
john-devkit: specialized compiler for hash
cracking

Aleksey Cherepanov
lyosha@openwall.com

May 26, 2015

General

john-devkit

I is an experiment
I not yet embraced by John the Ripper developer community

I is a code generator

I on input: algo written in special language and a list of
optimizations to apply

I on output: C file for John the Ripper

John the Ripper (JtR)

I the famous hash cracker

I primary purpose is to detect weak Unix passwords

I supports 200+ hash formats (types)
I supports several kinds of compute devices:

I CPU, Xeon Phi
I scalar
I SIMD: SSE2+/AVX/XOP, AVX2, MIC/AVX-512, AltiVec,

NEON

I GPU
I OpenCL, CUDA

I FPGA, Epiphany
I currently for bcrypt only

Problems of JtR development

I scalability of programmers is low due to 200+ formats:
sometimes it is hard to apply even 1 optimization to all
formats:

I important formats get the optimization first
I each additional format to optimize eats more time

I support for each device needs a separate implementation

I readability degrades when various cases are handled by
preprocessor

Aims of john-devkit

I to separate crypto algorithms, optimizations, and output code
for various devices

I to include optimizations specific for hash cracking and John
the Ripper

I to provide better syntax

I to retain or improve performance

I to provide precise control over optimizations

I to support various devices: CPU, GPU, FPGA

I to give great output for great input (not for any input)

I to be simple

Early results

I john-devkit is not mature

I 7 formats were implemented separating crypto primitives,
optimizations, and device specific code

I good speeds (over default implementation in JtR):
I raw-sha256 +22%
I raw-sha224 +20%
I raw-sha512 +6%
I raw-sha384 +5%

I bad speeds (but expose interesting features of john-devkit):
I raw-sha1 -1%
I raw-md4 -11%
I raw-md5 -15%

I optimizations implemented: interleave, vectorization, unroll of
loops, early reject, additional batching (loop around algo)

I all formats got all optimizations without effort

Optimizations

Cracking process

I we are in attacker’s position
I we have a lot of candidates to try

I high parallelism

I high level algo:
I load hashes (once)
I generate some candidates
I compute hashes (or only parts)
I reject most of wrong candidates
I check probable passwords precisely (rare case)
I generate next batch of candidates and repeat

I formats are integrated into this process using OOP-like calls
over function pointers

Optimizations

I some optimizations do not affect internals of crypto
algorithms in any way and may be added to any algorithm

I additional loop around algo to process more candidates in 1 call
I OpenMP support

I other optimizations affect crypto algorithms
I vectorization (SIMD)
I precomputation

I e.g. first few steps in MD*/SHA* for partially changed input

I reversal of operations
I e.g. last few steps in MD*/SHA*, DES final permutation

I loop unrolling
I interleaving
I bitslicing
I and others

Bitslice

I splits numbers into bits and computes everything through
bitwise operations

I optimization focuses on minimization of Boolean formula (or
circuit)

I Roman Rusakov generated current formulas for S-boxes of
DES used in John the Ripper with custom generator

I it took 3 months

I Billy Bob Brumley demonstrated application of simulated
annealing algorithm to scheduling of DES S-box instructions

I so code generation is not new for John the Ripper (not even
speaking about C preprocessor)

Other solutions

OpenCL

I is the first thing I hear when I say about output for both CPU
and GPU

I has quite heavy syntax (based on C)

I knows nothing about John the Ripper

I does not have automatic bitslicing

Dynamic formats in John the Ripper

I were implemented by Jim Fougeron
I separate crypto primitives from formats

I so md5($p) and md5(md5($p)) have one code base
I work at runtime

I john-devkit aims to be able to do similar thing but at compile
time and with ability to optimize better

I so md5(md5($p)) would get more optimizations (at price of
separate code)

C Macros
I allow to do things, but are not smart
I an example of loop unroll in Keccak defining all useful

variants:
[...]

