THE DEFINITIVE GUIDES TO THE
X WINDOW SYSTEM

VOLUME SIX A

Motif Programming Manual

for Motif 2.1

Open Source Edition

Antony Fountain, Jeremy Huxtable,
Paula Ferguson and Dan Heller

Motif Programming Manual, Open Source Edition
by Antony Fountain, Jeremy Huxtable, Paula Ferguson and Dan Heller

December 2001

Copyright 0O 1991, 1994, 2000, 2001 O’Reilly & Associates, Inc., Antony Fountain and
Jeremy Huxtable. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, v1.0 or later (the latest version
is presently available at http://www.opencontent.org/openpub/).

This is an updated version of the Motif Programming Manual, Second Edition,
published by O’Reilly & Associates in February 1994. The source files for the
Second Edition can be found at http://www.oreilly.com/openbook/motif/.

A description of the modifications is contained in the Preface to the Third Edition,
which has become the Open Source Edition.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

Published by:
= s=——— IMPERIAL

IST sorrware

Imperial Software Technology Limited
Kings Court

185 Kings Road

Reading

Berkshire RG1 4EX

Tel: +44 118 958 7055

Fax: +44 118 958 9005

email: sales@ist.co.uk

URL: http://www.ist.co.uk

Contents

Preface Xi
1. Introductionto Motif............. L 1
Basic User Interface Conceptst 2
What IsMotif? 3
Designing User Interfaces 6
2. The Motif Programming Model. 11
Basic X Toolkit Terminology and Concepts 11
The Xmand Xt Libraries 14
Programming With Xtand Motif 16
SUMMANY .. 39
3. Overview of the Motif Toolkit. 41
The Motif Style 41
Application Controls i 43
Application Layout i 53
Putting Together a Complete Application 66
ChangesinMotif2.1, 86
SUMMANY .. 97
4. TheMainWindow 99
Creatinga MainWindow 100

Motif Programming Manual iii

Contents

The MenuBar i 105
The Command and Message Areas 120
USINg RESOUICESttt 125
SUMMANY .. 127
EXErCiSeS i 127
Introductionto Dialogs. 129
The Purposeof Dialogs 130
The Anatomy ofaDialog 133
Creating Motif Dialogs 135
Dialog Resourcesc i, 145
Dialog Callback Routines 150
Piercing the Dialog Abstraction 153
DialogModality i i 159
SUMMANY .. 170
SelectionDialogso i i 171
Types of SelectionDialogs 171
SelectionDialogs 172
PromptDialogs 179
The Command Widget 182
FileSelectionDialogs, 183
SUMMANY . e e 195
CustomDialogs i 197
Modifying Motif Dialogs 197
Designing New Dialogs 205
BuildingaDialog i 210
Generalizing the Action Area 224
Using a TopLevelShell foraDialog 230

Motif Programming Manual

Contents

Positioning Dialogs i i 232
SUMMANY .. e 234

8. ManagerWidgets i 235
Types of Manager Widgets 235
Creating Manager Widgets 238
The BulletinBoard Widget 240
The FormWidget i 245
The RowColumnWidget 263
The Frame Widget i, 273
The PanedWindow Widget 277
Keyboard Traversal 285
SUMMAIY . e e 295

9. Containersand lconGadgets 297
CreatingaContainer i, 301
Creating lconGadgets, 301
Container Resourcescooiiirienen.. 301
IconGadget Resourcesc.iiiiiiiinna... 306
Container Constraints 307
Container Callbacks 312
Container Functions i 318
SUMMANY . e e 320
EXErCISeS i 320

10. ScrolledWindows and ScrollBars 321
The ScrolledWindow Design Model 321
Creating a ScrolledWindow 325
Working With ScrollBars 332
Implementing True Application-defined Scrolling 343

Motif Programming Manual \Y

Contents

Vi

11.

12.

13.

Working With Keyboard Traversal in ScrolledWindows . 358

SUMMANY .. e 360
EXErCiSeS ... i 360
The DrawingAreaWidget. 363
Creating a DrawingAreaWidget 364
Using DrawingArea Callback Functions 365
Using Translations on a DrawingArea 374
Using Colorina DrawingArea 381
SUMMANY .. 386
EXErCISES .. 386
Labelsand Buttons.o, 389
Labels 390
PUShBULIONS 402
ToggleButtons 408
ArrowBULtONs 423
DrawnButtons o i 429
SUMMANY .. 432
EXErcise 432
The ListWidget i 435
Creatinga ListWidget 436
Using ScrolledLists i, 439
Manipulating Items 441
Positioningthe List 454
Navigatingthe List.............. 456
List Callback Routines 456
SUMMANY .. 462
EXErCiSes i 463

Motif Programming Manual

Contents

14. The ComboBoxWidget............. ... it 465
Creatinga ComboBox 466
ComboBOX RESOUICES it 469
ComboBox Functions 471
ComboBox Callbacks 473
SUMMANY .. 475
EXErCISES .. 476

15. The SpinBox and SimpleSpinBox Widgets............ 477
Creating a SimpleSpinBoxX 479
Creatinga SpinBox i, 487
SpinBox and SimpleSpinBox Resources 491
SpinBox and SimpleSpinBox Callbacks 492
SUMMANY .. 498
EXErCiSeS i 498

16. TheScaleWidget i, 501
Creating a Scale Widget 502
Scale Values 504
Scale Orientation and Movement 505
Scale RESOUICES . ..ot 506
Scale Callbacks i 507
Scale Tick Marks i 510
SUMMANY .. 512

17. The Notebook Widget.............................. 513
Creatinga Notebook 515
Notebook Resources it 520
Notebook Constraints 523
Notebook Callbacks 524

Motif Programming Manual vii

Contents

viii

18.

19.

20.

Notebook Functions it 525
SUMMANY .. e 527
Text WIdgets 529
Interacting With Text Widgets 531
Text WidgetBasiCsot 534
Text Clipboard Functions 555
ATextEditor..... 560
TextCallbacks 569
Text Widget Internationalization 584
SUMMANY .. 591
EXErCiSeS ... i 591
Menus. 593
MenNU TYPES . ..o 593
Creating SimpleMenus 596
Designing Menu Systemscvvirinan... 607
General Menu Creation Techniques 619
SUMMANY .. 640
EXErCiSes i 641
Interacting With the Window Manager 643
Interclient Communication 644
Shell Resources ... 645
VendorShell Resources 653
Handling Window Manager Messages 657
Session Management 661
Customized Protocols 673
SUMMANY .. 677
EXErCiSes i 677

Motif Programming Manual

Contents

21. TheClipboard........ i 679
Simple Clipboard Copy and Retrieval 681
CopybyName i 690
Clipboard Data Formats 695
The Primary Selection and the Clipboard 698
Implementation Issues o 700
SUMMANY .. 702

22. Dragand Dropouiiii 703
UsingDragand Drop ..., 703
The Dragand Drop Model 705
Customizing Built-in Dragand Drop 718
Working WithDrag Sourcesco.u... 725
Working With Drop Sites it .. 742
SUMMANY .. 761

23. The Uniform Transfer Model 763
OVEIVIBW . o 764
ExportingtheData 765
Requesting the DataFormat 769
ImportingtheData 772
Batched Data Transfer oot 775
AnExample 775
SUMMANY .. 781

24, RenderTables............ i 783
Renditions i 784
Render Tables i, 787
Tab LiSts 792
AnExample 798

Motif Programming Manual ix

Contents

25.

26.

27.

Render Tables and Resource Files 803
Missing Fonts and Renditions 805
SUMMAIY . e e 808
Compound Strings. 809
Internationalized TextOutput 809
Creating Compound Stringscovvnn.. 811
Manipulating Compound Strings 825
Parse Tables i 830
Rendering Compound Strings 845
SUMMANY .. 847
Signal Handling o i 849
Handling Signalsin X11R5 850
Handling Signalsin Xt.......... 852
Handling Signalsin X11R6 861
SUMMANY . e e 865
Advanced Dialog Programming 867
Help Systems i 867
Working Dialogs i 877
Dynamic Message Symbols 893
SUMMANY .. 898
Additional Example Programs....................... 901
A Bitmap Display Utility 901
AMemo Calendar i, 913
INdeX. ..o 921

Motif Programming Manual

Preface

By convention, a preface describes the book itself, while the introduction describes the
subject matter. You should read through the preface to get an idea of how the book is
organized, the conventions it follows, and so on.

This book describes how to write applications using the Motif toolkit from the Open
Software Foundation (OSF). The Motif toolkit is based on the X Toolkit Intrinsics (Xt),
which is the standard mechanism on which many of the toolkits written for the X Window
System are based. Xt provides a library of user-interface objects caildgetsand
gadgets, which provide a convenient interface for creating and manipulating X windows,
colormaps, events, and other cosmetic attributes of the display. In short, widgets can be
thought of as building blocks that the programmer uses to construct a complete application.

However, the widgets that Xt provides are generic in nature and impose no user-interface
policy whatsoever. That is the job of a user-interface toolkit such as Motif. Motif provides

a complete set of widgets designed to implement the application look and feel specified in
the Motif Style Guideand theMotif Application Environment Specification

The book provides a complete programmer’s guide to the Moatif toolkit. While the OSF/
Motif toolkit is based on Xt, the focus of the book is on Motif itself, not on the Intrinsics.
Detailed information about Xt is provided by Volume 4, and references are made to that
volume throughout the course of this book. You are not required to have Volume 4 in order
to use this book effectively, as the books are not companion volumes, but complementary
ones. However, truly robust applications require a depth of knowledge about Xt and Xlib,
the layer on which Xt itself is based, that is not addressed in this book alone. We never leave
you completely in the dark about Xt or Xlib functions that we use or reference, but you
won'’t learn everything there is to know about them through this particular volume.

This book covers Motif 2.1, which is the latest major release of the Motif toolkit. Motif 2.

1 is based on Release 6 of the Xlib and Xt specifications (X11R6). This release of Motif
provides many new features, as well as a number of enhancements to existing functionality.
All of the changes in Motif 2.1 are summarized in Section 3.5, which provides references
to other sections that describe the changes in more detail.

Motif Programming Manual Xi

Preface

The Plot

There are several plots and subplots in this book and the stories told are intertwined. Our
primary goal is to help you learn about the Motif environment from both the programmer’s
and the user’s perspectives. However, we are talking to you as a programmer, not as a user.
We treat the user as a third party who is not with us now. In order to create an application
for the user, you sometimes have to assume her role, so at times we may ask you to play
such a role to help you think about things from the user’'s perspective rather than the
programmer’s.

Each chapter begins by discussing the goals that Motif is trying to achieve using a particular
widget or gadget. For example, before we describe how to create a FileSelectionDialog, we
introduce the object visually and conceptually, discuss its features and drawbacks, and put
you in the role of the user. Once you understand what the user is working with, you should
have a better perspective on the task of presenting it to her.

The next subplot is that of application design. Many design concepts transcend the
graphical user interface (GUI) and are common to all programs that interact with users. You
could even interpret this book as a programmer’s guide that happens to use Motif as an
example. As you read the material, you should stop and think about how you might
approach a particular interface method if you were using another toolkit instead of Motif.
A wild concept, perhaps, but this approach is the key to better application design and to
toolkit independence. If Motif changes in a later release, or if you decide to port your
application to another toolkit or even another windowing system, the more generalized
your code is, the easier it will be to bring it into a new realm successfully.

The last story we are telling is that of general programming technique. By providing you
with examples of good programming habits, styles, and usages, we hope to propagate a
programming methodology that has proven to be successful over the years. These
techniques have been applied to applications that have been ported to multiple architectures
and operating systems. As an added bonus, we have thrown in a number of interesting
programming tricks. No, these are not hacks, but conveniences that are particular to C, to
UNIX, or even to the X Window System. We don't focus on these things, but they are made
available to you in passing, so you should have no problem identifying them when they
come up.

This book is intended to be used as a programmer’s manual, not a reference manual.
Volume 6B, contains reference material for all of the Motif library functions and widget
classes. We have tried to identify those features of the toolkit that are most important for
general discussion, so we do not discuss every aspect of the Motif toolkit in the body of this
book.

Any major software development effort, especially in its early stages, has bugs that prevent
certain features from being used and the Motif toolkit is no exception. There are some bugs

Xii Motif Programming Manual

Preface

in the Motif toolkit that have not yet been worked out, but this does not imply that the
toolkit is poorly written or riddled with errors. Throughout the book, we try to alert you to
any potential problems you may encounter due to bugs. In some cases, there are things that
work in Motif, but they are poorly designed, and we don’t recommend that you use them.
Again, we provide an explanation of what's going on and sometimes describe an alternative
solution. There are also some features, resources, and functions available in the toolkit that
are not supported by OSF. OSF reserves the right to change anything not publicly
documented, so rather than discuss undocumented features, we simply ignore them.

We should also point out that this book is not intended to solve all your problems or answer
all your questions concerning Motif or its toolkit. It is not going to spoon feed you by giving
you step-by-step instructions on how to achieve a particular task. You are encouraged, and
even expected, to experiment on your own with the example applications or, better yet, with
your own programs. We want to provide you with discussion and examples that provoke
you into asking questions like, “What would happen if | changed this program to do this?”

It would be unrealistic to believe that we could address every problem that might come up.
Rather than approaching situations using overly specific examples, we discuss them in a
generalized way that should be applicable to many different scenarios.

Assumptions

The basic method for creating simple applications in Motif is conceptually simple and
straightforward. Even if you only dabble in C, you can probably understand the concepts
well enough to do most things. However, unless you have a strong handle on the C
programming language, there is an upper limit to what you will be able to do when you try
to create a full-featured, functioning application. After all, the user-interface portion of
most applications should make up no more than 30-40% of the total code. The functionality
of an application is up to you and is not discussed here. Without a strong background with
C, or some other structured programming language, you might have a problem keeping up
with the material presented here.

This book also assumes that you are familiar with the concepts and architecture of the X
Toolkit Intrinsics, which are presented in Volume 4M, and Volume 5. A basic
understanding of the X Window System is also useful. For some advanced topics, the
reader may need to consult Volume 1, and Volume 2.

How This Book Is Organized

While this book attempts to serve the widest possible audience, that does not imply that the
material is so simple that it is only useful to novice programmers. In fact, this book can be
considered an advanced programmer’s handbook, since in many places, it assumes a fairly
sophisticated knowledge of many features of the X Window System.

Motif Programming Manual Xiii

Preface

Each chapter is organized so that it gets more demanding as you read through it. Each
chapter begins with a short introduction to the particular Motif element that is the subject

of the chapter. The basic mechanics involved in creating and manipulating the object are
addressed next, followed by the resources and other configurable aspects of the object. If
there is any advanced material about the object, it is presented at the end of the chapter.
Many chapters also include exercises that suggest how the material can be adapted for uses
not discussed explicitly in the text.

While the chapters may be read sequentially, it is certainly not required or expected that
you do so. As you will soon discover, there are many circular dependencies that justify
skipping around between chapters. Since there is no organization that would eliminate this
problem, the material is not organized so that you “learn as you go.” Instead, we organized
the material in a top-down manner, starting with several chapters that provide an
introduction to the Motif look and feel, followed by chapters organized on a widget-by-
widget basis. The higher-level manager widgets are discussed first, followed by the
primitive widgets and gadgets. Advanced material is positioned at the end of the book,
since the details are not of paramount importance to the earlier material.

In short, everything is used everywhere. Starting at the beginning, however, means that we
won't necessarily assume you know about the material that is referenced in later chapters.
On the other hand, the later chapters may make the assumption that you are aware of
material in earlier chapters.

The book is broken down into twenty seven chapters and one appendix as follows:

Chapter 1
Introduction to Motifanswers the question “Why Motif?” and suggests some
of the complexities that the programmer has to master in order to make an
application easy to use.

Chapter 2

The Motif Programming Moddkaches the fundamentals of Motif by example.
It presents a simple “Hello, World” program that shows the structure and
style common to all Motif programs. Much of this material is already cov-
ered in detail in Volume 4M,so the chapter can be read as a refresher, or a
light introduction for those who haven't read the earlier book. The chapter
references Volume 4 and Volume 1, to point out areas that the programmer
needs to understand before progressing with Motif.

Chapter 3
Overview of the Motif Toolkiéxplains what is involved in creating a real ap-
plication. The chapter discusses the arrangement of primitive widgets in
an interface, the use of dialog boxes and menus, and the relationship be-
tween an application and the window manager. The chapter also describes
all of the changes in Release 2.1 of the Motif toolkit. After reading this

Xiv Motif Programming Manual

Preface

chapter, the programmer should have a solid overview of Motif application
programming and be able to read the remaining chapters in any order.

Chapter 4
The Main Windowdescribes the Motif MainWindow widget, which can be
used to frame many types of applications. The MainWindow is a manager
widget that provides a MenuBar, a scrollable work area, and various other
optional display and control areas.

Chapter 5
Introduction to Dialogsdescribes the fundamental concepts that underly all
Motif dialogs. It provides a foundation for the more advanced material in
the following chapters. In the course of the introduction, this chapter also
provides details on Motif's predefined MessageDialog classes.

Chapter 6
Selection Dialoggresents the more complex Motif-supplied dialogs for dis-
playing selectable items, such as lists of files or commands, to the user.

Chapter 7
Custom Dialoggiescribes how to create new dialog types, either by custom-
izing Motif dialogs or by creating entirely new dialogs.

Chapter 8
Manager Widgetprovides detailed descriptions of the various classes of Mo-
tif manager widgets. Useful examples explore the various methods of posi-
tioning components in Form and RowColumn widgets.

Chapter 9

The Container and Icon Gadgeescribes two components which are new to
Motif 2. These were designed to work together in order to provide a more
graphical presentation of the front end of the application than the older
Main Window. The IconGadget pictorially represents application objects;
the Container lays them out in a variety of styles, including Tablular, Grid,
and Tree formats. The layout can be changed dynamically: the Container
and lconGadget combination approximates to a Model-View-Controller
(MVC) system for the Motif widget set.

Chapter 10
ScrolledWindows and ScrollBadescribes the ins and outs of scrolling, with
particular attention to application-defined scrolling, which is often re-
qguired when the simple scrolling provided by the ScrolledWindow widget
is insufficient.

Chapter 11
The DrawingArea Widgetescribes the Motif DrawingArea widget, which pro-
vides a canvas for interactive drawing. The chapter simply highlights, with

Motif Programming Manual XV

Preface

numerous code examples, the difficulties that may be encountered when
working with this widget, rather than trying to teach Xlib drawing tech-
niques. Some knowledge of Xlib is assumed; we direct the reader to Volume
1, for additional information.

Chapter 12
Labels and Buttonprovides an in-depth look at labels and buttons, the most
commonly-used primitive widgets. The chapter discusses the Label, Push-
Button, ToggleButton, ArrowButton, and DrawnButton widget classes.

Chapter 13
The List Widgetdescribes yet another method for the user to exert control
over an application. A List widget displays a group of items from which the
user can make a selection.

Chapter 14
The ComboBox Widgetescribes another component which is new in Motif 2.
The ComboBox combines List display with Text input, although the List
can be hidden until required. The widget therefore maximizes user conven-
ience using the minimal of screen space.

Chapter 15
The SpinBox and SimpleSpinBox Widgatsalso new in Motif 2. Similar in con-
cept to the ComboBox, the widgets allow the user to choose from a set of
values, and the current choice is presented through a TextField. The differ-
ence is that the user changes the current choice not by selecting from a List,
but by rotating through the set of available values using ArrowButtons
provided for the purpose.

Chapter 16
The Scale Widgetescribes how to use the Scale to display a range of values.

Chapter 17
The Notebook Widgekescribes a component which provides page or tab man-
ager functionality to the Motif 2 toolkit. The programmer adds children to
the Notebook, only one of which is visible at any given time. The user can
select between pages using Tabs (PushButtons) aligned along the edges of
the Notebook, or by selecting the required page number from a SpinBox
which the Notebook creates automatically.

Chapter 18
Text Widgetexplains how the Text and TextField widgets can be used to
provide text entry in an application, from a single data-entry field to a full-
fledged text editor. Special attention is paid to problems such as how to
mask or convert data input by the user so as to control its format. The chap-

XVi Motif Programming Manual

Preface

ter also discusses the internationalization features of the widgets provided
in Motif 1.2.

Chapter 19
Menusdescribes the menus provided by the Motif toolkit. The chapter exam-
ines how menus are created and presents some generalized menu creation
routines.

Chapter 20
Interacting With the Window Managgrovides additional information on the
relationship between an application and the Motif Window Manager
(mwnj. It discusses the shell widget resources and window manager proto-
cols that can be used to communicate with the window manager. It also dis-
cusses various CDE desktop aspects of the window manager interaction.

Chapter 21
The Clipboarddescribes a way for the application to interact with other ap-
plications. Data is placed on the clipboard, where it can be accessed by oth-
er windows on the desktop, regardless of the applications with which they
are associated.

Chapter 22
Drag and Droppresents the drag and drop mechanism for transferring data
that is provided in Motif 1.2. The chapter describes the built-in drag and
drop features of the Motif toolkit and provides examples of adding drag and
drop functionality to an application.

Chapter 23
The Uniform Transfer Modelescribes the scheme introduced in Motif 2 which
allows the programmer to handle the various data transfer operations sup-
ported by Motif (Primary and Secondary Selections, the Clipboard, Drag-
and-Drop) using a single programming interface.

Chapter 24
Render Tables describes the Motif 2 mechanisms which control the way in
which compound strings are displayed by the toolkit. In Motif 2, strings
which appear in widgets can be multi-colored, multi-font, and laid out in a
multi-column arrangement. The coloration, font, and tabular information
is held separately from the string which is to be drawn in the form of a
render table.

Chapter 25
Compound Stringslescribes Motif's technology for encoding font and direc-
tional information in the strings that are used by almost all Motif widgets.
It discusses how to use compound strings in an internationalized applica-
tion.

Motif Programming Manual Xvii

Preface

Chapter 26
Signal Handlingpresents the problems that can be encountered when mixing
UNIX signals with X applications. It explains how signals work and why
they can wreak such havoc with X. It presents the new features of X11R6
which are expressly designed to handle this problem.

Chapter 27
Advanced Dialog Programmindescribes the issues involved in creating mul-
ti-stage help systems, using WorkingDialogs that allow the user to inter-
rupt long-running tasks, and dynamically changing the pixmaps displayed
in a dialog.

Appendix
Additional Example Programgrovides several additional examples that illus-
trate techniques not discussed in the body of the book.

Related Documents

The following books on the X Window System are available from O’Reilly & Associates,
Inc.:

XViii

Volume Zero X Protocol Reference Manual
Volume One Xlib Programming Manual
Volume Two Xlib Reference Manual

Volume Three

Volume Four

Volume Five
Volume Six A

Volume Seven

Volume Eight

PHIGS Programming Manual
PHIGS Reference Manual
PEXIib Programming Manual
PEXIib Reference Manual

Quick Reference

X Window System User’s Guide, Motif Edi-
tion

X Toolkit Intrinsics Programming Manual,
Motif Edition

X Toolkit Intrinsics Reference Manual
Motif Programming Manual

XView Programming Manualith accompa-
nying reference volume.

X Window System Administrator’s Guide

The X Window System in a Nutshell

Motif Programming Manual

Preface

Programming Supplement for Release 6 of the X Window System

Conventions Used in This Book

Italic is used for:

* UNIX path names, filenames, program names, user command names, options for user
commands, and variable expressions in syntax sections.

* New terms where they are defined.
Typewriter Font is used for:

« Anything that would be typed verbatim into code, such as examples of source code and
text on the screen.

» Variables, data structures (and fields), symbols (defined constants and bit flags),
functions, macros, and a general assortment of anything relating to the C programming
language.

e All functions relating to Motif, Xt, and Xlib.
* Names of subroutines in example programs.
Italic Typewriter Font is used for:

« Arguments to functions, since they could be typed in code as shown but are arbitrary
names that could be changed.

Boldfaceis used for:

* Names of buttons and menus.

Obtaining Motif
Motif sources can be obtained from a number of locations, although the primary reference
site is:

http:/Awww.opengroup.org/motif

These sources are known as Open Motif, and the use of such sources in applications is
restricted to Open Source platforms.

Alternatively, if your hardware vendor is an OSF member, they may be able to provide
Motif binaries for your machine. Various independent vendors also provide binaries for
some machines.Source licenses must be obtained directly from OSF:

OSF Direct
Open Software Foundation
11 Cambridge Center

Motif Programming Manual XiX

Preface

Cambridge, MA 02142
USA

+1 617 621-7300
Internet: direct@osf.org

Obtaining the Example Programs

The example programs in this book are available electronically in a number of ways: by
FTP, FTPMAIL, BITFTP, and UUCP. The cheapest, fastest, and easiest ways are listed
first. If you read from the top down, the first one that works for you is probably the best.
Use FTP if you are directly on the Internet. Use FTPMAIL if you are not on the Internet
but can send and receive electronic mail to internet sites (this includes CompuServe users).
Use BITFTP if you send electronic mail via BITNET.Use UUCP if none of the above
works.

Versions of the example programs for Motif 2.1, Motif 1.2 and Motif 1.1 are available
electronically. If you want the Motif 2.1 version, use the filenam@mples21.tar.Zas
shown in the sample sessions below. The filename for the Motif 1.2 versixamples12.
tar.Z

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is
shown, with what you should type in boldface.

% ftp ftp.uu.net

Connected to ftp.uu.net.220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST
1992) ready.

Name (ftp.uu.net:paula): anonymous

331 Guest login ok, send domain style e-mail address as password.

Password: paula@ora.com (use your user name and host Here

230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/xbook/motif

250 CWD command successful.

ftp> binary (Very important! You must specify binary transfer for compressed files.
200 Type setto I.

ftp> get examples12.tar.Z

200 PORT command successful.

150 Opening BINARY mode data connection for examples12.tar.Z

226 Transfer complete.

ftp> quit

221 Goodbye.

%

If the file is a compressed tar archive, extract the files from the archive by typing:
% zcat examples12.tar.Z | tar xf -

System V systems require the followitag command instead:

XX Motif Programming Manual

Preface

% zcat examples12.tar.Z | tar xof -

If zcatis not available on your system, use separat®@mpresandtar commands.

FTPMAIL

FTPMAIL is a mail server available to anyone who can send electronic mail to and receive
it from Internet sites. This includes any company or service provider that allows email
connections to the Internet. Here’'s how you do it.

You send mail tdtpmail@online.ora.comin the message body, give the FTP commands
you want to run. The server will run anonymous FTP for you and mail the files back to you.
To get a complete help file, send a message with no subject and the single word “help” in
the body. The following is an example mail session that should get you the examples. This
command sends you a listing of the files in the selected directory, and the requested
example files. The listing is useful if there’'s a later version of the examples you're
interested in.

% mail ftpmail@online.ora.com

Subject:reply paula@ora.com (where you want files mailed)
opencd /published/oreilly/xbook/motif

dirmode

binary

uuencode

get examplesl2.tar.Z

quit

%

A signature at the end of the message is acceptable as long as it appears after “quit.”

All retrieved files will be split into 60KB chunks and mailed to you. You then remove the
mail headers and concatenate them into one file, andihdacoder atobit. Once you've
got the desired file, follow the directions under FTP to extract the files from the archive.

VMS, DOS, and Mac versions afidecodeatob, uncompressandtar are available.

BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages
requesting files, and it sends you back the files by electronic mail. BITFTP currently serves
only users who send it mail from nodes that are directly on BITNET, EARN, or NetNorth.
BITFTP is a public service of Princeton University. Here’s how it works.

To use BITFTP, send mail containing your ftp commandBtoaFTP@PUCC For a
complete help file, send HELP as the message body.

The following is the message body you should send to BITFTP:

FTP ftp.uu.net NETDATA
USER anonymous

Motif Programming Manual XXi

Preface

PASS your Internet email address (not your bitnet address)

CD /published/oreilly/xbook/motif

DIR

BINARYG

ET examplesl2.tar.Z

QUIT
Once you've got the desired file, follow the directions under FTP to extract the files from
the archive. Since you are probably not on a UNIX system, you may need to get versions
of uudecodeuncompressatob, andtar for your system. VMS, DOS, and Mac versions are
available. The VMS versions are gatekeeper.dec.coim /archive/pub/VMS

Questions about BITFTP can be directed to Melinda VatidgAINT@PUCCon BITNET.

UUCP

UUCP is standard on virtually all UNIX systems, and is available for IBM-compatible PCs
and Apple Macintoshes. The examples are available by UUCP via modem from UUNET,;
UUNET’s connect-time charges apply.

You can get the examples from UUNET whether you have an account or not. If you or your
company has an account with UUNET, you will have a system with a direct UUCP
connection to UUNET. Find that system, and type:

uucp uunet\~/published/oreilly/xbook/motiflexamples12.tar.Z yourhosti~/ yournamé

The backslashes can be omitted if you use the Bourne stilinstead ofcsh The file
should appear some time later (up to a day or more) in the diretterispool/uucppublic/
yourname If you don’t have an account but would like one so that you can get electronic
mail, then contact UUNET at 703-204-8000.

It's a good idea to get the filgpublished/oreilly/xbook/motif/Is-IR.Zs a short test file
containing the filenames and sizes of all the files in the directory.

Once you've got the desired file, follow the directions under FTP to extract the files from
the archive.

Copyright

The example programs are written by Dan Heller, Paula Ferguson, Antony Fountain, and
Jeremy Huxtable for theMotif Programming Manual Copyright 1994 O’Reilly
&Associates, Inc. Permission to use, copy, and modify these programs without restriction
is hereby granted, as long as this copyright notice appears in each copy of the program
source code.

For the purposes of making the book easier to read, the above copyright notice does not
appear in the program examples. However, the copyright does exist in the electronic form
of the programs available on the Internet.

XXii Motif Programming Manual

Preface

Compiling the Example Programs

Once you have the examples and you've unpacked the archive as described above, you're
ready to compile them. The easiest way is to ins&ke a program supplied with the X11
distribution that generates proper Makefiles on a wide variety of systenake uses
configuration files called Imakefiles that are included with the examples. If you have
imake you should go to the top-level directory containing the examples, and type:

% xmkmf

% make Makefiles

% make
The examples all have the same application class for purposes of the app-defaults file. The
class name is “Demos” and the app-defaults fideiho$ in the main examples directory
should be placed ifusr/X11R6/lib/app-defaults/Demaos a UNIX system. If you can’t
write to that directory, or if your normal X11 directory tree is installed elsewhere, you
should set the environment variable XAPPLRESDIR to the directory where you installed
the examples.

Acknowledgments

Third Edition. The current edition of this book was updated to cover Motif 2.1 by Antony
Fountain and Jeremy Huxtable, both of Imperial Software Technology. Jerry originally
wrote most of the Motif 2.1 sample programs which appear in the book. He also wrote the
utility Snap which was used to recreate all the screen shots for this manual. Originally we
intended to include this in the Appendix as a sample application, but space forbade this. For
myself, | simply made sure that the examples were non-deprecated. The text, however, is
mine, and | accept the blame for everything.

Special thanks go to the people who worked on the production of this book. The final form
of this book is the work of the staff at O’'Reilly & Associates. | would like to thank all of
them for allowing me to take on this project; a special thanks to Paula Ferguson, without
whom the manuscript would never have reached the printer. The authors would like to
thank all at IST for their patience and support. A special thanks must go to Denise Buckler,
John Bishop, Andy Davies, Simon Davies, Ruth Lambert, Andy and Tricia Lovell, Graham
Salisbury, and Rob Snell, who all cheerfully assisted in the onerous task of proof reading.
Thanks to Alan Sandell for keeping the printer working. A big thanks to Andy Lovell, Neil
Smyth, and Derek Lambert for their patience and support when | could have been working
on company matters. And last but definitely not least, a very special thank you to my wife
Emma for keeping the home fires burning.

