Intro to Computer Programmming

(With Fig and Python)

License: Creative Commons CCO 1.0 (Public Domain)
http://creativecommons.org/publicdomain/zero/1.0/

Why learn computing?

In an increasingly specialized world, we could be
forgiven for asking, "aren't there people to do
this stuff for us?" The answer is there are, and if
not for those people we might better understand the
tools we use on a daily basis.

Many of us live in an environment so advanced, it's
as if there is a specialist for almost anything we
can imagine.

Yet we celebrate each time a medicine we need
becomes available over the counter, so we can be
our own doctor; we ask friends and family for
advice on things too personal or trivial to ask
anyone else; we even look for cheaper ways to
refill our own printer ink.

Specialists matter; and yet often we are terribly
happy to find ways around hiring one.

When it comes to computers, most people are happy
to leave all their work to tools written entirely
by large companies. Then they stumble through the
haystack of features they dont need, to get to the
relatively few that are vital to the task at hand.

All in all, there's nothing wrong with this. But
over time, options are replaced with requirements,
and tools with ecosystems and lock-in, and you are
pushed

ii

along a path you really don't want to go. This is
the road of relative helplessness, where even
learning about the tools you need every day
includes nothing about how they work; only how to
make them do something until they're redesigned
once again to work slightly differently.

Sure, you can pay to have custom software made, but
it costs a fortune you probably don't have. And you
could use software that is designed more for people
who are ready to take charge of their most vital
tasks, but it isn't heavily advertised (and you
have more questions than answers when it comes to
those things.)

Well, where do you get the answers? If you take the
usual computer course, these things may be buried
somewhere in the footnotes of a string of classes a
year or more long. You may learn (and spend time
learning) so much more than you set out to-- or
have time for.

It's true, there are no shortcuts to necessity; but
you can cut through some of the things you don't
actually need. This cuts both ways, because you
still have to learn the things you actually need;
and too often those things are simply not being
taught.

Today you will hear that kids need to learn to
code. If theyre not going to do it for a living,

iii

exactly what is the benefit?

I will go so far as to say that learning to

code is the shortest route to computer literacy.
This is for two reasons: first, it supplies a solid
foundation. Also, it gives you valuable insights
into processes that make up essentially 100% of
what happens when you are using a computer.

The thing about coding is you have to experience it
to really understand it. A pilot moves a handle in
front of them and twiddles controls, while a
painter smears liquid onto cloth all day; but to
learn to do these things so they produce the
desired results requires either an unusual level of
instinct and trial and error, or an excellent
education; sometimes it takes both.

Not everyone has the instinct or the patience to
teach themselves, and many more wouldn't know where
to begin. But I have spent the past three decades
teaching myself computing and how to write code,
and like so many of us at the time, one of the
first things I learned was the BASIC programming
language.

I spent years looking for a suitable replacement
for Basic, weighing things like how easy it was
(preferably not even required) to edit existing
code to work on newer dialects, how easy it was to
write new programs, how easy the language is to

iv

explain, and how fast and fun the process is.

I finally settled on Python, a language whose
author now works for Google and whose name is
inspired by the british comedy troup.

The reason I was looking for a replacement for
Basic, is that Basic development tends to go in one
or more of two general directions:

Either it stays true to its design but lacks
relevance in its ability or application; and/or it
does a great balancing act between tradition and
modernity, then finally succumbs to the authors'
desire to build the next "easy" game engine,
abandoning its original userbase or dragging them
through too many irrelevant changes.

Or, you can use Python; which is a lovely language
to teach yourself, but installing it (properly) in
Windows is a pain (it comes pre-installed on Mac
0S/X and most GNU/Linux platforms) and some people
get turned off by its case-sensitivity or rules
about indenting.

But before we go any further into that topic, let's
see what it was like to code in Basic in 1988:

10 CLS
20 COLOR 5
30 PRINT "Hello, world!"

Notice the line numbers on the side? A relic of the
Dartmouth Time Sharing System (DTSS) that ran the
original version of BASIC in the 1960s. Today you
could run the same program like this:

cls
color 5
print "Hello, world!"

ALL CAPS is the convention in a number of mid-to-
late 20th century programming dialects, including
COBOL and anything running on an Apple][without
lower-case characters available. Fortunately today,
all-lower is something you're more likely to see
than all-upper.

Let's look at the three lines of that Basic program
source:

cls

This command means "Clear [the] screen." It blanks
the screen and moves the cursor back to the upper-
lefthand corner.

color 5

This one changes the text color to attribute 5,
which in this case means that any text that is
output next will be in the color magenta.

vi

The colors available by default in DOS (the usual
home of Basic in the 1980s) can be found in the
following table:

0 Black 8 Grey

1 Blue 9 L. Blue
2 Green 10 L. Green
3 Cyan 11 L. Cyan
4 Red 12 L. Red

5 Magenta 13 Pink

6 Brown 14 Yellow

7 White 15 B. White

Higher graphics modes allowed a larger number of
colors, but 16 was a good number sometimes.

The third line of that three-line program is:

print "Hello, world!"

This line makes the program one of the most famous
types of program there is: the "Hello, world!"
program.

A program that puts "Hello, world!" on the screen
is often a first (however useless) example of how a
programming language works. Sometimes you can tell
how complicated a language is going to be to learn
based on this program. (Often you can't tell from a
single line like that.)

vii

In summary, the Basic program we listed blanks the
screen, changes the text color, and puts the words
"Hello, world!" on the screen.

Today, you would probably just create a website or
other document containing these words; programming
however, allows you to do so much more than write

things down.

Incidentally, the reason the "put things on the
screen" command is named print is related to the
standard output technology of the 1960s and 70s:
the teletype.

Like a giant typewriter, you would type things onto
paper (the computer would know which keys you
pressed) and the computer would print its responses
afterwards, underneath your input. To this day,
text too long to fit on the screen often "scrolls"
to simulate the paper on a teletype machine.

Python 2.x and Basic have the same print command:
print "Hello, world!" 'Basic

print "Hello, world!" #Python

The top line concludes with a comment ' which is
preceded by an apostrophe, to let the computer know
it can ignore the rest of the text on the line. In

Python and a few others, a hash # does the same.

viii

In Python 3, the command is print("Hello, world!")
because parentheses for the print statement are
now required.

Basic went online in 1964 at Dartmouth College, and
was designed specifically to make computer
programming accessible to everyone. From its
beginning as a way for non-computer specialists to
make use of computers, Basic spread to secondary
schools and even elementary school use.

Another language that was developed in the 1960s is
Logo, best known for its triangular graphics cursor
and Spirograph-like designs that allow children and
adults to learn programming by exploring simple
commands and tasks. Unlike Basic, Logo lends itself
foremost to graphics while more "practical”
applications are relatively difficult to teach.

However, in some ways Logo has survived Basic in
educational use; being spun off into "Drag-and-
drop" programming environments such as Scratch,
TurtleArt and Minecraft.