#elif (Unrolling == 3)

#define rounds \

prepareTheta \

for(i=0; i<24; i+=3) { \

thetaRhoPiChiIotaPrepareTheta(i , A, E) \

thetaRhoPiChiIotaPrepareTheta(i+1, E, A) \

thetaRhoPiChiIotaPrepareTheta(i+2, A, E) \

copyStateVariables(A, E) \

} \

copyToState(state, A)

#elif (Unrolling == 2)

#define rounds \

prepareTheta \

for(i=0; i<24; i+=2) { \

thetaRhoPiChiIotaPrepareTheta(i , A, E) \

thetaRhoPiChiIotaPrepareTheta(i+1, E, A) \

} \

copyToState(state, A)

[...]

X-Macro

I is a tricky way to use macros, most likely with a separate file
to be included multiple times:

I the file has code with variable parts
I these parts are defined before #include

I so #include provides a ”template engine”
I example from NetBSD’s libcrypt:

[...]

#define HASH_Init SHA1Init

#define HASH_Update SHA1Update

#define HASH_Final SHA1Final

#include "hmac.c"

john-devkit technical details

From Python to C in john-devkit

I code in intermediate language (IL) is generated from
algorithm description

I the code is modified by several functions chosen by user

I C code is generated from the modified the code using a
template

Intermediate Language (IL)

I while algorithms are written in Python with modified
environment, john-devkit uses flat representation of code using
its own instruction language called intermediate language

I some instructions of this language express constructions
specific to hash cracking

I for instance, state variables of hash functions are defined by
special instruction

I intermediate language is very simple

I intermediate language is intended to be rich to express
common constructions natively to simplify optimization

Example of specific instruction

I separate instruction is used to define state variable, so
john-devkit uses a filter to replace initial state with values for
SHA-224 having code for SHA-256:

def override_state(code, state):

consts = {}

for l in code:

if l[0] == ’new_const’:

consts[l[1]] = l

if l[0] == ’new_state_var’:

consts[l[2]][2] = str(state.pop(0))

return code

Optimizations specific to password cracking

I use knowledge not available to regular compiler:

I code can be moved between some functions of format
I the functions have different probability to be called

I so main computation is always called
I check of probable candidates is very rare

I it almost implies a successful guess (for strong hashes),

I also hashes are loaded only once while there are millions of
candidates being hashed every second

Specific optimization: early reject

I hashes are long

I some output values may be computed a bit quicker than
others

I a 32-bit or 64-bit one value is usually enough to reject almost
all wrong candidates

I so john-devkit drops instructions for computation of other
output values in main working function and places full
implementation into function for precise check of possible
password

I main implementation is vectorized while full implementation is
scalar because it checks only 1 candidate

Specific optimization: steps reversal

I some operations can be reversed
I if r = i + C, we know r, and C is a constant, then i = r - C
I John the Ripper learns ”r” when it loads hashes

I john-devkit can sometimes reverse operations, replacing
”forward” computation during cracking (applied per candidate
password) with reverse computation at startup (applied per
hash)

Full Python

I is available to define algorithms

I the environment has some objects with overloaded
instructions to produce code in IL in a global variable instead
of running it right away

I but any Python code can be used
I it is evaluated fully before further steps of code generation
I but to produce good output some additional markup may be

needed

Full Python, example

I a part of MD4 definition adapted right from RFC 1320:

def make_round(func, code):

res = ’’

func = re.sub(’([abcdks])’, r’{\1}’, func)

parts = re.compile(r’\[(.)(.)(.)(.)\s+(\d+)\s+(\d+)\]’

).findall(code)

for a, b, c, d, k, s in parts:

res += func.format(**vars()) + "\n"

return res

exec make_round(’a = rol((a + F(b, c, d) + X[k]), s)’,

’’’ [ABCD 0 3] [DABC 1 7] [CDAB 2 11] [BCDA 3 19]

[ABCD 4 3] [DABC 5 7] [CDAB 6 11] [BCDA 7 19]

[ABCD 8 3] [DABC 9 7] [CDAB 10 11] [BCDA 11 19]

[ABCD 12 3] [DABC 13 7] [CDAB 14 11] [BCDA 15 19]

’’’)

Conclusions

I john-devkit demonstrates practical application of code
generation approach

I john-devkit is a real way to automate programmer’s work at
such scale

Thank you!

I Thank you!

I code: https://github.com/AlekseyCherepanov/john-devkit

I more technical detail will be on john-dev mailing list

I my email: lyosha@openwall.com