Antony J. Fountain

Second Edition.The second edition of this book was updated to cover Motif 1.2,including
drag and drop and internationalization, by Paula Ferguson. Dave Brennan, of HalL

Motif Programming Manual XXiii

Preface

Computer Systems, took on the unenviable task of learning everything he could about UIL
and Mrm, in order to write the UIL programming material for this edition. He did a great
job of covering a complex subject.

Adrian Nye deserves recognition for allowing me to work on this project, when I'm sure
that he had other projects he would have liked to send my way. | don't think either one of
us had any idea how involved this update project would become. He also provided editorial
support that helped keep me on track in the final stages of the work on the book.

The other writers at O’'Reilly &Associates in Cambridge, Valerie Quercia and Linda Mui,
provided support that kept me sane while | was working on the book. Their willingness to
listen and offer advice is greatly appreciated. Extra gratitude goes to Valerie Quercia for
her help with the screen dumps for the book.

David Flanagan deserves credit for always being willing to answer my questions about the
technical details of Motif and X. Douglas Rand, Scott Meeks, and David Brooks at OSF
answered questions and helped review the new material. Daniel Jahn, of SAS Institute, Inc.
, also provided valuable review comments for this edition.

Special thanks go to the people who worked on the production of this book. The final form
of this book is the work of the staff at O'Reilly &Associates. The authors would like to
thank Chris Reilly for the figures, Donna Woonteiler, Chris Tong, and Ellie Cutler for
indexing, Lenny Muellner for tools support, and Stephen Spainhour, Clairemarie Fisher
O’Leary, Kismet McDonough, and Eileen Kramer for copy editing and production of the
final copy. Thanks also to Donna Woonteiler for her patience in helping me understand the
production process.

Finally, I'd like to thank my friends for putting up with me when | kept telling them that

I'd be done working non-stop in a month or two. Special thanks to my house mate,
Meredith Hunt, who put up with me when | was stressed out and not much fun to live with,
and who took care of the cats when | wasn’t around. My friends Karen Lewis and Liz
Bradley opened their house to me when | needed to escape and be someplace where there
are mountains. And thanks to the great people at the Boston Rock Gym, who provided me
with a much-needed outlet for climbing the walls.

Despite the efforts of all of these people, the authors alone are responsible for any errors or
omissions that remain.

Paula M. Ferguson

First Edition. The first edition of this book took over a year and a half to write and compile
from the beginning. But when I look back on the entire effort, and | think about what it takes
to do things like this (and other difficult things in life), | realize that whatilly requires

is a state of mind and a mental model that lends itself to seeing the big picture and choosing
to do what's necessary to get the job done.

XXV Motif Programming Manual

Preface

To this, | can only credit one person, Tim O'Reilly, my friend and editor of this book. It's

his approach to life, his values, his way of thinking about things, and his talent for
expressing them is what has influenced me more than anything else in adopting the kind of
mental framework necessary to write a book like this (or to start my company, Z-Code
Software, or to do anything | do in life). He never gives me advice when | ask for it, nor
does he tell me what to do. Instead, he uses quotes, cites anecdotes, or just describes an
abstract thought that always seems to be appropriate to every situation. In short, he’s shown
me a way of thinking about things that appreciates the big picture. | take this with me
wherever | go, and in whatever | do. Without it, | couldn’t have written this book.

Those who worked most closely with me on the project include Irene Jacobson, who
dedicated long hours to meticulous editing and support. Her intuition and insistence on
proper use of words saved many cuts of Tim O'Reilly’s scalpel. David Lewis also gets
super-high marks for his excellent feedback, for his technical expertise, and for helping
take care of certain Z-Mail ports while | was busy hunched over this computer. More thanks
go to the great folks at Z-Code Software, Bart Schaefer and Don Hatch, for not laughing at
me when | told people for at least six months that the book would take “just two more weeks
now.”(I really meant it, too!) Actually, they helped quite a bit with reading nroff'd
manuscripts, and by taking care of the business whenever | was at O'Reilly &Associates’
offices in “Bahston.”

The figures in this book come in two forms: screen dumps and hand-generated figures done
by Chris Reilly. What a super job he did--and always on time. And how can | thank Kismet
McDonough, Lenny Muellner, Rosanne Wagger, Mike Sierra, Eileen Kramer, and the
other production folks at O’Reilly &Associates, who did a wonderful job of copy editing,
proofing, page layout, and all the other things that make the difference between a
manuscript and a finished book. And that's not all: Ellie Cutler wrote the index. Tony
Marotto of Cambridge Computer Associates figured out how to convert our screen dumps
into PostScript files and how to scale screen dumps without the moire and plaid patterns
you see in many books. He used Jeff Poskanzarigplusto convertxwd dumps togif

format, and then wrote a set of image-processing programs that shift and enhance the tones.
Daniel Gilly took on the enormous job of developing the reference appendices when it
became clear that | wouldn't have time.

Enthusiastic applause goes to Libby Hanna (do | getofficial OSF/Motif decoder ring
now!!??), David Brooks, Scott Meeks, Susan Thompson, Carl Scholz, Benjamin Ellsworth,
and the entire cast at OSF in Cambridge for their support. And, of coawvsgyoneon the
motif-talk mailing list.(l wish | could remember all your names!)

People | can't forget: Bill “Rock” Petro, Akkana, Mike Harrigan at NCD for the terminal,
Danny Backx at BIM (sorry | didn’t get you any review copies!), John Harkin, and certain
folks at Sun that I'd love to mention, but | can’t because they’re into@iathangand they
wouldn’t want to be associated with thword, Jordan Hayes, Paula Ferguson, and Kee

Motif Programming Manual XXV

Preface

Hinckley (just because he’s cool).Also thanks to Ralph Swick and Donna Converse at the
X Consortium for being somewhat patient with me.

Added thanks to Lynn Vaughn at CNN for keeping me informed about what's going on in
the world, since | have no time to look out the window; to Short Attention-Span Theatre,
for keeping me amused; and to Yogurt World, for keeping me fed.

This book was written using a Sun workstation, Wheditor (for which | guess | ought to
thank Bill Joy), SoftQuad’sqtroff X11R4 and various versions of Motif (1.0 through 1.1.
3).

For catching and reporting errors that have been fixed in the second printing, I'd like to
thank Akkana, Wayne Robertz, Glen Shute, Scott Strool, Trevor Taylor, Peter Wagner,
Andrew Wason, Tim Weinrich, and Bill Wohler.

Dan Heller

We'd Like to Hear From You

We have tested and verified all of the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made mistakes!). Please let
us know about any errors you find, as well as your suggestions for future editions, by
writing:

O'Reilly & Associates, Inc.

103 Morris Street, Suite A
Sebastopol, CA 95472

1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a
catalog, send email to:

info@ora.com (via the Internet)
uunetloralinfo (via UUCP)

To ask technical questions or comment on the book, send email to:

bookquestions@ora.com (via the Internet)

XXVi Motif Programming Manual

In this chapter:

» Basic User-interface
Concepts

» What Is Motif?
» Designing User
Interfaces

Introduction to Motif

So many computers, So many operating systems, so many toolkits

Developing an application used to be a simple choice, depending upon whether we targeted
the application for the Microsoft world, for UNIX, or for the Apple MacIntosh. Each had

its own distinct toolkit interface. If you wanted to write your application cross-platform,
you had to encapsulate the functionality through a set of common C++ classes, each of
which would have a separate internal implementation for each operating environment. Yet
for the myriad of UNIX platforms, all you had to do was write Motif.

But now there is Linux, and Java, and GTK+ and Qt, and a host of other considerations.
Life never was so complex, and all we want to do is write an application. In many ways,
the task of the application programmer is now to write the application with the greatest
degree of toolkit independence that can be achieved, whether through a client-server
architecture to separate the interface from the back-end processing, or still through
encapsulation techniques which hide the underlying toolkit from the higher levels. The
toolkit ought in principle to be irrelevant; in practice this is not possible: there has to be a
windowing toolkit somewhere at the bottom level, and that toolkit must be appropriate to
the target operating system and environment. A emulator or cross-platform common toolkit
never quite succeeds in providing the requisite functionality in all levels of detail; for some
platforms, if it is not in the native toolkit, it simply isn’t ported; this is particularly true of
Windows environments, where using anything other than MFC is simply wrong in
principle. MFC isthe native windowing environment for Windows. It just is.

So why Motif? Because it remains what it has long been: the common native windowing
toolkit for all the UNIX platforms, fully supported by all the major operating system
vendors. Itis still the only truly industrial strength toolkit capable of supporting large scale
and long term projects. Everything else is tainted: it isn’'t ready or fully functionally
complete, or the functional specification changes in a non-backwards-compatible manner
per release, or there are performance issues. Perhaps it doesn't truly port across UNIX
systems, or itisn’t fully ICCCM compliant with software written in any other toolkit on the
desktop, or there are political battles as various groups try to control the specification for

* Infandum, regina, iubes renouare dolorem...

Motif Programming Manual 1

Chapter 1: Motif Programming Model

their own purposes. Indeed it may matter very much whose version of the toolkit you have
managed to acquire, or if the toolkit is open sourced so you have no idea who is going to
stick their untrusted fingers into it at any time. So many problems with each choice you
make. With Motif, you know where you are: its stable, its robust, its professionally
supported, and it all works.

And yet whatever the toolkit you choose to write your application in, the design goals ought
to remain precisely the same. You should be trying to present the application to the user in
the most consistent, simple to use, and simple to understand manner of which you are
humanly capable. Interfaces consist of basic controls and layout managers, irrespective of
the language it is written in. In this respect, Motif, despite its long history, remains as fully
capable as any basic toolkit. It is true that Motif 1.2 lacked some of the features which we
now expect from a windowing toolkit - the philosophy of design moves on with time - but
these issues are addressed in the 2.1 version of the toolkit. The ComboBoxes, SpinBoxes,
Tree and Grid layouts are all there. Where Motif differs from other toolkits is the strength
of the component inter-operability. The Motif toolkit is not just a collection of controls
written in a particular language: everything, but everything, is designed to work with
everything else, whether it be navigation between controls, or inter-object data transfer, or
the sharing of style resources throughout the control hierarchy. And because it is based on
top of the X interface toolkit, Xt, it will work with the vast range of third party components
and add-ons which are available to the X world. In many ways, it is precisely these aspects
which are stronger in the Motif 2.1 toolkit than ever before.

Much of this chapter can be read as a general introduction to graphical user interface
toolkits; the concepts which we present are not specific to Motif, or indeed to any other
windowing toolkit. The ideas presented here should be general enough to read in a toolkit
independent manner; how you implement those ideas using the specific Motif toolkit is
covered in subsequent chapters of this book.

Basic User Interface Concepts

Whether you are the designer of the software or an engineer responsible for implementing
someone else’s design, there are some basic principles that will benefit you in your work.
Let’s begin with the basics:

« All applications running on a user’s workstation should have a consistent interface
design. Programs that deviate from the expected design will almost assuredly confuse
the user even if the changes were intended for the user’s benefit. Chances are also high
that the user will not want to use the questionable software again.

» Users rely on rote memory; they will remember seemingly complicated interface
interaction techniques provided that the functions they perform are useful and are
invoked frequently. There is a limit, however, to how much users want to remember.
It is important that essential or frequently used functions follow memorable patterns.

2 Motif Programming Manual

Chapter 1: Motif Programming Model

* Novice users will probably not want to customize or alter their applications in any way.
If they do, the available methods must be as easy and painless as possible.

» Users with more experience most certainly might want to customize the application in
all sorts of ways: the greater degree of customization which the application allows, the
better.

One of the first things the hard-core X programmer learns is that “the user is always right;
if he wants to customize his interface, by God you had better let him.”

This principle is absolutely correct. Unfortunately, many early X applications carry it too
far and end up “spineless.” Many such programs actually require the user to make certain
customizations in order for the program to be usable or attractive. For some programs, the
problem worsens if unreasonable customization settings are given, since there is no sanity-
checking for unreasonable configurations.

So far, such customization issues have not become over-problematic because UNIX and X
applications are used almost exclusively by technical people who understand the
environment and know how to work within it. But it is important to consider users who
know absolutely nothing about computers and who don’t want to - they are only using your
software because they have to.

The customization issue has partly been addressed in any case by environments like CDE,
or the Schemes mechanisms on SGI platforms: users can choose from (and add to) a range
of preset styles which will affect all applications on the desktop. Part of the work of the
engineer is now to ensure that the application participates in desktop schemes of this kind,
so that the user can customize in a general way rather than having to configure the style of
every application individually.

What Is Motif?

So, back to Motif. What is it and how can it help you solve your user-interface design
goals? To start, Motif is a set of guidelines that specifies how a user interface for graphical
computers shoultbok and feel This term describes how an application appears on the
screen (the look) and how the user interacts with it (the feel). Look and Feel is not
something specific to Motif; all windowing toolkits should present a standardized
internally-consistent methodology so that the user is comfortable using the controls which
the application presents. Specific toolkits, however, have distinct look and feel, although
since some toolkits share a common design philosophy there is a cross-over so that users
familiar with one platform are not necessarily naked when presented with an alternative.
This will be made clear in the paragraphs which follow. Firstly, let us look at a Motif
application.

Motif Programming Manual 3

Chapter 1: Motif Programming Model

Figure 1-1 shows a Motif application, used for taking snapshots of windows or capturing
areas of the screen.

fie Caplrs Cplisis g

What Is Modif?

So, Wk o Woo! Wit @ & d how pam or Sadp yen dolve yont ey -mrerack e g
ol T Too o, Adaela o oo o pdisks o2 ohi o o e ored e o 02 en it i Aoy ragp bl
compard fvwold od o faal Vs corm deeobas bewr w apphooon sppans o the
drraaa {thi losdc) mnd haree cha mnar snrmrscrs etk e [oha fa sl

]'.;-" 1-1 dhwamr & borr! appbosnns

Figure 1-1: A Motif Application

The user interacts with the application by typing at the keyboard, and by clicking, selecting,
and dragging various graphic elements of the application with the mouse. For example, any
application window can be moved on the screen by moving the pointer to the top of the
window’s frame (the title bar), pressing and holding down a button on the mouse, and
dragging the window to a new location. The window can be made larger or smaller by
pressing a mouse button on any of the resize corners and dragging.

Most applications sport buttons that can be clicked with the mouse to initiate application
actions. Motif uses highlighting and shadowing to make buttons, and other components,
look three-dimensional. When a button is clicked on, it actually appears to be pressed in
and released.

A row of buttons across the top of most applications formseau bar Clicking on any of

the titles in the menu bar pops up a menu of additional buttons. Buttons can also be arranged
in palettes that are always visible on the screen. When a button is clicked, the application
can take immediate action or it can pop up an additional window calldidlag box A

dialog box can ask the user for more information or present additional options.

This style of application interaction isn’t new to most people, since the Apple Maclntosh

popularized it years ago. What is different about Motif is that the graphical user interface
specification is designed to be independent of the computer on which the application is
running.

4 Motif Programming Manual

Chapter 1: Motif Programming Model

Motif was designed by the Open Software Foundation (OSF), a non-profit consortium of
companies such as Hewlett-Packard, Digital, IBM, and dozens of other corporations.
OSF's charter calls for the development of technologies that will enhance inter-operability
between computers from different manufacturers. Targeted technologies range from user
interfaces to operating systems.

Part of OSF’s charter was to choose an appropriate windowing system environment that
would enable the technology to exist on as wide a range of computers as possible. It was
decided that the OSF/Motif toolkit should be based on the X Window System, a network-
based windowing system that has been implemented for UNIX,VMS, DOS, Macintosh,
and other operating systems. X provides an extremely flexible foundation for any kind of
graphical user interface.

When used properly, the Motif toolkit enables you to produce completely Motif-compliant
applications in a relatively short amount of time. At its heart, though, Motif is a
specification rather than an implementation. While most Motif applications are
implemented using the Motif toolkit provided by OSF, it would be quite possible for an
application implemented in a completely different way to comply with the Motif GUI. The
specification is captured in two documents: thietif Style Guide which defines the
external look and feel of applications, and tApplication Environment Specificatipn
which defines the application programmer’s interface (API).

The Motif specifications don't have a whole lot to say about the overall layout of
applications. Instead, they focus mainly on the design of the objects that make up a user
interface - the menus, buttons, dialog boxes, text entry, and display areas. There are some
general rules, but for the most part, the consistency of the user interface relies on the
consistent behavior of the objects used to make it up, rather than their precise arrangement.

The Motif specification is broken down into two basic parts:

e The output model describes what the objects on the screen look like. This model
includes the shapes of buttons, the use of three-dimensional effects, the use of cursors
and bitmaps, and the positioning of windows and subwindows. Although some
recommendations are given concerning the use of fonts and other visual features of the
desktops, Motif is flexible in most of these recommendations.

* The input model specifies how the user interacts with the elements on the screen.
The key point of the specification is that consistency should be maintained across all

applications. Similar user-interface elements should look and act similarly regardless of the
application that contains them.

Motif can be used for virtually any application that interacts with a computer user.
Programs as conceptually different as a CAD/CAM package or an electronic mail

* Both books have been published for OSF by Prentice-Hall and are available in most technical bookstores.

Motif Programming Manual 5

Chapter 1: Motif Programming Model

application still use the same types of user-interface elements. When the user interface is
standardized, the user gets more quickly to the point where he is working with the
application, rather than just mastering its mechanics.

Those familiar with Microsoft Windows should have little trouble in using a Motif-based
application.This is not a coincidence; its user-interface is based on the same principles as
Motif. Motif can be seen as a superset of both MS-Windows and Presentation Manager.
Even though the others came first, Motif views them as specific implementations of an
abstract specification.

The Motif interface was intentionally modelled after IBM’'s Common User Access (CUA)
specification, which defines the interface for OS/2 and Microsoft Windows. The reason for
this is that there is a proven business model for profiting from an “open systems”
philosophy. As a result, all of the major operating system vendors support Motif as their
native graphical interface environment.

You have two options for making applications Motif-compliant. You can write the entire
application yourself, and make sure that all your user-interface features conform to the
Motif GUI specifications, or you can use a programming toolkit, which is a more realistic
option. A toolkit is a collection of pre-written functions that implement all the features and
specifications of a particular GUI.

However, a toolkit cannot write an application for you, nor can it enforce good
programming techniques. It isn’'t going to tell you that there are too many objects on the
screen or that your use of colors is outrageous. The job of Motif is solely to provide a
consistent appearance and behavior for user-interface controls. So, before we jump into the
mechanics of the Motif toolkit, let's take a moment longer with the philosophy of graphical
user interfaces.

Designing User Interfaces

The principles behind an effective user interface cannot be captured in the specifications
for Motif or any other GUI. Even though the Motif toolkit specifies how to create and use
its interface elements, there is still quite a bit left unsaid. As the programmer, you must take
the responsibility of using those elements effectively and helping the user to be as
productive as possible. You must take care to keep things simple for the beginner and, at
the same time, not restrict the more experienced user. This task is perhaps the most difficult
one facing the programmer in application design.

There is frequently no right or wrong way to design an interface. Good user-interface
design is usually a result of years of practice: you throw something at a user, he plays with
it, complains, and throws it back at you. Experience will teach you many lessons, although
we hope to guide you in the right direction, so that you can avoid many common mistakes
and so that the ones that you do make are less painful.

6 Motif Programming Manual

Chapter 1: Motif Programming Model

So, rather than having absolute commandments, we rely on heuristics, or rules of thumb.
Here is a rough list to start with:

« Keep the interface as simple as possible.
« Make direct connections to real-world objects or concepts.
» If real-world metaphors are not available, improvise.

» Don't restrict functionality to accommodate simplicity.

This list may sound flippant, but it is precisely what makes designing an interface so
frustrating. Keeping an interface as simple as possible relies on various other factors, the
most basic of which is intuition. The user is working with your application because he
wants to solve a particular problem or accomplish a specific task. He is going to be looking
for clues to spark that connection between the user interface and the preconceived task in
his mind. Strive to make the use of an application obvious by helping the user form a mental
mapping between the application and real-world concepts or objects. For example, a
calculator program can use buttons and text areas to graphically represent the keypad and
the one-line display on a calculator. Most simple calculators have the common digit and
arithmetic operator keys; a graphical display can easily mimic this appearance. Other
examples include a programmatic interface to a cassette player, telephone, or FAX
machine. All of these could have graphical equivalents to their real-world counterparts.

The reason these seemingly obvious examples are successful interface approaches is
because they take advantage of the fact that most people are already familiar with their real-
life counterparts. But there is another, less obvious quality inherent in those objects: they
are simple. The major problem concerning interface design is that not everything is simple.
There isn't always a real-world counterpart to use as a crutch. In the most frustrating cases,
the concept itself may be simple, but there may not be an obvious way to present the
interaction. Of course, once someone thinks of the obvious solution, it seems odd that it
could have been difficult in the first place.

Consider the VCR. Conceptually, a VCR is a simple device, yet statistics used to say that
70% of VCR owners don’t know how to program one. How many times have you seen the
familiar 12:00-AMflashing in someone’s living room? Researchers say that this situation
occurs because most VCRs are poorly designed and are “too feature full.” They’re half-
right; the problem is not that they are too feature full, but that the ways to control those
features are too complicated. Reducing the capabilities of a VCR isn’t going to make it
easier to use; it's just going to make it less useful. The problem with VCRs is that their
designers focused too much on functionality and not enough on usability.

So, how do you design an interface for a VCR when there is no other object like it? You
improvise. Sure, the VCR is a simple device; everyone understands how one is supposed
to work, but few people have actually designed one that is easy to use until recently. Maybe
you've heard about the new device that, when connected to your VCR, enables you to have

Motif Programming Manual 7

Chapter 1: Motif Programming Model

a complete TV program guide displayed on your screen in the bar-graph layout similar to
the nightly newspaper listings. All you have to do is point and click on the program you
want to record and that’s it - you're done. No more buttons to press, levels of features to
browse through, dials to adjust or manuals to read. At last, the right interface has been
constructed. None of the machine’s features have been removed. It’'s just that they are now
organized in an intuitive way and are accessible in an simple manner.

This method for programming VCRs satisfies the last two heuristics. Functionality has not
been reduced, yet simplicity has been heightened because a creative person thought of a
new way to approach the interface. The lesson here is that no object should be difficult to
use no matter how feature full it is or how complex it may seem. You must rely heavily on
your intuition and creativity to produce truly innovative interfaces.

Let’s return to computer software and how these principles apply to the user-interface
design model. The first heuristic is simplicity, which typically involves fewer, rather than
more, user-interface elements on the screen. Buttons, popup menus, colors, and fonts
should all be used sparingly in an application. Often, the availability of hundreds of colors
and font styles along with the attractiveness of a three-dimensional interface compels many
application programmers to feel prompted, and even justified, in using all of the bells and
whistles. Unfortunately, overuse of these resources quickly fatigues the user and overloads
his ability to recognize useful and important information.

Ironically, the potential drawbacks to simplicity are those that are also found in complexity.
By oversimplifying an interface, you may introduce ambiguity. If you reduce the number
of elements on your screen or make your iconic representations too simple, you may be
providing too little information to the user about what a particular interface element is
supposed to do. Under-use of visual cues may make an application look bland and
uninteresting.

One of Motif's strengths is the degree of configurability that you can pass on to the end
user. Colors, fonts, and a wide variety of other resources can be set specifically by the user.
You should be aware, however, that once your application ships, its default state is likely
to be the interface most people use, no matter how customizable it may be. While it is true
that more sophisticated users may customize their environment, you are ultimately in
control of how flexible it is. Also, novice users quickly become experts in a well-designed
system, so you must not restrict the user from growth.

Simplicity may not always be the goal of a user interface. In some cases, an application may
be intentionally complex. Such applications are only supposed to be used by sophisticated
users. For example, consider a 747 aircraft. Obviously, these planes are intended to be
flown by experts who have years of experience. In this case, aesthetics is not the goal of the
interior design of a cockpit; the goal is that of functionality.

In order to design an effective graphical user interface for an application, you must evaluate
the goals of both your particular application and your intended audience. Only with a

8 Motif Programming Manual

Chapter 1: Motif Programming Model

complete understanding of these issues will you be able to determine the best interface to
use. And remember, an irate customer just might call you for help.

Motif Programming Manual 9

Chapter 1: Motif Programming Model

10 Motif Programming Manual

In this chapter:

» Basic X Toolkit
Terminology and
Concepts

e The Xm and Xt
Libraries

e Programming With Xt
and Motif

> Summary The Motif
Programming Model

This chapter teaches the fundamentals of Motif by example. It dissects a simple “Hello,
World” program, showing the program structure and style common to all Motif programs.
Because much of this material is already covered in detail in VoluAeTdolkit Intrinsics
Programming Manualthis chapter can be used as a refresher or a light introduction for
those who haven't read the earlier book. It makes reference to Volumxlil,
Programming Manualand Volume 4 to point out areas that the programmer needs to
understand (windows, widgets, events, callbacks, resources, translations) before
progressing with Motif.

Though we expect most readers of this book to be familiar with the X Toolkit Intrinsics
(Xt), this chapter briefly reviews the foundations of Motif in Xt. This review serves a
variety of purposes. First, for completeness, we define our terms, so if you are unfamiliar
with Xt, you will not be completely at sea if you forge ahead. Second, there are many
important aspects of the X Toolkit Intrinsics that we aren’t going to cover in this book; this
review gives us a chance to direct you to other sources of information about these areas.
Third, Motif diverges from Xt in some important ways, and we point out these differences
up front. Finally, we point out some of the particular choices you can make when Xt or
Motif provides more than one way to accomplish the same task.

If you are unfamiliar with any of the concepts introduced in this chapter, please read the
first few chapters of Volume 4. Portions of Volume 1, and Volum&3)indow System
User’s Guide may also be appropriate.

Basic X Toolkit Terminology and
Concepts

As discussed in Chapter Ihtroduction to Motif the Motif user-interface specification is
completely independent of how it is implemented. In other words, you do not have to use
the X Window System to implement a Motif-style graphical user interface (GUI).
However, to enhance portability and robustness, the Open Software Foundation (OSF)

Motif Programming Manual 11

Chapter 2: Motif Programming Model

chose to implement the Motif GUI using X as the window system and the X Toolkit
Intrinsics as the platform for the Application Programmer’s Interface (API).

Xt provides an object-oriented framework for creating reusable, configurable user-
interface components calledidgets Motif provides widgets for such common user-
interface elements as labels, buttons, menus, dialog boxes, scrollbars, and text-entry or
display areas. In addition, there are widgets called managers, whose only job is to control
the layout of other widgets, so the application doesn’t have to worry about details of widget
placement when the application is moved or resized.

A widget operates independently of the application, except through prearranged
interactions. For example, a button widget knows how to draw itself, how to highlight itself
when it is clicked on with the mouse, and how to respond to that mouse click.

The general behavior of a widget, such as a PushButton, is defined as part of the Motif
library. Xt defines certain base classes of widgets, whose behavior can be inherited and
augmented or modified by other widget classes (subclasses). The base widget classes
provide a common foundation for all Xt-based widget setsvidget setsuch as Motif's

Xm library, defines a complete set of widget classes, sufficient for most user-interface
needs. Xt also supports mechanisms for creating new widgets or for modifying existing
ones.

Xt also supports lighter-weight objects caligaldgetswhich for the most part look and act

just like widgets, but their behavior is actually provided by the manager widget that
contains them. For example, a pulldown menu pane can be made up of button gadgets
rather than button widgets, with the menu pane doing much of the work that would
normally be done by the button widgets.

Most widgets and gadgets inherit characteristics from objects above them in the class
hierarchy. For example, the Motif PushButton class inherits the ability to display a label
from the Label widget class, which in turn inherits even more basic widget behavior from
its own superclasses. See VolumeX4 Toolkit Intrinsics Programming Manuafor a
complete discussion of Xt's classing mechanisms; see Chap@ve3view of the

Motif Toolkit , for details about the Motif widget class hierarchy.

The object-oriented approach of Xt completely insulates the application programmer from
the code inside of widgets. As a programmer, you only have access to functions that create,
manage, and destroy widgets, plus certain public widget variables knorgs@scesAs

a result, the internal implementation of a widget can change without requiring changes to
the API. A further benefit of the object-oriented approach is that it forces you to think about
an application in a more abstract and generalized fashion, which leads to fewer bugs in the
short run and to a better design in the long run.

Creating a widget is referred to as instantiating it. You ask the toolkit fonstanceof a
particular widgetclass, which can be customized by setting its resources. All Motif

12 Motif Programming Manual

Chapter 2: Motif Programming Model

PushButton widgets have the ability to display a label; an instance of the PushButton
widget class actually has a label that can be set with a resource.

Creating widgets is a lot like buying a car: first you choose the model (class) of car you
want, then you choose the options you want, and then you drive an actual car off the lot.
There may exist many cars exactly like yours, others that are similar, and still others that
are completely different. You can create widgets, destroy them, and even change their
attributes just as you can buy, sell, or modify a car by painting it, adding a new stereo, and
S0 on.

Widgets are designed so that many of their resources can be modified by the user at run-
time. When an application is run, Xt automatically loads data from a number of system and
user-specific files. The data from these files is used to buildeékeurce databasevhich

is used to configure the widgets in the application. If you want to keep the user from
modifying resources, you can set their values when you create the widget. This practice is
commonly referred to dsard-codingresources.

It is considered good practice to hard-code only those resource values that are essential to
program operation and to leave the rest of the resources configurable. Default values for
configurable resources are typically specified in an application defaults file, which is more
colloquially referred to as the app-defaults file. By convention, this file is stored in the
directory/usr/X11R6/lib/app-defauland it has the same name as the application with the
first letter capitalized.The app-defaults file is loaded into the resource database along with
other files that may contain different values set by the system administrator or the user. In
the event of a conflict between different settings, a complex set of precedence rules
determines the value actually assigned to a resource. See Voluh&ablkit Intrinsics
Programming Manualfor more information on how to set resources using the various
resource files.

Motif widgets are prolific in their use of resources. For each widget class, there are many
resources that neither the application nor the user should ever need to change. Some of
these resources provide fine control over the three-dimensional appearance of Motif
widgets; these resources should not be modified, since that would interfere with the visual
consistency of Motif applications. Other resources are used internally by Motif to make one
large, complex widget appear to the user in a variety of guises.

Thecallback resourcefor a widget are a particularly important class of resources that must
be setin the application code. A widget that expects to interact with an application provides
a callback resource for each type of interaction it supports. An application associates a
function with the callback resources in which it is interested; the function is invoked when
the user performs certain actions in the widget. For example, a PushButton provides a
callback for when the user activates the button.

Note, however, that not every event that occurs in a widget results in a callback to an
application function. Widgets are designed to handle many events themselves, with no

Motif Programming Manual 13

Chapter 2: Motif Programming Model

interaction from the application. All widgets know how to draw themselves, for example.
A widget may even provide application-like functionality. For example, a Text widget
typically provides a complete set of editing commands via internal widget functions called
actions Actions are mapped to events itranslation table This table can be augmented,
selectively overridden, or completely replaced by settings contained in the implementation
of a widget class, in application code, or in a user’s resource files.