While these examples may not all be direct
descendants of Logo, there is a clear evolution
from the commands and exploratory nature of Logo to
easily discoverable and graphical programming for
complete beginners. TurtleArt in particular
follows Logo in design, purpose and output, while
Scratch can be seen as an obvious continuation and
extension of tasks made trivial by Logo.

ix

One of the problems I find with these environments
is that they are so abstract-- they do teach the
concepts of programming, but without making the
user very aware that they are producing code; It is
difficult to instruct an adult in Scratch without
their reasonable assumption that they are only
automating a cartoon character.

In fact, there is practically nothing you can do
with a modern high-level scripting language that
cannot also be done with Scratch. But this is not
what Scratch is designed to make easy. My interest
is in making code itself accessible, not only
teaching core concepts through a friendly
interface.

From the example of Basic, we know that children
can learn to write code from an early age in a
school setting. The concept of programming in terms
of a language and not just automated tools is still
valuable; as is the Scratch platform. But since
Basic is (in this author's opinion) overly
complicated versus what it was in the 60s and 80s,
I set out to create a language with some of the
strengths of Basic, Logo and even Python alike.

Originally called "fig basic," the name is now
shortened to "fig" and is implemented in Python.
While one of the primary goals is to teach basic
programming concepts, fig is also designed to
acclimate the user or student to a text-based
coding environment. Instead of avoiding the

environment that is arguably ideal for hard copies
of program source, for logging into a remote
machine including the single-board computers like
the Raspberry Pi or Beaglebone and Arduino boards,
fig caters to that environment and encourages its
use.

But since one of the primary goals is to help the
user become familiar with core programming concepts
as quickly and simply as possible, this will be a
focus in the pages to follow. Specifically, fig is
based on the following 7 (and fairly universal)
concepts:

Variables

Input

OQutput

Basic math

Loops

Conditionals

Functions (subroutines)

* X K X X X ¥

The goal of coding in fig can be simply to be able
to write code in fig; however, if you can code in
fig, it can be a tool for learning more advanced
languages like Python, or most languages including
JavaScript, Bash, PHP, or even C.

More than that, I believe that even proficiency
with Basic will lead to a more instinctive

X1

understanding of computing (let alone programming)
in general. Fig is one attempt to make something
more "Basic" than Basic; which I encourage all
coders to try.

Different languages have different strengths, and
weaknesses. Most languages you will find in use

have enough functionality to simulate most other
languages and even simulate computer architecture
itself; this is known as being "Turing complete."

"Complete" in this case does not mean trivial; you
can use Scratch (by far one of the friendliest
programming environments ever devised) or Minecraft
to run text-coded programs written in other
languages; but getting these environments to behave
that way would be anything but easy. Often the
"easy" way to achieve a more complicated task is
with more complicated software, or a more
sophisticated language.

You still have to start somewhere, and "where" is
not only the subject of a great deal of debate, but
will remain fertile ground for innovation for many
years to come.

Xii

Chapter 1: Variables

To fully appreciate the power and feel of coding,
it is necessary to write or at least "run" code.
You can get a glimpse of this from watching someone
else run code, but you will not experience the
confidence or joy of being able to tell the
computer something and have it do what you say
unless you actually do it.

One of the goals of fig is to avoid "formulas" by
default. In fact you can create all kinds of
formulas using fig, and if it feels too limiting
you can add Python code inline to a fig program.
Python allows full formulaic expressions, of the
kind fig deliberately avoids.

By allowing this kind of extension, fig is both
friendly and powerful. In fact you could simply
start with Python if you had the interest in doing
so, but fig will provide a number of friendly
shortcuts that allow you to quickly progress
without getting slowed down by too many
implementation details.

Variables are one of the most universal aspects of
programming, and unlike the Basic example in the
previous section, fig requires you to either use
Python or a variable to create a "Hello, world"
program.

A few keywords in fig are designed to stand alone,
but in general most lines of fig code

begins with a name supplied by the user. You can
use a letter, like "z" or the word "Now" (fig is
not case-sensitive, so "Now" and "now" and "NOW"
refer to the same variable) but this "main
variable" is a feature of fig that often saves you
the trouble of referring to it several times in the
same line.

To return to our Basic example:

print "Hello, world!"

Fig is designed to be read left-to-right, and does
not use parentheses (at least they do not have
syntactic importance; they are decorative, and
strictly for the user to determine the significance
of.) In fig, the above line would start with a
variable. For the moment, let's just use "Now":

now "Hello, world!"

In Basic, this would be now$ = "Hello, world!" and
in Python it would be the same, except for the $
after the word "now."

In fig this creates (or resets) a variable named
now — which also gets set to a numeric value of
zero (0.)

The next part of the line changes the value from 0
to a "string" of characters in quotes, in this case
the phrase "Hello, world!" So

far, nothing visible is done with this information.
The program sets the value of a single variable,
and does nothing else. But it goes left-to-right
very clearly:

* The first bit of text names and creates a
variable.

* The second bit of text changes the information
(the value) that is stored by the variable.

* The next thing we add to the line will probably
do something with that variable, too.

now "Hello, world!" print

Okay, so now we've added the print command, same as
Basic and Python. And so our variable now is output
("printed") to the screen.

You can do other things with the now variable; you
could make it all upper-case, before or after it
prints, using the ucase command:

now "Hello, world!" print ucase
This changes the value to upper case, but

(left to right) it prints before that happens, so
no change is yet visible. This:

now "Hello, world!" wucase print

...changes the value before using print and so you
can see the change in the output.

Fig is different than Basic in that the most
obvious or typical example (Hello, world) is made
purely of output statements in many languages. In
fig, you begin with variables right away.

This is primarily done for friendliness, but it
also means that your first program will likely
contain 2 of the 7 core concepts, (variables and
output) instead of just output. Although this is
functionally similar or identical to a formula, I
think it's a better introduction to what
programming is really about.

Fig doesnt actually avoid the functionality of a
formula, but the parenthetical structure that makes
it look "too much like math" to the math-phobic. It
is still mathematical in nature, but closer to
natural or spoken language in syntax and structure.

Copying variables is much like setting them.

If you want to copy the value of the variable now
into say, another:

now "Hello, world!" ucase
another now

So now is still "Hello, world!" but so is another,
and you can use/change each variable
independantly (or use one as a backup, to check
later if the other has changed.)

Each of the two lines above start with a "main
variable" and the program code on each line works
with that variable:

* Putting a value after the main variable (this is
optional) will set it

* Putting another variable (also optional) after
the main variable will copy its value into the main
variable.

* Some commands will read/use, but not change the
main variable; print is an example.

* Some commands will write/change the main
variable, but not read it.

* Some commands will read and change the main
variable-- ucase is such an example.

* Some commands will not read or change the main
variable, such as cls; it does the same thing that
cls in Basic does.

