are about to discuss. The application displays a single button that sta
“long task”. Theget_busy() callback routine is trivial, but it demonstrates the use of th
TimeoutCursors() andCheckForInterrupt() routines.

The TimeoutCursors() routine is used to change the cursor for the main applicat
shell and to post the WorkingDialog. The cursor is changed to a watch shape to giv
user visual feedback that the main window is not responding to input. The routine use
static variablelocked to keep track of how many times it has been called withon set to
True . The function does not reset the cursor and remove the WorkingDialog un
matching number of calls has been made withonset toFalse . This technique makes it
possible for a low-level function in an application to callTimeoutCursors() at its
beginning and end, without affecting higher-level loops that also call the function.

The routine stores theXC_watch cursor in the staticcursor variable. The cursor is created
using XCreateFontCursor() , which is why <X11/cursorfont.h> is included.
TimeoutCursors() usesXChangeWindowAttributes() to change the cursor to the
watch shape and to reset it to its normal shape whenon is False . The cursor is modified
for the window of theshell widget, which is the main window for the application. If you
application uses multiple SessionShells or TopLevelShells, you will need to modify
function to change the cursor shape for all of the shells*.
Motif Programming Manual 887

Chapter 27: Advanced Dialog Programming

the
,

re that
also

ing
ge. If

stop

g, as
e that
eally
cally
reate

vents
t, the

n the
rious
they
hich
ing

ts in
using

e

is
the
At this point, we callXFlush() to make sure that all of our requests have been sent to
server. TheTimeoutCursors() function may be called from deep within an application
so there may be a number of server requests that are waiting and we want to be su
the server knows about them now. If the are turning off the timeout cursor, we may
need to read any resulting events.

Now we determine whether we are locking or unlocking the application. If we are lock
it, we create and post a WorkingDialog. The dialog is created with a standard messa
the interruptible parameter isTrue , we provide aStopbutton by changing the label
of theCancelbutton. We also add a callback routine for button, so that we can actually
the task in progress.

We should note that an application does not necessarily have to post a WorkingDialo
long as it changes the cursor. The watch cursor provides enough feedback to indicat
the application is in a busy state. The decision about whether or not to post a dialog r
depends on the length of the task being performed. For relatively short tasks, it typi
doesn’t make sense to provide a WorkingDialog, as it takes some time to actually c
and post the dialog.

Now the application is in a busy state. However, the user has yet to see anything; e
need to be processed in order for the dialog to be mapped to the screen. At this poin
CheckForInterrupt() routine takes over. This routine handlesExpose events by
calling XmUpdateDisplay() . This Motif function processes all of theExposeevents in
the event queue by causing the server to flush these events for all of the windows o
display. This processing may cause redrawing event handlers to be called for va
widgets. If you have installed your own exposure routines for any widgets, be sure that
are not too time consuming, or you may find yourself in a bind. You can check to see w
windows are going to be repainted before it actually happens by us
XCheckMaskEvent() to processExpose events.

After any possible repainting has occurred, we check for any button or keyboard even
the event queue. If one has been generated, we extract it from the input queue
XCheckMaskEvent() . The function takes the following form:

Bool XCheckMaskEvent (Display * display ,
long event_mask ,
XEvent * event_return)

This Xlib function looks for events in the queue that matchevent_mask . If there is a
matching event, theevent_return parameter is filled in with the event and the routin
returnsTrue . Otherwise, the function returnsFalse and we can return. The event is
processed only if it occurred within the WorkingDialog window. Since the application
busy, events in other windows are not processed. If the user did something in

* The ApplicationShell is deprecated in X11R6, where the SessionShell is to be preferred.
888 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

u
e an
fined
ent.

your
back

outine

d for
t

ine to
or or a

tate
ould
. This

ver,

e

ts are
oys

ks.
WorkingDialog, we process the event because she may have activated theStopbutton. If
the button is not provided for the dialog, it does not affect the code here.

You should be aware thatXCheckMaskEvent() removes the event from the queue. If yo
choose not to process an event, you cannot stick it back in the queue. If you retriev
event out of the queue and don’t want to process it, you should set an application-de
variable or flag that notifies the application that it must eventually deal with the ev
Another alternative is to save the event by allocating a newXEvent structure and copying
the data. Then you dispatch the event later, when you are prepared to handle it.

We do not check forKeyRelease events inCheckForInterrupt() for a very
important reason that concerns how the X Toolkit Intrinsics handles accelerators. Say
application has a menu item that initiates a long, complicated process. The call
function for this menu item calls both TimeoutCursors() and
CheckForInterrupt() , just like theget_busy() routine. Let’s say that ALT-X is the
accelerator for the menu item. When the user types this key sequence, the callback r
for the menu item is activated by theKeyPress events. At this time, theKeyRelease
events associated with the accelerator are still in the event queue. If we checke
KeyRelease events inCheckForInterrupt() , the ones for the accelerator would ge
thrown away, since they did not occur in the WorkingDialog.

Throwing away these events is a problem because Xt uses an internal state mach
determine whether or not any particular sequence of keyboard events is an accelerat
prefix for one. Since Xt would never get the accompanyingKeyRelease events, it would
think that the user is still entering a keyboard accelerator.Xt would not get out of that s
until the matching events were given, with the result that no other keyboard events w
work in the application until the user happened to type the same accelerator sequence
situation is not a bug in Xt; Xt is simply doing what it must to handle acclerators. Howe
the situation does demonstrate the intricacies of handling events in X.

Getting back toCheckForInterrupt() , if the user presses theStopin the dialog, the
event is processed and thestop() callback routine is invoked. This routines imply sets th
global variablestopped to True . By the time thatCheckForInterrupt() is ready to
return,stopped has been set, so the function returnsTrue . If the WorkingDialog does not
have aStopbutton, the callback routine is not installed, sostopped is never set toTrue .

After theget_busy() routine finishes processing, it callsTimeoutCursors() again to
unlock the application. Whenon is set toFalse , the routine usesXCheckMaskEvent()
to look in the event queue for button and keyboard events. In this case, the even
thrown away, since the input is no longer useful. The routine also destr
theWorkingDialog. In one sense,TimeoutCursors() implements a kind of modality,
similar to that discussed in Section 5.7.1 of Chapter 5,Introduction to Dialogs. However,
modality alone cannot provide the functionality necessary to handle long-running tas
Motif Programming Manual 889

Chapter 27: Advanced Dialog Programming

ich the
tion

ed.
g.

way

t
s
.

an
ount.
t the

asn’t
ver

sn’t

loop
he
this

eed
The
Updating the Display
As discussed earlier,XmUpdateDisplay() checks the event queue for allExpose events
and processes them immediately. However, there are some circumstances under wh
routine does not work as you might expect. For example, let’s say that your applica
creates and posts a dialog that contains a DrawingArea widget. You callXSync() and
XmUpdateDisplay() to make sure that the dialog is on the screen and fully expos
After you call XClearWindow() to make sure the window is clear, you begin drawin
Unfortunately, you may find that nothing is drawn.

The problem is due to the redirection of events from the window manager and the
events are processed and queued. When a dialog is posted usingXtManageChild() or
XtPopup() , the toolkit callsXMapRaised() to raise the window to the top of the window
stack. The call toXSync() sends theMapRequest event to the server, which redirects i
to the window manager(e.g.,mwm). A bottleneck can occur if the window manager i
swapped out, which is a side effect of multi-tasking operating systems such as UNIX

In this case,mwm may not react immediately to the redirection and can take
indeterminate amount of time to respond. The X server doesn’t take this delay into acc
It thinks that the event has been delivered properly, so your application believes tha
window has been mapped. As a result,XmUpdateDisplay() doesn’t get theExpose
event that you were expecting and drawing does no good because the window still h
been mapped. Whenmwmgets around to mapping the window to the screen, the ser
generates theExpose event, but by now your application is off doing something else.

One solution to this problem is to change the design of your application so that it doe
start drawing until the server actually generates theExpose events. In this case, you should
post the dialog and immediately return control to the main event-processing
(XtAppMainLoop()). If you have installed an event handler or a translation for t
Expose event, the routine is called at the appropriate time. Another advantage to
design is that the drawing procedure is called any time anExpose event occurs, which
ensures that the window is always up-to-date.

In Example 27-6, we show another solution. This solution should be used only if you n
to create, pop up, or manage a dialog and then immediately draw into the window.
ForceUpdate() routine ensures that the specified widget is visible before it returns.

Example 27-6. The ForceUpdate() routine.

/* ForceUpdate() -- a superset of XmUpdateDisplay() that ensures
** that a window's contents are visible before returning.
** The monitoring of window states is necessary because an attempt to
** map a window is subject to the whim of the window manager, which can
** introduce a significant delay before the window is actually mapped
** and exposed. This function is intended to be called after XtPopup(),
** XtManageChild() or XMapRaised(). Don't use it in other situations
** as it may sit and process other unrelated events until the widget
890 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

to

the
tions
** becomes visible.
*/

/* The parameter widget must be visible before the function returns */
void ForceUpdate (Widget w)
{

Widget diashell, topshell;
Window diawindow, topwindow;
XtAppContext cxt = XtWidgetToApplicationContext (w);
Display *dpy;
XWindowAttributes xwa;
XEvent event;
/* Locate the shell we are interested in */
for (diashell = w; !XtIsShell (diashell);

diashell = XtParent (diashell));
/* Locate its primary window's shell (which may be the same) */
for (topshell = diashell; !XtIsTopLevelShell (topshell);

topshell = XtParent (topshell));
/* If the dialog shell (or its primary shell window) is
** not realized, don't bother... nothing can possibly happen.
*/
if (XtIsRealized (diashell) && XtIsRealized (topshell)) {

dpy = XtDisplay (topshell);
diawindow = XtWindow (diashell);
topwindow = XtWindow (topshell);

/* Wait for the dialog to be mapped.
** It's guaranteed to become so
*/
while (XGetWindowAttributes (dpy, diawindow, &xwa) &&

xwa.map_state != IsViewable) {
/*...if the primary is (or becomes) unviewable or
** unmapped, it's probably iconic, and nothing will happen.
*/
if (XGetWindowAttributes (dpy, topwindow, &xwa) &&

xwa.map_state != IsViewable)
break;

/* we are guaranteed there will be an event of some kind. */
XtAppNextEvent (cxt, &event);
XtDispatchEvent (&event);

}
}
/* The next XSync() will get an expose event. */
XmUpdateDisplay (topshell);

}

This routine makes sure that a dialog is visible by waiting for the window of the dialog
be mapped to the screen.

Avoiding Forks
Before we close out this section, there is one more method of executing tasks in
background that we should discuss. Beginning programmers tend to use library func
Motif Programming Manual 891

Chapter 27: Advanced Dialog Programming

quite
UI
with.

have

fork,
ons
r the

able
ows
ss. If
erver
ystem
It is
y since

pipes

tine

s.

o the
and system calls such as system() , popen() , fork() , andexec() to invoke external
commands. Although these functions are perfectly reasonable, they can backfire
easily on virtually any error condition. Recovering from these errors is the G
programmer’s nightmare, since there are so many different possible conditions to deal

The purpose of using these functions, of course, is to call another UNIX program and
it run concurrently with the main application. Thesystem() andpopen() functions fork
a new process using thefork() system call. They also use some form ofexec() so the
new child process can invoke the external UNIX program. If the new process cannot
if there is something wrong with the external UNIX command, if there is a communicati
protocol error, or any one of a dozen other possible error conditions, there is noway fo
external program to display an error message as a part of the main application.

It is unlikely that the external program would display a dialog box or any sort of reason
user-interface element. It is illegal fora new process to use any of the widgets or wind
in the main application because only one connection to the server is allowed per proce
the child process wants to post a dialog, it must establish a new connection to the X s
and create an entirely new widget tree, as it is a separate application. Since most s
utilities do not have graphical user interface front ends, this scenario is very unlikely.
also entirely unreasonable to have any expectations of the external process, especiall
other solutions are much easier.

If a separate process is necessary in order to accomplish a particular task, setting up
between the child application and the parent is usually the best alternative. Thepopen()
function uses this method superficially, but it is not the most elegant solution. The rou
only handles forking the new process and setting up half of a two-way pipe. Thepopen()
function is used in several places throughout the book; check the index for those use

To really handle external processes and pipes properly, an application should d
following:

1. The parent process calls pipe() to set up entry points for the expected child
process’ input and output channels. Two pipes for both input and output
are usually needed.

2. The parent process calls fork() to spawn the new child process.

3. The child uses dup2() to redirect its own stdin , stdout , and stderr to the
other ends of the pipes set up by the parent. The communication pipeline
between the parent and the child is now established.

4. The parent calls XtAppAddInput() to tell Xt to monitor an additional file
descriptor while it is waiting for input events from the X server.

5. The parent can read data (e.g., output, error conditions, etc.) sent by the
child using read() on the appropriate pipe.
892 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

ipe

a sent
e.
u
d

ils are
er of
anges.
other
rent

ead
inated.
ew

re
them
sy to
n

in the
ndard
dard
g its
6. The parent can display the output from the pipe to a dialog, a ScrolledText
object, or some other widget because it is still in connection with the X serv-
er.

If the parent callsXtAppAddInput() , Xt can see the data the child sends through the p
and invoke the callback routine associated with the file descriptor.XtAppAddInput()
takes the following form:

XtInputId XtAppAddInput (XtAppContext app_context ,
int source ,
XtPointer mask,
XtInputCallbackProc proc ,
XtPointer client_data)

Thesource parameter should be the side of the pipe that the parent uses to read dat
by the child process. Theproc function is called when there is data to read on the pip
When the function is called, theclient_data is passed to the callback. For example, yo
can pass the process ID returned byfork() , so you can see if the process is still alive an
read the data using read() .

This discussion is merely presented as an overview, since the implementation deta
beyond the scope of this book. For example, UNIX signals cause problems in a numb
ways. The parent process is sent signals when the child dies or its process state ch
The child is also sent signals that are delivered to the parent by the user or
outsideforces. Different forms of UNIX require that process groups be set up in diffe
ways to avoid other problems with signals.

Another problem involves file descriptors that are set up as non-blocking files. Ifread()
returns0 with one of these descriptors, you may not know whether there is nothing to r
or the end of the file has been reached, which means that the child process has term
Incidentally,popen() does not deal with any of these issues correctly, so building a n
solution is the best thing to do in the long run.

You should really consult the programmer’s guide for your UNIX system for mo
information on the techniques used to spawn new processes and communicate with
appropriately. Once you have a handle on those issues, it should be relatively ea
redirect text from file descriptors using the toolkit. For more information o
XtAppAddInput() , including examples of how it can be used, see Volume 4,X Toolkit
Intrinsics Programming Manual.

Dynamic Message Symbols
The MessageDialog is used to display many different types of messages; the image
dialog helps the user identify the purpose of the dialog. The pixmaps used by the sta
MessageDialogs are predefined by the Motif toolkit. When you are using the stan
dialogs, you typically change the dialog’s type rather than its symbol, since changin
Motif Programming Manual 893

Chapter 27: Advanced Dialog Programming

the

hen the
yed,
ing to

be

ialog.
type effectively changes the symbol that it displays. However, you can change
MessageDialog’s symbol to a customized image using theXmNsymbolPixmap resource.

The resource takes a pixmap value that must be created before the resource is set. W
resource is set, the pixmap is not copied by the dialog widget. If the dialog is destro
you should be sure to free the pixmap unless you are using it elsewhere. If you are go
destroy the dialog usingXtDestroyWidget() directly, you should get the pixmap by
calling XtVaGetValues() , so that you can free it. However, the dialog can also
destroyed automatically, so you should also specify anXmNdestroyCallback procedure
that is called whenever the dialog is destroyed.

Example 27-7 shows an example of using a custom image in a standard MessageD
The program also demonstrates how the dialog should clean up after itself.*

Example 27-7. The warn_msg.c program

/* warn_msg.c -- display a very urgent warning message.
** Really catch the user's attention by flashing an urgent-
** looking pixmap every 250 milliseconds.
** The program demonstrates how to set the XmNsymbolPixmap
** resource, how to destroy the pixmap and how to use timers.
*/

#include <Xm/MessageB.h>
#include <Xm/PushB.h>
#include "bang0.symbol"
#include "bang1.symbol"

#define TEXT "Alert!\n\
The computer room is ON FIRE!\n\
All of your e-mail will be lost."