In the basic Xt design, translations are intended to be configurable by the user. However,
the purpose of Xt is to provide mechanism, not impose user-interface policy. In Moatif,
translations are typically not modified by either the user or the application programmer.
While it is possible for an application to install event handlers or new translations and
actions for a widget, most Motif widgets expect application interaction to occur only
through callbacks.

Since the Motif widgets are designed to allow application interaction through callbacks, we
don’t discuss translations very often in this book. Some of the Motif widgets, particularly
buttons when they are used in menus, have undefined behavior when their translations are
augmented or overridden. An experienced Xt programmer may feel that Motif’s limitations
on the configurability of translations violates Xt. But consider that Xt is a library for
building toolkits, not a toolkit itself. Motif has the further job of ensuring consistent user-
interface behavior across applications.

Whether the goal of consistency is sufficient justification for OSF's implementation is a
matter of judgement, but it should at least be taken into account. At any rate, you should be
aware of the limitations when configuring Motif widgets. Motif widgets provide callback
resources to support their expected behavior. If a widget does not have a callback
associated with an event to which you want your application to respond, you should be
cautious about adding actions to the widget or modifying its translations.

The Xm and Xt Libraries

A Motif user interface is created using both the Motif Xm library and the Intrinsics’ Xt
library. Xt provides functions for creating and setting resources on widgets. Xm provides
the widgets themselves, plus an array of utility routines and convenience functions for
creating groups of widgets that are used collectively as single user-interface components.
For example, the Motif MenuBar is not implemented as one particular widget, but as a
collection of smaller widgets put together by a convenience function.

An application may also need to make calls to the Xlib layer to render graphics or get events
from the window system. In the application itself, rather than in the user interface, you may
also be expected to make lower-level system calls into the operating system, file system, or
hardware-specific drivers. The application may also be making use of the X11R6 Session
Management (SM) and the X11R6 InterClient Exchange (ICE) facilitilsus, the whole

14 Motif Programming Manual

Chapter 2: Motif Programming Model

application may have calls to various libraries within the system. Figure 2-1 represents the
model for interfacing to these libraries.

Application

DA

§ Xm (Motif)
§ Xt (X Toolkit Intrinsics)

SM
Other Xlib (X Window System)
Libraries ICE

Operating System

Figure 2-1. User interface library model

As illustrated above, the application itself may interact with all layers of the windowing
system, the operating system, and other libraries (math libraries, rpc, database) as needed.
On the other hand, the user-interface portion of the application should restrict itself to the
Motif, Xt, and Xlib libraries whenever possible. This restriction aids in the portability of

the user-interface across multiple computers and operating systems. Since X is a distributed
windowing system, once the application runs on a particular computer, it can be displayed
on any computer running X - even across a local or wide-area network.

In addition to restricting yourself to using the Motif, Xt, and Xlib libraries, you should try
to use the higher-level libraries whenever possible. Focus on using Motif-specific widgets
and functions, rather than trying to implement equivalent functionality using Xt or Xlib.
Higher-level libraries hide a great number of details that you would otherwise have to
handle yourself. By following these guidelines, you can reduce code complexity and size,
creating applications that are easier to maintain.

In situations where the Motif library does not provide the functionality you need, you may
attempt to borrow widgets from other toolkits or write your own. This technique is possible

* SM and ICE are fully described in tHerogrammer’s Supplement for Release 6 of the X Window
Systemwe will conform to the X11R6 guidelines and use the SessionShell widget class throughout the ex-
amples; othewise, Session Management will not form part of this manual, and you are referred to the Supple-
ment for more details.

Motif Programming Manual 15

Chapter 2: Motif Programming Model

and made relatively simple because Motif is based on Kor example, an application
might make good use of a general-purpose graphing widget.

Whatever libraries you use, be sure to keep your application modular. The first and most
important step in the development of an application is its design. You should always
identify the parts of the application that are functional and the parts that make up the user
interface. Well-designed applications keep the user-interface code separate from the
functional code. You should be able to unplug the Motif code and replace it with another
user-interface widget set based on Xt merely by writing corresponding code that mirrors
the Motif implementation.

Programming With Xt and Motif

The quickest way to understand the basic Motif programming model is to examine a simple
application. Example 2-1 is a version of the classic “hello world” program that uses the
Motif toolkit. T

Example 2-1. The hello.c program

/* hello.c - initialize the toolkit using an application context

** and a toplevel shell widget, then create a pushbutton that says
** Hello using the varargs interface.

*

#include <Xm/PushB.h>

main (int argc, char *argv(])

{
Widget toplevel, button;
XtAppContext app;
void button_pushed(Widget, XtPointer, XtPointer);
XmString label;
Arg args[2];

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtvVaOpenApplication (&app, "Hello", NULL, 0, &argc, argv,
NULL,sessionShellWidgetClass, NULL);

label = XmStringCreateLocalized (“Push here to say hello");
XtSetArg(args[0], XmNlabelString, label);

button = XmCreatePushButton (toplevel, "pushme", args, 1);
XmStringFree (label);

XtAddCallback (button, XmNactivateCallback, button_pushed, NULL);
XtManageChild (button);

* While this book discusses certain methods for extending the Motif library, you should refer to Voluxe 4,
Toolkit Intrinsics Programming Manualor a general discussion of how to build your own widgets.

T XtVaApplnitialize () is deprecated in X11R6. The SessionShell widget class XaviaOpenApplica-
tion () are only availble in X11R6.

16 Motif Programming Manual

Chapter 2: Motif Programming Model

XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}

void button_pushed (Widget widget, XtPointer client data, XtPointer call_data)
{

}
The output of the program is shown in Figure 2-2.

printf ("Hello Yourselfi\n®);

=1 |
Pugh hére to 1ay hal lo

Figure 2-2: Output of the hello program

You can get the source code fbello.c and the rest of the examples in this book via
anonymousdtp or other methods that are described in the Preface. It is a good idea to
compile and run each example as it is presented.

The example programs come with Imakefiles that should make building them easy if you
have theimake program. This program should already be/usr/X11R6/binon UNIX-

based systems that have X11 Release 6 installed. You also need the configuration files for
imake they are infusr/X11R6/lib/configon most UNIX-based systems. An Imakefile is a
system-independent makefile that is usedrbgketo generate a Makefile. This process is
necessary because it is impossible to write a Makefile that works on all systems. You
invokeimakeusing thexmkmiprogram. Complete instructions for compiling the examples
usingimakeare provided in thREADMEfile included with the source code.

As explained in the Preface, there are versions of the example programs for both Motif 2.1
and Motif 1.2 available electronically. However, all of the example code in this book is
designed to work with Motif 2.1 (and X11R6); the programs use functions that are not
available in Motif 1.2 (and X11R5). Where we use Motif 2.1 functions, we try to mention
how to perform the same tasks using Motif 1.2, usually in a footnote. To use the example
programs with Motif 1.2, make the changes we describe. When the necessary changes are
significant, we may explain both versions of the program. For a description of the changes
that we made to convert the example programs to Motif 2.1Gemnges in Motif 2.1in

Chapter 3.

To compile any of the examples on a UNIX system without using imake, use the following
command line:

cc-0-0 filename filename .C -IXm -IXt -IX11

If you want to do debugging, replace -O with -g in this command line. The order of the
libraries is important. Xm relies on Xt, and both Xm and Xt rely on Xlib (tt&1 link
flag specifies Xlib).

Motif Programming Manual 17

Chapter 2: Motif Programming Model

Now let’s take a look at this program step by step, noting elements of the underlying Xt
model and where Motif differs from it.

Header Files

An application that uses the Motif toolkit must include a header file for each widget that it
uses. For examplédello.cuses a PushButton widget, so we includensyPushB.h.The
appropriate header file for each Motif widget class is included on the reference page for the
widget in Volume 6BMotif Reference Manual

If you simply browse througlusr/Motif2.1/include/Xn{or wherever you have installed
your Motif distribution) trying to find the appropriate header file, you will find that each
widget class actually has two header files. The one with the name ending in a “P” (e.g.
PushBP.his the widget's private header file and should not normally be included directly
by an application. Private header files are generally used only by the code that implements
a widget class and its subclasses.

Xt uses public and private header files to hide the details of widget implementation from
applications. This technique provides object-oriented encapsulation and data hiding in the
C language, which is not designed to support object-oriented programming. (See Volume
4, X Toolkit Intrinsics Programming Manuafor additional information on the object-
oriented design of widgets.)

For some types of objects, you may see another pair of header files, each containing a
capital “G” at the end of their names (for exampteishBG.randPushBGP.lh These files

are for the gadget version of the object. For the most part, when we talk about widgets, we
include gadgets. Later chapters make it clear when to use gadgets and when to use widgets.

A quick examination of thefinclude directives in each of the Motif widget or gadget
header files reveals that each of them includEs&Xm.k», the general header file for the
Motif library. <Xm/Xm.k in turn includes the following files:

#include <X11/Intrinsic.h>
#include <X11/Shell.h>
#include <X11/Xatom.h>
#include <Xm/XmStrDefs.h>
#include <Xm/Virtkeys.h>

Therefore, none of these files ever need to be included by your application, as long as you
include Xm/Xm.k. Since KXm/Xm.k is included by each widget header file, you do not
need to include it directly either. If you look closely at the code, you’ll see that just about
every necessary header file is included the moment you include your widget header file.
This method of using header files contrasts with the way other Xt-based toolkits, like the
Athena toolkit or the OPEN LOOK Intrinsics Toolkit (OLIT), use header files.

The Motif toolkit provides a new header fileXsn/XmAll.k», that simply includes all of the
public header files.

18 Motif Programming Manual

Chapter 2: Motif Programming Model

We recommend that you not duplicate the inclusion of header files. One reason is that if
you include only the header files that you need, whoever has to maintain your code can see
which widgets you are dealing with in your source files. Another reason is that duplicating
header file is generally bad practice, as you run the risk of redeclaring macros, functions,
and variables.

However, it isn’'t always easy to prevent multiple inclusions. For examp{ey/Xm.k» is
included by each widget header file that you include. All of the Motif, Xt and X header files
are protected from multiple inclusion using a technique calfe@f-wrapping We
recommend that you use this method in your own header files as well. The ifdef-wrapper
for <X11/Intrinsic.h» is written as follows:

#ifndef _Xtintrinsic_h

#define _Xtintrinsic_h

/* Include whatever is necessary for the file... */

#endif /* _Xtintrinsic_h*/
The wrapper definesXtintrinsic_h when a file is first included. If the file is ever
included again during the course of compiling the same soun)€file, the #ifdef
prevents anything from being redeclared or redefined.

Of course, the wrapper prevents multiple inclusion only within a single source file; the next
source file that gets compiled goes through the same test. If the same files are included, the
same macros, data types, and functions are declared again for the benefit of the new file.
For this reason, you should never write functions in a header file, since it would be
equivalent to having the same function exist in every source file. Function declarations,
however, are acceptable and expected.

In addition to the widget header files, you will most likely need other include files specific
to your application, such astdio.l» or <ctype.t».

The order of inclusion is generally not important unless certain types or declarations
required by one file are declared in another. In this case, you should include the files in the
necessary order. Otherwise, application-specific header files are usually included first,
followed by Ul-specific header files (with Xt header files, if any, preceding Motif header
files), followed by system-specific header files.

Setting the Language Procedure

For Release 5 of the X Window System, the X Toolkit was modified to better support
internationalization. An internationalized application retrieves the user’s language (called
alocale) from the environment or a resource file and operates in that language without
changes to the binary. An internationalized application must display all of its text in the
user’s language and accept textual input in that same language. It must also display dates,
times, and numbers in the appropriate format for the language environment.

Motif Programming Manual 19

Chapter 2: Motif Programming Model

Xinternationalization is based on the ANSI-C internationalization model. This approach is
based on the concept tdcalization whereby an application uses a library that reads a
customizing database at start-up time. This database contains information about the
characteristics of every locale that is supported by the system. When an application
establishes its locale by callinggtiocale() , the library customizes the behavior of
various routines based on the locale. See the Third Edition of VoludiilRProgramming
Manual for a complete description of the concepts and implementation of X
internationalization.

Xt support of internationalization is trivial in most applications; the only additional code
needed is a call toXtSetLanguageProc() before the toolkit is initialized.
XtSetLanguageProc() sets thdanguage proceduréhat is used to set the locale of an
application. The first argument to the routine specifies an application context, the second
argument specifies the language procedure, and the third parameter specifies additional
data thatis passed to the language procedure when itis called. Since the language procedure
is responsible for setting the locale, an Xt application does nosetidtale() directly.

The language procedure is calledXiisplaylinitialize()

If the second argument XtSetl anguageProc() is NULL, the routine registers a default
language procedure. Here’s the call that we used in Example 2-1 to set the default language
procedure:

XtSetLanguageProc (NULL, NULL, NULL);

The default language procedure sets the locale according to the LANG environment
variable, verifies that the current locale is supported, and returns the value of the current
locale. For more information about establishing the locale in an Xt application, see Volume
4, X Toolkit Intrinsics Programming Manual

Most of the support for internationalization in Motif is provided by Xlib and Xt. Xlib
provides support for internationalized text output, interclient communication, and
localization of the resource database, while Xt handles establishing the locale. The Motif
Text and TextField widgets have been modified to support internationalized text input and
output; see Chapter 18ext Widget Internationalizatigior more information. The Motif
routines that work with compound strings and render tabiese also been updated in
Motif 2.1. See Chapter 2Render Tablgsand Chapter 25Compound Stringdor details

on the new API foXmString andXmRenderTable values.

Initializing the Toolkit

Before an application creates any widgets, it must initialize the toolkit. There are many
ways to perform this task, most of which also perform a number of related tasks, such as

* The XmFontList is obsolete in Motif 2.0 and later, and is replaced byxthRenderTable .

20 Motif Programming Manual

Chapter 2: Motif Programming Model

opening a connection to the X server and loading the resource database. Here’s a list of
some of the things that are almost always done:

e Open the application’s connection to the X server.

e Parse the command line for the standard X Toolkit command-line options plus any
custom command-line options that have been defined for the application.

» Create the resource database using the app-defaults file, if any, as well as any user,
host, and locale-specific resource files.

» Create the application’s top-level window, a Shell class widget that handles interaction
with the window manager and acts as the parent of all of the other widgets in the
application.

There are several functions available to perform toolkit initialization. The one we use
throughout isXtVaOpenApplication() *, since it performs all of the functions listed
above in one convenient call. Here’s the call we used in Example 2-1:

Widget toplevel;
XtAppContext — app;

toplevel = XtVaOpenApplication (&app, "Hello", NULL, 0, &argc, argv, NULL,
sessionShellWidgetClass, NULL);

The widget returned b)tVaOpenApplication() is a shell widget. The shell widget
acts as the top-level window of the application and handles the application’s interaction
with the window manager. The SessionShell widget class which we will use for the top
level also interacts with the X11R6 Session Management facilities. All of the other widgets
created by the application are created as descendents of the shell, of which we’ll talk more
later in this chapter.

The Application Context

The first argument t&XtVaOpenApplication() is the address of an application context,
which is a structure that Xt uses to manage some internal data associated with an
application. Most applications do not manipulate the application context directly. Most
often, an application receives an opaque pointer to an application context in the toolkit
initialization call and merely passes that pointer to a few other toolkit functions that require
it as an argument. The fact that the application context is a public variable, rather than
hidden in the toolkit internals, is a forward-looking feature of Xt, designed to support
multiple threads of control.

The X11RS5 initialization calXtVaApplnitialize() is still supported by later versions
of the toolkit. Its use is discouraged because the new initialization calls provide a greater
degree of upward compatibility with future Xt-based applications.

* XtVaApplnitialize () is considered deprecated in X11R@&/aOpenApplication () and the SessionShell
widget class are only availble in X11R6.

Motif Programming Manual 21

Chapter 2: Motif Programming Model

The Application Class

The second argument VaOpenApplication() is a string that defines thelass
nameof the application. A class name is used in resource files to specify resource values
that apply to all instances of an application, a widget, or a resource. (See Volue 3,
Window System User’s Guidand Volume 4X Toolkit Intrinsics Programming Manual

for details.) For many applications, the application class is rarely used and the class name
is important only because it is also used as the name of the application’s app-defaults file.

Whenever a widget is created in Xt, its resources must have certain initial (or default)
values. You can either hard-code the values, allow them to default to widget-defined
values, or specify the default values in the app-defaults file. These default values are used
unless the user has provided his own default settings in another resource file.

By convention, the class name is the same as the name of the application itself, except that
the first letter is capitalized For example, a program nameghwwould have a class hame

of Draw and an app-defaults filename dbtisr/X11R6/lib/app-defaults/DrawNote,
however, that there is no requirement that an app-defaults file with this name actually be
installed.

Exceptions can be made to this convention, as long as you document it. For example, all
the example programs in this book have the class nanbenfos which allows us to set

certain common defaults in a single file. This technique can be useful whenever you have
a large collection of independent programs that are part of the same suite of applications.

Command-line Arguments

The third and fourth arguments specify an array of objects that describe the command-line
arguments for your program, if any, and the number of arguments in the array. These
arguments are unused in most of the examples in this book and are specifigdlaend

0, respectively. The programshowbitmap.dn the Appendix A,Additional Example
Programs provides an example of using command-line arguments. See VolurKe 4,
Toolkit Intrinsics Programming Manuafor a more complete discussion of application-
specific command-line arguments.

The fifth and sixth arguments contain the valaegy) and count &rgc) of any actual
command-line arguments. The initialization call actually removes and acts on any
arguments it recognizes, such as the standard X Toolkit command-line options and any
options that you have defined in the third argument. After this esdly should contain

only the application name and any expected arguments such as filenames. You may want
to check the argument count at this point and issue an error message if any spurious
arguments are found.

* Some applications follow the convention that if the application’s name begins with an “X”, the X is silent and
so the second letter is capitalized as well. For example, the class neimens XTerm

22 Motif Programming Manual

Chapter 2: Motif Programming Model

Fallback Resources

The seventh argument is the start dldLL-terminated list offallback resourcegor the

shell widget created by the initialization call. Fallback resources provide a kind of “belt and
suspenders” protection against the possibility that an app-defaults file is not installed. They
are ignored if the app-defaults file or any other explicit resource settings are found. When
no fallback resources are specified, the seventh argument shauld be

It is generally a good idea to provide fallbacks for resources that are essential to the
operation of your application. An example of how fallback resources can be used by an
application is shown in the following code fragment:

String fallbacks[] =
{

"Demos*background: white",
"Demos*XmText.foreground: black",

[* list the rest of the app-defaults resources here... */
NULL

I3

toplevel = XtVaOpenApplication (&app, "Demos", NULL, 0, &argc, argv, fallbacks,
sessionShellWidgetClass, NULL); *

Fallback resources protect your application against a missing app-defaults file, but they do
not guard against one that is modified incorrectly or otherwise corrupted, since they are not
used if the app-defaults file is present in any form. A better fallback mechanism would
provide protection against these types of problems. Fortunately, there is the function
XrmCombineDatabases() , that allows you to provide real fallbacks in case the user or
the system administrator misconfigures the app-defaults file.

The Top Level Shell Class

The eighth parameter specifies the type of shell to be used for the top level. It is
recommended that this is tlsessionShellWidgetclass , which is derived from the
applicationShellwidgetClass T, We are not actually using any of the features of the
X11R6 SessionShell in the examples, however we will use the SessionShell in order to
conform to the recommendations.

Additional Initialization Parameters

The ninth parameter is the start ofN&JLL-terminated list of resource/value pairs that are
applied to the top-level widget returned b§VaOpenApplication() . If there are no
resource settings, which is often the case for this function, you caritdidsas the ninth
parameter. If you do pass any parameters, it should be done just as we describe for

* XtVaApplnitialize () is deprecated in X11R6.
T The ApplicationShell is considered obsolete in X11R6. The SessionShell is only availble in X11R6.

Motif Programming Manual 23

Chapter 2: Motif Programming Model

XtVaCreateWidget() later in this chapter. All of the functions whose names begin with
XtVa support the same type of varargs-style (variadic) argument lists.

The X11 Release 6 implementation ¥fVaOpenApplication() and other varargs
functions may not work entirely as expected for some non-ANSI-C compilers due to a bug
in the way that Xt declares variadic functions. This problem only arises for some compilers
that do not understand function prototypes. The problem is rare since it is compiler-
dependent and it only happens on older compilers. It is not a compiler error but an Xt error,
since functions are not supposed to mix fixed parameter declarations with variadic
declarations. XtVaOpenApplication() mixes these declarations; the first eight
parameters are fixed while the ninth througth arguments are variadic. ANSI-C allows,
and even requires, this type of specification.

If you experience problems such as segmentation faults or bus errors as a result of using

XtVaOpenApplication() , You can try passing an extNULL parameter after the final
NULL. Another option is to useXtOpenApplication() , Which is identical to
XtVaOpenApplication() , but does not contain a variable argument list of resource/

values pairs. Instead, it uses the non-variags andnum_args method of specifying
resource values, which we describe later in this chapter.

Creating Widgets

There is a convenience function for creating every class of widget and gadget supported by
the Motif toolkit. For example, to create a PushButton widget, you can use the function
XmCreatePushButton() . To create the corresponding gadget, you can use
XmCreatePushButtonGadget() . In addition, there are convenience functions for
creatingcompound object®\ compound object is a collection of widgets that is treated like

a single object. For example, a ScrolledList object is really a List widget inside a
ScrolledWindow widget.XmCreateScrolledList() creates the compound object
consisting of both widgets.

The convenience functions for creating all of the different types of widgets are described
in Volume 6B, Motif Reference Manualn addition to the convenience routines, the Xt
Intrinsics also define generic routines which can be used to create arbitrary widget
instances, nameltVaCreateWidget() and XtVaCreateManagedWidget() . These
functions allow you to decide whether to create a widget as managed or unmanaged, while
the Motif convenience functions always create unmanaged widgets. The Xt routines also
allow you to set resources for a widget using the varargs interface, which can often be more
convenient than thargs andnum_args method used by the Motif creation routines.

X nests windows using a parent-child model. A display screen is defined as the root
window; every application has a top-level window that is a child of the root window. A top-
level window in turn has subwindows, which overlay it but cannot extend beyond its
boundaries. If a window extends beyond the boundaries of its parent, it is clipped.

24 Motif Programming Manual

Chapter 2: Motif Programming Model

Because every widget has its own X window, widgets follow a similar parent-child model.
Whenever a widget is created, it is created as the child of another widget. The shell widget
returned by the call toXtVaOpenApplication() is the top-level widget of an
application. It is usually overlaid with a special class of widget calledamager widget

which implements rules for controlling the size and placement of widget children. For
example, the Motif RowColumn widget is a manager that allows widgets to be laid out in
regular rows and columns, while the Form widget is a manager that allows widgets to be
placed at precise positions relative to one another. A manager widget can contain other
manager widgets as well @simitive widgets which are used to implement actual user-
interface controls. Managers also support gadgets. A gadget is a lighter-weight object that
is identical to its corresponding widget in general functionality, but does not have its own
window.

In Example 2-1,the button was created as a child of the top-level shell window.This simple

application contains only one visible widget, so it does not use a manager. Actually, shells
are extremely simple managers. A shell can only have one child; the shell makes itself
exactly the same size as the child so the shell remains invisible behind the child. Here’s the
call we used to create the button:

button = XmCreatePushButton (toplevel, "pushme", args, 1);

The first argument is the parent of the widget, which must be a manager widget that has
already been created. In this example, the parent of the PushButton widget is toplevel, the
shell widget returned by the call xévaOpenApplication 0.

The second argument is a string that is used as the name of the widget in the resource
database. If a user wants to specify the color of the button label for the application, she can
use the following specification in a resource file:

hello.pushme.foreground: blue

The name is different from the variable name that is used to refer to the widget in
application code. The following resource specification is not correct:

hello.button.foreground: blue

The resource name does not need to be identical to the variable name given to the widget
inside the program, though to minimize confusion, many programmers make the two
names the same. If you want users to be able to configure widget resources, be sure to
include the names of the widgets in your documentation.

The remainder of the argument list is an array of resource settings, followed by the number
of items in this array. We'll talk about the format of these resource settings in the next
section.

Motif Programming Manual 25

Chapter 2: Motif Programming Model

Setting and Getting Widget Resources

A widget class defines resources of its own and it inherits resources from its superclasses.
The names of the resources provided by each widget class (new and inherited) are
documented in the widget reference pages in VolumeN&;jf Reference ManualThe

most useful resources are described in detail in the individual chapters on each of the Motif
widget classes.

When resources are set in a program, each resource name begins with th¥mphfilkese

names are mnemonic constants that correspond to actual C strings that have the same name
without the XmN prefix. For example, the actual resource name associated with
XmNlabelString is labelString . The XmNidentifies the resource as being Motif-
related. Motif also uses themC prefix to identify resource class symbols. Xt uses the
prefix XtN for any resources defined by its base widget classes. Motif also provides
correspondingimNhames for most of these resourcés’hen you are specifying resources

in a resource file or when you are using tixen option to specify resources on the
command line, omit thEmNprefix.

The main purpose of the constant definitions for resource names is to allow the C
preprocessor to catch spelling errors. If you use the stidth rather than the constant
XmNwidth , the program still works. However, if you typaddth , the compiler happily
compiles the application, but your program won’t work and you'll have a difficult time
trying to figure out why. Because resource names are strings, there is no way for Xt or
Motif to report an error when an unknown resource name is encountered. On the other
hand, if you useXmNwiddth , then the compiler complains that the token is an undefined
variable.

Setting Resources During Widget Creation

The Motif convenience functions, as well as the Xt functidt&reateWidget() and
XtCreateManagedWidget() , require you to declare resource settings in an array. You
pass this array to the function, along with the number of items in the array. By contrast, the
varargs-style functions in Xt allow you to specify resources directly in a creation call, as a
NULL-terminated list of resource/value pairs.

As an example, in the call tdmCreatePushButton() in hello.q the only resource set

was the string displayed as the PushButton’s label, and this was passed to the creation
routine in the Arg arrayrgs Alternatively, a variable length list of resources could have
been set in the same call using the Xt mechanisms, as shown in the following code:

button = XtVaCreateWidget (‘pushme", xmPushButtonWidgetClass,toplevel,
XmNlabelString, label, XmNwidth, 200, XmNheight, 50, NULL);

* Some toolkits use th&tN prefix, even though its resource are not common to all Xt toolkits. If you need access
to an Xt-based resource that does not have a correspoXdihgonstant, you need to include the filX¥l/
StringDefs.k.

26 Motif Programming Manual

Chapter 2: Motif Programming Model

These settings specify that the widget is 200 pixels wide by 50 pixels high, rather than its
default size, which would be just big enough to display its label.

When you set resources in the creation call for the widget, those resources can no longer be
configured by the user. Such resources are said to be hard-coded. For example, since we've
set the width and height of the PushButton in the calltidaCreateManagedWidget() ,
a user resource specification of the following form is ignored:

*pushme.width: 250

*pushme.height: 100
It is recommended that you hard-code only those resource values that are absolutely
required by your program. Most widgets have reasonable default values for their resources.
If you need to modify the default values, specify the necessary resource values in an app-
defaults file, instead of in the application code.

Every resource has a data type that is specified by the widget class defining the resource.
When a resource is specified in a resource file, Xt automatically converts the resource value
from a string to the appropriate type. However, when you set a resource in your program,
you must specify the value as the appropriate type. For example, the Motif PushButton
widget expects its label to be a compound string (see Chapt&&@fpound Strings so

we create a compound string, use it to specify the resource value, and free it when we were
done.

Rather than specifying a value of the appropriate type, you can invoke Xt's resource
converters in a varargs list using the keywdittfaTypedArg , followed by four additional
parameters: the resource name, the type of value you are providing, the value itself, and the
size of the value in bytes. Xt figures out the type of value that is needed and performs the
necessary conversion. For example, to specify the background color of the button directly
in our program without calling an Xlib routine to allocate a colormap entry, we can use the
following code:
button = XtVaCreateManagedWidget ("pushme”, xmPushButtonWidgetClass, toplevel,

XmNlabelString, label,XtVaTypedArg, XmNbackground, XmRString,

"red", strlen ("red") + 1, NULL);
The data type in this construct is specified using a special symbol caitkat@sentation
type rather than the C type. AMmRprefix identifies the symbol as a representation type.
See Volume 4.X Toolkit Intrinsics Programming Manuafor more information on
resource type conversion and the possible values for representation types. These symbols
are defined in the same way as ¥maNsymbols that are used for resource names.

Setting Resources After Widget Creation

After awidget has been created, you can set resources for it8ia§etvalues() . The
values set by this function override any values that are set either in the widget creation call
or in a resource file. The syntax for usiXtyaSetValues() is:

Motif Programming Manual 27

Chapter 2: Motif Programming Model

XtVaSetValues (widget _id, resource-value-list , NULL);

Thewidget_id is the value returned from a widget creation call, aesburce-value-
list is aNULL-terminated list of resource/value pairs.

Some Motif widget classes also provide convenience routines for setting certain resources.
For example, XmToggleButtonSetState() sets the XmNset resource of a
ToggleButton. The available convenience functions are described in VolumM 6,
Reference Manuabnd in the chapters on each widget class in this book. A convenience
function has direct access to the internal fields in a widget's data structures, so it might have
slightly better performance tha¥tVaSetValues() . Functionally, however, the two
methods are generally freely interchangeable.

Getting Resource Values

The routine used to get widget resource valuegVaGetValues(). The syntax of this
routine is exactly the same a@VaSetValues() , except that the value part of the
resource/value pair is the address of a variable that stores the resource value. For example,
the following code gets the label string and the width for a Label widget:

extern Widget label;

XmString str;
Dimension width;

XtVaGetValues (label, XmNlabelString, &str, XmNwidth, &width, NULL);

Notice that the value foXmNlabelString is anXmString , which is a Motif compound
string. Almost all of the Motif widget resources that specify textual information use
compound strings rather than regular character stringsXtidvalue andXmNvalueWcs
resources for Text and TextField widgets are the only exceptions to this policy. When you
are retrieving a string resource from a widget, make sure that you pass the address of a
compound string, not a character string, as in the following incorrect example:

extern Widget label;

char *buf;
Dimension width;

XtVaGetValues (label, XmNlabelString, &buf, /* do not do this */ XmNwidth,
&width, NULL);
If you try to get a compound string resource value with a character string variable, the
program still works, but the value of the character string is meaningless. The correct way
to handle a compound string resource is to retrieve it witKmString variable and then
get the character string from the compound string usimgStringUnparse() . See
Chapter 25Compound Stringdor more information.

There are some things to be careful about when you are getting resource values from a
widget. First, always pass the address of the variable that is being used to store the retrieved
value. A value represented by a pointer is not copied into the address space. Instead, the

28 Motif Programming Manual

Chapter 2: Motif Programming Model

routine sets the value for the address of the pointer to the position of the internal variable
that contains the desired value. If you pass an array, rather than a pointer to the array, the
routine cannot move its address. If you pass the address of a pofitvtaGetValues()

is able to reset the pointer to the correct internal valBer values that are not represented

by pointers, such as integers, the value is simply copied. For exampleidthe value is

anint , so the resource value is copied into the variable.

You should also be careful about changing the value of a variable returned by
XtVaGetValues() . Inthe case of a variable that is not a pointer, the value can be changed
because the variable contains a copy of the value and does not point to internal data for the
widget. However, if the variable is a pointer to a string or a data structure, it does point to
internal data for the widget. If you dereference the pointer and change the resulting value,
you are changing the internal contents of the widget. This technique should not be used to
change the value of a resource. To modify a resource value, you should use
XtVaSetValues() with a defined resource name, as this routine ensures that the widget
redraws and manages itself appropriately.