Most commands in fig share a line / begin a line
with a main variable, which is not optional. When
fig gains a new feature, it is generally a "shared-
line" command, or not a program keyword at all.

However, a few keywords do not share a line;

they get their own line and do not require (or use)
a main variable; commands/keywords of this type are
not generally added to fig.

These "own-line" commands are:

graphics / textmode

for / forin

while

break

pass

function

python

fig / next / nextin / wend

iftrue / ifequal / ifmore / ifless / else

try / except / resume

These commands are so important, they get their own

line-- if only to stand out as part of a command
block (a multi-line series of commands) or as a

command that significantly changes the behavior or
mode of the program.

All other commands require a line that starts with
a main variable:

now cls # cls is a command, now is main var

In the above example, # is a special case-- it
tells fig to ignore the rest of the line so that it
can be used to "comment" the program. Technically #
is a command or keyword, but it can be on a shared-
line with a main variable, or begin a line, or be
on a line by itself.

However, it also isnt really part of the program;
it just begins a note inside the program code.

If you put a # in front of a line of working code,
it will turn that line into a comment and thus
disable the line or stop it from running as part of
the program. This can be useful for testing the
functionality of a single line or group of lines,
and using it this way is called "commenting out" a
line.

What else can be said about variables? So

far, we have only demonstrated keywords that work
without any additional details in the way they are
written: most keywords, like cls and print and

ucase are simply tacked on to the rest of a line,
at the right of the line. The program goes from
left to right, and then to the next line.

Some keywords go on their own line, such as
textmode or while, and do not share a line with a
"main variable" to start, or with other commands.
But we haven't talked about parameters yet.

Apart from the start of a line, or the second
"word" in a line (where it is used to copy one
variable's value into another) the place you are
most likely to see a variable is as the parameter
for a command that has them.

Most fig commands have zero parameters, or one
parameter. A few have more than one, but each
command has the same (fixed) number of parameters
in every context, except for function (used to
define new fig commands.)

Therefore cls always has zero parameters; while
always has zero parameters; ucase always has zero
parameters, and textmode always has zero
parameters. The keywords left and right always have
a single parameter; it defines how many characters
you want to keep from one side of a string.

To demonstrate:

now "hello" print left 2 print

First now is created, set to "hello", then printed,
then left 2 is run before the result is printed
again. The output is:

hello
he

We've used four spaces to separate each command,
though one space is sufficient.

The left command includes 2 as a parameter, as the
number of characters to take from the side of the
string that's stored in the main variable. It then
changes the main variable to the leftmost 2
characters.

Since print is called before and after left 2 runs,
it displays the value of now before and after as
well.

Like most commands that have parameters, left does
not have to use a "constant" value like 2, but can
use a variable instead:

howmany 2
now "hello" print left howmany print
9

Using variables as parameters allows the program to
have more control at run-time (it allows it to be
more flexible and powerful) and is somewhat the
essence of things being "programmable." It allows
the program to take input and have it affect the
output, even before we get into conditionals.

As mentioned, the extra spaces are optional command
separators (purely for the visual aspect of the
code) and each of these lines are valid and do the
same thing:

now "hello" print left howmany print
now "hello" print left howmany print
now "hello" : print : left howmany : print

now "hello" ; print ; left howmany ; print

The colon : is the traditional command separator in
Basic, and in C and Python and JavaScript, a
semicolon ; is used.

It is worth talking about variable types (or rather
data types, since any variable in fig could hold
one or more type of value) but the subject is
simple enough that the point of mentioning it might
not be obvious:

* string type: data "in quotes" is a string of
characters, which may include numbers but they will
not be treated as a numeric value. "5" plus "5"
returns "55"

10

* integer type: an integer, also known as a "whole
number," is a numeric and has no decimal point. 5
plus 5 returns 10

* float type: numeric and includes a decimal point;
allows decimal values. Like Basic, fig handles
floats and integers pretty seamlessly, but strings
have to be converted using the val command to be
treated as numerics. 5 plus 5.7 returns 10.7

* array type: while variables hold one value at a
time, a variable can be converted to an array
holding the same value, plus others.

now 5 arr # create an array holding 5
now 5 arr times 100 # array holds 100 5s

Normally the times command is used for basic
multiplication, but when used on a string it sticks
several copies of that string together into one:

p "hello" times 4 # "hellohellohellohello"

When you start a line with a main variable that
you've already used, it sets it to zero:

p print # displays 0
p 5 print # displays 5
p print # displays 0 again
p plus 7 print # displays 7

11

Arrays are the exception to this rule. Since they
might hold a lot of information, they do not get
cleared on use as a main variable unless you
explicitly clear them:

displays [5]
displays [5]
displays 0

p 5 arr print
p print
p 0 print

5 plus "5" plus 5.0 returns [5, '5', 5.0]

Arrays in fig are the same as arrays in Python,
known in Python as "lists." Lists in Python (like
in fig) are not restricted to a single type per
array; they can hold a mix.

Apart from converting a variable to array using
arr, fig has several ways of creating an array:

* the split command can split a string into array
elements.

* arropen and arrcurl load the lines of a file or
webpage into an array, respectively.

* arrstdin creates an array from information
"piped" in from another program. This allows you to
mix the functionality of various programs together,
even if they aren't designed as a group or suite.

12

* command creates an array of parameters the fig
program was called with. These are not parameters
of individual commands, but of the program itself.
(This allows you to put together your own
"language" from fig programs and others, such as
bash utilities)

* inline python can be used to create arrays

* arrshell runs command line programs, and returns
the output of those programs as an array.

13

Chapter 2: Input

Some functionality is a matter of both input and
output; in fig, most or all functions can be
separated into or at least categorized as one or
the other.

For example, the previous chapter mentioned
arrshell, which is categorized as an input command
because it takes all the output of a command line
shell and puts it into a variable. Even if the
shell session does other things, the purpose of
arrshell is to collect and store information in the
program itself.

However open is categorized simply as a function,
because whether it opens a file for input or output
depends on the value of its single parameter. It is
not an input command when it opens as output, and
it is not an output command when it opens as input,
but it is always a function so it is categorized
that way.

You can use the function command to define routines
or commands that perform input, or output, or both
or neither. The function command is very obviously
categorized as a function (related to functions.)

Now that we've meandered over that distinction,
let's talk about fig commands that are clearly
related to input.

14

x timer

sets x to the number of seconds past midnight. It
gets the value using the computer's internal clock.

x arrstdin

sets x to an array of all information streamed into
the program from whatever program called it. This
can be used to "chain programs together" including
programs written in other languages, by other
people. In Unix-like operating systems and even DOS
and Windows, this is called "piping" information
from one program to another.

To pipe information from another program to a fig
program, use arrstdin to get the information into
an array.

To pipe information from a fig program to another
program, simply use print on the fig side, and
whatever functionality accesses stdin on the other
end. On the command line:

#optional --> --> #optional
non-fig-program | ./fig-program.fig.py | other

The ./ means "run this from the current folder" and
is meant for calling programs in GNU/Linux, BSD,

and 0S/X.