/* define the data structure we need to implement flashing effect */
typedef struct {

XtIntervalId id;
int which;
Pixmap pix1, pix2;
Widget dialog;
XtAppContext app;

} TimeOutClientData;

main (int argc, char *argv[])
{

XtAppContextapp;
Widget toplevel, button;
XmString label;
Arg args[2];
int n;

* XtVaAppInitialize() is considered deprecated in X11R6. XmStringCreateLtoR() and
XmMessageBoxGetChild() are deprecated from Motif 2.0.
894 Motif Programming Manual

Chapter 27: Advanced Dialog Programming
void warning(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv,

NULL, sessionShellWidgetClass, NULL);
label = XmStringCreateLocalized ("Do Not Touch");
n = 0;
XtSetArg (args[n], XmNlabelString, label); n++;
button = XmCreatePushButton (toplevel, "button", args, n);
XtManageChild (button);
XmStringFree (label);
/* set up callback to popup warning */
XtAddCallback (button, XmNactivateCallback, warning, NULL);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* warning() -- callback routine for the button. Create a message
** dialog and set the message string. Allocate an instance of
** the TimeOutClientData structure and set a timer to alternate
** between the two pixmaps. The data is passed to the timeout
** routine and the callback for when the user presses "OK".
*/
void warning (Widget parent, XtPointer client_data,

XtPointer call_data)
{

Widget dialog;
XtAppContext app = XtWidgetToApplicationContext (parent);
XmString text;
void done(Widget, XtPointer, XtPointer);
void destroy_it(Widget, XtPointer, XtPointer);
void blink(XtPointer, XtIntervalId *);
Display *dpy = XtDisplay (parent);
Screen *screen = XtScreen (parent);
Pixel fg, bg;
Arg args[5];
int n, depth;
TimeOutClientData*data = XtNew (TimeOutClientData);

/* Create the dialog */
n = 0;
XtSetArg (args[n], XmNdeleteResponse, XmDESTROY); n++;
dialog = XmCreateMessageDialog (parent, "danger", args, n);
XtUnmanageChild (XtNameToWidget (dialog, “Cancel”));
XtUnmanageChild (XtNameToWidget (dialog, ”Help”));
XtAddCallback (dialog, XmNokCallback, done, NULL);
XtAddCallback (dialog, XmNdestroyCallback, destroy_it, data);
/* now that dialog has been created, it's colors are initialized */
XtVaGetValues (dialog, XmNforeground, &fg, XmNbackground, &bg,

XmNdepth, &depth, NULL);
/* Create pixmaps that are going to be used as symbolPixmaps.
** Use the foreground and background colors of the dialog.
*/
data->pix1 = XCreatePixmapFromBitmapData (dpy, XtWindow (parent),
Motif Programming Manual 895

Chapter 27: Advanced Dialog Programming
bang0_bits, bang0_width, bang0_height,
fg, bg, depth);

data->pix2 = XCreatePixmapFromBitmapData (dpy, XtWindow (parent),
bang1_bits, bang1_width, bang1_height,
fg, bg, depth);

/* complete the timeout client data */
data->dialog = dialog;
data->app = app;
/* Add the timeout for blinking effect */
data->id = XtAppAddTimeOut (app, 1000L, blink, (XtPointer) data);
/* display the help text and the appropriate pixmap */
text = XmStringGenerate (TEXT, XmFONTLIST_DEFAULT_TAG,

XmCHARSET_TEXT, NULL);
XtVaSetValues (dialog, XmNmessageString, text, XmNsymbolPixmap,

data->pix2, NULL);
XmStringFree (text);
XtManageChild (dialog);

}

/* blink() -- visual blinking effect for dialog's symbol. Displays
** flashing ! symbol, restarts timer and saves timer id.
*/
void blink (XtPointer client_data, XtIntervalId *id)
{

TimeOutClientData*data = (TimeOutClientData *) client_data;
Pixmap pixmap;

data->id = XtAppAddTimeOut (data->app, 250L, blink,
(XtPointer) data);

data->which = !data->which;
pixmap = (data->which ? data->pix1 : data->pix2);
XtVaSetValues (data->dialog, XmNsymbolPixmap, pixmap, NULL);

}

/* done() -- called when user presses "OK" in dialog or
** if the user picked the Close button in system menu.
** Remove the timeout id stored in data, free pixmaps and
** make sure the widget is destroyed (which is only when
** the user presses the "OK" button.
*/
void done (Widget dialog, XtPointer client_data, XtPointer call_data)
{

XtDestroyWidget (XtParent (dialog));
}

/* destroy_it() -- called when dialog is destroyed. Removes
** timer and frees allocated data.
*/
void destroy_it (Widget dialog, XtPointer client_data,

XtPointer call_data)
{

TimeOutClientData *data = (TimeOutClientData *) client_data;
Pixmap symbol;
XtRemoveTimeOut (data->id);
896 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

in
so we
every
ure

log.
the
client

ltiple

utine
XFreePixmap (XtDisplay (data->dialog), data->pix1);
XFreePixmap (XtDisplay (data->dialog), data->pix2);
XtFree ((char *) data);

}

The dialog is created inwarning() , the callback routine for the PushButton in the ma
window. We create a simple MessageDialog that does not have a predefined symbol
can specify a custom image. The dialog actually uses two symbols that are exchanged
250 milliseconds by a timer callback routine. The output of this program is shown in Fig
27-4.

To implement the flashing symbol, we must associate certain information with the dia
Basically, we need to keep track of the two pixmaps and the timer routine. All of
information is placed in a single data structure, so we can pass the structure around as
data. We can also use multiple structure variables to store information about mu
dialogs. TheTimeOutClientData is defined as follows:

typedef struct {
XtIntervalId id;
int which;
Pixmap pix1, pix2;
Widget dialog;
XtAppContext app;

} TimeOutClientData;

Thewarning() routine allocates a new instance of the structure usingXtNew() , since it
is going to create anew dialog and it needs a unique structure for the dialog. The ro
usesXmCreateMessageDialog() to create the dialog. We unmanage theCanceland
Help buttons and specify a callback for theOK button. Thedone() callback simply calls
XtDestroyWidget() , which causes theXmNdestroyCallback to be called. We also
set theXmNdeleteResponse resource for the dialog toXmDESTROY. This setting causes
the Motif toolkit to destroy the dialog if the user dismisses it using theClosebutton on the
window menu,

Figure 27-4: The output of the warn_msg program
Motif Programming Manual 897

Chapter 27: Advanced Dialog Programming

elease
re that

log’s

finish

ins
imes
ds
user
er is

e did
,
fined

ould

nion

ture
tures

dgets
user

ram to

me
lone.
ion.
lkit
has
Since we are not reusing the dialog or its data, we must be sure to free the pixmaps, r
the timer, and free the allocated data structure when the dialog is destroyed. To be su
these tasks take place, we install a callback function for theXmNdestroyCallback
resource. Thedestroy_it() routine handles all of the cleanup for the dialog.

Before we create the pixmaps that are used in the dialog, we retrieve the dia
foreground and background colors usingXtVaGetValues() so that the new pixmaps can
use the same colors. Once the colors are known, we can create the pixmaps and
initializing the fields in theTimeOutClientData structure. Thedialog field of the
structure points to the MessageDialog. We callXtAppAddTimeOut() to start the timer
that controls the flashing effect and set theid field to the timer ID.

We perform a final bit of setup for the dialog by specifying theXmNsymbolPixmap and
XmNmessageString resources. Once everything is set up, the function returns, Xt rega
control, and normal event processing resumes. After the initial one-second interval t
out, the blink() function is called. This routine adds another timeout for 250 millisecon
and switches the pixmaps displayed in the dialog. This loop continues until the
dismisses the dialog, at which time it is destroyed, the pixmaps are freed, the tim
removed, and theTimeOutClientData structure is freed.

Since we created a simple MessageDialog that does not have a predefined image, w
not have to get a handle to theXmNsymbolPixmap for the dialog and destroy it. However
if you decide to change the pixmap for one of the standard dialogs that has a prede
symbol, like the ErrorDialog, you should get its pixmap and free it. In this case, you sh
use XmDestroyPixmap() rather than XFreePixmap() . The Motif dialogs use
XmGetPixmap() to create their images, so the pixmaps must be freed with the compa
routine XmDestroyPixmap() . See Chapter 3,Overview of the Motif Toolkit, for a
discussion onXmGetPixmap() .

Although changing the symbol pixmap in a dialog is quite simple, using the fea
effectively requires a careful design to make sure that all of the pointers and data struc
are destroyed appropriately. Being meticulous about cleaning up after destroyed wi
and other objects is sometimes a difficult task because of the many ways in which the
can destroy them. However, eliminating these possible memory leaks enables a prog
run longer and more efficiently.

Summary
Developing a real application often involves a lot of work to get the details just right. So
of the most interesting problems in designing an interface cannot be solved by Motif a
Motif provides the basic user interface, but you must make it work with your applicat
A solid understanding of the fundamentals of the X Window System and the X Too
Intrinsics makes it easier to fine-tune the interface for an application. This chapter
898 Motif Programming Manual

Chapter 27: Advanced Dialog Programming

tines
presented some solutions to common problems that require using both Xlib and Xt rou
in conjunction with the Motif toolkit.
Motif Programming Manual 899

Chapter 27: Advanced Dialog Programming
900 Motif Programming Manual

s not

f how
Chapter 1

This appendix provides som
discussed in the body of the

This appendix contains a num
Motif Programming Manual
A

ther
ack

fairly
tails.

e
e, or
a
a
otif
ns if
r of

ding
ation
and
Additional Example
Programs

e additional example programs that illustrate technique
book.

ber of programs that provide more realistic examples o
the Motif toolkit is used. Most of the examples are also intended to encourage fur
investigation into other X-related topics, such as the use of app-defaults files, fallb
resources, and command-line option parsing. Our discussion of the examples is
limited; see the comments in the code for explanations of various implementation de

A Bitmap Display Utility
The xshowbitmapprogram is a useful utility for reviewing a group of bitmap files. Th
filenames for the bitmaps can be specified on the command line, sent through a pip
typed intostdin . All of the bitmaps are drawn into a pixmap, which is rendered into
DrawingArea widget. The DrawingArea is used as the work window for
ScrolledWindow, so that we can demonstrate application-defined scrolling for the M
ScrolledWindow. The bitmaps are displayed in an equal number of rows and colum
possible. Alternatively, you can specify either the number of rows or the numbe
columns using the-rows or -columns command-line option, respectively.

The example in Example A-1 demonstrates the use of Xt mechanisms for ad
command-line options and application-level resources in an application. For an explan
of these Xt features, see Volume 4. For details on the Xlib functions for reading
manipulating bitmaps, see Volume 1.*

Example A-1. The xshowbitmap.c program

/* Written by Dan Heller and Paula Ferguson.
** Copyright 1994, O’Reilly & Associates, Inc.

* XtVaAppInitialize () is considered deprecated in X11R6. The SessionShell andXtVaOpenApplication ()
are only available in X11R6.
901

Appendix A: Additional Example Programs
**
** The X Consortium, and any party obtaining a copy of these files from
** the X Consortium, directly or indirectly, is granted, free of charge, a
** full and unrestricted irrevocable, world-wide, paid up, royalty-free,
** nonexclusive right and license to deal in this software and
** documentation files (the “Software”), including without limitation the
** rights to use, copy, modify, merge, publish, distribute, sublicense,
** and/or sell copies of the Software, and to permit persons who receive
** copies from any such party to do so. This license includes without
** limitation a license to do the foregoing actions under any patents of
** the party supplying this software to the X Consortium.
*/

/* xshowbitmap.c -- displays a set of bitmaps specified on the command
** line, from a pipe, or typed into stdin. Bitmaps must be specified
** as file names.
**
** Usage: xshowbitmap
** -ssorts the bitmaps in order of size with largest first
** -vverbose mode for when input is redirected to stdin
** -wwidth of viewport window
** -hheight of viewport window
** -fgforeground color
** -bgbackground color
** -labellabels each bitmap with its corresponding filename
**(this is the default behavior)
** -nolabeldoesn’t label each bitmap with its filename
** -grid Nline width for grid between bitmaps; defaults to 1
** -rows Nnumber of rows; cannot be used with -cols
** -cols Nnumber of columns; cannot be used with -rows
** -fn fontfont for bitmap filenames
** -bw max-widthexcludes bitmaps larger than this width; default is 64
** -bh max-heightexcludes bitmaps larger than this height; default is 64
** -indicates to read from stdin; piping doesn’t require
**the ‘-’ argument
** [no arguments]reads from stdin
**
** Modified by A.J.Fountain, IST
** for Motif 2.1/X11R6, ANSI
**
** Example usage:
** xshowbitmaps /usr/X11R6/include/X11/bitmaps/*
*/

#include <stdio.h>
#include <X11/Xos.h>
#include <Xm/ScrolledW.h>
#include <Xm/DrawingA.h>
#include <Xm/ScrollBar.h>

#ifdef max
#undef max
#endif
#define max(a,b) ((int)(a)>(int)(b)?(int)(a):(int)(b))
902 Motif Programming Manual

Appendix A: Additional Example Programs
#define min(a,b) ((int)(a)<(int)(b)?(int)(a):(int)(b))

typedef struct {
char *name;
int len;
unsigned int width, height;
Pixmap bitmap;

} Bitmap;

/* Resrcs is an object that contains global variables that we want the
** user to be able to initialize through resources or command line options.
** XtAppInitialize() initializes the fields in this data structure to values
** indicated by the XrmOptionsDescRec structure defined later.
*/
struct _resrcs {

Boolean sort; /* sort the bitmaps */
Boolean verbose; /* loading bitmaps verbosely */
Boolean label_bitmap; /* whether to label bitmaps */
int max_width, max_height; /* largest allowable bitmap */
unsigned int grid; /* line width between bitmaps */
Pixel fg, bg; /* colors of bitmaps */
XFontStruct *font; /* font for bitmap labels */
Dimension view_width, view_height;/* initial clip window size */
int rows, cols; /* forcefully set #rows/cols */

} Resrcs;

/* .Xdefaults or app-defaults resources. The last field in each structure
** is used as the default values for the field in the Resrcs struct above.
*/
static XtResource resources[] = {

{ “sort”, “Sort”, XmRBoolean, sizeof (Boolean), XtOffsetOf (struct _resrcs,
sort), XmRImmediate, False },

{ “verbose”, “Verbose”, XmRBoolean, sizeof (Boolean), XtOffsetOf (struct _
resrcs,verbose), XmRImmediate, False },

{ “labelBitmap”, “LabelBitmap”, XmRBoolean, sizeof (Boolean), XtOffsetOf
(struct _resrcs, label_bitmap), XmRImmediate, (char *) True },

{ “grid”, “Grid”, XmRInt, sizeof (int), XtOffsetOf (struct _resrcs, grid),
XmRImmediate, (char *) 1 },

{ “bitmapWidth”, “BitmapWidth”, XmRInt, sizeof (int), XtOffsetOf (struct _
resrcs, max_width), XmRImmediate, (char *) 64 },

{ “bitmapHeight”, “BitmapHeight”, XmRInt, sizeof (int), XtOffsetOf (struct
_resrcs, max_height), XmRImmediate, (char *) 64 },

{ XmNfont, XmCFont, XmRFontStruct, sizeof (XFontStruct *), XtOffsetOf
(struct _resrcs, font), XmRString, XtDefaultFont },

{ XmNforeground, XmCForeground, XmRPixel, sizeof (Pixel), XtOffsetOf
(struct _resrcs, fg), XmRString, XtDefaultForeground },

{ XmNbackground, XmCBackground, XmRPixel, sizeof (Pixel), XtOffsetOf
(struct _resrcs, bg), XmRString, XtDefaultBackground },

{ “view-width”, “View-width”, XmRDimension, sizeof (Dimension), XtOffsetOf
(struct _resrcs, view_width), XmRImmediate, (char *) 500 },

{ “view-height”, “View-height”, XmRDimension, sizeof (Dimension),
XtOffsetOf (struct _resrcs, view_height), XmRImmediate, (char *)
300 },

{ “rows”, “Rows”, XmRInt, sizeof (int), XtOffsetOf (struct _resrcs, rows),
Motif Programming Manual 903

Appendix A: Additional Example Programs
XmRImmediate, 0 },
{ “cols”, “Cols”, XmRInt, sizeof (int), XtOffsetOf (struct _resrcs, cols),

XmRImmediate, 0 },
};

/* If the following command line args (1st field) are found, set the
** associated resource values (2nd field) to the given value (4th field).
*/
static XrmOptionDescRec options[] = {

{ “-sort”, “sort”, XrmoptionNoArg, “True” },
{ “-v”, “verbose”, XrmoptionNoArg, “True” },
{ “-fn”, “font”, XrmoptionSepArg, NULL },
{ “-fg”, “foreground”, XrmoptionSepArg, NULL },
{ “-bg”, “background”, XrmoptionSepArg, NULL },
{ “-w”, “view-width”, XrmoptionSepArg, NULL },
{ “-h”, “view-height”, XrmoptionSepArg, NULL },
{ “-rows”, “rows”, XrmoptionSepArg, NULL },
{ “-cols”, “cols”, XrmoptionSepArg, NULL },
{ “-bw”, “bitmapWidth”, XrmoptionSepArg, NULL },
{ “-bh”, “bitmapHeight”, XrmoptionSepArg, NULL },
{ “-bitmap_width”, “bitmapWidth”, XrmoptionSepArg, NULL },
{ “-bitmap_height”, “bitmapHeight”, XrmoptionSepArg, NULL },
{ “-label”, “labelBitmap”, XrmoptionNoArg, “True” },
{ “-nolabel”, “labelBitmap”, XrmoptionNoArg, “False” },
{ “-grid”, “grid”, XrmoptionSepArg, NULL },

};

/* size_cmp() -- used by qsort to sort bitmaps into alphabetical order
** This is used when the “sort” resource is true or when -sort is given.
*/
int size_cmp(Bitmap *b1, Bitmap *b2)
{

int n = (int) (b1->width * b1->height) - (int) (b2->width * b2->height);
if (n)

return n;
return strcmp (b1->name, b2->name);

}

/* int_sqrt() -- get the integer square root of n. Used to put the
** bitmaps in an equal number of rows and colums.
*/
int int_sqrt(register int n)
{

register int i, s = 0, t;
for (i = 15; i >= 0; i--) {

t = (s | (1L << i));
if (t * t <= n)

s = t;
}
return s;