Motif also provides convenience routines for getting certain resource values from particular
widget classes. Most of these functions correspond to the convenience routines for setting
resource values. Many of the functions allocate memory for the value that is returned. For
example XmTextGetString() allocates space for and returns a pointer to the text in a
Text widget. When a convenience function for retrieving a resource value is available, we
generally recommend using it.

Using Argument Lists

The Motif convenience functions, and some Xt functions Mt€reateWidget() and
XtCreateManagedWidget() , require you to set resources using a separately-declared
array of objects of typérg . You pass this array to the appropriate function along with the
number of items in the array.

For example, the following code fragment creates a Label widget using a Motif
convenience routine:

Arg args[2];

int n=0;

XtSetArg (args[n], XmNlabelString, label); n++;

label = XmCreateLabel (toplevel, "label", args, n);
XtManageChild (label);

For all of the Motif convenience routines, the first argument is the parent of the widget
being created, the second argument is the widget's name, and the third and fourth

* The Motif toolkit sometimes sets the given address to allocated data, which must be freed when it is no longer
needed. This situation occurs when a compound string resource is retrieved from a widget and when the text
value of a Text widget is retrieved. These cases are discussed in ChapTe&)lBWidgetSmd Chapter 25,
Compound Strings.

Motif Programming Manual 29

Chapter 2: Motif Programming Model

arguments are the array of resource specifications and the number of resources in the array.
Since the class of the widget being created is reflected in the name of the convenience
function, it does not need to be specified as an argument to the routine. For example,
XmCreateLabel() creates a Label widget, whilémCreatePushButton() creates a
PushButton widget.

Xt also provides some generic widget creation functions that use the non-variadic argument
lists for specifying widget resources. The following code fragment shows the use of
XtCreateWidget()

Arg args[5];

int n=0;

XtSetArg (args[n], XmNlabelString, label); n++;

label = XtCreateWidget (“label", xmLabelWidgetClass, toplevel, args, n);

XtManageChild (label);
With this routine, the name of the widget is the first parameter, the widget class is the
second parameter, and the parent is the third parameter. The fourth and fifth parameters
specify the resources, as in the Motif convenience routines. Functionally, in this instance
the two methods of widget creation are logically identical, and it simply boils down to a
guestion of personal taste. In examples, we will prefer the Motif creation routines, if only
because this is a Motif and not an Xt manual.

The argument-list style of setting resources is a touch clumsy and error-prone, since it
requires you to declare an array (either locally or statically) and to make sure that it has
enough elements. Itis a common programming mistake to forget to increase the size of the
array when new resource/value pairs are added; this error usually results in a segmentation
fault.

In spite of the disadvantages of this method of setting resources, there are still cases where
the convenience routines are logically preferred (as opposed to purely stylistic
considerations). One such case is when the routine creates several widgets and arranges
them in a predefined way consistent with tkietif Style Guide The argument-list style
functions also can be useful when you have different resources that should be set depending
on run-time constraints. For example, the following code fragment creates a widget whose
foreground color is set only if the application knows it is using a color display:

extern Widget parent;

Arg args[b];
Pixel red;
int n=0;

XtSetArg (args[n], XmNlabelString, label); n++;
if (using_color) {

XtSetArg (args[n], XmNforeground, red); n++;
}

widget = XmCreatePushButton (parent, "name", args, n);

30 Motif Programming Manual

Chapter 2: Motif Programming Model

The non-variadic routines also allow you to pass the exact same set of resources to more
than one widget. Since the contents are unchanged, you can reuse the array for as long as
it is still available. Be careful of scoping problems, such as using a local variable outside
of the function where it is declared. The following code fragment creates a number of
widgets that all have the same hard-coded resources:

static char *labels[] = {"A Label", "Another Label", "Yet a third" };
XmString label;

Widget widget, rc;
Arg args{3];
int i,n=0;

* Create an unmanaged RowColumn widget parent */
rc = XmCreateRowColumn (parent, “rc", NULL, 0);

[* Create RowColumn's children -- all 50x50 with different labels */
XtSetArg (args[n], XmNwidth, 50); n++;
XtSetArg (args[n], XmNheight, 50); n++;

for (i=0; i < XtNumber (labels); i++) {
xm_label = XmStringCreateLocalized (labels[i]);
XtSetArg (args[n], XmNlabelString, xm_label);
widget = XmCreatelLabel (rc, "label", args, n + 1);
XtManageChild (widget);
XmStringFree (xm_label);

}

/*Now that all the children are created, manage RowColumn */

XtManageChild (rc);
Each Label widget is created with the same width and height resource settings, while each
XmNlabelString resource is distinct. All other resource settings for the widgets can be
set in a resource file.

To set resources in a resource file, you need to specify the names of the widgets, which in
this case are all set tabel. It is perfectly legal to give the same name to more than one
widget. As a result, a resource specification in a resource file that uses a particular name
affects all of the widgets with that name, provided that the widget tree matches the resource
specification. For example, you could set the foreground color of all of the Labels using the
following resource specification:

*rc.label.foreground: red

Other widgets in the application that have the widget nkabel, but are not children of the
widget namedc, are not affected by this specification. Obviously, whether you really want
to use the same name for a number of widgets is dependent on your application. This
technique makes it easier to maintain a consistent interface, but it also limits the extent to
which the application can be customized.

We could have used the elements of thkels array as widget names, but in this
example, these strings contain spaces, which are “illegal” widget names. If you want to

Motif Programming Manual 31

Chapter 2: Motif Programming Model

allow the user to specify resources on a per-widget basis, you cannot use spaces or other
non-alphanumeric characters, except the hyphgnafid the underscore), in widget

names. If per-widget resource specification is not a concern, you can use any widget name
you like, includingNULL or the null string'{’).

Even if a widget has an illegal name, the user can still specify resources for it using the
widget class, as in the following example:

*rc.XmLabel.foreground: red

This resource setting causes each Label widget to have a foreground color of red, regardless
of the name of the widget (and provided that the resource value is not hard-coded for the
widget). See Volume 4X Toolkit Intrinsics Programming Manuafor a discussion of
appropriate widget names and further details on resource specification syntax.

Event Handling for Widgets

Once we have created and configured the widgets for an application, they must be hooked
up to application functions via callback resources. Before we can talk about callback
resources and callback functions, we need to discuss events and event handling. In one
sense, the essence of X programming is the handling of asynchronous events. Events can
occur in any order, in any window, as the user moves the pointer, switches between the
mouse and the keyboard, moves and resizes windows, and invokes functions available
through user interface components. X handles events by dispatching them to the
appropriate application and to the separate windows that make up each application.

Xlib provides many low-level functions for handling events. In special cases, which are
described later in this book, you may need to dip down to this level to handle events.
However, Xt simplifies event handling by having widgets handle many events for you,
without any application interaction. For example, widgets know how to redraw themselves,
so they respond automaticallyExpose events, which are generated when one window is
covered up by another and then uncovered. These “widget survival skills” are handled by
functions callednethodsdeep in the widget internals. Some typical methods redraw the
widget, respond to changes in resource settings that result from calls to
XtVaSetValues() , and free any allocated storage when the widget is destroyed.

The functionality of a widget also encompasses its behavior in response to user events. This
type of functionality is typically handled by action routines. Each widget defines a table of
events, called a translation table, to which it responds. The translation table maps each
event, or sequence of events, to one or more actions.

Consider the PushButton hrello.c Run the program and note how the widget highlights

its border as the pointer moves into it, displays in reverse-video when you click on it, and
switches back when you release the button. Watch how the highlighting disappears when
you move the pointer out of the widget. Also, notice how pressing the SPACEBAR while

32 Motif Programming Manual

Chapter 2: Motif Programming Model

the pointer is in the widget has the same effect as clicking on it. These behaviors are the
kinds of things that are captured in the widget'’s translation table:

<Btn1Down>: Arm()

<Btn1Down>, <Btn1Up>: Activate() Disarm()
<Btn1Down>(2+): MultiArm()
<Btn1Up>(2+): MultiActivate()
<Btn1Up>: Activate() Disarm()
<Btn2Down>: ProcessDrag()
<Key>osfSelect: ArmAndActivate()
<Key>osfActivate: PrimitiveParentActivate()
<Key>osfCancel: PrimitiveParentCancel()
<Key>osfHelp: Help()

~Shift ~Meta ~Alt <Key>Return: PrimitiveParentActivate()
~Shift ~Meta ~Alt <Key>space: ArmAndActivate()
<EnterWindow>: Enter()
<LeaveWindow>: Leave()

The translation table contains a list of event translations on the left side, with a set of action
functions on the right side. When an event specified on the left occurs, the action routine
on the right is invoked. As we just described, moving the pointer in and out of the
PushButton causes some visual feedback.HtiterWindow andLeaveWindow events
generated by the pointer motion causeBhier() andlLeave() actions to be invoked.

As another example, when the first mouse button is pressed down inside the PushButton,
the Arm() action routine is called. This routine contains the code that displays the button
as if it were “pushed in,” as opposed to “pushed out.” When the mouse button is released,
both theActivate() andDisarm() routines are invoked in that order. Here is where
your application actually steps in. If you have provided an appropriate callback function,
theActivate() action calls it. Thédisarm() routine causes the button to be redrawn so
that it appears “pushed out” again.

Event Specification

In the Xt syntax, events are specified using symbols that are tied fairly closely to pure X
hardware events, such &sittonPress or EnterWindow. For examplesBtn1Down>

specifies a button press for the first mouse buttéeyPress events are indicated by
symbols called keysyms which are hardware-independent symbols that represent
individual keystrokes. Different keyboards may produce different hardieyeodedor

the same key; the X server uses keysyms as a portable representation, based on the common
labels found on the tops of keys.

Motif provides a further level of indirection in the form wirtual keysymswhich describe

key events in a completely device-independent manner. For exawsifetivate

indicates that the user invoked an action that Motif considers to be an activating action. An
activating action typically corresponds to the RETURN key being pressed or the left mouse
button being clicked. SimilarlypsfHelp corresponds to a user request for help, such as
the HELP or F1 key being pressed.

Motif Programming Manual 33

Chapter 2: Motif Programming Model

Virtual keysyms are supposed to be provided by the vendor of the user’s hardware, based
on the keys on the keyboard, but some X vendors also provide keysym databases to support
multiple keyboards. The X Consortium provides a virtual keysym database in thesfile
X11R6/lib/XKeysymDBT his file contains a number of predefined key bindings that OSF
has registered with the X Consortium to support actions in the Motif toolkit.

Virtual keysyms can be invoked by physical events, but the Motif toolkit goes one step
further and defines them in the formaftual bindings Here's the translation table for the
PushButton widget expressed using virtual bindings:

BSelect Press: Arm()

BSelect Click Activate() Disarm()
BSelect Release: Activate() Disarm()
BSelect Press 2+: MultiArm()

BSelect Release 2+: MultiActivate() Disarm()
BTranserPress: ProcessDrag()
KSelect: ArmAndActivate()
KHelp: Help()

Examples of virtual bindings af8Select , which corresponds to the first mouse button,
andKHelp , which is usually the HELP key on the keyboard. The rule of thumb is that any
virtual binding beginning with a “B” corresponds to a mouse button event, while any
binding beginning with a “K” corresponds to a keyboard event. More than one event can
be bound to a single virtual keysym. For example,Muif Style Guidgpermits F1 to be a

help key, so that key is also virtually boundktdelp .

Virtual bindings can be specified by a system administrator, a user, or an application. One
common use of virtual bindings is to reconfigure the operation of the BACKSPACE and
DELETE keys. On some keyboards, the BACKSPACE key is in a particularly difficult
location for frequent access. Users of this type of keyboard may prefer to use the DELETE
key for backspacing. These people may find the default operation of the Motif Text widget
annoying, since it does not allow them to backspace using their “normal” backspace key.

Since Xt allows applications and users to override, augment, or replace translation tables,
many people familiar with Xt try to specify a new translation for the DELETE key to make

it act like a backspace. The translation invokes the action routine that backspaces in a Text
widget. However, this approach is limited, in that it only works for a single Text widget.
The Text widget has the following translation:

<Key>osfBackSpace: delete-previous-char()

The virtual keysynosfBackSpace is bound todelete-previous-char() , Which is

the backspace action. Rather than changing the translation table to specifKéyat
Delete should invoke this action, a user can redefine the virtual binding of the
osfBackSpace keysym. A user can configure his own bindings by specifying the new
virtual keysym bindings in amotifbindfile in his home directory. The following virtual
binding specifies that the DELETE key is mappedstBackSpace

34 Motif Programming Manual

Chapter 2: Motif Programming Model

osfBackSpace: <Key>Delete

As a result of this specification, the DELETE key performs the backspace action in the Text
widget, as well as any other widgets in the Motif toolkit that use dkiBackSpace

keysym. The advantage of using virtual bindings is that the interface remains consistent and
nothing in the toolkit or the application needs to change.

Virtual keysym bindings can also be set in a resource file, using the
XmNdefaultVirtualBindings resource. The resource can be specified for all
applications or on a per-application basis. To map the DELETE kegfi@ackSpace ,
use the following specification:
*defaultVirtualBindings: \

osfBackSpace: <Key>Delete \n\

other bindings
The only difference between the syntax for the resource specification and foratiéind
file is that the resource specification must have a newline charantgbetween each
entry. The complete syntax of Motif virtual bindings is explained in Volume BBif
Reference Manual

Motif a client,xmbind that configures the virtual key bindings for Motif applications. This
action is performed by the Motif Window Managenn) or any application that uses the
Motif toolkit at startup, so you really only need to usmbindif you want to reconfigure
the bindings without restartinmwmor a Motif application. Motif also provides a function,
XmTranslateKey() , to translate a keycode into a virtual keysym. This function allows
applications that override the defa¥tkeyProc to handle Motif's virtual key bindings.

Callbacks

Translations and actions allow a widget class to define associations between events and
widget functions. A complex widget, such as the Motif Text widget, is almost an
application in itself, since its actions provide a complete set of editing functions. But
beyond a certain point, a widget is helpless unless control is passed from the widget to the
application. A widget that expects to call application functions defines one or more
callback resources, which are the hooks on which an application can hang its functions. For
example, the PushButton widget defines theXmNactivateCallback ,
XmNarmCallback , andXmNdisarmCallback callback resources.

Itis no accident that the callback resource names bear a resemblance to the names of widget
action routines. In addition to highlighting the widget, the action routines call any
application functions associated with the callbacks of the same name. There is no reason
why a callback has to be called by an action; a widget could install a low-level event
handler to perform the same task. However, this convention is followed by most widgets.

Figure 2-3 illustrates the event-handling path that results in an application callback being
invoked. The widget's translation table registers the widget's interest in a particular type of

Motif Programming Manual 35

Chapter 2: Motif Programming Model

event. When Xt receives an event that happened in the widget's window, it tests the event
against the translation table. If there is no match, the event is thrown away. If there is a
match, the event is passed to the widget and an action routine is invoked. The action routine
may perform a function internal to the widget, such as changing the widget’s appearance
by highlighting it. Depending on the design of the widget, the action routine may then pass
control to an application callback function. If the action is associated with a callback
resource, it checks to see if a callback function has been registered for that resource, and if
so, it dispatches the callback.

There are several ways to connect an application function to a callback resource. The most
common is to calKtAddCallback() , as demonstrated hello.c

void button_pushed(Widget, XtPointer, XtPointer);

XtAddCallback (button, XmNactivateCallback, button_pushed, NULL);

The first argument specifies the widget for which the callback is installed. The second
parameter is the name of the callback resource, while the third is a pointer to the callback
function. The fourth argument is referred tocient data If this parameter is specified, its
value is passed to the callback function when it is called. Here, the client NataLis

The client data can be a value of any type that has the same sizeXdBaimter .An
XtPointer is usually the same aschar pointer; it is typically represented by a 32-bit
value. You can pass pointers to variables, data structures, and arrays as client data. You
cannot pass actual data structures; the result of passing a data structure is undefined. You
can pass variables of typat or char , but understand that you are passing the data by
value, not by reference. If you want to pass a variable so that the callback routine can
change its value, you must pass the address of the variable. In this case, you need to make
sure that the variable is global, rather than local, since a local variable loses its scope
outside of the routine that calsAddCallback()

The callback function itself is passed the widget, the client data, if any, and a third argument
that is referred to asall data The signature of a callback function can be expressed in one
of two ways: using an ANSI-compliant function prototype or using the older style
conventions of K&R C. The ANSI-style function declaration is as follows:

void button_pushed (Widget widget, XtPointer client_data, XtPointer call_data)

36 Motif Programming Manual

Chapter 2: Motif Programming Model

In the strictest sense, declaring the types of the parameters to the function is the proper way
to handle function declarations and signatures. While this convention is good style and

Xt Intrinsics

A 13 I A

User presses Button 1

X Toolkit Intrinsics
Event Loop

Determine the widget
the event occurred in

Does event
match widget's
translations?

No

Action routine Callback

Registered?

Application

\

Callback function

Figure 2-3: Event handling using action routines and callbacks

Motif Programming Manual 37

Chapter 2: Motif Programming Model

recommended for upwards compatibility, most compilers today still understand the older
style conventions:
void button_pushed (widget, client_data, call_data)

Widget widget;

XtPointer client_data;

XtPointer call_data;
The second style is potentially the more portable method, although it is extremely difficult
to think of any operating system vendors whose compiler is not ANSI aware. In the course
of the book, we make a habit of declaringient data and call data as
XtPointers , even though we usually know the actual types of the parameters being
passed to the function. Before referencing these parameters, we cast the values to the
appropriate types.

The third parameter in a Motif-based callback function is always a structure that contains
information specific to the widget class that invoked the callback function, as well as
information about the event that triggered the callback. There is a generic callback
structure XmAnyCallbackStruct , as well as variations for specific widget classes and
callback resources. ThémAnyCallbackStruct is defined as follows:

typedef struct {
int reason;
XEvent *event;

} XmAnyCallbackStruct;

The callback structure for the Motif PushButton widget class, the

XmPushButtonCallbackStruct , is defined as follows:
typedef struct {
int reason;
XEvent *event;
int click_count;

} XmPushButtonCallbackStruct;

We discuss the callback structures for a widget class in this book (see the chapter
corresponding to the specific widget type). The callback structures are also documented in
the widget reference pages in Volume 6&itif Reference Manual

All of the -callback structures contain at least the two fields found in
XmAnyCallbackStruct . The reason field always contains a symbolic value that
indicates why the callback was called. These values are definediifMotif2.1/include/
Xm/Xm.hand are usually self-explanatory. For example, when a callback function
associated with a PushButtorXsnNactivateCallback resource is called, theason

is XmCR_ACTIVATEThe different values foreason make it easier to write callback
routines that are called by more than one type of widget. By testinggéisen field, you

can determine the appropriate action to take in the callback. Because the widget is always
passed to the callback function, you can also find out what widget caused the function to
be invoked.

38 Motif Programming Manual

Chapter 2: Motif Programming Model

Theevent field contains the actual event that triggered the callback, which can provide a
great deal of useful information. See Volume4Toolkit Intrinsics Programming Manual,

for information on how to interpret the contents of an event. That subject is not discussed
at length in this book, although our examples frequently use the events in callback
structures to control processing.

The Event Loop

Once all of the widgets for an application have been created and managed and all of the
callbacks have been registered, it's time to start the application running. The final two
function calls inhello.cperform this task:

XtRealizeWidget (toplevel);

XtAppMainLoop (app);
Realizing a widget creates the actual window for the widget. When you call
XtRealizeWidget() on the top-level widget of an application (the one returned by the
call to XtVaOpenApplication()), Xt recursively traverses the hierarchy of widgets in
the application and creates a window for each widget. Before this point, the widgets existed
only as data structures on the client side of the X connection. After the call, the widgets are
fully instantiated, with windows, fonts, and other X server data in place. TheExsise
event is also generated, which causes the application to be displayed.

The call to XtAppMainLoop() turns control of the application over to the X Toolkit
Intrinsics. Xt handles the dispatching of events to the appropriate widgets, which in turn
pass them to the application via callbacks. The application code is idle until summoned to
life by user-generated events.

Summary

We've looked at the skeleton of a simple Motif program. Every application follows more
or less the same plan:

1. Initialize the X Toolkit Intrinsics.

2. Create and manage widgets.

3. Configure widgets by setting their resources.
4. Register callbacks to application functions.

5. Realize the widgets and turn control over to Xt's event loop.
How this skeleton is fleshed out in a real application is the subject of the next chapter.
Chapter 30verview of the Motif Toolkitaddresses the role of manager widgets in laying

out a user interface, the use of dialog boxes and other popups for transient interactions with
the user, the many specialized types of widgets available in Motif, and other essential

Motif Programming Manual 39

Chapter 2: Motif Programming Model

concepts. Once you have read that chapter, you should have a sufficient foundation for
reading the remaining chapters in any order.

40 Motif Programming Manual

In this chapter:

e The Motif Style

» Application Controls
» Application Layout

 Putting Together a
Complete Application

» Changes in Motif 2.1
* Summary

Overview of the Motif
Toolkit

This chapter helps the reader understand the components of a real Motif application. It
discusses how to handle the geometry management of primitive widgets within a manager
widget, when to put components into the main window, when to use dialog boxes and
menus, and how to relate to the window manager. After reading this chapter, the
programmer should have a solid overview of Motif application programming, and she
should be able to read the remaining chapters in any order.

In Chapter 2The Motif Programming Modelye talked about the basic structure of an Xt-
based program. We described how to initialize the toolkit, create and configure widgets,
link them to the application, and turn control over to Xt's main loop. In this chapter, we
discuss the widgets in the Motif toolkit and how you can put them together to create an
effective user interface for an application.

If you already have a basic understanding of the Motif widgets, you can jump ahead to any
of the later chapters in the book that focus on individual widget classes. This chapter
provides some insight into the design of the widgets and a general overview of the Motif
style and methodology, which you may find useful when developing your own
applications.

This chapter also describes all of the new features in Release 2.1 of Motif. If you are
familiar with Motif 1.2 but need to get up to speed with Motif 2.1, you should ©hdnges

in Motif 2.10n page 86. In this section, we summarize the new features and tell you where
to find more information about them.We also describe all the changes made to the example
programs in this book to make them up-to-date with Motif 2.1. While Motif 2.1 is
backwards-compatible with Motif 1.2, there are a number of functions and resources in
Motif 2.1 that replace obsolete functions and resources in Motif 1.2.

The Motif Style

You don't build a house just by nailing together a bunch of boards; you have to design it
from the ground up before you really get started. Even with a prefabricated house, where

Motif Programming Manual 41

Chapter 3:Overview of the Motif Toolkit

many of the components have already been built, you need a master plan for putting the
pieces together. Similarly, when you are designing a graphical user interface for an
application, you have to think about the tasks your application is going to perform. You
must envision the interface and then learn to use your tools effectively in order to create
what you've envisioned.

The Motif toolkit provides basic components that you can assemble into a graphical user
interface. However, without design schematics, the process of assembling the user-
interface elements may become ad hoc or inconsistent. Here is whévletifi&tyle Guide

comes in. It presents a set of guidelines for how widgets should be assembled and grouped,
as well as how they should function and interact with the user.

All Motif programmers should be intimately familiar with ti8tyle GuideWhile we make
recommendations for Motif style from time to time, this book is not a replacement for the
Style GuideThere are many aspects of Motif style that are not covered in detail here, as
they involve the content of an application rather than just the mechanics. On the other hand,
the Motif Style Guidas not an instructional manual for the Motif toolkit. In fact, many of

the objects described in thetyle Guideare not even widgets, but higher-level, more
complex objects that are composed of many widgets.

For example, th&tyle Guidedescribes an object called a MenuBar, which spans the top of
the main window of an application. The MenuBar contains menu titles that, when clicked
on, display PulldownMenus. The Motif toolkit does not implement MenuBars or
PulldownMenus as distinct widget classes, nor does $tgle Guide make any
recommendations about how menu objects should be implemented. Wigiyk&uide

does talk about (albeit somewhat loosely) are the actions that can be taken by an item on a
menu: it can invoke an application function, pop up a dialog box containing yet more
options and commands, or display a cascading menu (also known as a pullright menu).

The Style Guidealso makes recommendations about the menus that an application should
provide. For example, most applications should haFdeamenu that provides items such

as arExit button to exit the application andsavebutton to save file. It also specifies details

of presentation, such as that you should provide an ellipsis (...) as part of the label for a
menu item that requires the user to provide more information before action is taken.

How the Motif toolkit goes about supporting, and in some cases enforcing, the guidelines
of the Motif Style Guidebrings up some interesting points, particularly in relation to some
of the underlying principles of the X Toolkit Intrinsics. In Xt, a widget is envisioned as a
self-contained object that is designed to serve a specific, clearly-defined function. Many of
the Motif widgets, such as Labels, PushButtons, ScrollBars, and other common interface
objects, are implemented as separate widgets.

In other cases, however, Motif steps outside of the Xt model by creating compound objects
out of several widgets and then expecting you to treat them as if they were a single object.
For example, Motif provides the ScrolledText and ScrolledList objects, which combine a

42 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

Text or List widget with a ScrolledWindow widget, which in turn automatically manages
horizontal and vertical ScrollBars.

In another case, the Motif toolkit provides a complex, general-purpose widget that can be
configured to appear in several guises. There is no MenuBar widget class and no
PulldownMenu widget class. Instead, the RowColumn widget, which also serves as a
general-purpose manager widget, has resources that allow it to be configured as either a
MenuBar or a PulldownMenu pane. Those familiar with Xt may find this widget design to

be a breach of Xt's design goals, though.

In order to allow the programmer to think of ScrolledText objects, MenuBars, and
PulldownMenus as distinct objects, the Motif toolkit provides convenience creation
functions. These routines make it appear as though you are creating discrete objects when,
in fact, you are not. For example, the toolkit functioXsiCreateMenuBar() and
XmCreateSimplePulldownMenu() automatically create and configure a RowColumn
widget as a MenuBar and a PulldownMenu, respectively. There are also convenience
routines for creating various types of predefined dialog boxes, which are actually composed
of widgets from four or five separate widget classes.

Convenience routines emphasize the functional side of user-interface objects while hiding
their implementation. However, since Motif is a truly object-oriented system, it behoves
you to understand what you're really dealing with. For example, if you want to use resource
classes to configure all MenuBars to be one color and all PulldownMenus another, you
cannot do so because they are not actually distinct widget classes. The class name for both
objects isXmRowColumn

In the remainder of this chapter, we look at Motif user-interface objects from the
perspective of both the functional object illusion and the actual widget implementation. In
the body of the book, we use the Motif convenience routines for creating both compound
objects, and simple widgets or gadgets. With the compound objects, we show you how to
pierce the veil of Motif's convenience functions and work directly with the underlying
widgets when necessary. Figure 3-1 shows the entire class hierarchy of the Motif widget
set.

We begin by taking a closer look at the Motif user-interface components with which the
user typically interacts. Then we examine how the manager widget classes are used to
arrange the more visible application controls. And finally, we explore the use of all of these
objects to create functional windows and dialogs that make up a real application.

Application Controls

In many ways, application controls are the heart of a graphical user interface. Rather than
controlling an application by typing commands, the user is presented with choices using
graphical elements. The user no longer needs to remember the syntax of commands, since

Motif Programming Manual 43

Chapter 3:Overview of the Motif Toolkit

her choices are presented to her as she goes along. As we've discussed, some of Motif's
application controls (such as menus) are compound objects assembled by convenience
routines. Others are simple, single-purpose widgets that you can create directly.

The widgets in this latter group are collectively referred topamitive widgets -- not
because they are simple, but because they are designed to work alone. The contrast is not
between primitive and sophisticated widgets, but between primitive and manager widgets.
Some of the primitive Motif widget classes have corresponding gadget classes. The

Core —| ArrowButtonGadget I

|Rect0bj I._| Gadget I_
—| SeparatorGadget I

—| ArrowButton I
c: I

—| Label

LabelGadget

ToggleButtonGadget

—| List

| ScrollBar I

p—=| Separator

ToggleButton

@
X

I

b | TextField

-

Constraint I_| Manager I_

MessageBox
Container 9"

DrawingArea

Frame

Composite I— Key
Notebook
: Mot
PanedWindow

Xt Intrinsics
RowColumn

Scale

i

—| ScrolledWindow .I—| MainWindow
—| SpinBox I—' SimpleSpinBox I

GrabShell
Overri I—| MenuShell
Shell
WMShell I—| Vendorshell

TopLevelShell I—| ApplicationShell I—U PrintShell I
|
Figure 3-1: Class Hierarchy of the Motif widget set

| -

SessionShell I

44 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

following sections describe the different types of primitive application controls available
in the Motif toolkit.

The compound objects in the Motif toolkit are composed of primitive widgets and gadgets.
Because an understanding of these objects relies on an understanding of the primitive
widgets, as well as the Motif manager and shell widgets, we are going to postpone
discussing compound objects until later in the chapter.

The Primitive Widget Class

The Primitive widget class is a superclass for all of the Motif primitive widgets. This
widget class is a metaclass; it serves only to define certain common behavior used by all its
subclasses, so one never instantiates a widget directly from the Primitive class. This
statement is somewhat like saying that hammer is a class of object, but that you never really
have a generic hammer. You can only have a specific type of hammer, like a claw hammer,
a ball peen hammer, or a sledge hammer.

Just as all hammers have particular characteristics that qualify them as hammers, the
Primitive widget class provides its subclasses with common resources such as window
border attributes, highlighting, and help with keyboard traversal (so the user can avoid the
mouse and navigate through the controls in a window using the keyboard). The actual
widget classes that you use are subclassed from the Primitive class, as shown in Figure 3-2.

The Primitive class itself inherits even more basic widget behavior from the Xt-defined
Core widget class, which establishes the basic nature of “widgetness.” The Core class
provides widgets with the capability to have windows and background colors, as well as

—| ArrowButton I
C I

—| Label

—| List

Core I_| Primitive I—

—| ScrollBar

p—| Text I

b | TextField

Motif

Xt Intrinsics

[
[

Figure 3-2: The Primitive widget class hierarchy

* A claw hammer has the prongs in the back behind the hammer-head that allow you to pull nails out of a wall; a
ball peen hammer has a round corner where the claw would be otherwise be; a sledge hammer is the large, heav-
yweight hammer used to drive thick nails through concrete or to destroy things.

Motif Programming Manual 45

Chapter 3:Overview of the Motif Toolkit

translations, actions, and so on. You could actually use a simple Core widget as an instance
and define your own translations and action routines, although this technique is not used
frequently. Complete details are provided in Volume 4.

The Label Class

The Label widget provides a visual label either as text or as an image in the form of a
Pixmap .The text of a Label is alXmString , or compound string, not a character string
(char *).A compound string can be oriented from left-to-right or right-to-left and it can
also contain multiple lines and multiple fonts. Chaptey @bmpound Stringgiscusses
functions that manipulate compound strings, as well as functions that convert between
character strings and compound strings.

The Label widget does not provide any callback routines, since it does not have any
specified behavior. Using Xt, you could install event translations and action routines to
make a Label respond to user input, but the Label widget is not intended to be used this
way. Itis only meant to be used to display labels or other visual aids. In Motif, instances of
Label and all of its subclasses are automatically registered as drag sources for drag and drop
operations by the toolKit

Label widgets are described in detail in Chapteriddbels and Buttong-igure 3-3 displays
a single Label widget with multiple lines and multiple fonts.