15

x lineinput

sets x to the string that is typed in on the
keyboard. The program waits for Enter to be
pressed.

x "text.txt" open "r"
y flineinput x

opens "text.txt" for input and reads a line using
flineinput which gets stored in the variable y. If
you had an incredibly large file and you didn't
want to open all of it at once, this would be one
way to do that. Otherwise, arropen is simpler:

x arropen "text.txt"

opens "text.txt" into array x. really, that's all
you do. If you used open "

r”, run "text.txt” close

x time
X date

While timer gets the seconds past midnight, time
gets the HH:MM:SS time and date gets the MM/DD/YYYY
date. Unlike timer which is numeric, both time and
date return strings.

16

x arrcurl "https://duckduckgo.com"

downloads the source of the page for
https://duckduckgo.com and loads it into an array
just like arropen would for a local file.

X sleep 2
waits until 2 seconds have gone by to continue
running the program. Does not affect the main

variable, and is only categorized as "input"
because it gets information from the clock.

X command

sets x to an array including each parameter the fig
program was called with. Didn't open the program
you wrote with any parameters? Then this command
isn't going to do much for you.

If you are on the command line, this is how you
call your program with parameters:

name-of-your-program.fig.py parl par2 par3

The array will contain "parl", "par2" and "par3".

17

Chapter 3: Output

Where input commands get information from a device
(or file, or connection, or from some part of the
computer,) output commands send information to a
device, or file, or connection, or to some part of
the computer.

Obvious output devices are the screen and speakers.
Sending a file to the printer counts as output,
although the printer itself also sends information
back to the computer, making it an input/output
device.

A touchscreen is a separate device than the screen
itself and an input device, despite the fact that
the display directly behind it is for output. These
are technical distinctions and not always
important, but they are relevant to programming.

x "hello there" print

sets x to a string and sends x to stdout, which
generally means the screen (or window.)

x "hello there" prints

same as the previous line using print, except
prints stays on the same line instead of advancing.

18

X "text.txt" open "w"
y "ok" fprint x
now X close

You would normally see these used separately.

The first line sets x to a string containing the
path and filename of the file to save information
to; then it opens the file for writing (the "w".)

The fprint command writes the value of the main
variable to x, which is still holding the filename.
In this case, the string "ok" is saved.

The close command will update / save / stop writing
to a file that was opened before. It closes
whatever file is specified by the main variable.
Don't close the file until you're done fprinting
(each and every line you want to save) to it.

Most languages use a filenumber or handle to track
an open file; which is a different thing than a
string or a numeric variable. I've always thought
that is weird or unfriendly, but the solution in
fig seems fairly unique (and unfamiliar if you're
used to Basic or Python.)

Fig keeps the (necessary) handles in a special type

of array called a dictionary, with strings as the
key to each handle. You don't worry about any of

19

this, you just make certain to use the same string
to close the file that you used to fprint (or
flineinput) and open the file in the first place.

In other words, if you use the string "../text.htm"
with the open command, you will need exactly the
string "../text.htm" to read or write or close that
file. It doesn't matter if it's a constant (written
out) or two variables holding the same value, as
long as it's a perfect match.

For what it's worth, ending the program with end or
system (or just letting the program stop normally)

is supposed to close all open files.

X cls

clears (and goes to the top left of) the screen.
x display

first time called, turns off auto-update of
graphics (default is auto-update.)

If already called once, updates graphics (only
affects real graphics mode, not textmode graphics.)

20

textmode

forces text-mode graphics; don't try to display
graphics commands in a graphics window; display
them using ansi escapes.

graphics

default mode; open a graphics window for running
graphics commands. If graphics window fails
(perhaps optional pygame is not installed) then

falls back to textmode.

If textmode was used explicitly, graphics command
turns real graphics back on.

x line 57 10 20 14

draws a line from (5, 7) to (10, 20) in yellow.

X pset 57 10

draws a point at (5, 7) in light green.

X locate row column

move to (row, column) on text screen.

21

X colortext

changes text

Black
Blue
Green
Cyan
Red
Magenta
Brown
White

NoOoOouhsh, WNREO

x highlight
changes text

0 Black
1 Blue
2 Green
3 Cyan

5

color to magenta:

8 Grey

9 L. Blue
10 L. Green
11 L. Cyan
12 L. Red
13 Pink

14 Yellow
15 B. White
0

background to black:

4 Red

5 Magenta
6 Brown

7 White

22

Chapter 4: Basic Math

y 5 plus 12 times 3

adds 12 to 5, then multiplies times 3.

Fig always goes left to right. If you want to do
parentheses and order of operations, use Python:

y 0 # most important part right here
python
y = (5+ 12) * 3 # 51; different than:
y=5 +12 * 3 # 41; (order of ops)
fig

set y in Python, to 5 + 12... then * 3

Then reset y as 5... + (12 * 3) or: 5 + 36

Inline Python, unlike the rest of the fig language,
requires accuracy in the indentation. Lines begin
at 4 spaces from the left, and each indent
increases by 4 spaces.

Python is not actually part of the fig language;
but fig allows you to include snippets of Python in
your fig programs. Since fig translates to Python,
those sections will be included un-translated.

23

Notice that before y is used in the Python code,
fig sets y to 0 before switching to inline Python.

y 0

ensures that fig knows y is a valid variable in
use, so that after Python uses it, fig already has
it registered and will use the value Python left it
with (instead of thinking y is unused.)

You can avoid this extra step if you know that y is
already:

* used as a main variable in fig at least once
* has a value that the Python code can use or reset

y o
python
y=5
fig
Xy minus 2.5 print

sets y to 0, uses Python to change it to 5, sets x

to y minus 2.5, (which is 2.5) and prints x.

plus and times also work on strings and arrays.

X minus 5

24

sets x to -5. X 255 hex

y 200
x y divby .5 sets x to "Oxff"
x 50
sets y to 200, copies y to x and divides by .5 y 70
r 40
x 25 oct print x2 3.14 cos times r plus x int

y2 3.14 sin times r plus y int

Why do programmers mix up Halloween and Christmas?
sets x2 to the cosine of 3.14 radians, multiplies

Because oct 31 is dec 25. that by r, and adds x then converts to an integer.
Decimal Octal Hex Then sets y2 to the sine of 3.14 radians,

0 15 0 17 0 f multiplies that by r, and adds y then converts to
1 16 1 20 110 an integer.

2 17 2 21 2 11

3 18 3 22 312 If instead of 3.14, you use another variable that
4 19 4 23 4 13 loops from -3.14 to 3.14, this will plot a circle
5 20 5 24 5 14 with the center (x, y) on points (x2, y2).