}

/* global variables that are not changable thru resources or command
** line options.
904 Motif Programming Manual

Appendix A: Additional Example Programs
*/
Widget drawing_a, vsb, hsb;
Pixmap pixmap; /* used the as image for Label widget */
GC gc;
Display *dpy;
unsigned int cell_width, cell_height;
unsigned int pix_hoffset, pix_voffset, sw_hoffset, sw_voffset;

void redraw(Window);

main(int argc, char *argv[])
{

extern char *strcpy();
XtAppContext app;
Widget toplevel, scrolled_w;
Bitmap *list = (Bitmap *) NULL;
char buf[128], *p;
Arg args[12];
int n;
XFontStruct *font;
int istty = isatty(0), redirect = !istty, i = 0, total = 0;
unsigned int bitmap_error;
int j, k;
void scrolled(Widget, XtPointer, XtPointer);
void expose_resize(Widget, XtPointer, XtPointer);

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtVaOpenApplication (&app, “XShowbitmap”, options,

XtNumber (options), &argc, argv, NULL,
sessionShellWidgetClass, NULL);

dpy = XtDisplay (toplevel);

XtGetApplicationResources (toplevel, &Resrcs,
resources, XtNumber (resources), NULL, 0);

if (Resrcs.rows && Resrcs.cols)
XtWarning (“You can’t specify both rows *and* columns.”);

font = Resrcs.font;

/* check to see if we have to load the bitmaps from stdin */
if (!argv[1] || !strcmp(argv[1], “-”)) {

printf (“Loading bitmap names from standard input. “);
if (istty) {

puts (“End with EOF or .”);
redirect++;

}
else

puts (“Use -v to view bitmap names being loaded.”);
}
else if (!istty && strcmp(argv[1], “-”)) {

printf (“%s: either use pipes or specify bitmap names.\n”, argv[0]);
exit (1);

}

Motif Programming Manual 905

Appendix A: Additional Example Programs
/* Now, load the bitmap file names */
while (*++argv || redirect) {

if (!redirect)
/* this may appear at the end of a list of filenames */
if (!strcmp (*argv, “-”))

redirect++; /* switch to stdin prompting */
else

(void) strcpy (buf, *argv);
if (redirect) {

if (istty)
printf (“Bitmap file: “), fflush(stdout);

if (!fgets (buf, sizeof buf - 1, stdin) || !strcmp (buf, “.\n”))
break;

buf[strlen (buf) - 1] = 0; /* plug a null at the newline */
}
if (!buf[0])

continue;
if (Resrcs.verbose)

printf (“Loading \”%s\”...”, buf), fflush(stdout);
if (i == total) {

total += 10; /* allocate bitmap structures in groups of 10 */
if (!(list = (Bitmap *) XtRealloc ((char *) list,

total * sizeof (Bitmap))))
XtError (“Not enough memory for bitmap data”);

}
if ((bitmap_error = XReadBitmapFile (dpy, DefaultRootWindow(dpy),

buf, &list[i].width, &list[i].
height,
&list[i].bitmap,
&j, &k)) == BitmapSuccess) {

if (p = rindex (buf, ‘/’))
p++;

else
p = buf;

if (Resrcs.max_height && list[i].height > Resrcs.max_height ||
Resrcs.max_width && list[i].width > Resrcs.max_width) {

printf (“%s: bitmap too big\n”, p);
XFreePixmap (dpy, list[i].bitmap);
continue;

}
list[i].len = strlen (p);
list[i].name = strcpy (XtMalloc (list[i].len + 1), p);
if (Resrcs.verbose)

printf (“size: %dx%d\n”, list[i].width, list[i].height);
i++;

}
else {

printf (“Couldn’t load bitmap: “);
if (!istty && !Resrcs.verbose)

printf(“\”%s\”: “, buf);
switch (bitmap_error) {

case BitmapOpenFailed : puts (“open failed.”);
break;
906 Motif Programming Manual

Appendix A: Additional Example Programs
case BitmapFileInvalid : puts (“bad file format.”);
break;

case BitmapNoMemory : puts (“not enough memory.”);
break;

}
}

}
if ((total = i) == 0) {
puts (“couldn’t load any bitmaps.”);
exit (1);

}
printf (“Total bitmaps loaded: %d\n”, total);
if (Resrcs.sort) {

printf (“Sorting bitmaps...”);
fflush (stdout);
qsort (list, total, sizeof (Bitmap), size_cmp);
putchar (‘\n’);

}

/* calculate size for pixmap by getting the dimensions of each bitmap. */
printf (“Calculating sizes for pixmap...”);
fflush (stdout);
for (i = 0; i < total; i++) {

if (list[i].width > cell_width)
cell_width = list[i].width;

if (list[i].height > cell_height)
cell_height = list[i].height;

if (Resrcs.label_bitmap && (j = XTextWidth (font, list[i].name,
list[i].len)) > cell_width)

cell_width = j;
}

/* Compensate for vertical font height if label_bitmap is true.
** Add value of grid line weight and a 6 pixel padding for aesthetics.
*/
cell_height += Resrcs.gri d + 6 + Resrcs.label_bitmap * (font->ascent + font-

>descent);
cell_width += Resrcs.grid + 6;

/* if user didn’t specify row/column layout figure it out ourselves.
** optimize layout by making it “square”.
*/
if (!Resrcs.rows && !Resrcs.cols) {

Resrcs.cols = int_sqrt (total);
Resrcs.rows = (total + Resrcs.cols - 1) / Resrcs.cols;

}
else if (Resrcs.rows)

/* user specified rows -- figure out columns */
Resrcs.cols = (total + Resrcs.rows - 1) / Resrcs.rows;

else
/* user specified cols -- figure out rows */
Resrcs.rows = (total + Resrcs.cols - 1) / Resrcs.cols;

printf (“Creating pixmap area of size %dx%d (%d rows, %d cols)\n”,
Motif Programming Manual 907

Appendix A: Additional Example Programs
Resrcs.cols * cell_width, Resrcs.rows * cell_height,
Resrcs.rows, Resrcs.cols);

if (!(pixmap = XCreatePixmap (dpy, DefaultRootWindow(dpy),
Resrcs.cols * cell_width,
Resrcs.rows * cell_height,
DefaultDepthOfScreen (

XtScreen (toplevel)))))
XtError (“Can’t Create pixmap.”);

if (!(gc = XCreateGC (dpy, pixmap, NULL, 0)))
XtError (“Can’t create gc.”);

XSetForeground (dpy, gc, Resrcs.bg); /* init GC’s foreground to bg */
XFillRectangle (dpy, pixmap, gc, 0, 0,

Resrcs.cols * cell_width, Resrcs.rows * cell_height);
XSetForeground (dpy, gc, Resrcs.fg);
XSetBackground (dpy, gc, Resrcs.bg);
XSetFont (dpy, gc, font->fid);
if (Resrcs.grid) {

if (Resrcs.grid != 1)
/* Line weight of 1 is faster when left as 0 (the default) */
XSetLineAttributes (dpy, gc, Resrcs.grid, 0, 0, 0);

for (j = 0; j <= Resrcs.rows * cell_height; j += cell_height)
XDrawLine (dpy, pixmap, gc, 0, j, Resrcs.cols * cell_width, j);

for (j = 0; j <= Resrcs.cols * cell_width; j += cell_width)
XDrawLine (dpy, pixmap, gc, j, 0, j,

Resrcs.rows * cell_height);
}

/* Draw each of the bitmaps into the big picture */
for (i = 0; i < total; i++) {

int x = cell_width * (i % Resrcs.cols);
int y = cell_height * (i / Resrcs.cols);
if (Resrcs.label_bitmap)

XDrawString (dpy, pixmap, gc,
x + 5 + Resrcs.grid / 2,
y + font->ascent + Resrcs.grid / 2,
list[i].name, list[i].len);

if (DefaultDepthOfScreen (XtScreen (toplevel)) > 1)
XCopyPlane (dpy, list[i].bitmap, pixmap, gc,

0, 0, list[i].width, list[i].height,
x + 5 + Resrcs.grid / 2,
y + font->ascent + font->descent +
Resrcs.grid / 2, 1L);

else
XCopyArea (dpy, list[i].bitmap, pixmap, gc,

0, 0, list[i].width, list[i].height,
x + 5 + Resrcs.grid / 2,
y + font->ascent + font->descent + Resrcs.grid / 2);

XFreePixmap (dpy, list[i].bitmap);
XtFree (list[i].name);

}
XtFree ((char *) list);
908 Motif Programming Manual

Appendix A: Additional Example Programs
/* Now we get into the Motif stuff */

/* Create automatic Scrolled Window */
n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAPPLICATION_DEFINED); n++;
XtSetArg (args[n], XmNvisualPolicy, XmVARIABLE); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
scrolled_w = XmCreateScrolledWindow (toplevel, “scrolled_w”, args, n) ;

/* Create a drawing area as a child of the ScrolledWindow.
** The DA’s size is initialized (arbitrarily) to view_width and
** view_height. The ScrolledWindow will expand to this size.
*/
n = 0;
XtSetArg (args[n], XmNwidth, Resrcs.view_width); n++;
XtSetArg (args[n], XmNheight, Resrcs.view_height); n++;
drawing_a = XmCreateDrawingArea (scrolled_w, “drawing_a”, args, n) ;

XtAddCallback (drawing_a, XmNexposeCallback, expose_resize, NULL);
XtAddCallback (drawing_a, XmNresizeCallback, expose_resize, NULL);
XtManageChild (drawing_a) ;

/* Application-defined ScrolledWindows won’t create their own
** ScrollBars. So, we create them ourselves as children of the
** ScrolledWindow widget. The vertical ScrollBar’s maximum size is
** the number of rows that exist (in unit values). The horizontal
** ScrollBar’s maximum width is represented by the number of columns.
*/
n = 0;
j = min (Resrcs.view_height / cell_height, Resrcs.rows);
XtSetArg (args[n], XmNorientation, XmVERTICAL) ; n++;
XtSetArg (args[n], XmNmaximum, Resrcs.rows) ; n++;
XtSetArg (args[n], XmNsliderSize, j) ; n++;
vsb = XmCreateScrollBar (scrolled_w, “vsb”, args, n) ;
XtManageChild (vsb) ;

if (Resrcs.view_height / cell_height > Resrcs.rows)
sw_voffset = (Resrcs.view_height - Resrcs.rows * cell_height) / 2;

n = 0;
j = min (Resrcs.view_width / cell_width, Resrcs.cols);
XtSetArg (args[n], XmNorientation, XmHORIZONTAL) ; n++;
XtSetArg (args[n], XmNmaximum, Resrcs.cols) ; n++;
XtSetArg (args[n], XmNsliderSize, j) ; n++;
hsb = XmCreateScrollBar (scrolled_w, “hsb”, args, n);
XtManageChild (hsb);

if (Resrcs.view_width / cell_width > Resrcs.cols)
sw_hoffset = (Resrcs.view_width - Resrcs.cols * cell_width) / 2;

/* Allow the ScrolledWindow to initialize itself accordingly...*/
XtVaSetValues (scrolled_w,

XmNhorizontalScrollBar, hsb,
XmNverticalScrollBar, vsb,
Motif Programming Manual 909

Appendix A: Additional Example Programs
XmNworkWindow, drawing_a,
NULL);

XtAddCallback (vsb, XmNvalueChangedCallback, scrolled,
(XtPointer) XmVERTICAL);

XtAddCallback (hsb, XmNvalueChangedCallback, scrolled,
(XtPointer) XmHORIZONTAL);

XtAddCallback (vsb, XmNdragCallback, scrolled,
(XtPointer) XmVERTICAL);

XtAddCallback (hsb, XmNdragCallback, scrolled,
(XtPointer) XmHORIZONTAL);

XtManageChild (scrolled_w);
XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* scrolled() -- react to scrolling actions; cbs->value is ScrollBar’s
** new position.
*/
void scrolled(Widget scrollbar, XtPointer client_data, XtPointer call_data)
{

int orientation = (int) client_data;
XmScrollBarCallbackStruct *cbs =

(XmScrollBarCallbackStruct *) call_data;

if (orientation == XmVERTICAL)
pix_voffset = cbs->value * cell_height;

else
pix_hoffset = cbs->value * cell_width;

redraw (XtWindow (drawing_a));
}

/* expose_resize() -- handles both expose and resize (configure) events.
** For XmCR_EXPOSE, just call redraw() and return. For resizing,
** we must calculate the new size of the viewable area and possibly
** reposition the pixmap’s display and position offset. Since we
** are also responsible for the ScrollBars, adjust them accordingly.
*/
void expose_resize(Widget drawing_a, XtPointer client_data,

XtPointer call_data)
{

XmDrawingAreaCallbackStruct *cbs =
(XmDrawingAreaCallbackStruct *) call_data;

Dimension view_width, view_height, oldw, oldh;
int do_clear = 0;

if (cbs->reason == XmCR_EXPOSE) {
redraw (cbs->window);
return;

}
oldw = Resrcs.view_width;
oldh = Resrcs.view_height;
910 Motif Programming Manual

Appendix A: Additional Example Programs
/* Unfortunately, the cbs->event field is NULL, we have to have
** get the size of the drawing area manually.
*/
XtVaGetValues (drawing_a,

XmNwidth, &Resrcs.view_width,
XmNheight, &Resrcs.view_height,
NULL);

/* Get the size of the viewable area in “units lengths” where
** each unit is the cell size for each dimension. This prevents
** rounding error for the {vert,horiz}_start values later.
*/
view_width = Resrcs.view_width / cell_width;
view_height = Resrcs.view_height / cell_height;

/* When the user resizes the frame bigger, expose events are generated,
** so that’s not a problem, since the expose handler will repaint the
** whole viewport. However, when the window resizes smaller, then no
** expose event is generated. In this case, the window does not need
** to be redisplayed if the old viewport was smaller than the pixmap.
** (The existing image is still valid--no redisplay is necessary.)
** The window WILL need to be redisplayed if:
** 1) new view size is larger than pixmap (pixmap needs to be centered).
** 2) new view size is smaller than pixmap, but the OLD view size was
** larger than pixmap.
*/
if ((int) view_height >= Resrcs.rows) {

/* The height of the viewport is taller than the pixmap, so set
* pix_voffset = 0, so the top origin of the pixmap is shown,
* and the pixmap is centered vertically in viewport.
*/
pix_voffset = 0;
sw_voffset = (Resrcs.view_height - Resrcs.rows * cell_height) / 2;
/* Case 1 above */
do_clear = 1;
/* scrollbar is maximum size */
view_height = Resrcs.rows;

}
else {

/* Pixmap is larger than viewport, so viewport will be completely
** redrawn on the redisplay. (So, we don’t need to clear window.)
** Make sure upper side has origin of a cell (bitmap).
*/
pix_voffset = min (pix_voffset,
(Resrcs.rows-view_height) * cell_height);
sw_voffset = 0; /* no centering is done */
/* Case 2 above */
if (oldh > Resrcs.rows * cell_height)

do_clear = 1;
}
XtVaSetValues (vsb,

XmNsliderSize, max (view_height, 1),
XmNvalue, pix_voffset / cell_height,
XmNpageIncrement, max (view_height - 1, 1),
Motif Programming Manual 911

Appendix A: Additional Example Programs
NULL);

/* identical to vertical case above */
if ((int) view_width >= Resrcs.cols) {

/* The width of the viewport is wider than the pixmap, so set
** pix_hoffset = 0, so the left origin of the pixmap is shown,
** and the pixmap is centered horizontally in viewport.
*/
pix_hoffset = 0;
sw_hoffset = (Resrcs.view_width - Resrcs.cols * cell_width) / 2;
/* Case 1 above */
do_clear = 1;
/* scrollbar is maximum size */
view_width = Resrcs.cols;

}
else {

/* Pixmap is larger than viewport, so viewport will be completely
** redrawn on the redisplay. (So, we don’t need to clear window.)
** Make sure left side has origin of a cell (bitmap).
*/
pix_hoffset = min (pix_hoffset,
(Resrcs.cols - view_width) * cell_width);
sw_hoffset = 0;
/* Case 2 above */
if (oldw > Resrcs.cols * cell_width)

do_clear = 1;
}
XtVaSetValues (hsb,

XmNsliderSize, max (view_width, 1),
XmNvalue, pix_hoffset / cell_width,
XmNpageIncrement, max (view_width - 1, 1),
NULL);

if (do_clear)
/* XClearWindow() doesn’t generate an ExposeEvent */
XClearArea (dpy, cbs->window, 0, 0, 0, 0, True);

}

void redraw(Window window)
{

XCopyArea (dpy, pixmap, window, gc, pix_hoffset, pix_voffset,
Resrcs.view_width, Resrcs.view_height, sw_hoffset, sw_voffset);

}

912 Motif Programming Manual

Appendix A: Additional Example Programs

a list
at date
w that
you
e day
ram.

ut X
how
, the
e
e
e the

hat
o

The output of the example is shown in Figure A-1.