—| xmLabel |
This is a label

that contains three
|zeparate fonts and lines|

Figure 3-3: A Label with multiple lines and fonts

The PushButton Class

The PushButton widget supports the same visual display capabilities as a Label, since it is

subclassed from Label. In addition, the PushButton provides resources for the programmer

to install callback routines that are called when the user arms, activates, or disarms the

button. The PushButton also displays a shadow border that changes in appearance to
indicate when the pointer is in the widget and when it has been activated.

When a PushButton is not selected, it appears to project out towards the user. When the
pointer moves into the button, its border is highlighted. When the user actually selects the

* |n fact, in Motif 2.1, drag and drop for a Label, LabelGadget, or Scale may be disabled by default if the resource
XmNenableUnselectableDrag is False. See the section on XmDisplay in Volume 6B for more details.

46 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

button by pressing the first mouse button on it, the button appears to be pushed in and is
said to be armed. The user activates a PushButton by releasing the mouse button while the
button is armed. PushButton widgets are also covered in detail in Chapter 12. Figure 3-4

shows some examples of PushButtons.

—| XmPushButton

| Ok |Cance|| Helpl

Figure 3-4: PushButton widgets

The DrawnButton Class

The DrawnButton widget is similar to a PushButton in its functionality and its three-
dimensional appearance. However, the DrawnButton is used when an application wants to
draw the text or image directly into the widget's window, rather than have the widget
handle the drawing. If the image is dynamic and changes frequently during the course of
an application, you may want to handle the drawing yourself. The DrawnButton provides
additional callback resources that are called when the button is resized or exposed and
additional ways to draw an outlined border. The DrawnButton widget is discussed in
Chapter 12. Figure 3-5 shows some DrawnButtons.

—| XmDrawnButton

Figure 3-5: DrawnButton widgets

The ToggleButton Class

The ToggleButton widget displays text or graphics like a Label widget, but it has an
additional indicator graphic (a square, diamond, and additionally in Motif 2.1, a circle or
check mark shape) to the side of the label. The indicator shows the state of the
ToggleButton: in Motif 1.2 this could be simply on or off; in Motif 2.1 a toggle can exist

in a thirdindeterminatestate. When the ToggleButton is on, the indicator is colored and
appears to be pushed in. When the button is off, the indicator appears to project outward.
In the indeterminate state, the toggle is half colored, half uncolored. The ToggleButton
provides an additional resource for specifying a callback routine that is called when the user
changes the state of the ToggleButton.

Motif Programming Manual 47

Chapter 3:Overview of the Motif Toolkit

One common use of ToggleButtons is to set the application state. In this case, the callback
routines typically set simplBoolean variables internal to the application. ToggleButtons

can also be arranged in two different kinds of groups. In one configuration, known as a
RadioBox, only one button in the group of buttons can be chosen at a time. The other
configuration, a CheckBox, allows the user to select any number of buttons. When
ToggleButtons are grouped as a RadioBox, the indicators are by default diamond-shaped;
otherwise, they default to a square-shaped appearance. ToggleButton widgets are described
in detail in Chapter 12. Figure 3-6 shows the two different ways that ToggleButtons can be
grouped.

: amiTagaleButton | EMTopgheEution
One W S {ne oAb
Twa Sauen Twa O SayeEn
Thres 14 gl Ihraa E LSt

& Four Hine Faiur Mina
Fiye Tem Five Tan

CheckBox RadioBox

Figure 3-6: ToggleButton widgets

The CascadeButton Class

The CascadeButton widget is a special kind of button that is used to popup menus. A
CascadeButton can only be used as a child of a RowColumn widget, such as: in a MenuBar
as the title of a PulldownMenu, in a PulldownMenu pane as an item that has a cascading
menu associated with it, or as the button in an OptionMenu. The menu that is posted by a
CascadeButton is not a part of the widget itself; the menu is associated with the button
through a resource. A CascadeButton merely provides the label and other visual aids that
support the appearance that a menu can pop up from the object. Even though the
CascadeButton widget class is subclassed from Label and could inherit all of its
functionality, Motif imposes restrictions on the labels that a CascadeButton can display.
CascadeButton labels cannot contain multiple lines or multiple fonts. Because
CascadeButtons are typically used in menus, they do not display border shadows like other
buttons. They do have similar highlighting behavior when selected, however.
CascadeButton widgets are explained in both Chapt&éhd,Main Windowand Chapter

20, Interacting with the Window Manager

The ArrowButton Class

Despite the similarity in its name, the ArrowButton widget is not subclassed from Label
like the other button widgets. Like the remaining widgets described in this section, it is
subclassed directly from the Primitive widget class. The ArrowButton widget contains an
image of an arrow pointing in one of four directions: up, down, left, or right. When the user
selects this widget, the ArrowButton provides visual feedback giving the illusion that the

48 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

button is pressed in and invokes a callback routine that an application can use to perform
application-specific positioning.

In most respects, an ArrowButton can be considered identical to a PushButton, as it is easy
enough to provide an arrow pixmap for a PushButton. Since directional arrows are a
common user-interface element, the ArrowButton is provided as a separate widget class for
simplicity. ArrowButton widgets are covered in detail in Chapter 12. Figure 3-7 shows the
four variations of the ArrowButton widget.

_‘._I
4 p
v

Figure 3-7: ArrowButton widgets

The List Class

The List widget provides a mechanism for the programmer to make a list of text items
available to the user for selection. The user selects items from a List using the mouse or the
keyboard. The List widget allows you to specify whether the user can select a single item
or multiple items. While List is a Primitive widget, it is typically created as part of a
ScrolledList compound object using a Motif convenience function. The advantage of the
ScrolledList object is that it provides a ScrollBar when the List grows bigger than the size
of its visible area. Instances of the List widget are automatically registered as drag sources
for drag and drop operations by the toolkit. We explore the List widget in detail in Chapter

Motif Programming Manual 49

Chapter 3:Overview of the Motif Toolkit

13, The List WidgetFigure 3-8 shows a List widget in context with other interface

elements.

. XmiList
Hame |BaT1y Tonas
Addrass [I-;!-__Hn; .'-;.r_-;-.";ih_-

Account Number |[VZ21343-4

TransacTiong

TR
AT
IS
WAITTR
4T
Lale]

‘with Cossticg
Inth Buslding Sociarty
Jormm Fulil ithirg

Wi Inahirs Elscbria Co,

LigiEers Ca,
The Chewse Shop

Gaua | unda)

mlapfe
ErRERES

Cancal

Figure 3-8: A List widget in an application dialog

The ScrollBar Class

The ScrollBar widget is one of the more intuitive user-interface elements in the Motif

toolkit. ScrollBars are almost always used as children of a ScrolledWindow widget. When
the contents of a window are larger than the viewing area, a ScrollBar allows the user to
scroll the window to view the entire contents.

ScrollBars can be oriented vertically or horizontally. The ScrollBar also provides a number
of callback resources that allow you to control its operation. ScrollBar widgets are

50

Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

discussed in Chapter 18crolled Windows and ScrollBarsigure 3-9 shows both vertical
and horizontal ScrollBars.

s ridlfar

Vertical
ScrollBar

, Horizontal
- ScrollBar

Figure 3-9: ScrollBars

The Separator Class

The Separator widget is used as a visual aid to separate adjacent items in a display. A
Separator appears as a line between the objects it is separating; it can be oriented vertically
or horizontally. Separators can be used in menus to separate menu items, in dialog boxes
to separate discrete areas of control, and at various points in an interface for purely aesthetic
reasons.

The Text and TextField Classes

The Text widget is a complete text editor contained in a widget. The Text widget provides
resources to configure the editing style of the widget, as well as callback resources that
allow text verification. The widget can be configured as a multiline text entry area or as a
single-line data entry field. The TextField widget class is available as a somewhat lighter-
weight text entry area. The TextField widget is limited to a single-line, but in all other
respects there is little difference between the two classes. Instances of the Text and
TextField widgets are automatically registered as drag sources and drop sites for drag and
drop operations by the toolkit.

Motif Programming Manual 51

Chapter 3:Overview of the Motif Toolkit

The Text and TextField widgets can be used in many different ways to support the text
entry requirements of an application. The two widgets are described in detail in Chapter 18
Text WidgetsFigure 3-10 shows an application that uses various forms of the Text widget.

wnTasy
File Edit S=arch

Help |

Search FatTam « wvad

Faund three Gocurrencel

Lser Commmnis [~ &l
HAME
B - 1scge disalager far §
EYNOPETE
=t

f nlr: f-naclick] [-geowstry geosl

[ESRIFTION
ivud 15 an & ¥Window 5-.-r aw ln,o unfumplag iy,

Bllows 1 wsars T8 d i i wifddy &n Eeage Gadind ‘i||-|
I"Tr (]

ipacially Fermatted |hl|I ucth sa praducsl by wud(!

Raplace Pattem

L= 5l ay
[-std mmaptypar] [-row] [-ofs vl s-tvpa-ar-
-] [-plane Aumber) [-f) o8lar] [-b <olar]

Figure 3-10: Text Widgets.

Gadgets

Another set of application controls is provided in the form of gadgets. There are gadgets
that are equivalent to many of the primitive widgets: ArrowButtonGadgets,
SeparatorGadgets, PushButtonGadgets, CascadeButtonGadgets, ToggleButtonGadgets,
LabelGadgets, and in Motif 2.1, IconGadgets. The lconGadget is similar to a LabelGadget,
except that it can display a label and an image simultaneously. The appearance and
behavior of the gadgets are mostly identical to that of the corresponding widgétsther
understanding of how gadgets work depends on an understanding of the manager widgets
that support them, so we are going to return to this topic later in the chapter.

ArrowButtonGadget

IconGadget

LabelGadget

RectObj Gadget

o
S
I[I |

WindowObj SeparatorGadget

Figure 3-11: The Gadget class hierarchy

* The IconGadget is exceptional: there is no widget equivalent to this gadget class.

52

Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

The Gadget class is a superclass for all of the Motif gadgets. Like Primitive, this class is a
metaclass that is never instantiated. However, gadgets are not widgets. The Gadget class is
subclassed from the RectObj class, not from the Core widget class. Figure 3-11 shows the
class hierarchy for gadgets.

Application Layout

While the controls are the most obvious part of a graphical user interface, these elements
alone do not make an effective interface. A random arrangement of buttons or a collection
of nested menus can make an application as obscure and as difficult to use as one with a
command-line interface. The arrangement of the controls in an application makes all the
difference.

To help you lay out your application, Motif provides you with a set of manager widgets.
You can think of manager widgets as boxes in which you can put things. These boxes,
however, can grow or shrink as necessary to provide the best fit possible for the items that
they contain. You can place boxes inside of other boxes, whether or not they contain other
items. By using different size boxes, you can organize things in many different ways.

Manager widgets are so named because they manage the size and position of other widgets.
The relationship between a manager widget and the widgets that it manages is commonly
referred to as thparent-childmodel. The manager acts as the parent, and the other widgets
are its children.

Unlike primitive widgets, such as PushButtons, ScrollBars, and Labels, whose usefulness
depends on their visual appearance and interaction with the user, manager widgets provide
no visual feedback and have few callback routines that react to user input. Manager widgets
have two basic purposes: they manage the sizes and positions of their children, and they
provide support for gadgets. Like other widgets, manager widgets have windows, they can
receive events, and they can be manipulated directly with Motif and Xt functions. You can
draw directly into the window of a manager widget, look for events in the widget, and
specify resources for it.

There are many manager widget classes, each of which is tuned for a particular kind of
widget layout. A manager widget can manage other manager widgets, as well as primitive
widgets like Labels and PushButtons. In fact, the layout of an application is typically a kind
of tree structure. As discussed in Chapter 1, the top of the tree is always a shell widget like
that returned bytVaApplnitialize() . Shell widgets are composite widgets that can
only have a single managed child. This child is usually a general-purpose manager widget.
This manager contains other managers and the primitive widgets that compose the user
interface for a window in an application.

Motif Programming Manual 53

Chapter 3:Overview of the Motif Toolkit

Figure 3-12 shows all of the different manager and primitive widgets that make up the
displayed dialog box.

Shell

Form
Form

Label

LabelGadget
RowColumn

RowColumn

TextField

RowColumn(RadioBox)

RowColumn

ToggleGadgets

TextField

LabelGadget
PushButton

Form

Daas Fr Al Helds

Figure 3-12: The layout of a dialog box

The parent-child relationships between the widgets in this dialog box are illustrated in the
tree structure shown in Figure 3-13.

54 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

Although the dialog box is composed of many different components, it appears to the user
as a single, conceptually focused user-interface object.

Shell I
E :

| Form

LabelGadget
TextField

P | TOggleButtonGadget

LabelGadget

—| RowColumn I— _| ToggleButtonGadget I
s | ROWCOlUMN I— —| LabelGadget I _' ToggleButtonGadget I
—l RowColumn I— —| LabelGadget I

TextField I

| Form I——l PushButton I

Figure 3-13: Parent-child relationships between widgets

The Manager Widget Class

As with the Primitive widget class and the Gadget class, the Manager widget class is a
superclass for all of the Motif manager widgets. The Manager class is another metaclass.
You never create an instance of a Manager widget; you create an instance of one of its
subclasses. The actual widget classes that you use are shown in Figure 3-14.

Manager is subclassed from the Xt Constraint class, which in turn is subclassed from the
Xt Composite class. The Composite widget class defines the basic characteristics of
widgets that are able to manage the size and position of other widgets. Xt uses the general
term composite widgefor any widget with this capability. The Constraint class adds the
capability to provide additional resources for the widgets that are being managed. These

Motif Programming Manual 55

Chapter 3:Overview of the Motif Toolkit

resources constrain the position of the widgets. They can be thought of as hints about how
the widgets should be laid out.

Object

RectObj

o
I I S
UI |

Xt Intrinsics

Key
WindowObj

Composite

o

Constraint

|
L

| Manager I.

MessageBox

Container
DrawingArea
Frame
Notebook
PanedWindow
RowColumn

Scale

—| ScrolledWindow I—| MainWindow I
—| SpinBox I—| SimpleSpinBox I

Figure 3-14: Class hierarchy of the Manager widget classes

i

Motif provides a number of general-purpose manager widgets that allow the programmer
to manage the size and arrangement of an arbitrary number of children. In some ways, the
art of Motif programming is the design of effective widget layouts, using these particular
manager widgets. Motif also provides some narrowly-focused manager widgets, such as
certain dialog classes, that can almost be treated as if they were single user-interface
components. These widgets create and manage their children with minimal help from an
application.We sometimes refer to these widgets as compound objects, since they include
both a manager widget and one or more children. This section describes the different
manager widgets briefly; a more detailed description of the widgets is given in Chapter 8,
Manager Widgets

The DrawingArea Class

The DrawingArea widget provides an area in which an application can dis-
play graphics. Callback routines can be used to notify the application when

56 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

expose and resize events take place and when there is input from the key-
board or mouse. The DrawingArea can also be used to manage the geome-
try layout for child widgets, but its functionality in this area is quite
limited. The DrawingArea is discussed in detail in Chapter 11, The Drawin-
gArea

The ScrolledWindow Class

The ScrolledWindow widget provides a viewport for data such as text or
graphics. If the data that is being viewed is larger than the ScrolledWin-
dow, ScrollBars allow the user to view the entire contents of the window in-
teractively. The ScrolledWindow is discussed in Chapter 10,
ScrolledWindows and ScrollBars

The MainWindow Class

The MainWindow widget acts as the standard layout manager for the main
window of an application. It is specifically tuned to pay attention to the ex-
istence of a MenuBar, a command area, a message area, a work region, and
ScrollBars, although all of these areas are optional. The MainWindow is
discussed in Chapter 4, The Main Window

The RowColumn Class

The RowColumn widget is perhaps the most widely used and robust of all
of the manager widgets. As its name suggests, the widget lays out its chil-
dren in rows and columns. The RowColumn widget is used by many differ-
ent parts of the toolkit to implement compound objects like MenuBars,
PulldownMenus, CheckBoxes, and RadioBoxes. The general purpose Row-
Column is discussed in Chapter 8, Manager Widgets

The Frame Class

The Frame widget provides a three-dimensional border for a widget that
does not normally have a border. It can also be used to enhance the style of
the border for a widget that already has a border. In Motif, a Frame widget
can have two children: a work area and a title. The work area child can be
a manager widget that contains many other children. The Frame is dis-
cussed in Chapter 8, Manager Widgets

The PanedWindow Class

The PanedWindow widget manages its children in a vertically (and, in Mo-
tif 2.1, a horizontally) tiled format. Its width always matches the widest
widget in its list of managed children; the widget forces all of its children

Motif Programming Manual 57

Chapter 3:Overview of the Motif Toolkit

to stretch to the same width as that widget. Each pane in a PanedWindow
contains a child widget; every pane has an associated sash (or grip) that al-
lows the user to change the height of the pane interactively. Resizing a
pane with the grip can cause the widgets in other panes to change size. The
PanedWindow is discussed in Chapter 8, Manager Widgets

The BulletinBoard Class

The BulletinBoard widget does not impose much of a layout policy for the
widgets that it manages. The widget acts like a real bulletin board, in that
an application pins a widget on the bulletin board, and it sticks where it is
placed. The BulletinBoard does impose margins and has a resource that
controls whether or not its children can overlap. However, when a Bullet-
inBoard is resized, it does not move or resize its children based on its new
size. The BulletinBoard is useful mostly for the layout of dialog boxes and
other windows that are rarely resized. The predefined Motif dialog widget
classes use BulletinBoard widgets for this reason. The BulletinBoard is
discussed in Chapter 8, Manager Widgets

The Form Class

The Form widget provides a great deal of control over the placement and
sizing of the widgets it manages. A Form can lay out its children in a grid-
like manner or it can allow its children to link themselves to one another
in a chain-like fashion. Form uses constraint resources to specify how chil-
dren are resized and positioned relative to each other and the Form as a
whole. The Form is discussed in Chapter 8, Manager Widgets

The Scale Class

The Scale widget is a slider object that is somewhat similar in appearance
and functionality to a ScrollBar. A Scale is typically used to provide feed-
back to the user about the value of a state variable in an application. This
widget class is not intended to be used as a general manager. The Scale cre-
ates and manages its own widgets, which are needed to construct the Scale
object. The only children that you can add to a Scale widget are Label widg-
ets that represent tick marks, although in Motif 2.1 there are convenience
routines to automatically place tick marks along the Scale. The Scale is dis-
cussed in Chapter 16, The Scale Widget

The following Manager widget classes are additionally available in Motif 2.1:

* Available from Motif 2.0 onwards.

58

Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

The Container Class

The Container class is a complex constraint widget which can lay out Icon-
Gadget children in three styles: in a tree arrangement, with a tabular data
style, and in a free floating format based upon the X, y specifications for
each child. The Container class allows for a more object-oriented approach

to the front end of an application than the older MainWindow, in that the
IconGadget children can pictorially represent application objects of some
kind with the Container providing the layout and selection mechanisms.
The Container is discussed in Chapter 9, The Container and IconGadget Widg-
ets Figure 3-15 shows the Container configured to display in a tree ar-
rangement with additional tabular data.

HmConTainar
tatal b |
J
P arne b L5 Sl
L1 =12 Thu Aug 07 1 &020E 200
1 2048 Tue fug 15 1421324 200
:| resourcsy 135 Thu &ua 17 1 ED0A 200
™S -1 111 =1 s T Agid 87 SH0-360 J1E)
L s R =13 Thu &g 17 Fh:0§-38 200
_f'_l =12 Thu &ug V7 Z0:00-38 200
!‘_'_L 51z Thu g 17 100G 200
L contalnérc Juinkl Thu Mg 53 200N 200
|1 Maked 1[5} S T Al 07 1 0cd ST A
LI 5
L [} containersal 98316 Thu Aug 17 21:01:35 300
| [container.res| 36 Thu &g 17 1 S:E0e4i] 200
p1 ol trmaps 512 Thu &uga 17 1 Sddd 200

Figure 3-15: A Container widget with IconGadget children

The SpinBox Class

The SpinBox class allows the user to input data by selecting from, and ro-
tating through, a set of values. Text widget children are added to the Spin-
Box, whereupon the range or set of values associated with each text is
specified through constraint resources. The SpinBox automatically adds

Motif Programming Manual 59

Chapter 3:Overview of the Motif Toolkit

extra ArrowButtons which are used for rotating through the values of the
text widget child which currently has the input focus. The programmer
however has to supply the Text widgets underneath the SpinBox. For con-
venience, the SimpleSpinBox subclass is provided which encapsulates the
most frequent use of this type of arrangement: it comes with a single built-
in Text child. The SpinBox is discussed in Chapter 15, The SpinBox and Sim-
pleSpinBox Widget$igure 3-16 shows a SpinBox containing three Label and
Text children, and a SimpleSpinBox. The SimpleSpinBox is not meant to

. . ' SpinBox with
= XMmSpinBox =) multiple Text
- = children
1 Day 7 Month #12 Year [1953 — |
. . SpinBox
—| XmSimplespinEox + |0 ArrowButtons
- q
1 Grade |@& .
. SimpleSpinBox

Figure 3-16: SpinBox and SimpleSpinBox widgets

be used as a general purpose manager.

The ComboBox Class

The ComboBox class combines textual input with list selection. The widget
presents itself to the user as a Text widget with an ArrowButton to the
side. The user can either type directly into the Text widget, or press the Ar-
rowButton, when a list of items from which to choose is popped up imme-
diately under the Text. Whether in fact the Text widget is directly editable,
and whether the list of available options is permanently visible (as opposed
to being displayed on user request by pressing the ArrowButtons) is con-
trollable through resources when the ComboBox is created. This widget
class is not intended to be used as a general manager. The ComboBox is dis-

60 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

cussed in Chapter 14, The ComboBox Widgesample ComboBoxes are shown
in Figure 3-17.

P T bR b e
Day |0

el JEnzEry

Figure 3-17: ComboBoxes with other widgets

The Notebook Class

The Notebook class lays out its children as though they are pages in a book.
That is, only one child is currently visible at any given time, and they all
occupy a single area on the screen; the user can chose from the available
pages either by selecting from Tabs which can be associated with a child,
or by activating the Page Scroller, which is typically a SpinBox. To com-
plete the analogy, resources are provided to control the general book-like
characteristics of the Notebook in terms of its binding and overlapping
page appearance. The Notebook is a constraint widget: you add children,
and then specify the role which each child is to perform. Typically, a Form
or other manager is added to represent some page, and optionally Push-
Buttons can be added and associated with a page in order to represent Tab
inserts along the edges of the Notebook pages. The Notebook is discussed

Motif Programming Manual 61

Chapter 3:Overview of the Motif Toolkit

in Chapter 17, The Notebook WidgefFigure 3-18 shows a Notebook with Tabs
inserted on the edge.

EmBotebook

Table of Corterts

T

:F Chapter | infroduction

- Chapter T Gatting Startad

:F Chapter 3 The Class Hiesarchy

Chapter 4 Rewaurces

i Chapter & Troubls ShooTing
Appendix & ‘widget Referance

:?_ Appereii= B Flicgraphy

T

Sppandis © Permuted ircex
‘ i

Figure 3-18: The Notebook widget

Geometry Management

The process by which a manager widget controls the layout of its children is known as
geometry managemerk child widget is always placed within the boundaries of its parent.

A child cannot move or resize itself without requesting permission from its parent, which
can deny the request. The manager, acting as the parent, can even force the child into an
arbitrary size or position. However, like any good parent, a manager widget should be fair
at all times and not deny reasonable requests made by its children. As you might expect,
geometry management can be quite complex in an application with several levels of
managers.

As an example, consider adding a new item to a List widget. In order to display the new
item, the List widget must grow vertically, so it requests a new size from its manager
parent. If that parent can accommodate the larger size, or it has another mechanism for
satisfying the request, such as ScrollBars, it can approve the request. However, if the
manager itself must grow to honor the List widget's request, it has to negotiate with its own
parent. This chain reaction may go all the way up to the shell widget, in which case the shell
must communicate with the window manager about the new size. If the window manager
and the shell agree to the new size, the acknowledgement filters back down through the
widget tree to the List widget, which can now grow to its requested size. If any of the
composite widgets in the hierarchy refuse to resize, the List widget's request is either
denied or only partially fulfilled.

Most of the time, this type of interaction completes successfully, as there are rarely disputes
among children about resizing negotiations or positional boundaries. Children usually go

62 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

where their managers put them and make very few requests of their own. One exception is
a RowColumn widget that is acting as a MenuBar, since it must be situated at the top of the
window, and it must span the window horizontally. ScrollBars are another possible
exception, since they are typically positioned at the edges of ScrolledWindow widgets.

So, how do children request geometry changes from their parents? The answer to this
question is rather complicated, since the X Toolkit Intrinsics supports a large selection of
functions that enable two-way communication about geometry management. For example,
a child can us&tMakeGeometryRequest() to request permission to be made a specific
size or to be placed in a particular location. A parent can use a function like
XtQueryGeometry() to give a child the opportunity to announce its preferred geometry.

Some of these functions and methods are described in Chapter 1, but a detailed treatment
of custom geometry management techniques is beyond the scope of this book. These
functions are mostly used by the internals of composite and constraint widgets. See Volume
4, for a more detailed discussion of geometry management techniques.

In the Motif toolkit, geometry management cannot work without cooperation. The easiest
way for a child to cooperate with its parents and siblings is simply to comply with whatever
layout policy is supported by its manager widget parent. A child should not try to force
itself into a size or a position that is hot supported by its parent. Each of the manager widget
classes described above is designed to support a specific layout style. For example, the
RowColumn widget lays out its children in rows and columns, the Form widget allows its
children to specify positions relative to other widgets within the Form, and the
PanedWindow widget lets its children specify their desired maximum and minimum
heights.

Manager widgets use constraint resources to support their layout policies. Constraint
resources are defined by Xt's Constraint widget class, which is a superclass for the
Manager widget class and thus all of the Motif manager widgets. Unlike other resources,
constraint resources apply to tbkildren of a manager widget, not to the manager itself.
Examples of constraint resources include maximum and minimum heights, relative sizes
and positions, specific positional constraints, and even absolute x, y coordinates. While
these examples deal exclusively with size and position, constraint resources can be used for
any arbitrary information that needs to be kept on a per-child basis.

Here’s how constraint resources work. When a manager needs to size or position its
children, it deals only with the children that are managed; unmanaged children are ignored
in geometry management negotiations. For each managed child, the manager examines the
child’s constraint resources. Depending on the constraints that are specified, the manager
either enforces the geometry changes or negotiates with its own parent to see if it can
comply with the changes. This process uses an extra internal data structure for each child.
The data structure stores the constraints that are used by the widget's parent to aid it in
geometry management.

Motif Programming Manual 63

Chapter 3:Overview of the Motif Toolkit

Gadget Management

In addition to handling geometry management, manager widgets are responsible for their
gadget children. In order to understand how managers support gadgets, we need to define
more clearly what a gadget is. Every widget has its own X window, which simplifies many
aspects of programming, since each widget can take responsibility for repainting itself,
selecting its own events, and in general being as self-sufficient as possible. Historically,
however, windows have been perceived as heavyweight objects. The concern is that system
performance will be degraded if an application uses too many windows. Since an
application with a graphical user interface frequently uses hundreds of widgets, or perhaps
even thousands for a very large program, the performance issue is an important one.

Gadgets, or windowless widgets, were originally developed as a part of Motif. They were
added to Xt as of X11 Release 4. Motif provides gadget versions of many common
primitive widgets, such as PushButtons and Labels. Like widgets, gadgets can be created
using either Motif convenience functions &tCreateManagedWidget() . While the

widget and gadget versions of an object are functionally very similar, there are some small
but important differences.

Because a gadget does not have its own window, it is entirely dependent on its parent, a
manager widget, for its basic functionality. For example, the manager must handle
redrawing the gadget on exposure, highlighting it as a result of keyboard traversal, and
notifying it of event activity. Without a window, a gadget has no control over window-
based attributes normally associated with a widget. For this reason, gadgets can only be
used in managers that support them. How closely a gadget emulates its widget counterpart
is largely dependent on the capabilities of the manager widget parent.

In Motif 1.2, the Manager class limits the colors that can be used by gadgets. A gadget uses
the same background, foreground, and shadow colors as its manager widget parent. These
restrictions are not inherent in the Xt Composite widget class or in Xt-based gadgets; they
are specific to the Motif 1.2 Manager and Gadget classes. It is possible to write a Composite
widget that allows its gadget children to specify their own background colors. Such a
widget would have to paint the area of its window occupied by the gadget with the specified
color to give the user the impression that the gadget is indeed a separately-colored widget.
Indeed, gadgets in Motif 2.1 have been redesigned with precisely this extra functionality.

Although gadgets were originally developed to improve performance, it is no longer
necessary to automatically use them if you are looking for performance improvements in
an application with many widgets. In both X11 Release 4 and Release 5, windows have
become substantially lighter-weight objects than they were when gadgets were first
developed. If anything, gadgets are worse than widgets at this point from a performance
perspective because the Motif managers take a very simplistic approach to the way they
handle events for gadgets. A manager tracks all events,datlonNotify , whether or

not its gadgets have expressed interest in the events. As a result, gadgets typically generate

64 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

a great deal of network traffic. X terminal users are especially likely to notice a network
performance drop. There are some other complications that surround the use of gadgets,
which we discuss when they come up in the course of this book.

Keyboard Traversal

Keyboard traversails a mechanism that allows a user to navigate through the components
in a user interface using only the keyboard. TMetif Style Guidespecifies that all
applications must support keyboard traversal for all application functionality. Support of
keyboard traversal is important because not every display provides a mouse or other
pointing device. For some applications, such as data entry, using keyboard traversal is more
convenient than using a pointing device. All of the Motif widgets support keyboard-based
navigation.

Keyboard traversal is based on the concepttabayroup A tab group is a group of widgets
that are related for the purpose of keyboard traversal. For example, all the items in a menu
are considered a tab group, since they are grouped together and perform related functions.

At any given time, only one component on a display can be “listening” to the keyboard for
keyboard events. The widget that is listening to the keyboard is said to have the keyboard
focus, or input focus. The widget that has the input focus identifies itself by displaying a
location cursor. The location cursor is often a highlighted border that surrounds the widget.
A user can move the input focus to another widget using the mouse or the keyboard.

The user can move the keyboard focus between items in the same tab group using the arrow
keys. When the user finds the item that she wants, she can activate it with the RETURN
key or the SPACEBAR. If the user wants to move from one tab group to another, she uses
the TAB key. (In a multiline Text widget, CTRL-TAB is used because otherwise there
would be no way to insert a tab character.) To traverse the tab groups in reverse, the SHIFT
key is used with the TAB key. Keyboard traversal wraps from the last item to the first item,
both within a tab group and between tab groups.

Although keyboard traversal is not completely controlled by manager widgets, they do play
a pivotal role in implementing it. A manager widget is typically initialized as a tab group;

its primitive widget children are members of the tab group. The Text and List widgets are
exceptions to this rule. These widgets are set up as their own tab groups, so that keyboard
traversal can be used to move among the text in a Text widget or the items in a List widget.
Within a tab group, there is no sense of a manager-within-manager structure. The widget
hierarchy is flattened out so that it appears to the user that all of the controls in a window
are at the same level.