6 21 6 25 6 15

7 22 7 26 7 16 x 1 atn times 4

8 23 10 27 8 17

9 24 11 30 9 18

10 25 <-- 12 31 <-- al9 <-- sets x to the arctangent of 1 and multiplies that
11 26 13 32 b 1la by 4, which gives Pi to 15 decimal places in Python
12 27 14 33 c 1b 3. (11 in Python 2, in both the same as math.pi).
13 28 15 34 d 1c

14 29 16 35 e 1d x 3.14 tan

25 26

sets x to the tangent of 3.14 radians.

x 2.5 int

sets x to 2.5 and converts to an integer.

X -5 sgn

changes x to either -1 (if the value is below 0) or
1 (if the value is above 0.) if the value is 0, it
stays the same.

In this case, x becomes -1.

x 25 sqr

sets x to 25, and then to the square root (5).

X 255 mod 7

sets x to 255, then to 255 modulus 7.

x 1024 topwr 2

sets x to 1024, then 1024 to the power of 2.

27

Chapter 5: Loops

This is really the first chapter about "program
blocks."

So far, we've only covered one type of block: a
snippet of inline Python:

python
y = (5 + 12) * 3 # 51; different than:
y=5 +12 * 3 # 41; (order of ops)
fig

This block begins with the python command, and the
end is marked with the fig command.

The defining characteristic of a block is probably
that it starts and ends with a pair of commands.

In fig, you can end any block with the fig command.
But semantically it makes the most obvious sense
when it ends a python block, because python means:
"here is python code" and fig means: "get back to
fig code."

All loops are program blocks, also known as
“command blocks."

Between the start and end of the loop blocks are
the lines of code that will "loop."

28

Fig has three kinds of loop: for, while and forin.

The simplest loop is the while loop. Let's make a
single line of fig code to print a zero:

X print

now let's start a while block by putting it on the
line before the one we just wrote:

while

X print

We need to mark the end of the loop, or fig will

loop every line that comes after the while command:

while
X print
fig

There is nothing wrong with this block; it's
perfectly formed. However, while blocks have their
own end marker, which you can optionally use in
place of the standard fig command. It does exactly

the same thing, but helps note which block it ends:

while
X print
wend

29

So you can end a while block using fig, or you can
end it using wend (it stands for while-end.) The
choice is up to you, they are interchangeable.

The while command exists in Basic, Python and even

C. In Basic and Python, you can use while True: or

while 1: to keep looping until the loop breaks with
break or (in Basic) exit while.

Since for more than half a decade, I've used while
1 in Python instead of worrying about setting up
the loop with a condition, fig is designed this way
for simplicity.

while
X print
wends

prints 0 (or an array stored in x, where
applicable) repeatedly until the user breaks with
ctrl-c on the keyboard.

The other way to break out of a while loop is using
the break command (same as in Python) but without a
conditional (those are covered in the next chapter)
a break command will either prevent the loop
itself, or even prevent the lines inside it from
running:

30

while

x "this only runs once-- no loop" print
break

wend

The break command stops the loop right after it
runs the code inside it once, so it is as if the
loop isn't there at all; only the line that prints.

while

break

x "this line doesn't run at all" print
wend

Moving the break command to before the other line
inside the loop exits before the lines after it can
even run-- so this entire block does nothing other
than waste a tiny amount of time.

In order to make a while loop do something useful,
you probably want to put the break command inside a
conditional block. We'll get to those in the next
chapter.

A forin loop will loop through the items in an
array, doing the same code in each one. These items
can be lines of a file, lines in a website, letters
of a string, pieces of a string made into an array
by split-- any array.

31

Let's do words in a string, by splitting the string
into an array by spaces:

names "Ady Susan Kerry Morgan Lori" split names " "
forin p names

now p print

fig

fig will split the string by " " to make an array
called names, and print each one:

Ady
Susan
Kerry
Morgan
Lori

We end the forin loop using fig again, but just as
while has wend for (optional) semantic use, forin
has nextin (or next). Use whichever you prefer.

forin p names
now p print
nextin

If you want to loop through numbers, you can use a
for loop. A forin loop will run the same code
repeatedly, once per array item, and a for loop
once per number in a range-- for has 4 parameters:

32

* the variable for will set with the value of the
current item (just like a forin loop.)

* the number to start with
* the number to stop at

* the "step" or number to increase on each loop

In other words:
for v start stop step
Suppose we want to bring variable size from 5 to
12, doing every whole number in that range:
for size 512 1
now size prints " " prints
next
will output: 56 7 8 9 10 11 12
0dd numbers from 33 to 177
for s 33 17 -2

now s prints
next

prints

33 31 29 27 25 23 21 19 17

A funny quirk of Python is that it insists on
integer (whole number) steps in numeric ranges. In
Python (which is what fig translates to,) a for
(range) loop isn't going to do a decimal step.

for v start stop step # step has to be integer
now v print
next

However, if you use a constant for the step instead
of a variable, fig will let you do a float step:

start 5

stop 10

for v start stop 2.5 # step is constant 2.5
now v prints " " prints
next

outputs: 5.0 7.5 10.0

This builds a different kind of loop (actually a
custom while loop) in the Python translation,
instead of a for loop.

In the next chapter, while loops will become more
useful when they can start and stop based on
conditions. Certainly you can use them anyway, in
any situation where using ctrl-c on the keyboard to
stop looping is suitable.

34

Chapter 6: Conditionals

We've covered a couple kinds of block so far:

* python marks lines written in Python, then fig
ends the block

* while marks lines that will loop, then wend marks
the bottom of the lines that will repeat

* forin and for mark the beginning of a loop
through numbers or arrays, and nextin or next marks
the bottom of those loops

now we have another kind of block:

* a condition describes some aspect of the state of

the program, and the lines inside the block only
run if the condition is satisfied / true

like with python these blocks will end with the fig
command.

Here is a very simple example:

iftrue 1
now "that is true" print
fig

35

An iftrue conditional has one parameter, and if the
parameter is "true" (non-zero) then it will run the
code inside the block. (between the conditional and
the fig command.)

In the previous example, 1 is non-zero so it runs
the code in the block:

now "that is true" print

What isn't true? A zero, or a zero-length string:
iftrue ""

now "this will not print" print
fig

So, what about iffalse? For that, fig has a command
that will invert a conditional, but first let's
talk about blocks without code inside:

iftrue ""
fig

will give you an error message when it runs. Use
pass as your placeholder for actual code:

iftrue ""
pass
fig

36

The ifequal conditional will compare two
parameters, and is true if they are equal:

x "When is your birthday?" print lineinput
d date

ifequal x d
pass

else
x "A very happy Un-Birthday to you!" print
fig

This program (assuming you type the date in using
MM/DD/YYYY format) asks you to type in your
birthday, and if the date is not today's date, it
wishes you a very happy Un-Birthday.

The else command separates a conditional block into
a two-part conditional block:

* if the first part is true, it runs the code
between the condition, and else

* if the first part is NOT true, it runs the code
between else and the bottom of the conditional.