A Memo Calendar
Thexmemoprogram creates a main application window that contains a calendar and
of months. Selecting a month changes the calendar, while selecting a day causes th
to become activated. When a date is activated, the application displays another windo
contains a Text widget. The Text widget could be used to keep a memo for that day if
were to add code to save and retrieve the contents of the memo. If you select the sam
a second time, the window is popped down. Figure A-2 shows the output of the prog

The program shown in Example A-2 demonstrates a number of very subtle quirks abo
and Motif programming. What separates simple programs from sophisticated ones is
well you get around quirks like the ones demonstrated in this example. For example
way the dates in the calendar are handled is not as simple as it might appear. Unlike thxcal
example in Chapter 12,Labels and Buttons, which used a single Label widget as th
calendar, here each date in a month is a separate PushButton widget. To giv
appearance that the calendar is a single flat area, theXmNShadowThickness of each
PushButton is initialized to0. When a date is selected, the shadow thickness for t
PushButton is reset to2 (the default) to provide visual feedback that there is a mem
associated with it.*

Example A-2. The xmemo.c program

* XtVaAppInitialize () is considered deprecated in X11R6. The SessionShell andXtVaOpenApplication ()
are only available in X11R6.XmStringGenerate () is only available in Motif 2.0 and later.

Figure A-1: Output of the xshowbitmap program
Motif Programming Manual 913

Appendix A: Additional Example Programs
/* Written by Dan Heller and Paula Ferguson.
** Copyright 1994, O’Reilly & Associates, Inc.
**
** The X Consortium, and any party obtaining a copy of these files from
** the X Consortium, directly or indirectly, is granted, free of charge, a
** full and unrestricted irrevocable, world-wide, paid up, royalty-free,
** nonexclusive right and license to deal in this software and
** documentation files (the “Software”), including without limitation the
** rights to use, copy, modify, merge, publish, distribute, sublicense,
** and/or sell copies of the Software, and to permit persons who receive
** copies from any such party to do so. This license includes without
** limitation a license to do the foregoing actions under any patents of
** the party supplying this software to the X Consortium.
**
** Modified by A.J.Fountain, IST
** for Motif 2.1, X11R6, ANSI.
*/

/* xmemo.c -- a memo calendar program that creates a calendar on the
** left and a list of months on the right. Selecting a month changes
** the calendar. Selecting a day causes that date to become activated
** and a popup window is displayed that contains a text widget. This
** widget is presumably used to keep memos for that day. You can pop
** up and down the window by continuing to select the date on that month.
*/
#include <stdio.h>
#include <X11/Xos.h>
#include <Xm/List.h>
#include <Xm/Frame.h>
#include <Xm/LabelG.h>
#include <Xm/PushB.h>
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/Text.h>

int year;
void date_dialog(Widget, XtPointer, XtPointer);
void set_month(Widget, XtPointer, XtPointer);
Widget list_w, month_label;

typedef struct _month {
char *name;
Widget form, dates[6][7];

} Month;

Month months[] = { /* only initialize “known” data */
{ “January” }, { “February” }, { “March” }, { “April” },
{ “May” }, { “June” }, { “July” }, { “August” }, { “September” },
{ “October” }, { “November” }, { “December” }

};

/* These only take effect if the app-defaults file is not found */
String fallback_resources[] = {

“*bold.fontName: -*-courier-bold-r-*--18-*”,
914 Motif Programming Manual

Appendix A: Additional Example Programs
“*bold.fontType: FONT_IS_FONT”,
“*medium.fontName: -*-courier-medium-r-*--18-*”,
“*medium.fontType: FONT_IS_FONT”,
“*XmPushButton*.renderTable: bold”,
“*XmLabelGadget*.renderTable: medium”,
NULL

};

main (int argc, char *argv[])
{

Widget toplevel, frame, rowcol, rowcol2, label;
XtAppContext app;
int month;
Arg args[8];
int n;

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaOpenApplication (&app, “XMemo”, NULL, 0, &argc, argv,
fallback_resources,
sessionShellWidgetClass, NULL);

/* The form is the general layout manager for the application.
** It will contain two widgets (the calendary and the list of months).
** These widgets are laid out horizontally.
*/
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
rowcol = XmCreateRowColumn (toplevel, “rowcol”, args, n) ;

/* Place a frame around the calendar... */
frame = XmCreateFrame (rowcol, “frame1”, NULL, 0) ;
/* the calendar is placed inside of a RowColumn widget */
rowcol2 = XmCreateRowColumn (frame, “rowcol2”, NULL, 0) ;
/* the month label changes dynamically as each month is selected */
month_label = XmCreateLabelGadget (rowcol2, “month_label”, NULL, 0);
XtManageChild (month_label);
label = XmCreateLabelGadget (rowcol2, “ Su Mo Tu We Th Fr Sa”, NULL, 0);
XtManageChild (label);

/* Create a ScrolledText that contains the months. You probably won’t
** see the ScrollBar unless the list is resized so that not all of
** the month names are visible.
*/
{

XmString strs[XtNumber (months)];
for (month = 0; month < XtNumber (months); month++)

strs[month] = XmStringCreateLocalized (months[month].name);
list_w = XmCreateScrolledList (rowcol, “list”, NULL, 0);
XtVaSetValues (list_w,

XmNitems, strs,
XmNitemCount, XtNumber (months),
NULL);

for (month = 0; month < XtNumber (months); month++)
Motif Programming Manual 915

Appendix A: Additional Example Programs
XmStringFree (strs[month]);
XtAddCallback (list_w, XmNbrowseSelectionCallback, set_month, NULL);
XtManageChild (list_w);

}

/* Determine the year we’re dealing with and establish today’s month */
if (argc > 1)

year = atoi (argv[1]);
else {

long time(long *), t = time ((long *) 0);
struct tm *today = localtime (&t);
year = 1900 + today->tm_year;
month = today->tm_mon + 1;

}
XmListSelectPos (list_w, month, True);

XtManageChild (rowcol2);
XtManageChild (frame);
XtManageChild (rowcol);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);

}

/* set_month() -- callback routine for when a month is selected.
** Each month is a separate, self-contained widget that contains the
** dates as PushButton widgets. New months do not overwrite old ones,
** so the old month must be “unmanaged” before the new month is managed.
** If the month has not yet been created, then figure out the dates and
** which days of the week they fall on using clever math computations...
*/
void set_month(Widget w, XtPointer client_data, XtPointer call_data)
{

XmListCallbackStruct *list_cbs = (XmListCallbackStruct *) call_data;
char text[BUFSIZ];
register char *p;
int i, j, m, tot, day;
static int month = -1;
XmString xms;
Arg args[8];
int n;

if (list_cbs->item_position == month + 1)
return; /* same month, don’t bother redrawing */

if (month >= 0 && months[month].form)
XtUnmanageChild (months[month].form); /* unmanage last month */

month = list_cbs->item_position - 1; /* set new month */
sprintf (text, “%s %d”, months[month].name, year);
xms = XmStringGenerate ((XtPointer) text, NULL, XmCHARSET_TEXT, NULL);
XtVaSetValues (month_label, XmNlabelString, xms, NULL);
XmStringFree(xms);
if (months[month].form) {

/* it’s already been created -- just manage and return */
916 Motif Programming Manual

Appendix A: Additional Example Programs
XtManageChild (months[month].form);
return;

}

/* Create the month Form widget and dates PushButton widgets */
n = 0;
XtSetArg (args[n], XmNorientation, XmHORIZONTAL); n++;
XtSetArg (args[n], XmNnumColumns, 6); n++;
XtSetArg (args[n], XmNpacking, XmPACK_COLUMN); n++;
months[month].form = XmCreateRowColumn (XtParent(month_label),

“month_form”, args, n);

/* calculate the dates of the month using science */
/* day_number() takes day-of-month (1-31), returns day-of-week (0-6) */
m = day_number (year, month + 1, 1);
tot = days_in_month (year, month + 1);

/* We are creating a whole bunch of PushButtons, but not all of
* them have dates associated with them. The buttons that have
* dates get the number sprintf’ed into it. All others get two blanks.
*/
for (day = i = 0; i < 6; i++) {

for (j = 0; j < 7; j++, m += (j > m && --tot > 0)) {
char *name;
if (j != m || tot < 1)

name = “ “;
else {

sprintf(text, “%2d”, ++day);
name = text;

}
n = 0;
/* this is where we will hold the dialog later. */
XtSetArg (args[n], XmNuserData, NULL); n++;
XtSetArg (args[n], XmNsensitive, (j % 7 == m && tot > 0)); n++;
XtSetArg (args[n], XmNshadowThickness, 0); n++;
months[month].dates[i][j] = XmCreatePushButton (months[month].

form, name, args, n);
XtManageChild (months[month].dates[i][j]);
XtAddCallback (months[month].dates[i][j], XmNactivateCallback,

date_dialog,
(XtPointer) day);

}
m = 0;

}
XtManageChild (months[month].form);

/* The RowColumn widget creates equally sized boxes for each child
** it manages. If one child is bigger than the rest, all children
** are that big. If we create all the PushButtons with a 0 shadow
** thickness, as soon as one PushButton is selected and its thickness
** is set to 2, the entire RowColumn resizes itself. To compensate
** for the problem, we need to set the shadow thickness of at least
** one of the buttons to 2, so that the entire RowColumn is
** initialized to the right size. But this will cause the button to
Motif Programming Manual 917

Appendix A: Additional Example Programs
** have a visible border and make it appear preselected, so, we have
** to make it appear invisible. If it is invisible then it cannot be
** selected, but it just so happens that the last 5 days in
** the month will never have selectable dates, so we can use any one
** of those. To make the button invisible, we need to unmap the
** widget. We can’t simply unmanage it or the parent won’t consider
** its size, which defeats the whole purpose. We can’t create the
** widget and then unmap it because it has not been realized, so it
** does not have a window yet. We don’t want to realize and manage
** the entire application just to realize this one widget, so we
** set XmNmappedWhenManaged to False along with the shadow thickness
** being set to 2. Now the RowColumn is the right size.
*/
XtVaSetValues (months[month].dates[5][6],

XmNshadowThickness, 2,
XmNmappedWhenManaged, False,
NULL);

}

/* date_dialog() -- when a date is selected, this function is called.
** Create a dialog (toplevel shell) that contains a multiline text
** widget for memos about this date.
*/
void date_dialog(Widget w, XtPointer client_data, XtPointer call_data)
{

int date = (int) client_data;
Widget dialog;
XWindowAttributes xwa;

/* the dialog is stored in the PushButton’s XmNuserData */
XtVaGetValues (w, XmNuserData, &dialog, NULL);
if (!dialog) {

/* it doesn’t exist yet, create it. */
char buf[32];
Arg args[5];
int n, n_pos, *list;

/* get the month that was selected -- we just need it for its name */
if (!XmListGetSelectedPos (list_w, &list, &n_pos))

return;
sprintf (buf, “%s %d %d”, months[list[0]-1].name, date, year);
XtFree ((char *) list);
dialog = XtVaCreatePopupShell (“popup”, topLevelShellWidgetClass,

XtParent (w),
XmNtitle, buf,
XmNallowShellResize, True,
XmNdeleteResponse, XmUNMAP,
NULL);

n = 0;
XtSetArg (args[n], XmNrows, 10); n++;
XtSetArg (args[n], XmNcolumns, 40); n++;
XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
XtManageChild (XmCreateScrolledText (dialog, “text”, args, n));
/* set the shadow thickness to 2 so user knows there is a memo
918 Motif Programming Manual

Appendix A: Additional Example Programs
** attached to this date.
*/
XtVaSetValues (w,

XmNuserData, dialog,
XmNshadowThickness, 2,
NULL);

}
/* See if the dialog is realized and is visible. If so, pop it down */
if (XtIsRealized (dialog) &&

XGetWindowAttributes (XtDisplay (dialog),
XtWindow (dialog), &xwa) &&

xwa.map_state == IsViewable) {
XtPopdown (dialog);

}
else

XtPopup (dialog, XtGrabNone);
}

/* the rest of the file is junk to support finding the current date. */

static int mtbl[] = { 0,31,59,90,120,151,181,212,243,273,304,334,365 };

int days_in_month(int year, int month)
{

int days;

days = mtbl[month] - mtbl[month - 1];
if (month == 2 && year % 4 == 0 && (year % 100 != 0 || year % 400 == 0))

days++;
return days;

}

int day_number(int year, int month, int day)
{

/* Lots of foolishness with casts for Xenix-286 16-bit ints */
/* Oh Good Grief */

long days_ctr; /* 16-bit ints overflowed Sept 12, 1989 */

year -= 1900;
days_ctr = ((long)year * 365L) + ((year + 3) / 4);
days_ctr += mtbl[month - 1] + day + 6;
if (month > 2 && (year % 4 == 0))

days_ctr++;
return (int) (days_ctr % 7L);

}

Motif Programming Manual 919

Appendix A: Additional Example Programs
The output from the xmemo program is given in Figure A-2.

Figure A-2: Output of the xmemo program
920 Motif Programming Manual

Index
SYMBOLS
.mwmrc file 656

_MOTIF_WM_MESSAGES property 673

NUMERICS
3-D widgets 57, 240, 273

A
accelerators 889

menu 595, 612

action areas 221–230

and dialogs 79

buttons 135, 208, 229

creating 225

generalizing 224

in dialogs 133

action routines

and text widgets 531

actions 14

add_item callback routine 444

alignment

widget 259, 397

animated widgets 705, 706, 761

ANSI

compilers 24, 36

function declarations 36

ANSI-C 20

app-defaults file 13

application class 22

application context 21

application manager

constructing 432

application-defined scrolling 323

and main windows 104

example 343–358, 901

ApplicationShell

and dialogs 206, 233

creating 207

versus DialogShell 155

Apply button

managing 179

argument lists

and setting resources 29

arm callbacks 402

and ToggleButton 414

ArrowButton 389, 423–429

arrows

and scrollbars 333

directional 423

for traversing widgets 360

atoms 644, 700

and types in ICCCM 706

protocol 657

attachments

default 259

example 259

Form 246

offsets 253–255

position 255, 257

resources 220

automatic scrolling

example 327

automatic~scrolling 321–323, 326

auxiliary area 588
Motif Programming Manual 921

Index
B
background tasks

executing 891–893

backing store

and redrawing a DrawingArea 370

backspace key

remapping 34

backspacing

and Text 579

binary searches

and lists 444

bindings 33

Boolean state

ToggleButton 408

borders

3-D 57

color of 84

window manager 654

bugs

event field 582

PanedWindow 219

Scale 506

translation tables 374

window manager 652

Xt and varargs 24

BulletinBoard 240–245

and dialog shells 240

and dialogs 132

and font lists 241

and geometry management 241–245

and translation tables 244

creating 240

resizing 243

button clicks

maximum time between 560

multiple 405

buttons 389–433

and menus 595

ArrowButton (see ArrowButton)

CascadeButton (see CascadeButton)

dialog

default 145

keyboard focus 147

pre-defined 134

setting 138

sizes 148

DrawnButton (see DrawnButton)

in action areas 135, 208, 229

multi-colored 86

PushButton; (see PushButton)

radio buttons 48

tear-off 619

ToggleButton (see ToggleButton)

C
C strings

and menu accelerator text 613

converting to compound strings 811,
813

caching

and pixmaps 81

callback reasons 507

XmAddWMProtocolCallback() 660

(see also callbacks)

callback resources (see XmN entries for in-

dividual callback resources)

callback routines

CascadeButton 107

dialog 150, 223

FileSelectionDialog 188

List 456–462

scrollbar 340

SimpleMenu 110

callback structures

XmCommandCallbackStruct 183

XmDragDropFinishCallbackStruct

742

XmDragProcCallbackStruct 760

XmDropProcCallbackStruct 753

XmDropSiteEnterCallbackStruct 740

XmFileSelectionBoxCallbackStruct

188

XmRowColumnCallbackStruct 271

XmSelectionBoxCallbackStruct 178

XmTextVerifyCallbackStruct 573

callbacks

and CascadeButtons 107

and clipboards 693

and DrawingArea 365

arm 402, 414

CommandDialog 182

cursor movement 582

dialog 150, 223

example 150, 151

setting 138

disarm 402, 414
922 Motif Programming Manual

Index
FileSelectionDialog 188

List 456–462

lists 13

popdown 144

popup 144

protocol 659

PushButton 402

reasons; (see callback reasons)

resources; (see callback resources)

routines; (see callback routines)