Keyboard traversal only works if each widget in an interface cooperates. If a PushButton
has the keyboard focus and the user presses the TAB key, the internals of the PushButton
widget are responsible for directing the focus to the next tab group. Manager widgets play
a key role in keyboard traversal because they are responsible for the keyboard events that

Motif Programming Manual 65

Chapter 3:Overview of the Motif Toolkit

take place within gadgets. If an event occurs within a PushButton gadget, its manager
parent is responsible for directing the input focus to the next tab group.

Although the whole process of keyboard traversal may seem complex and difficult, it is
automated by the Motif toolkit and does not require application intervention. However, the
toolkit does provide mechanisms that allow you to control keyboard navigation. There are
resources that allow you to specify widgets that are tab groups, widgets that are in tab
groups, and widgets that do not participate in keyboard navigation. There are also functions
that allow you to specify explicitly the direction of keyboard traversal. Fortunately, such
fine-tuning is rarely necessary.

Putting Together a Complete Application

Managers and primitive widgets provide the basic tools with which you can build a
graphical user interface from the ground up. Motif also provides several components that
address the large-scale organization of an application. The specialized MainWindow
manager widget is intended to be used as the organizing frame for an application. Motif
also provides different types of menus and dialog boxes that can be used to organize
application functionality.

Since an application is always used in conjuction with a window manager, we need to
discuss the role played by the window manager. In the course of this discussion, we also
need to take a closer look at shell widgets, since they provide the communication link
between an application and the window manager.

Both pixmaps and colors play an important role in a graphical user interface. Motif
provides routines that cache pixmaps so that they can be reused throughout an application.
The three-dimensional appearance of Motif components is implemented using a variety of
color resources. It is important to understand these resources so that the 3D shadows are an
effective part of the user interface.

The Main Window

Every application is different. A word processor, paint program, or spreadsheet typically
has a single main work area, with controls taking on a peripheral role, perhaps in
PulldownMenus. More sophisticated programs, on the other hand, may have several main
work areas. For example, an electronic mail program may have a work area in which the
user reviews and selects from a list of incoming messages, another where she reads and
responds to messages, and yet another where she issues commands to organize, delete, or
otherwise affect groups of messages. Still other applications, such as data-entry programs,
don't really have a separate work area. The work area is really just a collection of controls,
such as CheckBoxes and text entry areas, that are filled in by the user.

66 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

It is quite conceivable that an application could provide multiple windows for performing
different tasks. For example, an order entry program might use one window for looking up
a customer record, another for checking stock on hand, and yet another for entering the
current order. Motif allows for the creation of multiple top-level application windows, as
well as transient dialog boxes that ask for additional information or confirmation before
carrying out a command.

Nonetheless, every application has at least one main window. The main window is the most
visible window in an application. It is the first window the user sees and also the place
where the user interacts with most application functionality. No matter how small or large
an application may be, there needs to be a focal point that ties it all together. As a program
grows more complex, the main window may grow more abstract and perform fewer
functions, but it always exists. In a sophisticated application, the main window is
transformed into a hub where the user starts, finishes, and returns again and again as she
goes from one function to the next.

The Motif Style Guidesuggests a particular layout for the main window. Applications
should use this layout unless they have a compelling reason not to. The recommended
layout is shown in Figure 3-19.

| KrmiAs | niwi ncons |
Menu Bar p» | Ell= Bt Help

Work Area -

Command Area — g | omune
Message Area —————p» [Maiiaas

Figure 3-19: Recommended layout for MainWindow widget

A main window should have a menu bar across the top, with the work area immediately
below it. The work area usually contains the main interface object of the application. For
example, a paint or draw application might provide a DrawingArea widget as a canvas, an
electronic mail application might provide a ScrolledList of message summaries from which
the user can make selections, and a Text editor might place a Text widget in the work area.

Motif Programming Manual 67

Chapter 3:Overview of the Motif Toolkit

An application work area might require a custom widget or a non-widget-based X window
instead.

The work area can have both horizontal and vertical scrollbars allowing the user to view its
entire contents if they are too large to be displayed all at once. The main window can also
contain an optionatommand aredelow the work area, where the user can enter typed
commands. This area is most helpful for porting character-based applications to a Motif
GUI, but it can be useful for other applications as well. At the bottom of the main window

is an optionamessage ared his area should be used for status and informational messages
only, not for error messages or any other type of message that requires a response from the

user.

While it is possible to construct your own main window, the Motif toolkit provides the
special-purpose MainWindow widget, which supports the recommended style. All of the
elements in the MainWindow are optional, so an application can use it to display just the
areas that it requires. The MainWindow widget is described in detail in Chapter 1.

Menus

Motif supports three different styles of menus. PulldownMenus that are displayed from the
MenuBar in a MainWindow are the most common type of menu. A PulldownMenu is
displayed when the user selects a CascadeButton in the MenuBar. The menu pane is
displayed below the CascadeButton. Figure 3-20 shows a typical MenuBar and
PulldownMenu.

arbdersifar

File Edit He=do |
" Hew Chrl+N
Cipen. Ctrl+0
'F_Irad. Ctri+R
Saw Ciri+s
Sl An., CEFE4A
Eait CTrl4E

r

S the current file

Figure 3-20: A MenuBar and an associated PulldownMenu

68 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

An item in a PulldownMenu can havecascading menassociated with it. The cascading
menu is displayed to the right of the menu item as shown in Figure 3-21, so these menus
are sometimes referred top@dlright menus

File [it peip |
[L Crrleld
‘our Ctrlec
F Copp Ctrley
Fatte Ctrl#F

Clear

search UEaiehe Ceries|

Aeplace.. Ctr +R|

Cearchies the cuerant ke

Figure 3-21: A cascading menu

MenuBars, PulldownMenus, and cascading menus are all created in a similar way. Motif
provides convenience functions that create specially configured RowColumn widgets for
these menu objects. The RowColumn widget is then populated with PushButtons,
CascadeButtons, ToggleButtons, and Separators, or their gadget equivalents. In the case of
a MenuBar, all of the children must be CascadeButtons, since each button brings up a
separate menu. In a PulldownMenu pane, most of the items are PushButtons or
ToggleButtons, although Separators can be used for clarity. If an item posts a cascading
menu, it must be a CascadeButton. The additional menu is created separately, populated
with its own buttons, and attached to the CascadeButton.

Motif also supports a construct called an OptionMenu. An OptionMenu is another
specially-configured RowColumn widget, but in this case the behavior is quite different.
An OptionMenu is typically used to prompt the user to choose a value. The RowColumn
widget displays a Label and a CascadeButton that shows the current value. When the user
clicks on the button, a menu that contains the rest of the choices is popped up directly on
top of the CascadeButton. Choosing an item from the menu modifies the label of the
CascadeButton so that it shows the currently-selected item. Figure 3-22 shows an
OptionMenu, both before and after it is popped up.

Additionally, Motif provides PopupMenus. Unlike the other types of menus, a PopupMenu

is not attached to a visible interface element. A PopupMenu can be popped up at any
arbitrary location in an application, usually as a result of the user pressing the third mouse
button. PopupMenus are meant to provide shortcuts to application functionality, so an

Motif Programming Manual 69

Chapter 3:Overview of the Motif Toolkit

application can use different PopupMenus in different contexts and for different
components in an interface.

File Edit Haip | File Edit Haip |
Draw Mode Circla Draw Made [Cinche
Sgdara
Lina
Before After

Figure 3-22: An OptionMenu

A menu can be torn off from the component that posted it. A menu is normally only
displayed for as long as it takes the user to make a selection. Once the selection is made,
the menu is closed. When a menu is torn off, it remains posted in its own window. Now the
user can make as many selections from the menu as she would like without having to repost
the menu each time. For more information on tear-off menu functionality, as well as the
different types of Motif menus, see Chapter ¥@nus

The Window Manager

To the user, the MainWindow looks like the top-level window of an application. In
window-system talk, a top-level window resides at the top of the window hierarchy for an
application. Its parent is theoot window which is what the user perceives as the
background behind all the windows on the desktop. In the Xt-world, however, things are a
little different. Behind every visible top-level application window is a special kind of
widget known as a shell widget.

Every window that can be placed independently on the screen, including top-level windows
and dialog boxes, has a shell widget as its parent. The user does not see the shell because it
is obscured by all of the other widgets in the window. A shell widget can only contain one
managed child widget; the shell does not perform any geometry management except to
shrink-wrap itself around this child. The child is typically a manager widget, such as a
MainWindow, that is responsible for managing the layout of the primitive components,
such as Labels, Text widgets, ScrollBars, and PushButtons. The items that the user actually
sees and interacts with are descendants of the shell widget because they are contained
within its boundaries.

Aside from managing its single child, the main job of the shell is to communicate with the
window manageon behalf of the application. Without the shell, the application has no idea
what else is happening on the desktop. It is very important for you to understand that the
window manager is a separate application from your own. The visual and physical

70 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

interaction between an application and the window manager is usually so close that most
users cannot tell the difference between the two, but the distinction is important from a
programming perspective.

To get an idea of the relationship between the window manager and an application, let’'s
compare it with the way a bed is built and how it fits into a room. A bed is made up of a
frame, a mattress, and as many accessories as you want to pile on top of it. The main
window is the mattress; the sheets, pillows, blankets, and stuffed animals you throw on it
represent the user-interface controls inside the main window. The whole lot sits on top of
the bed frame, which is the shell widget. When you push a bed around the room, you're
really pushing the bed’s frame. The rest just happens to go along with it. The same is true
for windows on the screen. The user never moves an application window, she moves the
shell widget using the window manager frame. The application just happens to move with
it.

You may have to stretch your imagination a little to visualize a bed resizing itself with its
frame, but this is precisely what happens when the user resizes an application. It is the
window manager that the user interacts with during a resizing operation. The window
manager only informs the application about the new size when the user is done resizing.
The window manager tells the shell, the shell communicates the new size to its child, and
the change filters down to the rest of the widgets in the application.

The window manager frame is composedviidow decorationghat the window manager
places on all top-level windows. These controls allow the user to interactively move a
window, resize it, cause it to redraw itself, or even to close it. Figure 3-23 shows the

Motif Programming Manual 71

Chapter 3:Overview of the Motif Toolkit

standard Motif window managemivm) decorations. For information on how to usevm
see Motif Volume 3.

Window menu button Title bar Minimize button
Maximize
, button
'window Manager DEcorations| 7|
- Client
area

-¢— Horizontal

resize
handle
A 1
Vertical resize handle Resize
Corner

Figure 3-23: Motif window manager decorations

Thewindow menulisplays a list of window manager functions that allow the user to move,
resize, and exit the application. An application does not have access to the menu itself or
the items within it; similarly, it cannot get handles to the minimize and maximize buttons.
These objects belong to the window manager and act independently from an application.

Motif provideswindow manager protocolghat allow menu items like these to affect an
application. An application can also interact with the window manager using many of the
same types of protocols. You can specify which of the items in the window menu you want
to appear, whether or not there are resize handles on the window frame, and whether or not
you want to allow the user to iconify the window. However, the user is expecting all of the
applications on her desktop to interact consistently with the window manager. This
expectation is magnified by the fact that the user has probably set quite a few resources for
the window manager. Since unexpected interference from an application rarely makes
users happy, you should leave the window manager alone. A technical discussion of the
window manager can be found in Chapterl2@eracting with the Window Manager

As we pointed out earlier, it is possible for an application to have more than one
independent window. In addition to the main window, there may be one or more dialog
boxes, as well as popup windows, and even independent application windows that co-exist
with the main window. Each of these cases requires different handling by the window

72 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

manager, and as a result, there are several different classes of shell widgets. Figure 3-24
shows the class hierarchy of the different types of shell widgets available in the Motif
toolkit. The Shell widget class is another metaclass that specifies resources and behaviors
inherited by all of its subclasses.

o
S
o

RectObj
Xt Intrinsics

Key
Motif

0l

WindowObj

n

Composite I
GrabShell

O i I—| TopLevelShell I—| ApplicationShell PrintShell I
Shell
WMShell I—| Transi I—| Di I SessionShell I

Figure 3-24: The Shell widget class hierarchy

.

Shells for Menus

In some cases, an application needs to put up a temporary window that is completely free
of window manager interaction. Menus are one such a case. When a user pops up a menu,
she typically wants to make a choice immediately, and she wants that choice to take
precedence over any other window system activity. The window manager does not need to
be involved either to decorate or to position the menu, as it is entirely up to the application.

As its name suggests, the OverrideShell widget class is provided for windows that bypass
the window manager. OverrideShells are like futons; you can place them on the floor
without using a bed-frame (and without being tasteless). It doesn’t make much sense to use
an OverrideShell as the main window for an application, except possibly for a screen-
locking application. The purpose of this type of application is to prevent other applications
from appearing on the screen while the computer is left unattended. Because the window
manager is unaware of the OverrideShell, it does not provide window manager controls,
and it does not interpret window manager accelerators and other methods for bypassing the
lock.

The OverrideShell is a generic Xt-based widgetclass, so the Motif toolkit provides the
MenuShell to service the special interface needs required bt Style Guide The
MenuShell’s translation table is set to support keyboard traversXinidfocusPolicy is

set to XmPOINTER and its XmNallowShellResize resource is set tolrue . The
MenuShell also makes sure that its child is a RowColumn widget. There is little more to be
said about MenuShells, but for an in-depth discussion on the various types of menus you
can use in Motif, see Chapter,Menus

Motif Programming Manual 73

Chapter 3:Overview of the Motif Toolkit

Shells for Window Manager Communication

Shell widgets must communicate with the window manager to negotiate screen real estate
and a wide variety of other properties. The information that is exchanged is defined by the
X Consortium’s Inter-Client Communications Conventions Manu@CCCM). The
WMShell widget class implements ICCCM-compliant behavior as a standard part of the X
Toolkit Intrinsics, so that it is available to all vendors providing Xt-based widget sets and
window managers. This shell widget is what allows Motif applications to work correctly
with virtually any ICCCM-compliant window manager. In our analogy, a WMShell is a
simple, wire bed-frame that doesn’t have any special attributes, like wheels or rollers.

The VendorShell widget class is subclassed from the WMShell class; it allows vendors,
such as OSF, to define attributes that are specific to their own window managers. In our
analogy, this widget class is like having a bed frame that has attached cabinets, shelves
above the headboard, or nice wheels that glide on the carpet. The Motif VendorShell is
aware of special features wiwm The widget does not actually add any functionality to the
window manager, but it is designed for applications that wish to interact with it. For
example, all the attributes of window manager decorations can be modified or controlled
through resources specific to the VendorShell.

WMShells and VendorShells are never instantiated directly by an application, but the
features they provide are available to an application. For example, the Motif VendorShell
allows an application to specify the items in the window menu and to control what happens
when the user closes the window from the window menu. Chaptdn&daction with the
Window Managerdiscusses window manager interactions in more detail.

Shells for Dialogs

You can think of dialog boxes as an applicatiosésondary windowsince dialogs are not
meant to remain on the screen for very long, they do not need all of the decorations that are
typically provided by the window manager. However, dialogs are not completely
independent like menus, so they do need to be controlled by the window manager. For
example, if an application is iconified, its dialog boxes are typically iconified as well.
Dialog boxes are usually implemented in Xt using TransientShells.

The DialogShell is a Motif-defined widget class subclassed from the TransientShell and
VendorShell classes. Motif functions for creating dialog boxes tend to hide the shell widget
side of the dialog. When you make a call likenCreateMessageDialog() , you are
actually creating a MessageBox widget as a child of a DialogShell widget. See Chapter 5
Introduction to Dialogsfor details on Motif dialogs.

Shells for Application Windows

When you initialize the X Toolkit with a call such a€OpenApplication() , you are
automatically returned a SessionShell widget to use as the top-level widget in your

74 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

application. If an application uses additional top-level windows, they are typically
TopLevelShells. The differences between these two classes are subtle and deal mostly with
how resources are specified in a resource file. In Chapt€u3tom Dialogswe explore

some ways in which TopLevelShells can be used as primary windows apart from the main
window.

Dialogs

Some applications can get all their work done in one main window. Others may require
multiple windows, so Motif allows an application to have multiple top-level windows.
However, even applications without this level of complexity need to display transient
windows called dialog boxes. Motif provides two main types of dialog boxes: message
dialogs and selection dialogs. Message dialogs are designed to allow an application to
communicate with the user, while selection dialogs prompt the user to enter different types
of information. It is also possible to create custom dialogs for specialized application
functionality.

Message Dialogs

Message dialogs simply communicate some kind of message to the user and include
buttons that allow the user to respond to the message. For example, a menu item to delete
a file might issue a dialog with the message, “Are you sure?” with PushButtons labelled
Yes No, andCancel

The Motif MessageBox widget that is used to create message dialogs actually comes in
seven different guises. The different styles are meant to be used for different types of
messages; some of the styles also display a symbol defined MatifeStyle GuideMotif
provides convenience routines for creating all of the different styles, so they are often
referred to as if they are distinct widget classes.

ErrorDialog

The ErrorDialog shows a “do not enter” symbol along with a message that
the user has made an error. For example, she may have pressed a PushBut-
ton at the wrong time, made an invalid selection in a List widget, or entered
an unknown filename for a Text widget.

InformationDialog

The InformationDialog displays an “i” along with an informational mes-
sage. These dialogs are usually displayed in response to a request for help.

*The ApplicationShell, XtApplnitialize () and XtVaApplnitialize () are considered deprecated in
X11R6.

Motif Programming Manual 75

Chapter 3:Overview of the Motif Toolkit

MessageDialog

The MessageDialog does not display a symbol by default, although a sym-
bol can be specified using the XmNsymbolPixmap resource. These dialogs
can be used to display any kind of message.

QuestionDialog

The QuestionDialog shows a question mark symbol with a question that
the user needs to answer. Questions are typically of the yes/no form, so the
possible answers typically include Yesand No. A QuestionDialog should not
be used for a question that requires an answer in the form of text or a se-
lection from a list of some kind.

TemplateDialog

Motif provides a TemplateDialog to allow an application to create a custom
dialog. By default, the TemplateDialog does not display a symbol or a mes-
sage, but these items can be added to the dialog.

WarningDialog

The WarningDialog displays an exclamation mark along with a message
that warns the user about a particular situation. These dialogs are com-
monly used to make sure that the user wants to do something destructive,
like delete a file or exit an application without saving data.

WorkingDialog

The WorkingDialog displays an hourglass with a message indicating that
the application is busy processing a lengthy computation or anything else
that requires the user to wait.

Figure 3-25 shows a typical QuestionDialog in an application. For more information on
message dialogs, see Chaptdn&pduction to Dialogs

smGuestianiislog
T Wil “gpaas Tign =™ alraady a=isng
Cremrurife |17

Ll Wa Halp

Figure 3-25: A QuestionDialog

76 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

Selection Dialogs

Selection dialogs are meant to provide the user with a list of choices of some sort. Motif
provides different styles of selection dialogs for different purposes. For example, a
SelectionDialog presents a ScrolledList containing an arbitrary list of choices that can be
selected with the mouse. The dialog also contains TextField widget that can be used to type
in a choice which may or may not also be on the list. Figure 3-26 shows a SelectionDialog.

|tz
|ERAAY
Fasruary
March
April
May

[[F]

|ty
Aot

Satection

OK

HrnEa e Tign A

Figure 3-26: A SelectionDialog

The PromptDialog, as shown in Figure 3-27 is useful for prompting the user to enter some

information.

Emall Address
[fl =, oo, ok

O

s leoTicnPromor

Figure 3-27: A PromptDialog

Motif Programming Manual

77

Chapter 3:Overview of the Motif Toolkit

The FileSelectionDialog is a more complex cousin to the SelectionDialog. It is used to
select a file in the directory structure. A FileSelectionDialog is shown in Figure 3-28.

meFibetala tionloe
Oir=ctary
fafal St F20EH. doamp ek

Filter Flles
o AT FewWEItTOR
Coembof o -

Dipsctariet | Coambofos

S b0t

2T b 0B e
CRas Combiod o ad Bk
AP o mardiE oo
ik T T P
T TArEi B
Safection
1

OK Filter Cancel Help

Figure 3-28: A FileSelectionDialog

The CommandDialog is an extension of the PromptDialog in that items input to the text
entry field are stored in a ScrolledList. The intent is for the user to provide the application
with commands; the list region contains a history of the commands that have already been
typed. The user can select an item in the history list to reissue a previous command. Figure
3-29 shows an example of a CommandDialog.

AmCommansDHakog

lpr h=lloe

amacs aditor.c

e ianer questionsd
[LU Tt ey

Coemmand

s =] =,

Figure 3-29: A CommandDialog

For detailed information about all of the different Motif selection dialogs, see Chapter 6,
Selection Dialogs

78 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

Custom Dialogs

There are many types of functionality that are not covered by the standard Motif dialog
types. Fortunately, it is fairly easy to create your own dialogs. If you need to create a custom
dialog, there are some guidelines in Metif Style Guidethat you should follow. At the
highest level, all dialogs are broken down into two major componentsahiol area(or

work area) and thaction area These areas are conceptual regions that may be represented
by multiple widgets.

In a message dialog, the control area is used only to display messages, but as you can see
from the selection dialogs, this area can be used to provide a variety of control elements.
For example, the SelectionDialog uses a List widget and a TextField widget. It is also
common for a custom dialog to display an array of PushButtons or ToggleButtons. A
communications program might have a setup dialog that allows the user to set parameters
such as baud rate, parity, start and stop bits, and so on, using an array of ToggleButtons.
The controls in the control area provide information that is used by the application once an
action area button is pressed.

Figure 3-30 shows a custom dialog with a control area that contains many items. Chapter
7, Custom Dialogsdiscusses how to build customized dialogs, which may require the
direct creation of widgets in the control area. Motif dialogs, on the other hand, do not

Motif Programming Manual 79

Chapter 3:Overview of the Motif Toolkit

require you to create any of the objects in the control area. The widgets displayed in that
part of the dialog are always predefined and automatically created.

Cade Ganaratian
Dirsctary | Kfulaf PeEd P RN, wonnn e/ Erowia
Languags [

Code | Comszndboe. B Camarama Opdicr.,

Srubt Cesmerdbos stubs.c W Senarate

Externs | CessandEo.h N Cenerate
Flamaps | [[(DmeondBes_pivmans, _J Cenerate
Main Frogram |Cessand po. o N Canarate
¥ ramsurces | ([oeen iy, ren) CEnarate
idakailie | Pakaiile N Gensrats Ootiord,
Options. W apply on Oen=rats
Gerersie ReEset aoply Closs Hein

Figure 3-30: A custom dialog

Dialog Modality

One important concept to be aware of when it comes to dialog®oiality In general,
GUI-based programs are expected to be modeless. What this ultimately means is that the
user, not the application, should be in control. The user should be able to choose from an
array of application functions at any time, rather than stepping through them in a
prearranged sequence, under the application’s control.

Of course, there are limits to modelessness. Sometimes one thing has to happen before
another. Often, sequencing can be taken care of simply by nesting graphical user interface
elements. For example, faced with the main window, the user may have only a choice of
menu titles; once she pulls down the file menu, she may have a choice of opening, closing,
saving, renaming, or printing the contents of a file. At some point, though, she goes far
enough down a particular path that her choices need to be constrained.

With respect to dialogs, modality allows a dialog box to acquire input before the user can
go back to working with the application. For example, if the user asks to load a file, she may
need to specify a filename in a dialog before she can edit the file. A modal dialog requires
an answer immediately, by disallowing input to any other part of the application until it is

80 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

either satisfied or cancelled. There may be other cases, though, where dialogs are modeless.
They can be left up on the screen without an immediate response, while the user interacts
with the main application window or another dialog.

Pixmaps

In this section, we are going to take a closer look at how Motif supports graphic images.
The Motif Label widget and all of its subclasses can display pixmaps as their labels. The
MessageBox provides thémNsymbolPixmap resource for specifying the image that is
displayed in a dialog.

The Motif toolkit provides a number of routines for manipulating pixmaps.
XmGetPixmapByDepth() and XmGetPixmap() both create a pixmap and cache it, so

that it can be reused by an applicatiofmGetPixmapByDepth() provides a way to
specify the depth of the pixmap that is creatéthGetPixmap() always creates a pixmap

that has the same depth as the screen on which image is created. The caching mechanism
provided by these routines is on a per-client basis; different processes cannot share
pixmaps.

Whenever a new pixmap is created using one of these functions, the toolkit retains a handle
to the pixmap in case another call is made requesting the same image. If this occurs, the
function returns the exact same pixmap that was returned to the original requester and
increments an internal reference counter. In order to keep a clean house, whenever you
retrieve a pixmap using eitheXmGetPixmap() or XmGetPixmapByDepth() , you

should callXmDestroyPixmap() ~ when you no longer need the image. This function
decrements the reference count for the pixmap. If the reference count reaches zero,
XmDestroyPixmap() actually callsXDestroyPixmap() to discard the pixmap.

XmGetPixmapByDepth() takes the following form:

Pixmap XmGetPixmapByDepth(Screenscreen
char *image_name ,
Pixel foreground
Pixel background ,

int depth)
The image_name can either be a filename or the name of an image registered using
Xminstallmage() , which we are going to describe shortly. The background and

foreground colors and the depth of the pixmap are specified by the corresponding
parameters.

XmGetPixmap() takes the same form agnmGetPixmapByDepth() , minus thedepth
parameter XmGetPixmap() creates a pixmap that has the same depth as the given
screen , so you cannot rely oixXmGetPixmap() to create a single-plane pixmépn
Motif, you can useXmGetPixmapByDepth() to create a bitmap; you can also use an Xlib
routine,XCreateBitmapFromData()

Motif Programming Manual 81

Chapter 3:Overview of the Motif Toolkit

WheneveiXmGetPixmapByDepth() or XmGetPixmap() is called, it looks in the cache

for a previously-created pixmap that matches the given name, colors, and depth. If the
routine finds a match, it returns the cached pixmap and increments the reference count for
the image. Since the pixmaps are cached, two separate parts of an application could have a
handle to the same pixmap.

The image_name parameter is the key to where the routines get the data for the pixmap.
As we just mentioned, this parameter can either be a filename or a symbolic nhame
previously registered usingXminstallmage() . Both XmGetPixmap() and
XmGetPixmapByDepth() use the following algorithm to determine what pixmap to
return or create:

1. Look in the pixmap cache for an image that has the same screen , image
name, foreground , background , and depth as the specified image. If there
is a match, return the pixmap.

2. If there is no match in the pixmap cache, look in the image cache for an im-
age that matches the specified image_name. If there is a match, use the im-
age to create the pixmap that is returned.

3. Otherwise, interpret the image name as a filename, read the pixmap data
directly out of that file, and create the pixmap.

The first step is fairly straightforward. The second step checks the image cache that is used
internally by the Motif toolkit. Motif defines a number of images that you can use in an
application. Table 3-1 lists the image names predefined by the toolkit.

. Table 3-1: Predefined Image Names in the Motif Toolkit

Image Name Description

background Solid background tile

25_foreground A 25% foreground, 75% background tile
50_foreground A 50% foreground, 50% background tile
75_foreground A 75% foreground, 25% background tile

vertical_tile Vertical lines tile (Motif 1.2.3 onwards)

horizontal_tile Horizontal lines tile (Motif 1.2.3 onwards)

horizontal As horizontal_tile (Motif 1.2.2 backwards compatibility)
vertical As horizontal_tile (Motif 1.2.2 backwards compatibility)
slant_left Left slanting lines tile

slant_right Right slanting lines tile

menu_cascade A rightwards pointing arrow (Motif 2.1)

* The terms single-bit and single-plane are interchangeable; they imply a pixmap with only two Codorg1.
While the termbitmapusually refers to a single-plane pixmap, this is not necessarily true outside of the X social
culture.

82 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

. Table 3-1: Predefined Image Names in the Motif Toolkit (continued)

Image Name Description

menu_cascade_rtol A leftwards pointing arrow (Motif 2.1)
menu_checkmark A tick mark (Motif 2.1)

menu_dash A horizontal line (Motif 2.1)

collapsed A rightwards pointing filled arrow (Motif 2.1)
collapsed_rtol A leftwards pointing filled arrow (Motif 2.1)
expanded A filled arrow pointing downwards (Motif 2.1)

Motif also installs a number of images at run-time to support dialog images and other
random pixmaps. None of these image names are publicly available. You can install your
own images by predefining them and loading them into the image cache using
Xminstalllmage() , Which takes the following form:

Boolean Xminstalllmage (XImage image ,char* image_name)

The image parameter is a pointer to a&lImage data structure that has been previously
created or, more commonly, statically initialized by the application. It is possible to create
an image dynamically from an existing window or pixmap usk@etimage() , but this

is not the way the function is typically used.

If you attempt to install an image using @anage_name that matches one already in the
cache, the function returrisalse and the image is not installed. Otherwise, the function
returnsTrue . You can uninstall an image by callingmUninstalllmage() . Once the

image is uninstalled, it cannot be referenced by name any more and a new image may be
installed with the same name. Th&lmage structure is not copied by
Xminstalllmage() , so if the image pointer you pass has been allocated using
XCreatelmage() or XGetimage() , you must not free the data until after you call
XmUninstalllmage()

If XmGetPixmap() or XmGetPixmapByDepth() finds a match in the image cache, it
creates the pixmap based on the image data, not on the image itself. As a result, the pixmap
that is created is not affected by the image being uninstallehbjpinstallimage()

If the pixmap retrieval routines do not find a match in the image cache, the pixmap is loaded
from a file. If image_name starts with a slash character (/), it is taken as a full pathname.
Otherwise, the routines look for the file using a search path. On POSIX systems, the
environment variablXBMLANGPATERN be set to specify a desired directory in which to
search for bitmap files. If this variable is not set, the pathname used is based on the values
of the XAPPLRESDIR HOMEandLANGenvironment variables. See the reference page in
Volume 6B, for complete details on the search path that is used.

When XmGetPixmap() or XmGetPixmapByDepth() looks in the pixmap cache for a
image name, the pathname must match completely for the routine to return a cached image.

Motif Programming Manual 83

Chapter 3:Overview of the Motif Toolkit

The filexlogo64will not match a previously-loaded pixmap that has the nAmgX11R6/
include/bitmaps/xlogo64f you do not need to worry about using different pixmaps for
different environments, we recommended that you always specify a full pathname to these
routines to be assured that you get the desired file.

Color

Color plays an important role in a graphical user interface. It appeals to the senses, so it can
provide an aesthetic quality, while at the same time it can be used to convey information to
the user. However, for all the power of color, it is frequently abused by applications. A
color combination that appeals to some people may offend others. The safest bet with color
is to avoid hard-coding any use of color in your application and provide enough flexibility
so that the user can configure colors in a resource file or interactively using the application.
Of course, many applications are based on the use of color, so this sweeping generalization
only applies to those parts of an application that are not dependent on color. In any case,
you should be wary when providing information or state purely through the use of color: a
color-blind user may not notice the differences; color-blindness is not a trivial or rare issue.

The Motif widget set provides a number of widget resources that specify colors. All of the
Motif widgets use theXmNforeground andXmNbackground resources. Although every
widget class makes different use of teNbackground andXmNforeground resources,

text is typically rendered in the foreground color and everything else is shown using the
background color. Some widgets provide additional color resources for particular aspects
of their appearance. For example, ToggleButtons us&itidselectColor resource for

the square/diamond selection indicator, PushButtons Xs@NarmColor as their
background when they are armed, and ScrollBarsdagidtroughColor to set the color of

the area behind the slider and directional arrows. In Motif 2.1, gadgets can also be colored
in much the same way that their widget equivalents can; in Motif 1.2, however, their colors
are inherited from their Manager parent.