Let's use the randint function with its "lowest"
and "highest" parameters to produce a number
between 1 and 10. Then ask the user to guess the
number:

37

x randint 1 10

y "Guess a number from 1 to 10: " print lineinput
ifequal x y
now "You guessed correctly!" print
else
now "Good try, but you didn't guess it." print
fig

Something is wrong with this program, and it will
never work the way it's intended to. But we can fix
it!

The randint command returns an integer, but
lineinput returns a string. Meanwhile, when ifequal
compares an integer and a string, it will NOT
detect a match even when one is string "5" and the
other is numeric 5!

We can fix this by making the value from randint a
string using str, or making the output from
lineinput into a numeric using val. Since we don't
know what to expect from lineinput (the user could
type anything) we will convert the randint:

X randint 1 10 str

y "Guess a number from 1 to 10: " print lineinput
ifequal x y
now "You guessed correctly!" print
else
now "Good try, but you didn't guess it." print
fig

38

By adding str to the end of the randint output, we
ensure that when ifequal compares it to the number
the user types in, at least a string is being
compared to a string.

There are other improvements worth making, but for
now this is good enough. (What commands will
compensate for extra spaces on either end of the
input?)

This is a great time to add a while loop. Currently
the user only has one guess, and we could give an
exact number of guesses with a for loop, but that
wouldn't demonstrate a while loop doing something
truly functional, would it? Let's give unlimited
guesses, so you can see how to do that:

while
X randint 1 10 str
y "Guess from 1 to 10: " print lineinput
ifequal x y
now "You guessed correctly!" print
break
else
now "Good try, though." print
fig
wend

4 things to notice here: The while at the top-- the
wend at the bottom-- plus, a correct guess stops

39

the loop using break after telling you that you
guessed correctly.

But perhaps the most important thing is the line
with randint on it. Because once again, it will not
work (exactly) the way that we intend it to:

while
X randint 1 10 str
y "Guess from 1 to 10:

print lineinput

Do you see what's happening? It gets a random
number and gets the user to input a guess. Ok...
When it loops, it gets another random number!

Since the number is always 1-10, the user can just
keep guessing 5 (or any other number in range)
until the computer picks the user's number
randomly! So let's have it pick the number ONCE:

X randint 1 10 str

while
y "Guess from 1 to 10: " print lineinput
ifequal x y
now "You guessed correctly!" print
break
else
now "Good try, though." print
fig
wend

40

Now it works the way it is designed to: the user
has to keep guessing a different number until they
can guess the one the computer picked.

But now that you've seen the while loop work in a
way that the program can get out with a conditional
break, let's replace it with a for loop so we can
limit the number of guesses the user gets:

guesses 4
X randint 1 10 str
for r 1 guesses 1

y "Guess from 1 to 10: " print lineinput
ifequal x y
now "You guessed correctly!" print
break
else
now "Good try, though." print
fig
next

We didn't have to change wend to next, it just
looks more reasonable that way. Also we didn't have
to make a variable called guesses, we could've just
put a 4 there. But this is better (and clearer.)

Let's take a look at the output this program will

show the user, along with the numbers the user
might type in:

41

Guess from 1 to 10:

5

Good try, though.
Guess from 1 to 10:

2

Good try, though.
Guess from 1 to 10:

8

You guessed correctly!

How about another condition to say the user ran out
of guesses? The for loop keeps track of which guess
the user is on, in the r variable, right? We can
use that:

guesses 4
X randint 1 10 str
for r 1 guesses 1
gsss guesses minus r plus 1 str
y "You have " plus gsss plus " guesses.
y "Guess from 1 to 10: " print lineinput

print

ifequal x y
now "You guessed correctly!" print
break
else
now "Good try, though." print
ifequal guesses r
now "Sorry, no more guesses." print
fig
fig
next
42

Here are the relevant lines of the changes we made:

guesses 4
X randint 1 10 str
for r 1 guesses 1
gsss guesses minus r plus 1 str
y "You have " plus gsss plus " guesses." print

Also:

now "Good try, though." print
ifequal guesses r
now "Sorry, no more guesses.
fig

print

These two changes don't need each other; the second
change would still work by itself, and the stuff at
the top could work without the bottom part.

Let's go over what we know:

* the for loop will repeat (guesses) times, which
in this case is 4.

* the loop tracks which repeat (guess) it's on, in
the variable r.

* so if r is the same number as guesses, it is on
the last guess (in this case, it was already used.)

43

That pretty much explains the part at the bottom.
It doesn't run until after the program tells the
user they guessed wrong, so if guesses is the same
number as r, the last guess was used.

What about the top part? This is just addition and
subtraction:

gsss guesses minus r plus 1 str
y "You have " plus gsss plus " guesses.

print

* gsss is set to the limited number of guesses (4.)
* then r (which guess user is on: 1 or 2 or 3 or 4)
is subtracted, so if guesses is 4 and r is 1 (first

guess) then there are 3 guesses left.

* put... the user hasn't guessed yet! So we add 1
more: "plus 1" since guess 1 is still in play.

* then we convert that number to str and put it in
a string between "You have " and " guesses."

* then we print it.

From the top, it looks really complicated. But if
you want this functionality, it's just:

gsss guesses minus r plus 1 str
y "You have " plus gsss plus " guesses.”" print

44

You may find with logic like this, that the
stricter syntax in Python is easier to work with.
Here is what that looks like:

guesses = 4
from random import randint
x = str(randint(1l, 10))

for r in range(l, guesses + 1, 1):
gsss = str(guesses — r + 1)

y = "You have " + gsss + " guesses." ; print(y)
y = "Guess from 1 to 10: " ; print(y)
y = input()
if x == y:
print("You guessed correctly!")
break
else:
print("Good try, though.")
if guesses == r:

print ("Sorry, no more guesses.")

Some of the differences between fig and Python:

* Python cares what case you use (normally all-
lower. But Hi and hi are two different things.)

* Parentheses are not optional (in fig they are.)

* You must use = to set a variable, and == to
compare (fig requires neither; =can set variables.)

45

* Functions(are(parenthetical + str(that) + can()))
become complicated.

* Instead of starting blocks with one command and
marking the bottom with fig or another command, You
have to indent (in fig it is optional) everything
after a block-starter. When you are done with the
block, you unindent.

* Colons at the end of a block-starter are
generally required in Python.

* Python 3 and Python 2 use print differently.

* Commands like randint have to be imported.

Believe it or not, this isn't meant to discourage
you from using Python. If you're comfortable with
mandatory indentation, it can be very beautiful (I
wrote fig in Python, so I know it's a great
language.)

But when I tried to teach Python to people, I noted
what gripes came up the most. Mandatory indentation
is good for some and terrible to others. Fig
doesn't have it. Case-sensitivity is fine for most
coders-- I prefer the way Basic was not case-
sensitive (in Visual Studio I believe it is now.)