RowColumn 271

Scale 507

scrollbar 340

SimpleMenu 110

structures 110, 111

Text 569, 572–584

ToggleButton 414

cancelling a drag operation 705

CascadeButton 69, 389

and callback routines 107

and menu items 616

and MenuBars 105–107

and menus 593

and option menus 605

cascading menus 42, 593, 602

example 636

case sensitivity

and mnemonics 611

cell_height 356

cell_width 356

character sets 584, 809

charset 584, 810

CheckBox 420–423

and mask variables 422

compared to List 408

creating 420

versus RadioBoxes 420

CheckForInterrupt() 887

circular dependencies

Form 262

class names

application 22

classes

definition 12

client data 36

changing in callbacks 882

client messages 657–664

clip windows

and pixmaps 355

ClipboardBadFormat 695

ClipboardFail 685

ClipboardLocked 685, 686

ClipboardNoData 689

clipboards 679–702

and properties 700

and Text widgets 532

callback functions 693

copying data to 684, 698

by name 690

incrementally 694

cut and paste 679

convenience routines 698

example 681–695

data formats 695, 697

locking 687, 694

messages, posting by name 681

querying for data size 688

retrieving data from

incrementally 686

with XmClipboardRetrieve() 686

with XmClipboardRetrieve-

Copy() 684

with XmTextPaste() 699

routines

and Text widgets 555–560, 698

selection

and Text widgets 532

cut and paste 555

sending data to 684

terminating a copy 694

unlocking 687

versus primary and secondary selec-

tions 681, 701

ClipboardSuccess 685, 686, 687, 689

ClipboardTruncate 686, 687

close item

window manager 657

closing dialogs 142

color 84–86, 508

and DrawingArea 381–388

and gadgets 64

foreground 85

setting 86

Command 123, 182–183

command areas

in main windows 68, 120

Command.h 136

CommandBoxes 171
Motif Programming Manual 923

Index
command-line arguments

specifying 22

commands

saving in a history list 182

Common User Access (CUA) 6

specifications 6, 285

composite widgets 55

compound objects 56

compound strings 783, 809–848

and Labels 46, 392

and menu accelerator text 613

and Text widgets 811

C strings, converting from 811, 813

concatenating 811

creating 811–825

dimensions of 847

freeing 812

in lists 438, 460

internationalization 812

language-independent 816

manipulating 825–829

rendering 845–847

retrieving 827

segments 820

specifying as normal strings 825

string direction 820

text, converting to 827–829

ConfigureNotify events 650

Constraint 63

resources 63, 220

control areas

and dialogs 79

dialog 133

control sashes 58

and PanedWindows 277

convenience functions 43

and dialogs 154

copying a file via drag and drop 735

copying and retrieving

clipboard 679–695

copying data via drag and drop 704

Core 45

CreateBitmapFromData() 81

creating

PushButtons 199, 359

ToggleButtons 359

ctrl key

and tab key 285

CUA (Common User Access) 6

specifications 6, 285

current items 65

cursor

callbacks 582

insertion 546–552

position 546

custom dialogs 79, 197

cut and paste

and Text widgets 555

clipboard 679

example 555, 681–695

D
data formats

clipboard 695

deactivating menu titles 610

default action

in list selection 457

default button

dialog 145

default font list tag 818

default language procedure 20

DefaultDepthOfScreen 357

delete key

remapping 34

deleting items from a list 446

deselecting items from a list 448

dialog actions 135

dialog boxes (see dialogs)

dialog callbacks

adding 150

routine for 200

dialog shells

BulletinBoard 240

versus dialog widgets 133

dialog widgets (see dialogs)

dialogs 75–81, 171–195

accessing internal widgets 157

action areas 133, 207–210, 221–230

buttons in 135

anatomy of 133–135

and BulletinBoards 132

and manager widgets 207

and shell widgets 74

and the window manager 143

buttons

default 145
924 Motif Programming Manual

Index
fonts 149

keyboard focus 147

sizes 148

callback reasons 151

callback routines 150, 200, 223

example 151

closing 142–145

CommandDialog 78, 182–183

control areas 133, 207–210

creating 135–145, 205–224

custom 79, 197

definition 4

destroying 894

ErrorDialog 75

FileSelectionDialog 77, 183

fonts 819

full-application-modal 159

function of 130–133

header files 135

help 867–876

context-sensitive 875

example 868, 871

point-and-click 875

InformationDialog 75

interacting with other windows 159

labels

fonts 149

layout of 207

managing 138–142

MessageDialog 75, 76

modality 80, 159–170

example 165–167

implementing 162

setting 162

modifying 197–205

popping up 224, 234

positioning 232–234

pre-defined 129, 134

primary-application-modal 159

PromptDialog 77

QuestionDialog 76

relation to manager widgets 132

resizing 149

resources

setting 137, 217

reusing 143, 166

SelectionDialog 77, 171, 172–179

system-modal 159

TemplateDialog 76, 200

terminology 132

text

fonts 149

titlebar 148, 217

TopLevelShells, using with 230, 231

transient 130

unmanaging 142–145

unmapping 143

versus dialog shells 133

WarningDialog 76

WorkingDialog 76

DialogShell 155

and building dialogs 206

and convenience routines 154

and PanedWindow widgets 218

children of 218–221

creating 207

identifying 156

parents of 137, 207

using with RowColumns 271

versus ApplicationShells 155

versus TopLevelShells 155

direction

string 820

directional arrows 423

directory

dropping a file into a 734

directory searching 185, 193

disarm callbacks 402

and ToggleButtons 414

Display 707, 715, 719

do-not-enter symbol 705

double-clicking

on a list item 457

drag and drop 46, 49, 51, 533, 703–761

basic programming constructs 705–
718

conceptual model 704

conversion procedures 706, 710, 735

customizing 706

dragging non-text data 725–742

dropping non-text data 742–761

encapsulating in widgets 761

handling the drop 753

implementation 706

Motif widgets 705

overview 703–705

programming model 715–718

protocols 714–715
Motif Programming Manual 925

Index
starting the drag 733–735

transfer procedures 706

turning off 722–723

validity of drop 705, 712, 714, 718

drag icons 704, 712–713

coloring 709, 725, 734

components 712, 734

creating 733

customizing 706, 713

default operation icons for 713

default source icons for 713

destroying 735, 742

specifying default icons 723

drag protocols 714–715

dynamic 714, 717, 722

preregister 714, 717

resolution based on initiator and re-

ceiver 720

specifying 719–722

drag sources 704, 708–710

allowed data targets for 708

allowed operations on 708

and second mouse button 708

creating 732–733

file images as 732

incremental transfer of 709

modifying 736–740

multiple formats for 708

working with 725–742

DragContext 707, 708, 713

creating 709, 734

XmNdropStartCallback 741

DragIcon 707, 713, 724

drag-over visuals 705, 712

customizing 717, 740–742

modifying 723–725

DragStart() 733

drag-under visuals 705

customizing 706, 717, 721, 760–761

drawing

and backing store 370

and global variables 369

directly from the action function 375

freehand 374, 375

into windows 890

redrawing a DrawingArea 370

with color 381–388

Xlib 369

(see also DrawingArea)

DrawingArea 363–388

and color 381–388

and gadgets 370

and keyboard traversal 374

and scrollbars 380

as a manager widget 364

callbacks 365

children 369

clearing windows 366

creating 364

dragging 708

event-handling 365

example 366

geometry management 370

resizing 355

translation tables 365, 374

DrawingAreaInput() 374

DrawnButton 429–432

and PushButtons 429

creating 429

drop protocols 715

drop sites 704, 710–712

animated 706, 711, 761

creating 751–752

deactivating 722

drag-under visuals 711

garbage can 705

HELP on 705

modifying 752–753

operations supported by 710

overlapping 712, 717

providing help 755–760

registering widgets as 711

send message 710

shaping 712

working with 742–761

DropSite 707, 710, 722

XmNdropProc 741

XmNtransferProc 742

DropTransfer 707, 711, 715

creating 753

E
emacs

and Text widgets 531

encoding 584, 809

endpwent() 328
926 Motif Programming Manual

Index
ErrorDialog 135

events

field 582

handling 32–39

KeyPress 33

KeyRelease 889

processing 877, 883

structures 676

syntax 33

timers 877

translations 32, 290

X event control loops 850

examples

action areas, creating 225

application managers, constructing

432

application-defined scrolling 343–358

attachments 259

automatic scrolling 327

bitmap display utility 913

bitmaps, dynamically changing 112

browse selection, specifying 457

BulletinBoard geometry management

241

button clicks, multiple 405

calendars, creating 920

changes in Motif 1.2 96

CheckBox 420

clipboards, copying data to 690

Close item, mwm 657

compound strings

converting to text 829

creating 816

dialogs

buttons, setting 138

callback routines 138, 150, 151

help 868, 871

MessageDialog 894

modal 165–167

modifying 204

positioning 232

symbols 894

WorkDialog 879

DrawingArea 366

dropping files into a text editor 743–
751

providing help 756–759

file browser 540

file manager with draggable files 725–

731

FileSelectionDialog, creating 186

Form geometry management 250

Frame 275

freehand drawing 375

hello world, Motif-style 16

help dialogs 868, 871

icons, creating 652

keyboard traversal

in ScrolledWindows 358–360

processing manually 292

lists

adding items to 442

creating 437

selecting items 449, 460

MainWindow

displaying bitmaps in 112

using a ScrolledList in 104

menu of common editing actions 555

MenuBars 112

menus

cascading 623, 636

help 615

option 636

popup 628, 636

pulldown 621, 623, 628, 636

MessageDialog 167, 894

Motif 1.2 changes 96

multi-font strings, creating 823

PanedWindow 278, 281, 282

position attachments 257

PromptDialog

creating 179

protocols 662, 673

RadioBoxes 416, 420

RowColumn 264, 266, 268, 272

Scales 502, 508

scrolling

application-defined 343–358

automatic 327

SelectionDialog 172

shell, resizing 647, 649

text

converting to uppercase 572

pattern, searching for 546

text editor 560

dropping files into 743, 756–759

Text widgets, preventing text

modification in 575
Motif Programming Manual 927

Index
tic-tac-toe 257

timers, using 894

ToggleButtons 411

updating an existing drag source 737

window manager functions 657

WorkDialog 879, 884

XmCreateSimpleMenuBar() 108

XmNentryCallback 272

XmNsymbolPixmap 894

XtAppAddTimeOut() 894

exec() system call 892

execvp()

system call 859

Expose events 890

processing 888

expose_resize() 355

extended selection mode 461

external commands

executing 891–893

F
fallback resources 23

file browser 540

file descriptors

and running external processes 893

file manager with draggable files 725–731

file objects 742

file type masks 194

XmFILE_REGULAR 194

files

searching with FileSelectionDialog

188–193

selecting with FileSelectionDialog 183

FileSB.h 136

FileSelectionBox 171

FileSelectionDialog 112, 183, 540

callback routines 188

creating 185–187

searching directories 193

filesystem searches 188–193

FMT16BIT 574

FMT8BIT 574

focus~callbacks 583

font list tags 814–820

font lists 814–820

and BulletinBoard 241

internationalization 818

fonts

and compound strings 812

and dialogs 819

and Labels 398

used by widgets 819

ForceUpdate() 890

fork() system call 892

Form 245–263

and geometry management 250

attachments 220, 246

circular dependencies 262

common problems with 262

positions 255

resizing 246

Frame 236, 273–277

fread() 545

freehand drawing 374, 375

full-application-modal dialogs 159

function overloading 369

functions

callbacks

(see also callback routines)

popen 892

system 892

G
gadgets 64

and DrawingArea widgets 370

class hierarchy 53

coloring 64

creating 64

definition 25

header files 18

Label (see LabelGadget)

managing 64

pointers 391

ToggleButtonGadget 408

translation tables 292

GC (graphics context) 369

geometry management 62–63, 235–296

and BulletinBoard 241–245

and DrawingArea 370

and Form 245, 250

and RowColumn 264

getpwent() 328

global variables

and drawing 369
928 Motif Programming Manual

Index
graphics context 369

grips 58, 277

GUI buttons

and menus 595

H
hard-coded resources 27

header files 18

dialog 135

private 18

hello world program

Motif-style 16

help

and drop sites 705

and Labels 288

help dialogs 867–876

context-sensitive 875

example 868, 871

multi-level 871

point-and-click 875

help keys 870

help menus 613–616

HOME 83

hooks (see attachments)

horizontal alignment of widgets 259

horizontal scrollbars 51

and scrolled lists 440

I
ICCCM

and clipboard functions 681

and drag and drop 706

and window managers 74

icons 651–653

creating 652

naming 653

setting pixmap 651

setting position 653

images

and Label widgets and gadgets 393

installing personalized 83

names 82

uninstalling 83

InformationDialog 135

as help dialog 867

for help about drag and drop 755, 759

initializing the toolkit 20–24

input context 589

input focus

setting 295

input manager 588

input method 587

insertion cursor 531, 546–552

instantiating widgets 12

int_sqrt() 393

interactivePlacement 233

Inter-Client Communications Conventions

Manual (ICCCM)

drag and drop 706

target types 706, 732

window sizing and placement 644

interface design 6–9

basic concepts 2

internationalization 19, 584, 809–810

and compound strings 812, 848

font lists 818

J
justification

and Label widgets 397

K
keyboard traversal 285–295

and DrawingAreas 374

and ScrolledWindows 358–360

processing manually 292

translation table 290

KeyPress events 33

KeyRelease events 889

keysyms 33

L
Label 389–433

aligning 397

and color 86

and PushButton 402

and scrolled windows 343

and Text widgets 390

creating 391

desensitizing 396
Motif Programming Manual 929

Index
dragging and dropping 46, 705, 718

fonts 398, 819

help 288

images 393

justification 397

multi-colored 86

text 392

LabelGadget 391

LANG environment variable 20, 83

language procedure 20, 584, 809

libraries

Xlib 17

Xm 17

Xt 17

line wrapping

and Text widgets 545

linear search

and lists 445

linking data via drag and drop 704

List 435–463

and color 86

and tab groups 65

callback routines 456–462

installing 457

CheckBox, compared to 408

creating 436–439

dragging and dropping 49, 705, 719

RadioBox, compared to 408

selection policies 436, 438, 457

browse 436, 457

extended 436, 461

multiple 436, 460

single 436, 457

(see also lists)

lists

adding items to 442

example 442–444

deleting items from 446

deselecting items from 448

displaying 435

double-clicking on an item 457

finding items in 444

making items visible 439

positioning items in 454

replacing items in 446

scrolled (see scrolled lists)

searching

binary 444

linear 445

selecting items from 441, 447, 457

default action 457

example 449

loading pixmaps 119

locale 19, 584, 809

localization 20, 584, 809

locking

clipboards 684, 687, 694

M
main windows 66

command areas 120

configurability 125

message areas 120

suggested layout 99

using resources with 125

(see also MainWindow)

MainWindow 66, 555

creating 100

default size 103

layout for 67

using a ScrolledList in 104

when to use 99

manager widgets 25, 53–66, 235–296

and composite widgets 55

and dialogs 132, 207

and gadgets 64

and geometry management 62

and keyboard traversal 65, 358

and Shells 53

and XmNnavigationType 289

class hierarchy 55

creating 238–239

DrawingArea 364

translation table 290

ManagerEnter() 291

ManagerFocusIn() 291

ManagerFocusOut() 291

ManagerGadgetActivate() 292

ManagerGadgetArm() 292

ManagerGadgetButtonMotion() 292

ManagerGadgetDrag() 292

ManagerGadgetHelp() 292

ManagerGadgetKeyInput() 292

ManagerGadgetMultiActivate() 292

ManagerGadgetMultiArm() 292

ManagerGadgetNextTabGroup() 291
930 Motif Programming Manual

Index
ManagerGadgetPrevTabGroup() 291

ManagerGadgetSelect() 292

ManagerGadgetTraverseDown() 291

ManagerGadgetTraverseHome() 291

ManagerGadgetTraverseLeft() 291

ManagerGadgetTraverseRight() 291

ManagerGadgetTraverseUp() 291

ManagerLeave() 291

ManagerParentActivate() 292

ManagerParentCancel() 292

mask variables

and CheckBoxes 422

menu bars

definition 4

MenuBar 105–120, 557

and CascadeButtons 105–107

and main windows 105

callback routines 110

children of 69

creating 105, 607, 622

example 112

item types 108

menus 593–641

accelerators 595, 612

Motif versus X Toolkit 612

and buttons 595

CascadeButtons 593

GUI buttons 595

ToggleButtons 628

and mnemonics 595, 611

and shell widgets 73

cascading 42, 602

creating 623

creating

example 621

designing 607–619

help 613–616

items 610

data structure 619

deactivating 616

setting and resetting sensitivity

616

Motif versus standard Xt 596

option 636–640

pop-up

building 628

pulldown 42, 108, 623

pulldown;

(see also pulldown menus)

pullright (see menus, cascading)

simple 596–607

submenus, building 627

titles 610, 616

message areas 68

in main windows 120

MessageB.h 135

MessageBox 132

MessageDialog 129

convenience routines for 154

creating 135, 144

definition 132

example 167

modifying 198–200

symbols 893–898

types of 135

messages

clipboard, posting by name 681

Microsoft Windows

Common User Access (CUA) spe-

cifications 6

mnemonics

and menus 595, 611

case sensitivity of 611

modal dialogs 80, 159–170

example 165–167

implementing 162

Motif

about 3–6

and Microsoft Windows 6

library 14–16

programming with 16–39

specifications 5

toolkit 5

versus X Toolkit 596, 612

Motif 1.2 35, 46, 49, 51, 57, 70, 76, 81, 85,
86–96, 273, 531, 533, 536, 537, 539, 595,
618, 812, 818, 819

drag and drop 703–761

Label 718

List 718

MessageDialog

additional children in 200

tear-off menus 70, 595, 618–619

TemplateDialog 76

Text and TextField 718

XmChangeColor() 85

XmFONTLIST_DEFAULT_TAG 818

XmGetFocusWidget() 295
Motif Programming Manual 931

Index
XmGetPixmapByDepth() 81

XmGetTabGroup() 295

XmGetTearOffControl() 619

XmIsTraversable() 295

XmListAddItemsUnselected() 442

XmListDeletePositions() 447

XmListGetKbdItemPos() 455

XmListPosSelected() 448

XmListPosToBounds() 455

XmListReplaceItemsPosUnselected()