The XmNborderColor resource is another resource that can be specified for any widget,
as itis defined by the Core widget class. Since Motif widgets typically have a border width
of 0, this resource is rarely used. THenNhighlightColor resource specifies the color

of the highlighting rectangle that is displayed around the interface component that has the
keyboard focus. This resource is defined by the Gadget, Manager, and Primitive
metaclasses, so it can be specified for any Motif component.

Perhaps the most troublesome of all the color resourceXrahtopShadowColor and
XmNbottomShadowColor . These are the colors that give Motif widgets their 3D
appearance on a color display. If set inappropriately, these colors can ruin the aesthetics of
an interface. These resources are set automatically by the toolkit based on the background
color of the object, so the colors are not normally a problem. If the background color of a
PushButton is blue when it is created, the toolkit automatically calculates the

84 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

XmNtopShadowColor to be a slightly lighter shade of blue and the
XmNbottomShadowColor to be a slightly darker shade.

The problems arise if you want to change the background color of a widget dynamically
because the toolkit does not automatically change the shadow colors for you. So if you
change theXmNbackground of the PushButton to red, the top and bottom shadow colors
remain the different shades of blue. In Motif 1.2, note that the shadow resources are only
used by widgets, not gadgets: if you dynamically change the background color of a
manager widget, it automatically recalculates the top and bottom shadow colors and
redisplays its gadgets correctly. Many consider the fact that this process is not automated
for widgets to be a design flaw in the Motif toolkit.

If you need to change the background color of a widget dynamically, you can recalculate
the shadow colors and set the resources yourself. You can usérBhangeColor()
routine, which takes the following form:

void XmChangeColor (Widget widget , Pixel background)

This routine changes all the foreground color, shadow colors, and select color for the
specified widget based on thebackground color. The select color only applies to
ToggleButtons XmNselectColor) and PushButtons{(nNarmColor).

The routineXmGetColors() can be used to query the colors which Motif
calculates . XmGetColors () takes the following form:

void XmGetColors(Screen * screen
Colormap colormap
Pixel bg,
Pixel * fg,
Pixel * top_shadow ,
Pixel * pottom_shadow ,
Pixel *select)

This routine takes a colormap and a background color and calculates and returns an
appropriate foreground color, top and bottom shadow colors, and select color. Once you
have the colors, you could specify the appropriate resources for the widget.

A basic problem behind setting and getting colors for widgets is that what you get for a
given pixel value depends on the colormap. A pixel is simply an index value into an array
of color definitions (a colormap). The problem with colormaps is that you never know what
colormap is associated with any particular widget.

By calling XtVaSetValues() using the type-converting resourcéVaTypedArg , we

defer the problem to the toolkit and its string-to-color type converter. The toolkit allocates
the color out of the colormap already owned by the toolkit and sets the background color
accordingly. Then we can get the actual pixel value and the colormap using
XtVaGetValues() . We pass the colormap and the background pixel value to

Motif Programming Manual 85

Chapter 3:Overview of the Motif Toolkit

XmGetColors() to calculate the rest of the colors. Once we have obtained all of the
colors, we can set them usiKty/aSetValues()

The Label widget and its subclasses cannot display text using more than one color.
However, you can create a multi-plane pixmap and render various strings directly into it
usingXDrawString() . You can use multiple colors by changing the foreground color in
theGCusingXSetForeground() or XChangeGC() . Once you have the pixmap, you can
use it to set th&mNlabelPixmap resource for the widget.

The text of the entries in a List widget is rendered using the widgétidiforeground

color. You cannot change the color of individual items in a List widget. The
XmNbackground of the List affects all areas of the widget not associated with the entries
themselves. The text in a Text widget or a TextField widget is also displayed using the
XmNforeground color; there is no way to display text using different colors in these
widgets. When a List widget or Text widget is the direct child of a ScrolledWindow, the
ScrollBars automatically match the background color of the List or Text widget.

Changes in Motif 2.1

Release 2.1 of the Motif toolkit introduces a number of new features, as well as many
enhancements to existing functionality. This section summarizes all of the changes in Motif
2.1 and refers you to other sections in the book for more detailed information on specific
changes. We also describe the changes that we made to the example programs in the book
to make them accurate with respect to Motif 2.1.

General Toolkit Changes

Gadget Resources

Gadgets can now be painted independently, and no longer directly inherit their color
appearance from the Manager parent. Foreground, background, top and bottom shadow,
and highlight colors are now included in the gadget cache. Similarly cached are the top and
bottom shadow pixmaps, and the highlight pixmap.

Traits

A Traitis an encapsulation of a piece of logical widget behavior. It defines a set of methods
for querying and setting this behavior, whatever it may be. Different widget classes may
share in common the behavior, even though their class inheritance graphs are only vaguely
related. To be more concrete, if we consider a ComboBox and a Text widget, the class
hierarchy for the ComboBox does not derive through a Text class directly, and yet
considered logically, because the ComboBox and the Text widget both have a value which
is a string, there is sufficient in common such that we could define methods to read or write

86 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

the value irrespective of which widget instance we are actually dealing with. Such methods
already exist in Motif 2.0, and are known as a Trait.

Traits are named, and there is a standard routine for querying a widget to determine whether
it supports a given trait. And thus there are two ways of setting the value of a text widget:
we can use the oldexmTextSetString() functional interface, or we can fetch the
XmQTaccessTextual trait from the widget concerned, then use get&/alue() routine

of the trait. The beauty of the second method is that it will also work for other widgets in
the Motif set which are logically also Text-like in some of their behavior.

However, Traits are really the domain of the widget author, to provide consistency in

behavior between logically related widget classes. Mention of particular Traits will be

made if and when necessary, otherwise you are referred to the Widget Writer's Guide in
the official documentation.

Renditions and RenderTables

The XmFontList data type and associated functions are now considered deprecated. In
Motif 1.2, the appearance of compound strings depended upon a small number of widget
attributes, of which th&mNfontList resource is the most important. The mechanisms for
inheriting compound string appearance characteristics relied solely upon default
XmFontList values derived usually from the containing VendorShell or BulletinBoard. In
Motif 2.0, there is the new entity called thénmRendition , which is a named (tagged)
object that consists of a complete set of appearance resources, including coloration, font,
underline and strike-through settings. XmRendition is a shareable object which is
independently reference counted. XmRenderTable is simply a set oiXmRendition

objects; compound strings are rendered by comparing tags associated with components in
the string against taggedmRendition objects in theXmRenderTable . The means
whereby a widget inherits compound string rendering information is now rationalized
through the Trait mechanisms: a parent widget may choose to implement a Trait which
provides default render table data to its descendants. The BulletinBoard, VendorShell, and
MenuShell classes implement such a Trait.

The appearance of a compound string can now be specified through a whole group of
attributes that can be manipulated as a single set. Compound strings may now be multi-
colored as a result.

An XmRendition object is a pseudo-widget: although not true widget classes, Renditions
and RenderTables may be specified in resource files, as well as in code. Widget classes
which used to support th&mNfontList now also support arXmNrenderTable
resource. For backwards compatibility, tKenNfontList resource continues to persist,
although it is internally implemented through the réwRenderTable type.

It is not necessary to precisely specify all attributes for each and every Rendition within a
RenderTable: attributes may be given the vatmeAS IS which simply means that the

Motif Programming Manual 87

Chapter 3:Overview of the Motif Toolkit

value of the attribute is inherited from Renditions which are placed earlier in the
RenderTable.

Renditions and RenderTables are discussed at length in Chapter 24.

TabLists

In Motif 1.2, creating tabular or multi-columnar data within a widget could usually only be
performed through some code by the programmer which required careful calculations
based upon the size of the current font. Motif 2.0 introduces the notion XfrérabList |,

which is a set oiXmTabobjects. AnXmTabdescribes a logical offset across a widget: it
consists of a floating point quantity, a unit in which the quantity is expressed (inches, font
units, millimetres, and so forth), and an offset model, which specifies whether the Tab
value is counted in terms of absolute distance across the widget, or relative to a previous
XmTabobject in theXmTabList .

The newXmRendition object contains aXmTabList attribute. The creation of a multi-
column list can now be achieved by embedding tab component separators within the
compound strings of the list: each tab separator marks the beginning of a new column entry,
where that column appears on the screen depends oXnthéabList attribute of the
Rendition used to render that portion of the compound string. Tabs and TabLists are
covered as part of the discussion in ChapteiC2Bnpound Strings

Compound Strings

Compound strings have been re-modelled to use the new XmRendition object. In order to
do this, new XmString component types have been defined.

The compound string segments XmSTRING_COMPONENT_RENDITION_BEGIN and
XMSTRING_COMPONENT_RENDITION_EéD be embedded into a compound string in
order to associate portions of the string with particular Rendition specifications.

To enable tabular layout of compound strings, the MwWSTRING_ COMPONENT _TAB
segment is defined, and this marks a column boundary within the string. How this is
rendered will depend upon the value of tkenTabList attribute associated with the
current Rendition in force.

Additionally, the compound string segmeMsSTRING_ COMPONENT _LAYOUT _P&aig8H
XMSTRING_COMPONENT _LAYOUT PG&h be used to embed layout direction
specifications into the string.

XmStringComponentCreate () has been augmented to create the new component types.

Compound Strings are discussed in Chapter 25.

88 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

Parse Mappings and Parse Tables

Strings and compound strings can be dynamically manipulated by new table-driven parsing
routines. AnXmParseMapping represents an entry in the table,Xd@mParseTable is the

table itself. Each entry in the table specifies a transformation: what to compare against in
the original input string, what to replace any matching occurrence with, and so forth. The
XmParseMapping object can either perform simple substitutions by supplying fixed
substitution patterns, or it can specify further substitution routines which dynamically
modify the input depending on circumstances.

Typically, parse tables and their constituent parse mapping objects are used by passing
them as parameters to th&mStringParseText (), XmStringUnparse (), and
XmStringGenerate () functions.

Essentially, parse tables are simply filters which provide programmatic control over the
way in which strings are converted into compound strings, or vice versa.

Parse Mappings are discussed in ChapteC2mpound Strings

Layout Direction

In Motif 1.2, although compound strings could be reversed by suitable setting of the
XmNstringDirection resource, the layout of components in which they were rendered
could not. The new Motif 2.0<mNlayoutDirection resource rectifies the issue: it is
possible to reverse the layout of a ComboBox, for example, so that the constituent arrow
button is drawn to the left of the text. This could be performed at user request either for
reasons of Internationalization or handedness. Layout direction resources are added to both
the Manager and Primitive base classes: all Motif widgets therefore inherit the control.

Uniform Transfer Model

In Motif 1.2, different styles of communication between widgets required separate code to
implement. Thus the codes to implement data transfer through the ClipBoard, to the
primary or secondary selection, and through Drag and Drop would not necessarily share
much in common in terms of the functions required to achieve the desired effect. In Motif
2.0, the disparate communication interfaces have been subsumed into a common Uniform
Transfer Model.

Under the Model, two new callbacks are added to the systepdrdzconvertCallback

and anXmNdestinationCallback . The convert callback is associated with the source

of the data, and is both responsible for exporting the data in the format required by the
destination, and in furnishing a list of formats in which the source is prepared to export that
data. The destination callback communicates with the source in order to determine the best
format in which to receive the data, and it arranges for the data to be handled appropriately
when it arrives by setting up a transfer procedure to perform the task. The simplest

Motif Programming Manual 89

Chapter 3:Overview of the Motif Toolkit

destination callback could in fact request data in a fixed format from the source without
bothering to request the list of supported forms.

The programmer is not required to implement convert and destination callbacks for all the
various types of data transfer which Motif supports. Widgets have mechanisms which

utilize the Trait system in order to effect default data transference. A programmer only

needs to write convert or destination callbacks where the data is to be transferred in a
manner which differs from the built-in target formats.

The Uniform Transfer Model is discussed in Chapter 23

Automatic Popup Support

In the past, in order to popup a context sensitive menu, it was necessary to write event
handler code to intercept ButtonPress events, followed by the appropriate code to pick and
display the relevant menu. In Motif 2.0, the RowColumn widget has been enhanced to
provide auto-popup behavior, and the decision making process of selecting the relevant
menu to display has been encapsulated in a new callback, the
XmNpopupHandlerCallback , built into the Manager and Primitive classes. Now it is
only necessary to provide the callback, filling in an appropriate field of the callback data,
in order to specify the required menu: the housekeeping tasks of event interception and
menu display are built-in.

Specific Widget Changes

Motif 2.1 introduces a number of new widget classes, as well as including new resources
for classes previously defined.

VendorShell

The VendorShell has the new resourcesXmNbuttonRenderTable

XmNlabelRenderTable , andXmNtextRenderTable . These supersede the deprecated
XmNbuttonFontList XmNIlabelFontList , XmNtextFontList resources

respectively.

For finer control over the X input contexts which are created in Internationalized
applications, the resouréénNinputMethod is provided: the valuXmPER_SHELLtreates

one input context per shell hierarchy, the vakimPER_WIDGE€reates one for each
widget which requests one.

VendorShell also supports tbénNlayoutDirection resource. The widget does not use
this resource itself, but maintains and supplies the resource as a default for whichever
descendant in the widget hierarchy lacks an explicit value.

90 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

In Motif 2.0, XmNshellUnitType is considered deprecated: it is replaced by the
XmNunitType resource. This also acts as a default value for widget descendants requiring
resolution information.

ArrowButton

The XmNdetailShadowThickness resource allows the programmer to specify the
shadow thickness inside the triangle of the ArrowButton. The ArrowButtonGadget also
supports the resource.

BulletinBoard

The BulletinBoard has the new resourcesXmNbuttonRenderTable

XmNlabelRenderTable , andXmNtextRenderTable which superseded the deprecated
XmNbuttonFontList XmNlabelFontList XmNtextFontList resources
respectively.

ComboBox

ComboBox is a new widget as of Motif 2.0, combining direct textual input with the
convenience of list selection.

Container

Container is a new widget in Motif 2.0. It organises IconGadget children in a variety of
layout styles, including a Tree format.

Display

The XmDisplay object has suffered a number of changes in order to interface Motif with a
CDE desktop. Most of the resources alter the appearance of Toggles, and the shadowing on
Buttons, and are described fully in Volume 6B.

The most important of the new resources are theNnoFontCallback and
XmNnoRenditionCallback lists. Whenever an attempt is made to render a compound
string, if font or rendition information is found to be absent, a callback can be supplied by
the programmer which can attempt to find an alternative. This is a significant improvement
over Motif 1.2, where the system itself would decide on an appropriate default font without
recourse to any intelligent intervention.

DrawingArea

DrawingArea now supports the new XmNconvertCallback and
XmNdestinationCallback resources associated with the Uniform Transfer Model. The
DrawingArea itself does not define any export target formats.

Motif Programming Manual 91

Chapter 3:Overview of the Motif Toolkit

FileSelectionBox

In Motif 2.0 and later, the search pattern and base directory path can be displayed in
separate text fields, as opposed to being concatenated together and displayed in a single
field. The resourc&XmNpathMode controls whether this new feature is enabled.

Gadget

The appearance resources XmNbackground , XmNbackgroundPixmap ,
XmNbottomShadowColor , XmNbottomShadowPixmap , XmNhighlightPixmap
XmNtopShadowPixmap are added so that Gadgets no longer strictly inherit their colors
from the Manager parent.

As for the Manager and Primitive base classes, Gadget also supports
XmNlayoutDirection to control the order in which components of the object are laid
out.

GrabShell

A new widget in Motif 2.0. GrabShell is a shell widget which grabs the pointer and
keyboard when it is mapped. It therefore directs focus to its child, and is used by the
ComboBox to implement its popup list.

IlconGadget

New in Motif 2.0, the lconGadget can display both textual and pixmap information
simultaneously. The gadget is closely associated with the Container. Each IconGadget
supposedly represents pictorially some application object of some kind, and the Container
organises the layout and selection of the given objects. Extra “detail” data can be associated
with an IconGadget, and the Container can display this extra information in a tabular
format.

Label

The XmNfontList resource is deprecated, and is superseded b¥iiiérenderTable
resource. Similarly for LabelGadget.

List

The List supports keyboard matching of items in Motif 2.0 and later. If the resource

XmNmatchBehavior is enabled, characters typed are compared with the first character of
each item, and the new currently selected item is reset accordingly. The color of the
selected item itself can now be specified throughXinblselectColor resource.

The set of selected positions can be manipulated through the new
XmNselectedPositions , XmNselectedPositionCount resources.

92 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

The way in which the user selects items in the list is controllable through the
XmNselectionMode resource. XK MNORMAL_MQDiavigating the list using the keyboard
can select the item under the location cursoixXimADD_MODERavigating through the list
has no side effects with respect to the selected item set.

The List supports th¥mNdestinationCallback in order to make the widget partake in
the Uniform Transfer Model.
MainWindow

From Motif 2.0, the routineXmMainWindowSetAreas () is marked as deprecated. The
programmer should set thémNcommandwWindowXmNmenuBar XmNmessageWindow
XmNworkWindow, XmNhorizontalScrollBar , XmNverticalScrollBar resources
directly using the standard Xt mechanisms.

Manager

New support for automatic popup menu control is provided through the Motif 2.0
XmNpopupMenuHandlerCallback

The Motif 2.0XmNIlayoutDirection resource facilitates automatic layout control.

MenuShell

The XmNbuttonFontList and XmNlabelFontList resources are deprecated, and are
superseded by thEmNbuttonRenderTable and XmNlabelRenderTable resources.
Similarly deprecated is theéXmNdefaultFontList resource, although there is no
replacemenXmNdefaultRenderTable resource.

Notebook

Notebook is a new widget in Motif 2.0. It simply lays out its children as though they are
pages in a book.

PanedWindow

As of Motif 2.0, the PanedWindow now officially supports a horizontal configuration: set
the XmNorientation resource t&mMHORIZONTADLr XmVERTICALto taste.

Primitive

The XmNlayoutDirection , XmNconvertCallback resources are added to this base

class.

To support automatic context-sensitive menus, XneNpopupHandlerCallback has
been added to the system.

Motif Programming Manual 93

Chapter 3:Overview of the Motif Toolkit

PrintShell

The PrintShell interfaces with the X11R6 X Print (Xp) extensions. A widget hierarchy can
be printed by creating that hierarchy underneath a PrintShell, followed by appropriate code
to invoke the printing. Printing can be either synchronous, or asynchronous, and the
programmer can decide, by setting appropriate widget resources, whether the output is to
consist of the contents of the widgets concerned, or whether it is more of a screen snapshot
of the widgets themselves.

RowColumn

A new resourcexXmNtearOffTitle , allows the programmer to specify a title for a tear-
off menu.

Scale

As of Motif 2.0, the Scale widget supports automatic tick marks. The function
XmScaleSetTicks () evenly spaces marks of various sizes along the edge.

The Scale can be configured as to whether it responds to user input through the new
XmNeditable resource: for a read-only scale, set the resource to false.

Arrows can be placed at either or both ends of the Scale througKrtiNshowArrows
resource, and the general appearance of the slider is configurable through
XmNsliderMark : this can be configured to appear in various etched rectangle
arrangements, as a circle, or as a thumb mark.

The size of the slider is configurable through ¥reNsliderSize resource. This resource
is undocumented by the official channels, and thus there is no official guidance to its usage.

The color of the slider is also tunable: it can either be based upon the foreground or
background of the Scale, or upon the existing trough color. XimsliderVisual
resource controls this aspect of behavior.

The Scale can behave as a thermometer, with the slider anchored at one end rather than
floating in the middle XmNslidingMode is the resource required to configure this setting.

Lastly, as of Motif 2.0, theXmNfontList resource is deprecated, and replaced with the
newerXmNrenderTable resource. The Scale also supports XmeNconvertCallback
list in order to participate in the Uniform Transfer Model.

Screen

The XmScreen object has been enhanced to provide a greater control over the way in which
Motif allocates colors. Th&mNcolorAllocationProc resource allows the programmer

to specify a procedure to perform the allocation. The default is the standard
XAllocColor () routine.

94 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

Similarly, the algorithm by which Motif calculates default foreground, background, and
shadow colors is also now tunable throughXh#NcolorCalculationProc resource.

The allocation of pixmaps can be controlled throughXhaeNbitmapConversionModel
resource: by defaullmMATCH_DEPYHixmaps are created such that the depth matches
the widget for which they are allocated. Setting the valu¥rttMATCH_DYNAMiOnverts
loaded bitmap files to a pixmap depth of 1.

Also on the subject of pixmaps, th&EmNinsensitiveStipplePixmap resource
provides a stipple to use when making widgets appear insensitive. This is mostly used
internally by the Gadget utilities.

Motif as of version 2.0 supports the notion of color objects: XneNuseColorObject

resource enables the feature, such that if a color is dynamically altered, all widgets which
reference the color are changed as a side effect. Clearly, this resource is part of the CDE
enhancements to Motif: it allows the desktop to change the whole style of color of an
application without having to modify the entire widget hierarchy.

ScrollBar

Much of the enhancements associated with the Scale are in fact related to the ScrollBar:
XmNeditable , XmNshowArrows, XmNsliderMark XmNsliderVisual ,
XmNslidingMode are all newly supported as of Motif 2.0.

The resourceXmNsnapBackMultiple controls the behavior of the ScrollBar if the user
drags the mouse outside the bounds of the widget. It specifies a distance, which if exceeded,
causes the ScrollBar to snap back to its pre-drag settings.

ScrolledWindow

As of Motif 2.0, the ScrolledWindow (and derived classes) supports automatic drag
through the resourcémNautoDragModel .

SpinBox and SimpleSpinBox

Two new widget classes, the first available as of Motif 2.0, the second from Motif 2.1,
which allows the user to rotate through a range of values. SpinBox is the general purpose
manager, into which any number of Text components are added. It rotates the values
associated with the Text component which currently has the focus. SimpleSpinBox is a pre-
packaged unit that contains a single built-in Text component. The range of values
associated with any Text is specified through constraint resources. Rotation of the values
is achieved by pressing on an ArrowButton which the SpinBox components automatically
add for the purpose.

Motif Programming Manual 95

Chapter 3:Overview of the Motif Toolkit

Text and TextField

The number of lines within the Text is now available through XraNtotalLines
resource, added as of Motif 2.1.

In both widget classes, th&mNfontList resource is obsolete, replaced with the
XmNrenderTable resource, and tXenNdestinationCallback is added in order to
interface with the Uniform Transfer Model.

ToggleButton and ToggleButtonGadget

The Toggle widgets have been reworked in order to provide consistency of appearance
under the CDE environment.

The resource&XmNdetailShadowThickness controls the thickness of the shadow on the
Toggle indicator.

In Motif 2.0 and later, a Toggle may be in one of three states: set, unset, and indeterminate.
By default, the Toggle holds two states, unless the resodnatoggleMode is set to
XmTOGGLE_INDETERMINATE which enables the third state. The resource
XmNindeterminatelnsensitivePixmap and XmNindeterminatePixmap are
pixmaps displayed when the toggle is in the third indeterminate state.

In Motif 1.2, the resourc&mNindicatorOn is a Boolean value; in Motif 2.0 and later, this
becomes an enumerated type, and specifies not just whether the indicator is visible, but also
its appearance: a check box, shadowed box, check (tick) mark, cross, and so on become
available. This blurs the distinction with the resoudeNindicatorType , which is
extended to includXmONE_OF_MANY_ROUNBONE_OF_ MANY_DIAMONiicating a

round or diamond shaped indicator.

The resource XmNset also changes type from Boolean to an enumeration. The valid range
is NowXmUNSETXmSET andXmINDETERMINATE

Lastly, anXmNunselectColor is added from Motif 2.0 onwards to complement the
XmNselectColor resource.

Changes to the Example Programs

All of the example programs in this book have been updated to Motif 2.1 and X11R6. For
example, calls tananipulate compound strings and font lists have been
replaced with calls tbandle the new render table type

Changes involving new Motif 2.1 functions and resources are described in detail when each
example is presented.

96 Motif Programming Manual

Chapter 3: Overview of the Motif Toolkit

Summary

The Motif widget set gives you a great deal of flexibility in designing an application. But
with this flexibility can come indecision, or even confusion, about the most effective way

to use these objects. If you want to give a user a set of exclusive choices, should you use a
PulldownMenu, a dialog box that contains ToggleButtons arranged in a CheckBox, or a
List widget? There is no right answer--or perhaps it is better to say that the right answer
depends on the nature of the choices and the flow of control in your application.

Designing an effective user-interface is an art. Only experience and experimentation can
teach you the most effective way to organize an application. What we can do in this book
is teach you how to use each widget class and give you a sense of the tradeoffs involved in
using different widgets. In this chapter, we've given you a broad overview of the Motif
toolkit. Subsequent chapters delve into each widget class in detail. You should be able to
read the chapters in any order, as the needs of your application dictate.

Motif Programming Manual 97

Chapter 3:Overview of the Motif Toolkit

98 Motif Programming Manual

In this chapter:
e Creating a MainWindow
» The MenuBar

e The Command and Message
Areas

» Using Resources
e Summary

« Exercises The Maln WlndOW

This chapter describes the Motif MainWindow widget, which can be used to frame many
types of applications. The MainWindow is a manager widget that provides a menu bar, a
scrollable work area, and various other optional display and control areas.

As discussed in Chapter)verview of the Motif Toolkitthe main window of an
application is the most visible and the most used of all the windows in an application. It is
the focal point of the user’s interactions with the program, and it is typically the place where
the application provides most of its visual feedback.To encourage consistency across the
desktop, theMotif Style Guidesuggests a generic main window layout, which can vary
from application to application, but is generally followed by most Motif applications. Such

a layout is shown in Figure 4-1. As described in Section 3.4.1, a main window can provide

a menubar, a work area, horizontal and vertical scrollbars, a command area, and a message
area.

ETd | iy Pk =

MenuBar e gt HiHp

Command Area >

| abai

Work Area S -

Message Area >

Figure 4-1: The main window of a Motif program

In an effort to facilitate the task of building a main window, the Motif toolkit provides the
MainWindow widget. This widget supports the different areas of the generic main window

Motif Programming Manual 99

Chapter 4: The Main Window

layout. However, the MainWindow widget is not the only way to handle the layout of the
main window of your application. You are not required to use the MainWindow widget and
you should not feel that you need to follow the Motif specifications to the letter. While the
Style Guidestrongly recommends using the main window layout, many applications simply
do not fit the standard GUI design model. For example, a clock application, a terminal
emulator, a calculator, and a host of other desktop applications do not follow the Motif
specifications in this regard, but they can still have Motif elements within them and can still
be regarded as Motif-compliant. If you already have an application in mind, chances are
you already know whether or not the main window layout is suited to the application; if you
are in doubt, your best bet is to comply with khetif Style Guide

Before we start discussing the MainWindow widget, you should realize that this widget
class does not create any of the widgets it manages. It merely facilitates managing the
widgets in a way that is consistent with tif&tyle Guide In order to discuss the
MainWindow widget, we are going to have to discuss a number of other widget classes and
use them in examples. As a beginning chapter in a large book on Motif programming, this
may seem like a bit much to handle, especially if you are completely unfamiliar with the
Motif toolkit. We encourage you to branch off into other chapters whenever you find it
necessary to do so. However, it is not our intention to explain these other widgets ahead of
time, nor is it our assumption that you already understand them. The lack of an
understanding of the other widgets should not interfere with our goal of describing the
MainWindow widget and how it fits into the design of an application.

Creating a MainWindow

The MainWindow widget class is defined inXsn/MainW.tr, which must be included
whenever you create a MainWindow widget. As mentioned in Chaptéfh2 Motif
Programming Modelyou should probably use a SessionShell or TopLevelShell widget as
the parent of a MainWindow If the MainWindow is being used as the main application
window, the SessionShell returned B{OpenApplication() T (or another similar
toolkit initialization function) is typically used as the parent. The function
XmCreateMainWindow() can be used to create an instance of a MainWindow widget, as
shown in the following code fragmé‘nt

#include <Xm/Xm.h>
#include <Xm/MainW.h>

main (int argc, char *argv(])

{
Widget app_shell, main_w;

* The ApplicationShell is considered deprecated in X11R6.
T XtApplnitialize (), XtVaApplnitialize () are now considered deprecated in X11R6.
T XtVaApplnitialize () is considered deprecated in X11R6.

100 Motif Programming Manual

Chapter 4: The Main Window

XtAppContext app_context;

* Resources for the MainWindow */

Arg resource_values]...];

Cardinal num_values;/* Number of resources applied */

XtSetLanguageProc (NULL, NULL, NULL);
app_shell = XtvaOpenApplication (&app_context, "App-Class”, NULL, 0, &argc,
argv, NULL, sessionShellWidgetClass, NULL);
main_w = XmCreateMainWindow (app_shell, “mw”, resource_values, num_values);
XtManageChild (main_w);
XtRealizeWidget (app_shell);
XtAppMainLoop (app_context);
}

The MainWindow class is subclassed from the ScrolledWindow class, which means that it
inherits all the attributes of a ScrolledWindow, including its resources. A ScrolledWindow
allows the user to view an arbitrary widget of any size by attaching horizontal and vertical
ScrollBars to it. You can think of a MainWindow as a ScrolledWindow with the additional
ability to have an optional menu bar, command area, and message area. Because the
MainWindow is subclassed from the ScrolledWindow widget, we will be referring to some
ScrolledWindow resources and disclosing some facts about the ScrolledWindow. For more
information about the ScrolledWindow, see Chapterddyolled Windows and ScrollBars.

You may eventually need to learn more about the ScrolledWindow widget to best make use
of the MainWindow, but this chapter tries to present the fundamentals of the MainWindow
widget, rather than focus on the ScrolledWindow.

While a MainWindow does control the sizes and positions of its widget children like any
manager widget, the geometry management it performs is not the classic management style
of other manager widgets. The MainWindow is a special-case object that handles only
certain types of children and performs only simple widget positioning. It is designed to
support the generic main window layout specified by khatif Style GuideLet's take a

look at how the MainWindow can be used in an actual application. Example 1-1
demonstrates how the MainWindow widget fits into a typical application désign.

Example 1-1: The show_pix.c program

f* show_pix.c -- A minimal example of a MainWindow. Use a Label as the
*workWindow to display a bitmap specified on the command line.

*

#include <Xm/MainW.h>

#include <Xm/Label.h>

main (int argc, char *argv(])

{

Widget toplevel, main_w, label_w;
XtAppContext app_context;

Pixmap pixmap;

Arg al[4];

* XtVaApplnitialize () is considered deprecated in X11R6.