If you love Python, on the next page is an
approximation of the same code in fig, using
optional () and = and : and such:

46

a program in pure fig code
guesses = 4
X = randint(l, 10) ; str()

for r (1, guesses, 1):
gsss = guesses ; minus r ; plus 1 ; str()
y= "You have ";plus gsss;plus " guesses.";print
y = "Guess from 1 to 10: " ; print()
y = lineinput()

ifequal x, y:
now = "You guessed correctly!"
break
else:
now = "Good try, though." ; print()
ifequal guesses, r:
now = "Sorry, no more guesses." ; print
fig
fig

;o print()

fig

Obviously you can't dress up fig exactly like
Python (without putting it between python and fig
that is) but you can dress up fig, if you want to.

Whatever you consider "simple" is what you should
stick to code-wise, until you are ready and
interested in getting more complicated. When you're
ready, there are lots of things to try, including
making new fig commands using function and/or
inline Python. And there are more conditionals!

47

To review: else inverts a conditional, and pass is
a placeholder (in case you don't want to run code
for every condition, but you do want to run code
for some.)

Using a comment # instead of pass will not work in
loop and conditional blocks.

ifequal x vy
now print "yes"
fig

ifmore x vy
now print "yes"
fig

ifless x vy
now print "yes"
fig

The ifmore (x, y) conditional is true only if x is
more than vy.

The ifless (x, y) conditional is true only if x is
less than y.

Substitute x with some other variable or value; and
substitute y with some other variable or value.

48

Once you understand conditionals, else and pass,

there is a very useful conditional-like block that

is very special: the "condition" it handles is an
error.

It works like this:

try
pass
try to do this
except
pass
run this code if there was an error before
resume

resume is another subtitute / alias for fig which
you can use instead (as usual) if you prefer.

try

x 5 divby 0
except

X "You can't divide numbers by zero." print
resume

catches a real error.
You can use a try / except / resume block to try
opening a file that isn't available (or that the

user didn't spell correctly) or put it in a loop

49

that tries to convert user input to a numeric, and
asks again if it can't:

while

X "Please enter a number: " prints lineinput

try
y x val
if that didn't trip except, break loop
break

except
now "" print "That's not a number." print
resume

wend

now y str plus " times 5 is:
now y times 5 print

prints

That functionality we just created could be used
more than once in a program tha asks for numbers.
Let's simplify it before getting into functions:

while
x "Please enter a number: " prints lineinput
try
y x val
break
except
now "" print "That's not a number." print
resume
wend

now y print # this is the number we know is numeric

50

Chapter 7: Functions

In the previous chapter, we put together some code
that asks for (and insists upon) a number.

If you've ever been to a website that rejected some
input because it wasn't suitable, the code that
does that is very similar! (It's probably written
in JavaScript or PHP though, because those are
still more common languages for websites.)

We have learned several fig commands, and there are
several more to learn in this chapter, but for the
moment we are going to learn how to make new ones.
First here is the code from before:

while
x "Please enter a number: " prints Tlineinput
try
y x val
break
except
now "" print "That's not a number." print
resume
wend

now y print # this is the number we know is numeric

See the now y print at the bottom? The variable y
is the one we get when things go right. Keep that
in mind.

51

To create a function (a new fig command) called
thisthing which uses one parameter: x and converts
it to the cosine of x radians, do this:

function thisthing x
now X cos return now
fig

Ok, but that's not what we're doing. We are going
to create a function called asknumeric with zero
parameters.

We define our function using a function block:

function asknumeric
we really need the pass command here.
fig

And the code inside the block will produce a
variable called y, so let's ask the function to
return that value (as the function's own value)

function asknumeric
our code will go here

now return y
fig

On the next page, let's put the two together:

52

function asknumeric

while

x "Please enter a number: " prints Tlineinput
try
y x val
break
except
now "" print "That's not a number." print
resume
wend

now y print # this is the number we know is numeric

now
fig

return y

We can get rid of the "now y print" line:

function asknumeric
while

53

X "Please enter a number:

try

wend
now
fig

prints lineinput
y x val
break
except
now ""
resume

print "That's not a number." print

return y

Okay, run the program...
What? It doesn't do anything. Congrats! It's your
first custom-made fig command.

You've defined it using function but you haven't
used it yet!

Your new function is called asknumeric and always
returns a number, so you can use it like this:

x asknumeric times 1000 print

See? Any time you want to use your asknumeric
command, just use it like you would any other fig
command. (It will only be available in programs
that contain the definition before you use it.)

You can even create a user-defined function that
calls another user-defined function:

function doitagain
X asknumeric
fig

times 1000 print

now doitagain

Let's run this and on the next page, see what
happens. ..

54

Please enter a number: Okay

That's not a number.
Please enter a number: Yes it is!

That's not a number.
Please enter a number: a number

That's not a number.
Please enter a number: 5.78
5780

One of the more interesting things about writing
programs is coming up with names for the different
variables (and functions.)

If you pick a name that is too short or not very
descriptive-- x for example, is really only
"descriptive" if you're describing a point on a
horizontal axis-- then you cause anyone reading
your code to suffer a little.

If you pick a name that is too absurdly long then
you cause anyone re-using (referencing) that name
to suffer. People don't seem to mind this as much
(I do, so I tend not to use very long names.)

If you're writing a manual, it matters somewhat
less because people know "x" is always a variable.

But coming up with names is "work" sometimes.

55

What's more, is coming up with names can get in the
way of more pressing / important matters; so
anything that helps reduce the amount of "overhead"
in terms of organizing used and unused variable
names is an idea worth considering.

The thing about functions is "scope." If you are
defining a function, the name you use to call
(reference, refer to) the function-- its name-- is
the thing you have to put the most thought into.

Everything inside the function is more or less
isolated. This isolation is called "scope," and it
can be viewed as an inconvenience or an enormous
help.

If you're writing a large, complicated program,
organizing everything into functions is the best
thing you can do. (You can also use objects, which
are more complicated, and then "functions" will be
called "methods" as far as terminology goes. But
fig doesn't really get into objects.)

Because of this "scope" (the way it isolates the
stuff inside the function block) you USUALLY need a
way to get information from the program into the
function.

In our first example, information gets into the
function by way of the lineinput command. But if
you refer to a program variable from outside the
function, it will not know anything about it.

56

Put another way: a variable called "cheese" outside
the function block is going to have a totally
different value / significance / relevance as a
variable with the same name inside the function.

And this is so when you're creating a function, you
don't have to know what variables are used in the
program that calls it.
For all you know, "x" is the most important
variable in the whole program. So if you need a
variable named "x" in your function, it's
completely separate; the two don't interfere. Every
function can have its own "x" variable.

And every function indeed does get its own
variables. But what if you want to get information
from the program into the function? This is done
with parameters. Lets call them thingl and thing2.
(You can have O or more parameters, even 20 of
them. However the smaller the number, the better.)
Parameters don't need numbers by the way: we are
using numbers in the name purely for fun.

function inthehat thingl thing2

pass
fig

is a valid definition. Let's have it print the
number of characters in each parameter.