446

XmListReplaceItemsUnselected() 446

XmListReplacePositions() 446

XmListSetKbdItemPos() 455

XmListYToPos() 455

XmNchildHorizontalAlignment 275

XmNchildHorizontalSpacing 275

XmNchildVerticalAlignment 275

XmNdialogType value 200

XmNmodifyVerifyCallbackWcs 586

XmNpositionIndex 278

XmNtearOffMenuActivateCallback

619

XmNtearOffMenuDeactivateCallback

619

XmNtearOffModel 618

XmNtraverseObscuredCallback 358

XmNvalueWcs 585

XmRegisterSegmentEncoding() 819

XmStringCreateLocalized() 812

XmTextDisableRedisplay() 536

XmTextEnableRedisplay() 536

XmTextFindString() 549

XmTextGetSubstring() 537

XmTrackingEvent() 875

XmTranslateKey() 35

Motif Style Guide 41

key mapping conventions 704

mouse button conventions 704

moving data via drag and drop 704

multibyte strings 584, 810

multiClickTime 404, 560

multi-colored buttons 86

multi-colored labels 86

multi-font strings 815, 823–825

multi-line editing

and Text widgets 531, 538

multiple button clicks 405

multiple items

deleting from a list 447

selecting from a list 448, 460

MWM_DECOR_ALL 655

MWM_DECOR_BORDER 654

MWM_DECOR_MAXIMIZE 655

MWM_DECOR_MENU 655

MWM_DECOR_MINIMIZE 655

MWM_DECOR_RESIZEH 655

MWM_DECOR_TITLE 655

MWM_FUNC_ALL 656

MWM_FUNC_CLOSE 656

MWM_FUNC_MAXIMIZE 656

MWM_FUNC_MINIMIZE 656

MWM_FUNC_MOVE 656

MWM_FUNC_RESIZE 656

N
naming widgets 31

navigation groups 285, 286

navigation types

tab groups 289–290

newline character

interpreting as string separators 822

O
offsets

attachment 253–255

zero-length 255

off-the-spot interaction style 588

on-the-spot interaction style 588

Open Software Foundation (OSF) 5

operation icon (for a drag icon) 712

option menus 594

and CascadeButton 605

building 636–640

OptionMenu 69

output-only text 552

overriding~translation tables 375

over-the-spot interaction style 588

P
page length

scrollbars 334

PanedWindow 236, 277–285, 640
932 Motif Programming Manual

Index
and DialogShells 218

bugs 219

example 278, 281, 282

resizing 218

sashes 285, 289

specifying resolution-independent di-

mensions 281

use in dialogs 207

password files

returning information about 328

pattern searches 453, 546

pix_hoffset

and scrolled windows 355

pix_voffset

and scrolled windows 355

pixels

converting scrollbar units to 356

pixmaps 81–84

and caching 81

and the clip window 355

icon 651

insensitive 396

loading 119

single-bit 81

single-plane 81

ToggleButton 411–414

pointers

xmLabelGadgetClass 391

popdown callbacks 144

popen() 398, 892

popup callbacks 144

popup dialogs 224, 234

popup menus 594, 597–599

building 628–636

compared to CheckBox and RadioBox

408

position attachments 255, 257

positioning dialogs 232–234

pre-edit area 588

PRIMARY selection property 701

and Text widgets 532

cut and paste 555

primary-application-modal dialogs 159

Primitive widgets 45

and tab groups 289

and XmNnavigationType 289

class hierarchy 45

private header files 18

programming

drag and drop 715–718

with Motif and Xt 16–39

PromptBoxes

(see also PromptDialog)

PromptDialog 136, 179–181

creating 179

TextField 181

properties

_MOTIF_WM_MESSAGES 673

and clipboards 700

definition 644

list of 645

protocol atoms 657

protocol callbacks 659

protocol widgets 660

protocols

adding 660

customizing 673–677

deactivating 675

for drag and drop 714–715

suites 676

window manager 72, 657–664

pulldown menus 42, 593

building 636

item types 108

pullright menus (see cascading menus)

PushButton 389, 402

and color 84

and DrawnButtons 429

and Labels 402

callbacks 369, 402

creating 199, 359, 402

fonts 819

in action areas 208

used in DrawingAreas 369

versus ArrowButton 49

Q
qualify search procedure 194

QuestionDialog 135

creating 198

R
radio buttons 48

RadioBox 117, 416–418

and XmVaRADIOBUTTON 109
Motif Programming Manual 933

Index
compared to List 408

creating 416, 420

re_comp() 453

re_exec() 449, 453

realizing widgets 39

redraw()

and scrolling Text and List widgets

357

redrawing a DrawingArea 370

regcmp() 453

regex() 453

registering

clipboard data formats 695

regular expression matching 449

rendering compound strings 845–847

reparenting windows 148

replacing items in a list 446

resizing

BulletinBoards 243

dialogs 149

Form widgets 246

handles, window manager 655

RowColumns 265

scrolled window DrawingArea 355

Text widgets 546

resource database 13

resources

attachment 220

callbacks 431

color 84

configurable 13

constraint 220

for dialogs 145–150

for drag and drop 709

getting 26–32

hard-coding 13, 27

names 26

passing to more than one widget 30

setting

after widget creation 27

for dialogs 137

with convenience functions 28

shell 645

time 404

using with main windows 125

resources (see XmN for individual resourc-

es)

restarting applications 662

return key

and tab key 286

reusing

dialogs 143, 166

root-window interaction style 588

RowColumn 236, 263–273, 397

and CheckBoxes 420

and DialogShells 271

and Frame widgets 274

and geometry management 264

and RadioBoxes 416

and ToggleButtons 410

as a menubar 105

callbacks 271

creating 266–270

example 264, 266, 268

homogeneous children 270

resizing 265

S
Sash 285

modifying 289

Scale 501–512

bugs 506

callbacks 507

children 58

color 508

creating 502–504

labels 504

movement 505

values 504–505

Screen 707, 713, 723

setting resources for 724

ScrollBar 300, 321–361, 527

and color 84

retrieving values from 357

scrollbars

and DrawingAreas 380

and main windows 103–105

callback routines 340

design of 333

directional arrows 333

managing in scrolled lists 440

placing 545

scrolled lists 439–441

and Form widgets 262

scrolled text 262, 538

scrolled windows
934 Motif Programming Manual

Index
automatic 340

creating 325

semi-automatic 340

scrolled() 355

scrolled~windows 321, 465, 477

ScrolledList 439

ScrolledText 220, 538

and displaying text 552

creating 539

dropping file data into 750

parent 539

ScrolledWindow 321–361, 465, 477

and keyboard traversal 358–360

and Lists 436, 439

and Scrollbar 50

default size 103

setting resources 220

scrolling 323

application-defined 323

example 343–358, 901

implementing 340

Lists 357

monitoring 340

Text widgets 357, 550

search and replace 550

search_item callback routine 453

SECONDARY selection property 532, 701

secondary windows 74

segments 820

select() system call 860

selecting items from a list 447

SelectioB.h 136

selection callbacks 457

selection methods (text)

modifying 559

selection policies 461

selection properties 701

SelectionBox 132, 171

SelectionDialog 130, 171, 172–179

callbacks 177

definition 136

example 172

types of 171

semi-automatic~scrolling 325

session managers 661–664

save-yourself protocol 662

setlocale() 20

Shell 70

and building dialogs 74, 206

class hierarchy 72

position 646

resizing 647–651

resources 645

shift key

and tab key 285

signal handling 849–865

in Xlib 852

in Xt 852–854

System V 860

timers 852, 860

work procedures 852

single-bit pixmaps 81

single-line editing

and Text widgets 530, 538

single-plane pixmaps 81

size

setting shell 647–651

source icon (for a drag icon) 712

spacebar key

and tab key 286

specifications

Motif 5

start_stop() 428

state icon (for a drag icon) 712

static~scrollbars 326

status area 588

strings

and menu accelerator text 613

arguments, passed to action functions

379

breaking into multiple lines 821

color, converting to 205

comparing in a list 445

compound 783, 809–848

and List widgets 438

and text Labels 392

(see also compound strings)

converting into pixels 205

direction 820

multibyte 584, 810

multi-font 815, 823–825

separators 821

wide-character 584, 810

style guide 41

submenus

building 627

suites

protocol 676
Motif Programming Manual 935

Index
sw_hoffset 355

sw_voffset 355

symbols

MessageDialog 893–898

system() 892

system-modal dialogs 159

T
tab groups 285

and primitive widgets 289

excluding widgets from 287

navigation groups 286

navigation types 289–290

translation tables 290

traversing 65, 285

tab key 285

and shift key 285

target types

data 706

tear-off button 619

tear-off menus 70, 595, 618–619

TemplateDialog 200

Text 529–592

and clipboards 681

and color 86

and Label widgets 390, 392

and tab groups 65

and text deletion 576

and text editors 531

automatic resizing of 546

byte capacity of 537, 540

callbacks

single-line 569

text modification 572–582

clipboard functions 555–560, 698

clipboard selection 532

cut and paste 555

compound strings 811

creating 534

cut and paste 555

disabling drop site functionality 722

displaying file contents with, example

540

drag and drop 51, 718

dragging 705, 708

dropping data into 705, 719

editing modes 538

fonts 819

limitations of 529

line wrapping 545

modification 572–582

preventing 575

multiline editing 538

output-only 552

positions 546–552

PRIMARY selection 532

cut and paste 555

retrieving text 536

scrollable 538

scrolling 357, 550

search and replace 550

secondary selection 532

selecting 532, 559

setting resources on 221

single-line editing 530, 538

user interface for 531

varargs 552

XmNeditable 723

text editors

and Text widgets 529, 531

dropping files into 743–751

providing help 756–759

sample program 560

widget 51

TextField 51, 453

and color 86

creating 534

disabling drop site functionality 722

drag and drop 51, 718

dragging 705

dropping data into 705, 719

XmNeditable 723

(see also Text)

tick marks 510

TimeoutCursors() 887

timers

example 894

using to process tasks 882

Xt 852, 860

title bars

dialog 148, 217

strings, setting 148

window 655

ToggleButtonGadget 408

ToggleButtons 408–423

and color 84
936 Motif Programming Manual

Index
and menus 628

callbacks 414

creating 359, 408–409, 411

determining state of 414

fonts 819

gadget 408

pixmaps 411–414

resources associated with 409

setting indicator width and height 411

setting state of 415

toggles (see ToggleButtons)

toolkit

initializing 20–24

OSF/Motif 5

TopLevelShell

and dialogs 206, 230, 231, 233

creating 207

versus DialogShells 155

transient dialogs

definition 130

TransientShell 155

translation tables 14, 32

and BulletinBoards 244

and tab groups 290

bugs 374

DrawingArea 365, 374

gadgets 292

manager widget 290

MenuShell 73

translations

and drag sources 708

and text widgets 531

overriding 732

traversal

processing manually 292

type conversion 205

U
unit length

scrollbars 333

UNIX signals 893

unlocking clipboards 687

unmanaging dialogs 142–145

uppercase

converting text to 572

user interface 6–9

V
values

scrollbar 333

varargs 23

and dialogs 137

VendorShell 155, 589, 645

resources 653–656

vertical scrollbars 51

and scrolled lists 440

vertically tiled format

and PanedWindows 277

vi

and Text widgets 531

view length

scrollbars 334

view_height

and scrolled windows 355

view_width

and scrolled windows 355

virtual bindings 33

virtual keysyms 33

W
WarningDialog 135

wide-character strings 584, 810

widgets

creating 12, 24–25

definition 12

drag and drop 705

event handling 32–39

instantiating 12

manager 25, 53–66

(see also manager widgets)

naming 31

overview 41–97

parent-child relationships 55

protocol 660

realizing 39

redrawing 429

window manager 643–678

and dialogs 143

and ICCCM 74

and shell widgets 70

borders 654

bugs 652

bypassing 73

close item 657
Motif Programming Manual 937

Index
decorations 654

menu functions 656

protocols 72, 657–664

resize handles 655

resources

interactivePlacement 233

setting the title string 148

standard decorations 71

windows

border color 84

bypassing the window manager 73

clearing, in DrawingAreas 366

copying text between 679

drawing into 890

enlargening 655

iconifying 655

monitoring, example 890

moving text between 679

properties (see properties)

reparenting 148

scrolled

creating 325

secondary 74

sizing and placement conventions 644

titlebars 655

WM_DELETE_WINDOW atom 657

WM_PROTOCOLS protocol 657

WM_SAVE_YOURSELF protocol 661

WMShell 645

work areas

and dialogs 79, 133

in main windows 67

work procedures 877–882

and WorkDialog 879

in Xt 852

WorkDialog

and work procedures 879

example 884

WorkingDialog 135, 877–893

wprint() 552

WWM_SAVE_YOURSELF atom 657

WWM_TAKE_FOCUS atom 657

X
X event control loop 850

X Input Context 589

X Input Method 588

X toolkit

and Motif 612

basic terminology 11

X Toolkit Intrinsics

selection mechanisms 706

X11/cursorfont.h 887

X11R5 19

XAllocNamedColor() 120

XAPPLRESDIR 83

XBMLANGPATH 83

XChangeProperty() 676

XChangeWindowAttributes() 887

XCheckMaskEvent() 888

XClearWindow()

example 345

XClientMessageEvent() 676

xclipboard 701

XCopyArea() 357

example 345, 375

XCopyPlane() 356

XCreateFontCursor() 876, 887

XCreateGC()

example 375

XCreateIC() 589

XCreatePixmapFromBitmapData() 220

example 211

XCreateSimpleWindow() 652

XDrawLine()

example 345, 375

XDrawString() 86

example 345

XFillRectangle()

example 345, 375

XFlush() 888

XFontSet 587, 810

XFreePixmap()

versus XmDestroyPixmap 898

XGetGeometry() 652

XGetImage() 83

XGetSelectionOwner() 700

XGetWindowProperty() 676

XIC 589

XIM 588

Ximp input method 589

XInternAtom() 700

XKeysymDB 34

Xlib 17

drawing 369

XLoadQueryFont()
938 Motif Programming Manual

Index
example 398

Xm library 14–16, 17

Xm/ArrowB.h 423

Xm/ArrowBG.h 423

Xm/BulletinB.h 240

Xm/Command.h 136

Xm/DialogS.h

and identifying DialogShells 156

Xm/DrawingA.h 364

Xm/DrawnB.h 429

Xm/FileSB.h 136, 185

Xm/Frame.h 274

Xm/Label.h 391

Xm/LabelG.h 391

Xm/List.h 436

Xm/MainW.h 100

Xm/MessageB.h 135

Xm/MwmUtil.h 655

Xm/PanedW.h 278

Xm/SashP.h 285

Xm/SelectioB.h 136

Xm/Text.h 534

Xm/TextF.h 534

Xm/ToggleB.h 408

Xm/ToggleBG.h 409

XmActivateWMProtocol() 675

XmADDITION 462

XmAddProtocolCallback()

example 673

XmAddProtocols()

example 673

XmAddTabGroup() 290

XmAddWMProtocolCallback() 659

example 657, 662

XmAddWMProtocols() 661

example 662

XmALIGNMENT_BASELINE_BOTTOM

270, 275, 397

XmALIGNMENT_BASELINE_TOP 270,
275, 397

XmALIGNMENT_BEGINNING 270, 275,
396, 846

XmALIGNMENT_CENTER 270, 275, 396,
846

XmALIGNMENT_CONTENTS_BOTTOM

270, 397

XmALIGNMENT_CONTENTS_TOP 270,
397

XmALIGNMENT_END 270, 275, 396, 846

XmALIGNMENT_WIDGET_BOTTOM

275

XmALIGNMENT_WIDGET_TOP 275

XmAnyCallbackStruct 38, 110, 151, 582

XmAPPLICATION_DEFINED 325, 327

XMapRaised() 874

XmARROW_DOWN 425

XmARROW_LEFT 425

XmARROW_RIGHT 425

XmARROW_UP 425

XmArrowButtonCallbackStruct 425

XmAS_NEEDED 103, 326, 440

XmATTACH_FORM 247

XmATTACH_NONE 247, 249

XmATTACH_OPPOSITE_FORM 247

XmATTACH_OPPOSITE_WIDGET 247,
248

XmATTACH_POSITION 247, 249

XmATTACH_SELF 247, 250

XmATTACH_WIDGET 247, 248

XmAUTOMATIC 103, 325

xmbind 35

XmbLookupString() 589

XmBOTTOM_LEFT 338

XmBOTTOM_RIGHT 338

XmBROWSE_SELECT 438, 457

XmCascadeButtonGadgetClass 610

XmCascadeButtonWidgetClass 610

XmChangeColor() 85

XmClipboardBeginCopy() 690

example 690

XmClipboardCancelCopy() 694

XmClipboardCopy() 684, 685

example 681, 690, 696

XmClipboardCopyByName() 694

and incremental copying 694

example 690

XmClipboardEndCopy() 684, 685

example 681, 690, 696

XmClipboardEndRetrieve() 686

example 687, 690

XmClipboardInquireCount() 697

XmClipboardInquireFormat() 697

XmClipboardInquireLength() 688

example 689

XmClipboardLock() 694

XmClipboardRegisterFormat() 695

example 696

XmClipboardRetrieve()
Motif Programming Manual 939

Index
example 681, 687, 689, 690

XmClipboardStartCopy() 684

example 681, 696

XmClipboardStartRetrieve() 686

example 687, 690

XmClipboardUndoCopy() 685

XmClipboardUnlock() 694

XmClipboardWithdrawFormat() 686, 695,
697

XmCommandAppendValue() 183

XmCommandCallbackStruct 183

XmCommandError() 183

XmCommandGetChild() 183

XmCommandSetValue() 183

XmCommandWidgetClass 182

XmCONSTANT 326, 441

XmCR_ACTIVATE 111, 271, 369

and DrawnButton 431

and PushButton 404

XmCR_APPLY 178, 188

XmCR_ARM 428

and DrawnButton 431

and PushButton 404

XmCR_BROWSE_SELECT 459

XmCR_CANCEL 151, 178, 188

XmCR_CLIPBOARD_DATA_DELETE 694

XmCR_CLIPBOARD_DATA_REQUEST

694

XmCR_COMMAND_CHANGED 183

XmCR_COMMAND_ENTERED 183

XmCR_DECREMENT 340

XmCR_DEFAULT_ACTION 459

XmCR_DISARM 428

and DrawnButton 431

and PushButton 404

XmCR_DRAG 340, 507

XmCR_EXPOSE 369, 431

XmCR_EXTENDED_SELECT 459

XmCR_HELP 151, 178, 188

XmCR_INPUT 368, 369

XmCR_MODIFYING_TEXT_VALUE 573,
586

XmCR_MOVING_INSERT_CURSOR 582

XmCR_MULTIPLE_SELECT 459

XmCR_NO_MATCH 178, 188

XmCR_OK 151, 178, 188

XmCR_PAGE_DECREMENT 340

XmCR_PROTOCOLS 660

XmCR_RESIZE 369, 431

XmCR_SINGLE_SELECT 459

XmCR_TO_BOTTOM 340

XmCR_TO_TOP 340

XmCR_VALUE_CHANGED 111, 340, 414,
507, 582

XmCreateCommand() 136, 172, 182

XmCreateDialogShell() 207, 217

XmCreateDragIcon() 713, 724, 733

XmCreateErrorDialog() 136

XmCreateFileSelectionBox() 136, 171, 185

XmCreateFileSelectionDialog() 119, 136,
172, 185

example 186, 540, 561, 616

XmCreateInformationDialog() 136

example 868, 871

XmCreateMenuBar() 608

example 608

XmCreateMessageBox() 136

XmCreateMessageDialog() 136, 897

example 135, 172–173, 868, 894

XmCreateOptionMenu() 636

example 636

XmCreatePopupMenu() 630

example 628

XmCreatePromptDialog() 136, 171

example 179

XmCreatePulldownMenu() 608

example 615, 628

XmCreatePushButton() 24

XmCreatePushButtonGadget() 24

XmCreateQuestionDialog() 136

example 138, 165

XmCreateRadioBox() 270, 408, 416

example 416

XmCreateScrolledList() 439

and Form widgets 262

example 104, 457, 920

XmCreateScrolledList(^^)