Motif Programming Manual 101

Chapter 4: The Main Window

Cardinal ac=0;

XtSetLanguageProc (NULL, NULL, NULL);
toplevel = XtvVaOpenApplication (&app_context, "Demos", NULL, 0, &argc,
argv, NULL, sessionShellWidgetClass, NULL);
if (fargv1]) {
printf (“usage: %s bitmap-file\n", argv[0]);
exit (1);
}

ac=0;

XtSetArg(al[ac], XmNscrollBarDisplayPolicy, XmAS_NEEDED); ac++;
XtSetArg(al[ac], XmNscrollingPolicy, XmAUTOMATIC); ac++;
main_w = XmCreateMainWindow (toplevel, "main_window", al, ac);

[* Load bitmap given in argv[1] */
pixmap = XmGetPixmap (XtScreen (toplevel), argv[1], BlackPixelOfScreen
(XtScreen (toplevel)), WhitePixelOfScreen (XtScreen
(toplevel)));
if (pixmap == XmMUNSPECIFIED_PIXMAP) {
printf ("can't create pixmap from %s\n", argv[1]);
exit (1);
}
[* Now create label using pixmap */
ac=0;
XtSetArg(al[ac], XmNlabelType, XmPIXMAP); ac++;
XtSetArg(al[ac], XmNIabelPixmap, pixmap); ac++;
label_w = XmCreateLabel (main_w, "label", al, ac);

[* set the label as the "work area" of the main window */

XtVaSetValues (main_w, XmNworkWindow, label_w, NULL);

XtManageChild (label_w);

XtManageChild (main_w);

XtRealizeWidget (toplevel);

XtAppMainLoop (app_context);

}

In this example, the MainWindow widget is not used to its full potential. It only contains
one other widget, a Label widget, that is used to display a bitmap from the file specified as
the first argument on the command liregv[1]). The Label widget is used as the work
area window for the MainWindow. We did this intentionally to focus your attention on the
scrolled-window aspect of the MainWindow widget. The following command line:

% show_pix /usr/X11R6/include/bitmaps/xlogo64

* XtVaOpenApplication () parses the command-line arguments that are used when the program is run. The
command-line options that are specific to Xlib or Xt are evaluated and removed from the argument list. What is
not parsed is left iargv ; our program readargv [1] as the name of a bitmap to display in the MainWindow.

102 Motif Programming Manual

Chapter 4: The Main Window

produces the output shown in Figure 4-2.

thicved

Figure 4-2: Output of show_pix xlogo64

The file specified on the command line should contain X11 bitmap data, so that the
application can create a pixmap. The pixmap is displayed in a Label widget, which has been
specified as th&XmNworkWindow of the MainWindow. As shown in Figure 4-2, the bitmap

is simply displayed in the window. However, if a larger bitmap is specified, only a portion
of the bitmap can be displayed, so ScrollBars are provided to allow the user to view the
entire bitmap. The output of the command:

% show_pix /usr/X11R6/include/bitmaps/escherknot
is shown in Figure 4-3.

Figure 4-3: Output of show_pix escherknot

The bitmap is obviously too large to be displayed in the MainWindow without either
clipping the image or enlarging the window. Rather than resize its own window to an
unreasonable size, the MainWindow can display ScrollBars. This behavior is enabled by
setting the MainWindow resourcegnNscrollBarDisplayPolicy to XmAS_NEEDED

and XmNscrollingPolicy to XmAUTOMATICThese values automate the process
whereby ScrollBars are managed when they are needed. If there is enough room for the
entire bitmap to be displayed, the ScrollBars are not provided. Try resizinghthe_pix
window and see how the ScrollBars appear and disappear as needed. This behavior occurs
as a result of settingmNscrollBarDisplayPolicy to XmAS_NEEDED

Since we do not specify a size for the MainWindow, the toolkit sets both the width and
height to bel00 pixels. These default values are not a documented feature. Both the
MainWindow and the ScrolledWindow suffer from the same problem: if you do not

Motif Programming Manual 103

Chapter 4: The Main Window

specifically set themNwidth andXmNheight resources, the default size of the widget is
not very useful.

The XmNscrolBarDisplayPolicy and XmNscrollingPolicy resources are
inherited from the ScrolledWindow widget class. BecaXs#\scrollingPolicy is set

to XmAUTOMATIGhe toolkit creates and manages the ScrollBars automatically. Another
possible value for the resource ¥nAPPLICATION_DEFINED which implies that the
application is going to create and manage the ScrollBars for the MainWindow and control
all of the aspects of their functionality. Application-defined scrolling is the default style for
the MainWindow widget, but it is unlikely that you will want to leave it that way in this
instance: application-defined scrolling is usually required for hand-drawn X graphics, but
since the Label widget knows how to draw itself, we can leave the scrolling policy as
XMAUTOMATIG-or complete details on the different scrolling styles, see Chapter 10.

Using the application-defined scrolling policy does not necessarily require you to provide
your own scrolling mechanisms. It simply relieves the MainWindow widget of the
responsibility of handling the scrolling functionality. If you use a ScrolledList or
ScrolledText widget as the work area, you should definitely leave the
XmNscrollingPolicy as XmAPPLICATION_DEFINED since these widgets manage
their own ScrollBars. They will handle the scrolling behavior instead of the MainWindow.
Example 1-2 shows an example of a program that uses a ScrolledList for the work area in
a MainWindow widget.

Example 1-2: The main_list.c program

/*main_list.c -- Use the ScrolledList window as the feature
* component of a MainWindow widget.
*

#include <Xm/MainW.h>
#include <Xm/List.h>

main (int argc, char *argv(])

{

Widget app_shell, main_w, list_w;
XtAppContext app_context;
Pixmap pixmap;

XtSetLanguageProc (NULL, NULL, NULL);
app_shell = XtVaOpenApplication (&app_context, "Demos", NULL, O, &argc,
argv, NULL, sessionShellWidgetClass, NULL);
main_w = XmCreateMainWindow (app_shell, "main_window", NULL, 0);
list_ w = XmCreateScrolledList (main_w, "main_list", NULL, O);
XtVaSetValues (list_w, XtVaTypedArg, XmNitems, XmRString,
"Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,
XmNitemCount, 8, XmNuvisibleltemCount, 5, NULL);

* XtVaApplnitialize() is considered deprecated in X11R6.

104 Motif Programming Manual

Chapter 4: The Main Window

XtManageChild (list_w);
[* set the list_w as the "work area" of the main window */
XtVaSetValues (main_w, XmNworkWindow, XtParent (list_w), NULL);
XtRealizeWidget (app_shell);
XtAppMainLoop (app);
}
In order to simplify the application, we specified the items in the ScrolledList as a single
string:
XtVaSetValues (list_w, XtVaTypedArg, XmNitems, XmRString,
"Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,
XmNitemCount, 8, XmNuvisibleltemCount, 5,
NULL);
This technique provides the easiest way to specify a list for a List widget. The items in a
List widget must be specified as an array of compound strings. If we took the time to create
each list item separately, we would have to create each compound string, assemble the
array of XmString objects and specify it as thénNitems resource, and then free each
string separately after the widget was created. By uxiwgTypedArg , the whole list can
be created in one line using the List widget's type converter to convert the string into a list
of compound strings. We use this form of resource specification frequently in the book to
simplify examples. See Volume 4, for a complete discussion on how this kind of type
conversion is done. See Chapter, TBe List Widgetfor details on the List widget; see
Chapter 25Compound Stringdor details on XmStrings.

It is important to note that whileXmCreateScrolledList() creates both a
ScrolledWindow widget and a List widget, it returns the List widget. As a result, we must
useXtParent() to get access to the ScrolledWindow widget, so that it can be specified
as the work area of the MainWindow. A common programming error with a ScrolledText
or a ScrolledList widget is using the actual Text or List widget rather than its
ScrolledWindow parent. Again, we refer you to Chapter 10, for a complete discussion of
the use of ScrolledText and ScrolledList compound objects.

The MenuBar

Creating a MenuBar is a fairly complex operation, and one that is completely independent
of the MainWindow itself. However, one of the principal reasons for using the
MainWindow widget is that it manages the layout of a MenuBar. In this section, we
demonstrate the simplest means of creating a MenuBar. Once a MenuBar has been created,
you simply tell the MainWindow to include it in the window layout by specifying the
MenuBar as the value of thenNmenuBarresource for the MainWindow.

In the Motif toolkit, a MenuBar is not implemented as a separate widget, but as a set of

CascadeButtons arranged horizontally in a RowColumn widget. Each CascadeButton is
associated with a PulldownMenu that can contain PushButtons, ToggleButtons, Labels,
and Separators. The managing RowColumn widget has a resource setting indicating that it

Motif Programming Manual 105

Chapter 4: The Main Window

is being used as a MenuBar.You do not need to know any specific details about any of these
widgets in order to create a functional MenuBar, since Motif provides convenience routines
that allow you to create self-sufficient menu systems. While the specifics on creating
PopupMenus, PulldownMenus, and MenuBars are covered in more detail in Chapter 20
Interacting with the Window Managgthe basic case that we present in this section is quite
simple.

There are a variety of methods that you can use to create and manage a MenuBar, but the
easiest method is to use the convenience menu creation routine provided by the Motif
toolkit: XmVaCreateSimpleMenuBar() ." This function is demonstrated in the following

code fragment:

XmString file, edit, help;
Widget menubar, main_w;

* Create a simple MenuBar that contains three menus */

file = XmStringCreateLocalized ("File");

edit = XmStringCreateLocalized ("Edit");

help = XmStringCreatelLocalized ("Help");

menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",
XmVaCASCADEBUTTON, file, 'F,
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, help, 'H',
NULL);

XmStringFree (file);

XmStringFree (edit);

XmStringFree (help);

The output generated by this code is shown in Figure 4-4.

File Edit Help

Figure 4-4: A simple MenuBar

Like the functions XtVaSetValues() and XtVaCreateWidget() , the routine
XmVaCreateSimpleMenuBar() takes a variable-length argument list of configuration
parameters. In addition to resource/value pairs, it also takes special arguments that specify
the items in the MenuBar. You can specify RowColumn-specific resource/value pairs just
as you would for any varargs routine. Once all the items in a MenuBar have been created,
it must be managed usib@ManageChild()

If you are specifying an item in the MenuBar, the first parameter is a symbolic constant that
identifies the type of the item. Since CascadeButtons are the only elements that can display

* There is also a non-varargs version of this function. It requires you to create each of the buttons in the MenuBar
individually and associate it with a PulldownMenu via resources. The varargs function is often easier to use.

106 Motif Programming Manual

Chapter 4: The Main Window

PulldownMenus, the first parameter should always be s¥tmMyaCASCADEBUTTONe

label of the CascadeButton is given by the second parameter, which must be a compound
string. In the above example, the varialfle contains a compound string that contains

the textFile . The third parameter specifies an optional mnemonic character for the
CascadeButton that can be used to post the menu from the keyboard. The mnemonic for the
File menu isF. By convention, the first letter of a menu or menu item label is used as the
mnemonic.

We use the compound string creation functiofmStringCreatelLocalized() , to

create the compound strings for the menu labels. This function creates a compound string
with the text encoded in the current locale. For a complete discussion of compound strings,
see Chapter 25.

Since you are not creating each CascadeButton using the normal creation routines, you are
not returned a handle to each button.You might think that the label string that you assign to
each button is used as the widget's name, but this is not the case. The buttons are created
sequentially, so the MenuBar assigns the naoiton_ n to each button. The valueis

the position of the button in the MenuBar, where positions are numbered starting with 0
(zero).We will discuss how you can specify resources for items on the MenuBar later in the
chapter.

Do not attempt to install callback routines on the CascadeButtons themselves. If you need
to know when a particular menu is popped up, you should uskrtiidpopupCallback on

the MenuShell that contains the PulldownMenu associated with the CascadeButton. The
popup and popdown callback lists are described briefly in Chapteudtom Dialogsfor

more information, see Volume %, Toolkit Intrinsics Programming Manual

Creating a PulldownMenu

Every CascadeButton in a MenuBar must have a PulldownMenu associated with it. You
can create the items in a PulldownMenu using a method that is similar to the one for
creating a MenuBar. A PulldownMenu can be created using the function
XmVaCreateSimplePulldownMenu() . This routine is slightly more involved than
XmVaCreateSimpleMenuBar() . The routine takes the following form:

Widget XmVaCreateSimplePulldownMenu (Widget parent
String name
int post_from_button
XtCallbackProc callback yees)
The post from_button parameter specifies the CascadeButton that posts the

PulldownMenu. This parameter is an index (starting at zero) into the array of
CascadeButtons in thgarent widget, which should be a MenuBar. Thameparameter
specifies the widget name for the RowColumn widget that is the PulldownMenu. This name
is not the title of the CascadeButton associated with the menu. The MenuShell that contains
the PulldownMenu uses the same name witlopup appended to it. Theallback

Motif Programming Manual 107

Chapter 4: The Main Window

parameter specifies a function that is invoked whenever the user activates any of the items
in the menu. The rest of the argumentsXmVaCreateSimplePulldownMenu() are

either RowColumn resource/value pairs or special arguments that specify the items in the
PulldownMenu.

You should not manage a PulldownMenu after you create it because you do not want it to
appear until it is posted by the user. The CascadeButton that posts the menu handles
managing the menu when it needs to be displayed. The following code fragment shows the
use ofXmVaCreateSimplePulldownMenu() to create a PulldownMenu:

XmString open, save, quit, quit_acc;
Widget menubar, menu;

[* First menu is the File menu -- callback is file_cb() */

open = XmStringCreateLocalized ("Open...");

save = XmStringCreatelocalized ("Save...");

quit = XmStringCreateLocalized ("Quit");

quit_acc = XmStringCreateLocalized (“Ctrl-C");

menu = XmVaCreateSimplePuldownMenu (menubar, "file_menu", O, file_cb,
XmVaPUSHBUTTON, open, 'O', NULL, NULL,
XmVaPUSHBUTTON, save, 'S, NULL, NULL,

XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q', "Ctri<Key>c", quit_acc,
NULL);

XmStringFree (open);

XmStringFree (save);

XmStringFree (quit);

XmStringFree (quit_acc);

Unlike a MenuBar, which can only contain CascadeButtons, a PulldownMenu can contain
a number of different types of elements. As wikimVVaCreateSimpleMenuBar() , these
elements are specified by a symbolic constant that identifies the type of the item. The
symbolic constant is followed by a variable number of additional parameters that depend
on the type of the menu item.You can use the following values to specify the items in a
PulldownMenu:

XmVaPUSHBUTTON

The item is a PushButton. It takes four additional parameters: a compound
string label, a mnemonic, an accelerator, and a compound string that con-
tains a text representation of the accelerator. When the PushButton is se-
lected, the callback routine is called. It is passed an integer value as
client_data that indicates the item on the PulldownMenu that was acti-
vated. The value is an index into the menu that ranges from 0 to n-1 ; if
client_data is two, then the third item in the menu was selected.

XmVaTOGGLEBUTTON
The item is a ToggleButton. It takes the same four additional parameters
as described for XmVaPUSHBUTTOM/hen the ToggleButton is selected, the

108 Motif Programming Manual

Chapter 4: The Main Window

value of the button is toggled and the callback routine is called. The
client_data that is passed to the callback routine is handled the same as
for PushButtons.

XmVaCHECKBUTTON
This value is identical to XmVaTOGGLEBUTTON

XmVaRADIOBUTTON

The item is a ToggleButton with RadioBox characteristics, which means
that only one item in the menu can be set at a time. The PulldownMenu
does not enforce this behavior, so you must either handle it yourself or
specify other RowColumn resources to make the menu function like a Ra-
dioBox. We demonstrate creating a menu with RadioBox behavior later in
the chapter. This value takes the same additional parameters and deals
with the callback routine in the same way as ToggleButtons.

XmVaCASCADEBUTTON
The item is a CascadeButton, which is usually associated with a pullright
menu. The value takes two additional parameters: a compound string label
and a mnemonic. Pullright menus are, ironically, easier to implement and
manage using the not-so-simple menu creation routines described in Chap-
ter 19, Menus

XmVaSEPARATOR
The item is a Separator and it does not take any additional parameters.
Since separators cannot be selected, the callback routine is not called for
this item. Adding a separator does not affect the item count with respect to
the client_data values that are passed to the callback routine for other
menu items.

XmVaSINGLE SEPARATOR
This value is identical to XmVaSEPARATOR

XmVaDOUBLE_SEPARATOR
This value is identical to XmVaSEPARATORBxcept that the separator widget
displays a double line instead of a single line.

XmVaTITLE
The item is a Label that is used to create a title in a menu. It takes one ad-
ditional parameter: a compound string label. The item is not selectable, so
it does not have a mnemonic associated with it and it does not call the call-
back routine. Adding a title does not affect the item count with respect to
the client_data values that are passed to the callback routine for other
menu items.

Just as with the CascadeButtons in a MenuBar, the labels associated with each menu item
are not the names of the widgets themselves. The names of the buttdmgteme n,

Motif Programming Manual 109

Chapter 4: The Main Window

wheren is the position of the button in the menu (starting with zero). Similarly, the names

of the separators and the titles aeparator n andlabel n, respectively. We will
discuss how you can use resources to specify labels, mnemonics, and accelerators for
menus and menu items later in the chapter.

Menus are not intended to be changed dynamically. You should not add, delete, or modify
the menus on the MenuBar or the menu items in PulldownMenus once an application is
running. Rather than delete an item on a menu when itis not appropriate, you should change
the sensitivity of the item usingmNsensitive . The menus in an application should be
static in the user’s eyes; changing the menus would be like changing the functionality of
the program while the user is running it. The one exception to this guideline involves menu
items that correspond to dynamic objects. For example, if you have a menu that contains
an item for each application that is running on a display, it is acceptable for the items on
the menu to change to reflect the current state of the display.

SimpleMenu Callback Routines

The callback routine associated with fhige menu shown earlier is invoked whenever the
user selects any of the buttons in the menu. Just like any callback, the routine takes the form
of anXtCallbackProc

void file_cb (Widget widget , XtPointer client_data , XtPointer call_data)

The widget parameter is a handle to the widget that was selected in the menu. The
client_data parameter is the index of the menu item in the menu. ddlledata
parameter is a pointer to a callback structure that contains data about the callback. Both the
client_data andcall data parameters should be cast to their appropriate types before
the data that they contain is accessed.

Every Motif callback routine has a callback structure associated with it. The simplest such
structure is of typ&XmAnyCallbackStruct , which has the following form:

typedef struct {
int reason;
XEvent *event;
} XmAnyCallbackStruct;

All of the Motif callback structures have these two fields, but they also contain more
detailed information about why the callback function was invoked. The callback routine for
the File menu would be passed afmPushButtonCallbackStruct , since all of the
menu items are PushButtons. This structure has the following form:
typedef struct {
int reason;
XEvent *event;

int click_count;
} XmPushButtonCallbackStruct;

110 Motif Programming Manual

Chapter 4: The Main Window

Theclick_count field is not normally used when a PushButton is in a menu. If one of
the items in the menu were a ToggleButton, talt data parameter would be of type
XmToggleButtonCallbackStruct , Which has the following form:

typedef struct {
int reason;
XEvent *event;
int set;
} XmToggleButtonCallbackStruct;

The set field indicates whether the item was selected (turned on) or deselected (turned
off).

When a menu contains both PushButtons and ToggleButtons, you can determine which of
the two callback structures tloall_data parameter points to by examining tleason

field. Since all callback structures have this field, it is always safe to query it. As its name
implies, this field indicates why the callback routine was invoked. The value of this field
may also indicate the type of the widget that invoked the callback. While we can always
determine the type of theidget parameter by using the macktisSubClass() , using
thereason field is more straightforward. The PushButton widget uses the V4ER _
ACTIVATE to indicate that it has been activated, while the ToggleButton XeeSR
VALUE_CHANGHD indicate that its value has been changed. In our examplegdken

will always beXmCR_ACTIVATEsince there are only PushButtons in the menu. If there
were also ToggleButtons in the menu, we would know that the callback was invoked by a
ToggleButton if the value wetémCR_VALUE_CHANGED

Theevent field in all of the callback structures is a pointer todBvent structure. The
XEvent identifies the actual event that caused the callback routine to be invoked. In this
example, the event is not of particular interest.

In the callback function, you can choose to do whatever is appropriate for the item that was
selected. The callback structure is probably not going to be of that much help in most cases.
However, theclient_data passed to the function can be used to identify which of the
menu items was selected. The following code fragment demonstrates thedlieet of

data :

[a menu item from the "File" pulldown menu was selected */
void file_cb (Widget widget, XtPointer client_data, XtPointer call_data)
{

extern void OpenNewfFile(void), SaveFile(void);

intitem_no = (int) client_data;

if (tem_no == 0)
[*the "new" button */
OpenNewrFile ();

else if (item_no ==1)
[*the "save" button */
SaveFile();

else

Motif Programming Manual 111

Chapter 4: The Main Window

/*the "Quit" button */
exit (0);
}

The callback routines for menu items should be as simple as possible from a structural point
of view. A well-designed application should have application-specific entry points such as
OpenNewFile() andSaveFile() , as shown in the previous example. These routines
should be defined in separate files that are not necessarily associated with the user-interface
portion of the program. The use of modular programming techniques helps considerably
when an application is being maintained by a large group of people or when it needs to be
ported to other user-interface platforms.

A Sample Application

Let's examine an example program that integrates what we have discussed so far.
Example 1-3 modifies the behavior of our first example, which displayed an arbitrary
pixmap, by allowing the user to change the bitmap dynamically using a Motif
FileSelectionDialog. The program also allows the user to dynamically change the color of
the bitmap using a PulldownMenu. As you can see by the size of the program, adding these
two simple features is not trivial. Many functions and widgets are required in order to make
the program functional. As you read the example, don’t worry about unknown widgets or
details that we haven't addressed just yet; we will discuss them afterwards. For now, just
try to identify the familiar parts and see how everything works togéether.

Example 1-3: The dynapix.c program

[* dynapix.c -- Display a bitmap in a MainWindow, but allow the user

** to change the bitmap and its color dynamically. The design of the

** program is structured on the pulldown menus of the menubar and the
** callback routines associated with them. To allow the user to choose
** a new bitmap, the "Open" button pops up a FileSelectionDialog where
** a new bitmap file can be chosen.

*

#include <Xm/MainW.h>

#include <Xm/Label.h>

#include <Xm/MessageB.h>

#include <Xm/FileSB.h>

[* Globals: the toplevel window/widget and the label for the bitmap.
** “colors" defines the colors we use, “cur_color" is the current

** color being used, and "cur_hitmap" references the current bitmap
** file.

*

Widget toplevel, label

String colors[] = {"Black", "Red", "Green", "Blue"},

* XtVaApplnitialize () is considered deprecated in X11R@nStringGetLtoR () is deprecated in Motif 2.0,
and is replaced bymStringUnparse ().

112 Motif Programming Manual

Chapter 4: The Main Window

Pixel cur_color;
f* make large enough for full pathnames */
char cur_bitmap[1024] = "xlogo64";

main (int argc, char *argv(])

{
Widget main_w, menubar, menu, widget;
XtAppContext app;
Pixmap pixmap;
XmString file, edit, help, open, quit, red, green, blue, black;
void file_ch(Widget, XtPointer, XtPointer);
void change_color(Widget, XtPointer, XtPointer);
void help_cb(Widget, XtPointer, XtPointer);
Arg al[10];
Cardinal ac=0;

XtSetLanguageProc (NULL, NULL, NULL);

[* Initialize toolkit and parse command line options. */

toplevel = XtvVaOpenApplication (&app, "Demos”, NULL, 0, &argc, argv,
NULL, sessionShellwidgetClass, NULL);

/* main window contains a MenuBar and a Label displaying a pixmap */

ac=0;

XtSetArg(al[ac], XmNscrollBarDisplayPolicy, XmAS_NEEDED); ac++;

XtSetArg(al[ac], XmNscrollingPolicy, XmAUTOMATIC); ac++;

main_w = XmCreateMainWindow (toplevel, “main_window", al, ac);

* Create a simple MenuBar that contains three menus */

file = XmStringCreateLocalized ("File");

edit = XmStringCreateLocalized ("Edit");

help = XmStringCreatelLocalized ("Help");

menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",
XmVaCASCADEBUTTON, file, 'F,
XmVaCASCADEBUTTON, edit, 'E',
XmVaCASCADEBUTTON, help, 'H,
NULL);

XmStringFree (file);

XmStringFree (edit);

[*don't free "help" compound string yet -- reuse it later */

[* Tell the menubar which button is the help menu */

if (widget = XtNameToWidget (menubar, "button_2")) != (Widget) 0)

XtVaSetValues (menubar, XmNmenuHelpWidget, widget, NULL);

* First menu is the File menu -- callback is file_cb() */

open = XmStringCreateLocalized ("Open...");

quit = XmStringCreateLocalized ("Quit");

XmVaCreateSimplePulldownMenu (menubar, “file_menu", O, file_cb,

XmVaPUSHBUTTON, open, 'N', NULL, NULL,

XmVaSEPARATOR,
XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
NULL);

XmStringFree (open);

XmStringFree (quit);

[* Second menu is the Edit menu -- callback is change_color() */
black = XmStringCreatelLocalized (colors[0]);

red = XmStringCreatelLocalized (colors[1]);

green = XmStringCreateLocalized (colors[2]);

Motif Programming Manual 113

Chapter 4: The Main Window

blue = XmStringCreateLocalized (colors[3]);
menu = XmVaCreateSimplePulldownMenu (menubar, “edit_menu", 1, change_color,
XmVaRADIOBUTTON, black, 'k', NULL, NULL,
XmVaRADIOBUTTON, red, 'R', NULL, NULL,
XmVaRADIOBUTTON, green, 'G', NULL, NULL,
XmVaRADIOBUTTON, blue, 'B', NULL, NULL,
¥ RowColumn resources to enforce */
XmNradioBehavior, True,
* radio behavior in Menu */
XmNradioAlwaysOne, True,
NULL);
XmStringFree (black);
XmStringFree (red);
XmStringFree (green);
XmStringFree (blue);
* Initialize menu so that "black" is selected. */
if (widget = XtNameToWidget (menu, "button_0")) = (Widget) 0)
XtVaSetValues (widget, XmNset, XmSET, NULL);
* Third menu is the help menu -- callback is help_ch() */
XmVaCreateSimplePulldownMenu (menubar, "help_menu", 2, help_cb,
XmVaPUSHBUTTON, help, 'H', NULL, NULL, NULL);
XmStringFree (help); /* we're done with it; now we can free it */
XtManageChild (menubar);
* user can still specify the initial bitmap */
if (argv[1])
(void) strcpy (cur_bitmap, argv[1]);
[*initialize color */
cur_color = BlackPixelOfScreen (XtScreen (toplevel)),
[* create initial bitmap */
pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap, cur_color,
WhitePixelOfScreen (XtScreen (toplevel)));
if (pixmap == XMUNSPECIFIED_PIXMAP) {
puts ("can't create initial pixmap");
exit (1);
}
* Now create label using pixmap */
ac=0;
XtSetArg(al[ac], XmNlabelType, XmPIXMAP); ac++;
XtSetArg(al[ac], XmNIabelPixmap, pixmap); ac++;
label = XmCreateLabel (main_w, "label", al, ac);
XtManageChild (label);
* set the label as the "work area" of the main window */
XtVaSetValues (main_w, XmNmenuBar, menubar, XmNworkWindow, label, NULL);
XtManageChild (main_w);

XtRealizeWidget (toplevel);
XtAppMainLoop (app);
}
*
** Popdown routine for the File Selection Box
*
void hide_fsb (Widget w, XtPointer client_data, XtPointer call_data)
{

[* This also pops down the XmDialogShell parent of the

114 Motif Programming Manual

Chapter 4: The Main Window

** File Selection Box

*

XtUnmanageChild (w);
}

[* Any item the user selects from the File menu calls this function.

** It will either be "Open" (item_no == 0) or "Quit" (item_no == 1).

*

void file_cb(Widget widget, /* menu item that was selected */
XtPointer client_data, /*the index into the menu */
XtPointer call_data) /*unused */

static Widget dialog; /* make it static for reuse */
void load_pixmap(Widget, XtPointer, XtPointer);
int item_no = (int) client_data;

if (tem_no == 1) /* the "quit" item */
exit (0);

[* "Open" was selected. Create a Motif FileSelectionDialog wi/callback */

if (Idialog) {
dialog = XmCreateFileSelectionDialog (toplevel, "file_sel", NULL, 0);
XtAddCallback (dialog, XmNokCallback, load_pixmap, NULL);
XtAddCallback (dialog, XmNcancelCallback, hide_fsb, NULL);

}

f* This also pops up the XmDialogShell parent of the File selection box */

XtManageChild (dialog);

}

f* The OK button was selected from the FileSelectionDialog (or, the user
** double-clicked on a file selection). Try to read the file as a bitmap.
** |f the user changed colors, we call this function directly from
** change_color()to reload the pixmap. In this case, we pass NULL as the
** callback struct so we can identify this special case.
*
/
void load_pixmap (Widget dialog, XtPointer client_data, XtPointer call_data)
{
Pixmap pixmap;
char *file = NULL;
XmFileSelectionBoxCallbackStruct *cbs;

cbs = (XmFileSelectionBoxCallbackStruct *) call_data;
if (cbs) {
file = (char *) XmStringUnparse (cbs->value, NULL,
XmCHARSET_TEXT, XmCHARSET_TEXT,
NULL, 0, XmOUTPUT_ALL);
if (file == (char *) 0)
return; /* internal error */
(void) strcpy (cur_bitmap, file);
XtFree (file); /* free allocated data from XmStringUnparse() */
}
pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap, cur_color,
WhitePixelOfScreen (XtScreen (toplevel)));
if (pixmap == XMUNSPECIFIED_PIXMAP)
printf ("Can't create pixmap from %s\n", cur_bitmap);

Motif Programming Manual 115

Chapter 4: The Main Window

else{
Pixmap old;
XtVaGetValues (label, XmNlabelPixmap, &old, NULL);
XmDestroyPixmap (XtScreen (toplevel), old);
XtVaSetValues (label, XmNlabelType, XmPIXMAP, XmNlabelPixmap, pixmap,

NULL);
}
}

[* called from any of the "Edit" menu items. Change the color of the
** current bitmap being displayed. Do this by calling load_pixmap().

*
void change_color (Widget widget, * selected menu item */
XtPointer client_data, /* the index into the menu */
XtPointer call_data) /*unused */
{
XColor xcolor, unused;
Display *dpy = XtDisplay (label);
Colormap cmap = DefaultColormapOfScreen (XtScreen (label));
int item_no = (int) client_data;
if (XAllocNamedColor (dpy, cmap, colors[item_no], &xcolor, &unused) == 0 ||
cur_color == xcolor.pixel)
return;
cur_color = xcolor.pixel;
load_pixmap (widget, NULL, NULL);
}
#define MSG \

"Use the FileSelection dialog to find bitmap files to\n\
display in the scrolling area in the main window. Use\n\
the edit menu to display the bitmayp in different colors."

/* The help button in the help menu from the menubar was selected.
** Display help information defined above for how to use the program.
** This is done by creating a Motif information dialog box. Again,

** make the dialog static so we can reuse it.

*
void help_cb (Widget widget, XtPointer client_data, XtPointer call_data)
{
static Widget dialog;
if ('dialog) {
Arg args[5];
intn=0;
XmString msg = XmStringCreatelLocalized (MSG);
XtSetArg (args[n], XmNmessageString, msg); n++;
dialog = XmCreatelnformationDialog (toplevel, "help_dialog", args, n);
}
* This also pops up the XmDialogShell parent of the XmMessageBox */
XtManageChild (dialog);
}

116 Motif Programming Manual

Chapter 4: The Main Window

The output of the program is shown in Figure 4-5.

dpnapia
Flie Edit Help

X

Figure 4-5: Output of dynapix.c

The beginning of the program is pretty much as expected. After the toolkit is initialized, the
MainWindow and the MenuBar are created the same way as in the previous examples. Just
after the MenuBar is created, however, we make the following calls:

if (widget = XtNameToWidget (menubar, "button_2")) = (Widget) 0)

XtVaSetValues (menubar, XmNmenuHelpWidget, widget, NULL);

The purpose of these statements is to inform the MenuBar which of its CascadeButtons
contains theHelp menu. Setting the MenuBarXmNmenuHelpWidget resource to the
CascadeButton returned B$tNameToWidget() causes the MenuBar to position the
menu specially. Thélel