example 398

XmCreateScrolledText() 124, 220, 531, 539

and Form widgets 262

example 211, 335

XmCreateSelectionBox() 136, 171

XmCreateSelectionDialog() 136, 171

XmCreateSimpleCheckBox() 408, 420

XmCreateSimplePulldownMenu()

example 561

XmCreateTemplateDialog() 136

XmCreateWarningDialog() 136
940 Motif Programming Manual

Index
XmCreateWarningDialog(^)

example 146

XmCreateWorkingDialog() 136, 881

example 879

XmDeactivateWMProtocol() 675

XmDESTROY 143, 897

XmDestroyPixmap() 81, 120

versus XFreePixmap 898

XmDIALOG_CANCEL_BUTTON 145

XmDIALOG_COMMAND 172

XmDIALOG_ERROR 154

XmDIALOG_FILE_SELECTION 172

XmDIALOG_HELP_BUTTON 146

XmDIALOG_INFORMATION 154

XmDIALOG_MESSAGE 154

XmDIALOG_NONE 146

XmDIALOG_OK_BUTTON 145

XmDIALOG_PROMPT 172

XmDIALOG_SELECTION 172

XmDIALOG_TEMPLATE 154

XmDIALOG_WARNING 154

XmDIALOG_WORK_AREA 172

XmDIALOG_WORKING 154

XmDialogShellWidgetClass 154

XmDO_NOTHING 143

XmDRAG_DROP_ONLY style 721

XmDragCancel() 741

XmDragDropFinishCallbackStruct 742

XmDragProcCallbackStruct 760

XmDragStart() 708, 717, 733, 735, 736, 737

XmDrawingAreaCallbackStruct 368

XmDrawnButtonCallbackStruct 431

XmDropProcCallbackStruct 753, 760

XmDropSiteConfigureStackingOrder() 712

XmDropSiteEndUpdate() 753

XmDropSiteEnterCallbackStruct 740, 741

XmDropSiteQueryStackingOrder() 712

XmDropSiteRegister() 710

for registering Label 751

XmDropSiteRetrieve() 710, 741, 752

XmDropSiteStartUpdate() 753

XmDropSiteUnregister() 722, 723

XmDropSiteUpdate() 710, 722, 723, 752,
753

XmDropStartCallbackStruct 741

XmDropTransferAdd() 711, 755

XmDropTransferEntryRec 754, 755

XmDropTransferStart() 711, 715, 718, 753,
754, 759

xmemo.c program 920

XmEXCLUSIVE_TAB_GROUP 290

XmEXTENDED_SELECT 438

XmEXTENDED_SELECT selection policy

461

XmFILE_ANY_TYPE file type mask 194

XmFILE_DIRECTORY file type mask 194

XmFILE_REGULAR file type mask 194

XmFileSelectionBoxCallbackStruct 188

XmFileSelectionBoxWidgetClass 185

XmFileSelectionDoSearch() 188

XmFONTLIST_DEFAULT_TAG 587, 812,
818

XmFontListAppendEntry()

example 398

XmFontListEntryCreate()

example 398

XmFontListFree()

example 398

XmFRAME_TITLE_CHILD 274

XmFRAME_WORKAREA_CHILD 274

XmGetDragContext() 739

XmGetFocusWidget() 295

XmGetPixmap() 120, 395, 413, 732

and XCreatePixmapFromBitmapDa-

ta() 220

example 411

XmGetPixmap(^^)

example 429

XmGetPixmapByDepth() 733

XmGetTabGroup() 295

XmGetTearOffControl() 619

XmGetXmDisplay() 719, 721

XmGetXmScreen() 723, 724

XmHORIZONTAL 265, 268, 337, 505

XmINITIAL 462

XmInstallImage() 81, 82, 83

XmInternAtom() 659, 700, 732, 752

example 657, 673

versus XInternAtom() 659

XmIsDialogShell macro 156

XmIsMessageBox macro 157

XmIsTraversable() 295

xmLabelGadgetClass pointer 391

XmListAddItem() 442

XmListAddItems() 442

XmListAddItemsUnselected() 442

XmListAddItemUnselected() 442

example 442, 449
Motif Programming Manual 941

Index
XmListDeleteAllItems() 447

XmListDeleteItem() 446

XmListDeleteItems() 447

XmListDeleteItemsPos() 447

XmListDeletePos() 446

XmListDeletePositions() 447

XmListDeselectAllItems() 448

XmListDeselectItem() 448

XmListDeselectPos() 448

XmListGetKbdItemPos() 455

XmListGetMatchPos() 445

XmListGetSelectedPos() 449

XmListItemExists() 444

XmListItemPos() 445

XmListPosSelected() 448

XmListPosToBounds() 455

XmListReplaceItems() 446

XmListReplaceItemsPos() 446

XmListReplaceItemsPosUnselected() 446

XmListReplaceItemsUnselected() 446

XmListReplacePositions() 446

XmListSelectPos()

example 920

XmListSetBottomItem() 454

XmListSetBottomPos() 454

example 454

XmListSetItem() 454

XmListSetKbdItemPos() 455

XmListSetPos() 454

example 454

XmListWidgetClass 436

XmListYToPos() 455

XmMainWindowSetAreas() 124

example 540

XmMAX_ON_BOTTOM 338, 505

XmMAX_ON_LEFT 338, 505

XmMAX_ON_RIGHT 338, 505

XmMAX_ON_TOP 338, 505

XmMENU_BAR 124, 264

XmMENU_POPUP 264

XmMenuPosition()

example 597, 630

XmMessageBoxGetChild() 200

example 165, 868, 871, 884, 894

XmMODIFICATION 462

XmMULTI_LINE_EDIT 538

XmMULTICLICK_DISCARD 407

XmMULTICLICK_KEEP 408

XmMULTIPLE_SELECT 438, 448, 460

XmNaccelerator 612

XmNacceleratorText 612, 613

XmNactivateCallback

and DrawnButton 431

and nonstandard buttons 199

and PushButton 369, 402

and Text widgets 569

and TextField widgets 569

automation of 571

example 569

reasons 369

XmNalignment 270, 396

XmNallowShellResize 650

XmNanimationMask

for DropSite 760

XmNanimationPixmap

for DropSite 760

XmNanimationStyle 711, 761

for DropSite 760

XmNapplyCallback 137, 179

XmNapplyLabelString 137

XmNarmCallback 402

XmNarmColor 84

XmNarrowDirection 425

XmNattachment 713

XmNaudibleWarning 575

XmNautoShowCursorPosition 550

XmNautoUnmanage 142, 181

XmNbackground 84

XmNbackgroundPixmap 433

XmNbaseHeight 647

XmNbaseWidth 647

XmNblendModel 713, 734

XmNborderColor 84

XmNbottomAttachment 247

XmNbottomOffset 253

XmNbottomPosition 250

XmNbottomShadowColor 84

XmNbottomWidget 248

XmNbrowseSelectionCallback 457

XmNbuttonFontList 149, 241, 819

XmNcancelCallback 137

XmNcancelLabelString 137

XmNchildHorizontalAlignment 275

XmNchildHorizontalSpacing 275

XmNchildPlacement 201

XmNchildType 274

XmNchildVerticalAlignment 275

XmNclientData 735, 736
942 Motif Programming Manual

Index
XmNclipWindow 327

XmNcolormap 387

XmNcolumns 544

XmNcommandWindow 125

XmNconvertProc 709, 710, 715, 717, 718,
735, 736, 739, 755

XmNcursorPositionVisible 545

XmNdecimalPoints 504

XmNdecrementCallback 340

XmNdefaultActionCallback 457

XmNdefaultButton 147, 157, 229

XmNdefaultButtonShadowThickness 222

XmNdefaultButtonType 145

XmNdefaultCopyCursorIcon 723

XmNdefaultFontList 819

XmNdefaultInvalidCursorIcon 723

XmNdefaultLinkCursorIcon 723

XmNdefaultMoveCursorIcon 723

XmNdefaultNoneCursorIcon 723

XmNdefaultPosition 155

XmNdefaultSourceCursorIcon 723, 724

XmNdefaultValidCursorIcon 723

XmNdefaultVirtualBindings 35

XmNdeleteResponse 143, 897

XmNdepth 713

XmNdestroyCallback 617

and destroying dialogs 894

and Text widgets 540

callback routine 154

XmNdialogStyle 162

XmNdialogTitle 148

XmNdialogType 154, 172

in Motif 1.2 200

XmNdirectoryValid 193

XmNdirListItemCount 193

XmNdirListItems 193

XmNdirListLabelString 137

XmNdirSearchProc 193, 194

XmNdirSpec 189

XmNdisarmCallback 402

XmNdoubleClickInterval 457

XmNdragCallback 507

and ScrollBars 340

XmNdragDropFinishCallback 718, 735,
742

XmNdragInitiatorProtocolStyle 715, 719,
720, 721, 722

XmNdragMotionCallback 740

XmNdragOperations 708, 734

for DragContext 761

XmNdragProc 711, 714, 715, 717, 721, 760,
761

XmNdragReceiverProtocolStyle 715, 719,
721, 722

XmNdropFinishCallback 718, 742

XmNdropProc 717, 718, 753, 755

for DropSite 741, 752, 755

for Text drop site 752

XmNdropRectangles 712

XmNdropSiteActivity 722, 723

XmNdropSiteEnterCallback 740

XmNdropSiteLeaveCallback 740

XmNdropSiteOperations 710, 752, 761

XmNdropSiteType 712

XmNdropStartCallback 718

of DragContext 741

XmNdropTransfers 711, 754

XmNeditable 221, 545, 552, 723

XmNeditMode 538

XmNentryAlignment 269, 397

XmNentryCallback 271

and menus 611

example 272

XmNentryClass 270

XmNentryVerticalAlignment 270, 397

XmNexportTargets 709, 734, 739

for DragContext 755

for DragSource 761

XmNexposeCallback

and DrawingArea 353

and DrawnButton 431

and Expose events 365

and expose_resize() 355

and Scrollbars 380

Eventtypes 369

XmNextendedSelectionCallback 457, 461

XmNfileListItemCount 189

XmNfileListItems 189

XmNfileListLabelString 137

XmNfileSearchProc 189

XmNfilterLabelString 137

XmNfocusCallback 240, 583

XmNfontList 398, 587, 815, 825

XmNforeground 84

XmNfractionBase 229, 250, 255

XmNheight 233, 713

XmNheightInc 647

XmNhelpCallback 137, 391, 870
Motif Programming Manual 943

Index
XmNhelpLabelString 137, 170

XmNhightlightColor 84

XmNhorizontalScrollBar 125, 327

XmNhorizontalSpacing 259

XmNhotX 713

XmNhotY 713

XmNiconic 652

XmNiconName 653

XmNiconPixmap 651

XmNiconWindow 652

XmNiconX 653

XmNiconY 653

XmNimportTargets 710

for DropSite 752, 761

for Text drop site 752

XmNincrement 334, 337

XmNincremental 709, 715

XmNincrementCallback 340

XmNindicatorOn 413

XmNindicatorSize 411

XmNindicatorType 409, 410, 416

XmNinitialFocus 147

XmNinputCallback 365, 368

Eventtypes 369

XmCR_INPUT as reason 368

XmNinputMethod 589

XmNinvalidCursorForeground 724

of DragContext 741

XmNisAligned 269

XmNisHomogeneous 270, 416

XmNitemCount 438

XmNitems 438

XmNlabelFontList 149, 241, 819

XmNlabelInsensitivePixmap 396, 431

XmNlabelPixmap 219, 393, 431, 732

XmNlabelString 392, 755

XmNlabelType 219, 392, 393, 411

XmPIXMAP as value 219

XmNleftAttachment 247

XmNleftOffset 253

XmNleftPosition 250

XmNleftWidget 248

XmNlistItemCount 176

XmNlistItems 176

XmNlistLabelString 137, 176

XmNlistSizePolicy 440

XmNlistUpdated 189, 193

XmNlistVisibleItemCount 176

XmNlosingFocusCallback 583, 584

XmNmainWindowMarginHeight 126

XmNmainWindowMarginWidth 126

XmNmapCallback 232, 240

and positioning dialogs 232

XmNmask 713, 733

XmNmaxHeight 647

XmNmaximum 335, 337, 504

XmNmaxLength 537

XmNmaxWidth 647

XmNmenuBar 105, 125

XmNmenuHelpWidget 117, 615, 623

XmNmenuPost 635

XmNmessageString 137, 200

XmNmessageWindow 125

XmNminHeight 647

XmNminimizeButtons 148

XmNminimum 335, 337, 504

XmNminWidth 647

XmNmnemonic 611

XmNmodifyVerifyCallback 572, 586

XmNmodifyVerifyCallbackWcs 586

XmNmotionVerifyCallback 582

XmNmultiClick 407

XmNmultipleSelectionCallback 457, 460

XmNmustMatch 177

XmNmwmDecorations 654

XmNmwmFunctions 656

XmNmwmMenu 675

XmNnavigationType 289

XmNnoMatchCallback 177

XmNnoneCursorForeground

of DragContext 741

XmNnoResize 149

XmNnumColumns 267, 395

XmNnumDropRectangles 712

XmNnumDropTransfers 711, 754

XmNnumExportTargets 709, 734, 739

XmNnumImportTargets 710

for Text drop site 752

XmNoffsetX 713

XmNoffsetY 713

XmNokCallback 137, 177

XmNokLabelString 137

XmNONE 289

XmNoperationChangedCallback 740

XmNoperationCursorIcon 709, 724, 734

of DragContext 741

XmNorientation 337, 505

and RowColumns 265, 267, 268
944 Motif Programming Manual

Index
XmNpacking 267

XmNpageDecrementCallback 340

XmNpageIncrement 334

XmNpageIncrementCallback 340

XmNpaneMaximum 230, 280

XmNpaneMinimum 230, 280

XmNpixmap 713, 733

XmNpopdownCallback 144, 234, 617

XmNpopupCallback 144, 234

XmNpositionIndex 278

XmNpreeditType 589

XmNprocessingDirection 337, 505

XmNpromptString 137

XmNpushButtonEnabled 432

XmNqualifySearchProc 194

XmNradioAlwaysOne 416

used in menus 117

XmNradioBehavior

and CheckBox 420

and RadioBox 416

and RowColumn 410

used in menus 117

XmNresizable 259

XmNresizeCallback 365

and DrawingAreas 353

and DrawnButton 431

and expose_resize() 355

Eventtypes 369

XmNresizeHeight 546

XmNresizePolicy 441

XmNresizeWidth 546

XmNrightAttachment 247

XmNrightOffset 253

XmNrightPosition 250

XmNrightWidget 248

XmNrowColumnType 124, 264

XmNrows 544

XmNrubberPositioning 259

XmNsashHeight 218

XmNsashWidth 218

XmNscaleMultiple 506

XmNscrollBarDisplayPolicy 103, 325, 327,
440

XmNscrollBarPlacement 338

XmNscrollHorizontal 545

XmNscrollingPolicy 103, 325, 327, 380

XmNscrollLeftSide 545

XmNscrollTopSide 545

XmNscrollVertical 545

XmNselectColor 84

XmNselectedItemCount 447

XmNselectedItems 447

XmNselectInsensitivePixmap 414

XmNselectionArray 559

XmNselectionArrayCount 559

XmNselectionLabelString 137

XmNselectionPolicy 438, 448, 457, 460

XmNselectPixmap 411

XmNselectThreshold 560

XmNsensitive 207

and deactivating menus 610

and pixmaps 414

XmNset 411

XmNshadowThickness 240

XmNshadowType 240, 274, 432

XmNshowAsDefault 222

XmNshowSeparator 126

XmNshowValue 504, 505

XmNsingleSelectionCallback 457

XmNskipAdjust 218

XmNsliderSize 335

XmNsource 592

XmNsourceCursorIcon 709, 724, 734, 741

of DragContext 741

XmNsourcePixmapIcon 741

of DragContext 741

XmNstateCursorIcon 709, 724

of DragContext 741

XmNstringDirection 396, 545, 814, 820

XmNsubMenuId 609

XmNsymbolPixmap 137, 200, 894

example 894

XmNtearOffMenuActivateCallback 619

XmNtearOffMenuDeactivateCallback 619

XmNtearOffModel 618

XmNtextFontList 149, 241, 819

XmNtextString 181

XmNtitle 148, 218, 653

XmNtitleString 504

XmNtoBottomCallback 340

XmNtopAttachment 247

XmNtopItemPosition 455

XmNtopLevelEnterCallback 740

XmNtopLevelLeaveCallback 740

XmNtopOffset 253

XmNtopPosition 250

XmNtopShadowColor 84

XmNtopWidget 248
Motif Programming Manual 945

Index
XmNtoTopCallback 340

XmNtransferProc 711, 715, 718

for DropTransfer 754

of DropSite 742

XmNtransferStatus 711, 760

XmNtranslations 375, 708, 722, 732, 737

XmNtraversalOn 287, 441

XmNtraverseObscuredCallback 358

example 358

XmNtroughColor 84

XmNuserData 204, 369, 732, 737

for Label 736

XmNvalidCursorForeground 724

of DragContext 741

XmNvalue

and Scale 504

and ScrollBars 335

and Text widget 221, 535, 585

and TextField widget 535, 585

XmNvalueChangedCallback 340, 414, 416,
507, 572, 581, 628

XmNvalueWcs 585

XmNverifyBell 575

XmNverticalScrollBar 125

XmNverticalSpacing 259

XmNvisibleItemCount 263, 439, 440

XmNvisibleWhenOff 416

XmNvisualPolicy 325

XmNwidth 233, 713

XmNwidthInc 647

XmNwordWrap 545

XmNworkWindow 125, 327

XmNx 233

XmNy 233

XmONE_OF_MANY 416

XmPACK_COLUMN 267

XmPIXMAP 219, 392, 393, 411

XmPLACE_ABOVE_SELECTION 201

XmPLACE_BELOW_SELECTION 201

XmPLACE_TOP 201

XmProcessTraversal() 294, 571, 583

XmPULLDOWN 264

XmPushButtonCallbackStruct 38, 110, 403

XmRegisterSegmentEncoding() 819

XmRESIZE_IF_POSSIBLE 440

XmRESIZE_NONE 441

XmRowColumn 263–273

XmRowColumnCallbackStruct 271

XmScaleCallbackStruct 507

XmScaleGetValue() 505

XmScaleSetValue() 505

XmScrollBarCallbackStruct 340

XmScrollBarGetValues() 357

XmScrollBarSetValues() 357

XmScrolledWindowSetAreas() 354

example 345

XmScrollVisible() 359

XmSELECT_ALL 560

XmSELECT_LINE 560

XmSELECT_PARAGRAPH 560

XmSELECT_POSITION 560

XmSELECT_WHITESPACE 560

XmSELECT_WORD 560

XmSelectionBoxCallbackStruct 178

XmSelectionBoxGetChild() 178, 181

example 172, 179, 204

XmSelectItem() 447

XmSelectPos() 447

XmSHADOW_ETCHED_IN 241, 274, 432

XmSHADOW_ETCHED_OUT 241, 274,
432

XmSHADOW_IN 241, 274, 432

XmSHADOW_OUT 241, 274, 432

XmSINGLE_LINE_EDIT 538

XmSINGLE_SELECT 438, 457

XmSTATIC 440

value 326

XmSTATIC value 327

XmSTICKY_TAB_GROUP 290

XmSTRING 392

XmString type

example 16

XmSTRING_DIRECTION_L_TO_R 821,
846

XmSTRING_DIRECTION_R_TO_L 821,
846

XmStringBaseline() 847

XmStringByteCompare() 445

XmStringConcat() 823

XmStringCreate() 814, 823

example 398

XmStringCreateLocalized() 811, 870

example 16, 135, 138, 162, 418, 449,
540, 555, 561, 597, 920

XmStringCreateLocalized(^^)

example 405

XmStringCreateLtoR() 822, 870

example 146, 172–173, 398
946 Motif Programming Manual

Index
XmStringCreateSimple()

example 211

XmStringDirection type 821

XmStringDirectionCreate() 814, 821

XmStringDraw() 845

XmStringDrawImage() 845, 847

XmStringDrawUnderline() 845, 847

XmStringExtent() 847

XmStringFree() 812

example 16, 212, 398, 442, 449, 555,
561

XmStringFree(^^)

example 405

XmStringFreeContext() 828

example 829

XmStringGetLtoR() 178, 188, 460

example 172–173, 457, 460, 540

XmStringGetNextSegment() 828

example 829

XmStringHeight() 847

XmStringInitContext() 828

example 829

XmStringLineCount() 823

XmStringSegmentCreate() 820

XmStringTable

example 398

XmStringWidth() 847

XmTAB_GROUP 289

XmTEAR_OFF_DISABLED 618

XmTEAR_OFF_ENABLED 618

XmTEXT_BACKWARD 550

XmTEXT_FORWARD 550

XmTextBlock 574

XmTextBlockWcs 586

XmTextClearSelection() 559, 699

XmTextCopy() 558, 698

XmTextCut() 558, 698

XmTextDisableRedisplay() 536

XmTextEnableRedisplay() 536

XmTextField

used in selection box 171

XmTextFieldGetString() 537

XmTextFieldSetCursorPosition()

example 540

XmTextFieldSetString() 536

example 442, 449, 540

XmTextFindString() 549

XmTextFindStringWcs() 586

XmTextGetCursorPosition() 546

example 546, 561

XmTextGetInsertionPosition() 546

XmTextGetLastPosition() 550, 576

example 561

XmTextGetSelection() 559, 699

XmTextGetSelectionPosition() 559

XmTextGetSelectionWcs() 586

XmTextGetString() 536

example 551, 561

XmTextGetStringWcs() 586

XmTextGetSubstring() 537

XmTextGetSubstringWcs() 586

XmTextHighlight() 561

XmTextInsert() 554

example 553

XmTextInsertWcs() 586

XmTextPaste() 698

XmTextPosition type 546

XmTextReplace() 550

example 551, 561

XmTextReplaceWcs() 586

XmTextScanType type 560

XmTextScroll() 550

XmTextSetCursorPosition() 546

XmTextSetHighlight()

example 561

XmTextSetInsertionPosition() 546, 581

example 546

XmTextSetSelection() 699

XmTextSetString() 183, 536, 755

example 540, 546, 551, 555

XmTextSetStringWcs() 586

XmTextShowPosition() 550, 554

example 553

XmTextVerifyCallbackStruct 573

XmTextVerifyCallbackStructWcs 586

XmToggleButtonCallbackStruct 414

XmToggleButtonGadgetGetState() 414

XmToggleButtonGadgetSetState() 415

XmToggleButtonGetState() 414

XmToggleButtonSetState() 415

XmTOP_LEFT 338

XmTOP_RIGHT 338

XmTrackingEvent() 875

XmTranslateKey() 35

XmTRAVERSE_CURRENT 294

XmTRAVERSE_DOWN 294

XmTRAVERSE_HOME 294

XmTRAVERSE_LEFT 294
Motif Programming Manual 947

Index
XmTRAVERSE_NEXT 294

XmTRAVERSE_NEXT_TAB_GROUP 294,
571

XmTRAVERSE_PREV 294

XmTRAVERSE_PREV_TAB_GROUP 294

XmTRAVERSE_RIGHT 294

XmTRAVERSE_UP 294

XmTraverseObscuredCallbackStruct 359

XmUninstallImage() 83

XmUNMAP 143

XmUNSPECIFIED_PIXMAP 395

XmUpdateDisplay() 890

example 884, 890

XmVaCASCADEBUTTON 109

XmVaCHECKBUTTON 109

XmVaCreateSimpleCheckBox() 420

XmVaCreateSimpleMenuBar() 106, 596

example 108, 212, 540, 555

XmVaCreateSimpleOptionMenu() 596

example 605

XmVaCreateSimplePopupMenu() 596

example 597, 602

XmVaCreateSimplePulldownMenu() 107,
118, 596

example 540, 555, 602

XmVaCreateSimpleRadioBox() 418

example 418

XmVaDOUBLE_SEPARATOR 109

XmVaPUSHBUTTON 108

XmVaRADIOBUTTON 109, 418

XmVARIABLE 440

value 327

XmVaSEPARATOR 109

XmVaSINGLE_SEPARATOR 109

XmVaTITLE 109

XmVaTOGGLEBUTTON 108

XmVERTICAL 265, 268, 337, 505

XmWORK_AREA 264

XOpenIM() 588

XQueryBestCursor() 721

XQueryTree() 676

XSendEvent() 676

XSetErrorHandler() 554

XSetFont()

example 345

XSetForeground()

example 345, 375

XSetWindowBackgroundPixmap() 433

example 652

xshowbitmap.c program 913

Xsi input method 589

Xt

programming with 16–39

Xt library 14–16, 17

Xt selection mechanisms 715

XtActionsRec 243

XtAddActions() 243

XtAddCallback() 200, 229

adding dialog callbacks 150

example 150, 172–173, 370, 502, 508

XtAddEventHandler() 635

example 649

XtAppAddActions() 708, 732, 737

XtAppAddInput() 892

XtAppAddTimeOut() 877, 883

and signal handling 859

example 894

XtAppAddWorkProc() 853, 881

XtAppMainLoop()

and signal handling 852

XtAppSetErrorHandler() 554

XtAppSetWarningHandler() 554

XtCallCallbacks() 876

XtConvertSelectionIncrProc 709

XtConvertSelectionProc 709, 735

XtCreateApplicationShell() 207

XtCreatePopupShell() 154, 207

XtDestroyWidget() 223, 742

XtDisplayOfObject() 684

XtGetMultiClickTime() 560

XtGetValues() 739

XtGrabExclusive 139

XtGrabKind 139

XtGrabNone 139

XtGrabNonexclusive 139

XtInitialize() 21

XtIsVendorShell() 645

XtMalloc()

example 172–173

XtManageChild() 138

and popping up dialogs 138, 234

XtNew() 897

XtNtitle 218

XtOverrideTranslations() 243, 374

example 241

XtParent() 139, 539

XtParseTranslationTable() 243, 708, 732,
737
948 Motif Programming Manual

Index
example 241, 375

XtPopdown() 234

XtPopup() 234

XtQueryGeometry() 847

and PanedWindows 282

XtRemoveEventHandler()

example 649

XtRemoveWorkProc() 882

XtResolvePathname() 809

XtSelectionCallbackProc 711, 754

XtSetArg()

example 213

XtSetLanguageProc() 20, 584, 809

XtSetMultiClickTime() 404, 560

XtSetSensitive() 396, 616

example 172–173, 616

XtSetValues()

example 104

XtVaAppCreateShell() 207

XtVaAppInitialize() 21

XtVaCreateApplicationShell() 207

XtVaCreateArgsList() 510

example 508

XtVaCreateManagedWidget() 151, 408

and creating Frame widgets 274

and creating List widgets 436

versus XtVaCreateWidget() 238

XtVaCreatePopupShell() 207

example 217, 225

XtVaCreateWidget() 151

versus XtVaCreateManagedWidget()

238

XtVaGetValues() 27, 536, 710, 721, 752

XtVaSetValues() 27, 710, 721, 723

XtVaTypedArg 85, 104, 205

and compound strings 812

XtWidgetGeometry type 284

XtWindowOfObject() 684

XwcLookupString() 589

Z
zero-length attachment offsets 255
Motif Programming Manual 949

	Motif Programming Manual
	Preface
	Introduction to Motif
	Basic User Interface Concepts
	What Is Motif?
	Designing User Interfaces

	The Motif Programming Model
	Basic X Toolkit Terminology and Concepts
	The Xm and Xt Libraries
	Programming With Xt and Motif
	Summary

	Overview of the Motif Toolkit
	The Motif Style
	Application Controls
	Application Layout
	Putting Together a Complete Application
	Changes in Motif 2.1
	Summary

	The Main Window
	Creating a MainWindow
	The MenuBar
	The Command and Message Areas
	Using Resources
	Summary
	Exercises

	Introduction to Dialogs
	The Purpose of Dialogs
	The Anatomy of a Dialog
	Creating Motif Dialogs
	Dialog Resources
	Dialog Callback Routines
	Piercing the Dialog Abstraction
	Dialog Modality
	Summary

	Selection Dialogs
	Types of SelectionDialogs
	SelectionDialogs
	PromptDialogs
	The Command Widget
	FileSelectionDialogs
	Summary

	Custom Dialogs
	Modifying Motif Dialogs
	Designing New Dialogs
	Building a Dialog
	Generalizing the Action Area
	Using a TopLevelShell for a Dialog
	Positioning Dialogs
	Summary

	Manager Widgets
	Types of Manager Widgets
	Creating Manager Widgets
	The BulletinBoard Widget
	The Form Widget
	The RowColumn Widget
	The Frame Widget
	The PanedWindow Widget
	Keyboard Traversal
	Summary

	Containers and IconGadgets
	Creating a Container
	Creating IconGadgets
	Container Resources
	IconGadget Resources
	Container Constraints
	Container Callbacks
	Container Functions
	Summary
	Exercises

	ScrolledWindows and ScrollBars
	The ScrolledWindow Design Model
	Creating a ScrolledWindow
	Working With ScrollBars
	Implementing True Application-defined Scrolling
	Working With Keyboard Traversal in ScrolledWindows
	Summary
	Exercises

	The DrawingArea Widget
	Creating a DrawingArea Widget
	Using DrawingArea Callback Functions
	Using Translations on a DrawingArea
	Using Color in a DrawingArea
	Summary
	Exercises

	Labels and Buttons
	Labels
	PushButtons
	ToggleButtons
	ArrowButtons
	DrawnButtons
	Summary
	Exercise

	The List Widget
	Creating a List Widget
	Using ScrolledLists
	Manipulating Items
	Positioning the List
	Navigating the List
	List Callback Routines
	Summary
	Exercises

	The ComboBox Widget
	Creating a ComboBox
	ComboBox Resources
	ComboBox Functions
	ComboBox Callbacks
	Summary
	Exercises

	The SpinBox and SimpleSpinBox Widgets
	Creating a SimpleSpinBox
	Creating a SpinBox
	SpinBox and SimpleSpinBox Resources
	SpinBox and SimpleSpinBox Callbacks
	Summary
	Exercises

	The Scale Widget
	Creating a Scale Widget
	Scale Values
	Scale Orientation and Movement
	Scale Resources
	Scale Callbacks
	Scale Tick Marks
	Summary

	The Notebook Widget
	Creating a Notebook
	Notebook Resources
	Notebook Constraints
	Notebook Callbacks
	Notebook Functions
	Summary

	Text Widgets
	Interacting With Text Widgets
	Text Widget Basics
	Text Clipboard Functions
	A Text Editor
	Text Callbacks
	Text Widget Internationalization
	Summary
	Exercises

	Menus
	Menu Types
	Creating Simple Menus
	Designing Menu Systems
	General Menu Creation Techniques
	Summary
	Exercises

	Interacting With the Window Manager
	Interclient Communication
	Shell Resources
	VendorShell Resources
	Handling Window Manager Messages
	Session Management
	Customized Protocols
	Summary
	Exercises

	The Clipboard
	Simple Clipboard Copy and Retrieval
	Copy by Name
	Clipboard Data Formats
	The Primary Selection and the Clipboard
	Implementation Issues
	Summary

	Drag and Drop
	Using Drag and Drop
	The Drag and Drop Model
	Customizing Built-in Drag and Drop
	Working With Drag Sources
	Working With Drop Sites
	Summary

	The Uniform Transfer Model
	Overview
	Exporting the Data
	Requesting the Data Format
	Importing the Data
	Batched Data Transfer
	An Example
	Summary

	Render Tables
	Renditions
	Render Tables
	Tab Lists
	An Example
	Render Tables and Resource Files
	Missing Fonts and Renditions
	Summary

	Compound Strings
	Internationalized Text Output
	Creating Compound Strings
	Manipulating Compound Strings
	Parse Tables
	Rendering Compound Strings
	Summary

	Signal Handling
	Handling Signals in X11R5
	Handling Signals in Xt
	Handling Signals in X11R6
	Summary

	Advanced Dialog Programming
	Help Systems
	Working Dialogs
	Dynamic Message Symbols
	Summary

	Additional Example Programs
	A Bitmap Display Utility
	A Memo Calendar

	Index