57

function inthehat thingl thing2
g 34 chr
now q plus thingl plus q plus " has " prints
now thingl 1len str plus " characters." print

now q plus thing2 plus q plus " has " prints
now thing2 1len str plus " characters." print
fig

and let's call the function, with two strings:

now inthehat "hello" "mike"

outputs this:

"hello" has 5 characters.
"mike" has 4 characters.

One of the fun things about this code is it adds
ascii 34 (a computer code for a double quote) to
the string, so the output can display the string in
quotes. That would be a useful function actually:

function quote qgstring

q 34 chr

withquotes q plus qstring plus q print
fig

now "this will be printed in quotes" quote now

58

It works perfectly, but all it does is build the
quotes into the string and print it. Wouldn't it be
cool if like other built-in functions, it could
change the value of the main variable?

Well, that's what return is for. Let's just change
one line:

function quote gstring

g 34 chr

withquotes q plus qstring plus q return withquotes
fig

Now we have a function we can use anywhere in our
program-- so long as it's after the function
definition. Let's fix up our other function with
it. It does the same as before, with cleaner lines:

function quote gstring

q 34 chr

withquotes q plus qstring plus q return withquotes
fig

function inthehat thingl thing2
now quote thingl plus " has " prints
now thingl 1len str plus " characters." print

now quote thing2 plus " has " prints
now thing2 1len str plus " characters." print
fig

59

And call it:

now inthehat "hello" "mike"

"hello" has 5 characters.
"mike" has 4 characters.

And it works! Our function uses the len function
(built in) to figure out how many characters the
strings have-- len will also find the length of an
array, but not a numeric. So if you do this:

now inthehat "hello" 5

Your function will not work. You can fix this by
putting the line that has len in a try / except /
resume conditional block, and deciding what to say
if it trips the except section.

You can also reword the " characters." string so
that it says something like " characters (or array
elements).”™ That's up to your preference obviously.

Hopefully from these examples you can practice
writing and editing functions. They are very
powerful: half the job of creating your own
programming language could be writing functions.
Fig has more functions built-in, so let's see them:

60

b

X

y 1lcase # copy y to x and make all-lowercase

y ucase # copy y to x and make all-uppercase

y str # copy y to x and convert num to string

"dir" shell # run commands in bash/sh or dos

"hello" asc # convert first character in a

string to numeric ascii code

61

"50.537" wval # convert string number to numeric

"hello there" 1len # length of string or array

52 not # return -1 for zero and 0 for non-zero

space from left" 1ltrim # cut lefthand space

"space from right rtrim # cut righthand space

10 chr # convert integer to ascii / unicode

x "dir" arrshell # load an array with cli output

X arreverse # reverse the order of an array

X Yy reverse # copy string y to x and reverse

X arrsort # sort an array

x "hello" 1left 2 # get leftmost 2 characters
x "hello" right 2 # get rightmost 2 characters
x arrget rr 5 # set x to 5th item of array rr

rr arrset 5 "hello" # set 5th item in rr to "hello"

Xx y mid 51 # copy y to x, and set x to a
range/section of 1 character(s) or item(s) starting
with the 5th. (works on strings and arrays.)

p string 12 104 # string of 12 x ascii 104

p string 12 "h" # string of 12 x "h"

62

x split "hello" "e" # split string by "e" into
array ['h', '"llo']

e join x "a
items

join array using "a" in between

Splitting by "e" and joining by "a" will change all
instances of "e" to "a" in a string. You can create
a function called replace like this:

function replace changewhat chfrom chto
p split changewhat chfrom join p chto
now return p
fig

then you can call it this way:

phrase "hello there" replace phrase "he" "a

X instr "hello" "e" # finds the first instance
of "e” in "hello” and returns the position; which
in this case is 2 (0 if not found.)

x "/" «chdir # changes the folder the program is
working in.

63

now end # quits the program (closes files too)
now system # exactly the same as end
now swap Xy # switches the values of x and y

now get parametername # earlier versions of fig

required this to copy parameters inside functions;
it is no longer required, but can still be used to
copy variables into the main variable.

Here are a couple more functions you can use; Basic
and Python (therefore fig) use radians for angles
in trig functions. Perhaps you would like to use
degrees:

(This entire book is in the Public Domain / under
the CCO license, so enjoy)

function degrees2radians dg
pi 1 atn times 4
rd dg times pi divby 180 return rd
fig

function radians2degrees rd
pi 1 atn times 4
dg rd times 180 divby pi return dg
fig

64

Chapter 8: A little Python

As far as coding goes, you can write pretty much
anything in fig you want to. It may not be the
fastest language, or have a feature for everything,
but you can extend it using Python.

Python is a great second language to learn, and is
still probably easier than Javascript (although
Javascript will run in your browser.)

If you have no interest in Python yet, you don't
actually need this chapter. Think of it as "extra
credit,” but definitely don't worry if Python seems
too complicated.

A few months of coding in any language should make
learning Python easier, and there are better intros
to the language than this one; this one is just
made for people comfortable with fig.

If this chapter only started with what makes Python
different than fig, you might think Python is
either pure genius (it basically is) or that it
makes things more difficult than necessary (it
sometimes does.)

It should be noted that Python is a little closer
to what you should expect from most languages than
fig is. Fig was designed specifically to round off
(some might even say cut) as many corners as

65

possible. Today, most languages are case-sensitive,
Python has to be indented just so, and while fig
has a "main variable” at the beginning of most
lines, Python requires that you at least set every
variable to something before you can reference it.

Fig COULD automatically return 0@ for any variable
referenced, even if not used already. Since most
modern languages don't do this (and even have a
good argument against it) Fig uses its main
variable concept instead, which has the following
features:

* Tt makes it obvious what variables are used in a
program

* It zeroes unused variables in a way that is less
work than Python, but relatively compatible with
most modern languages-- it is minimalist yet still
explicit.

* It works like a "named pipe,” (a concept in Unix-
like operating systems) where a number of built-in
functions can reference and change the contents of
a stream of data implicitly:

x arropen "file.txt" | join x " "™ | ucase | print

works kind of like this command in GNU/Linux:

x=$(cat file.txt | sed 's/\n/\ /g' | tr a-z A-Z) ;
echo $x
66

The pipes: | in fig don't change the way that fig
works, they are simply a substitute command
separator for Python's ";" or Basic's ":".

Fig is therefore also a simple (sort of)
introduction to coding in Bash. Although it barely
is the case, the main variable functionality does
transition a little to using pipes in Bash.

But getting back to Python, you must name (and set)
a variable before you can reference (or use) it:

X = 0 ; print(x) # Python uses hashes for comments
because fig allows a certain amount of decorative
punctuation, this will work in fig:

x =0 ; print # fig uses hashes for comments too
but the x after print is implied. In Python, the
semicolon ; between commands and the equals =
between variable name and value are required. And
of course, every function, like print(), requires
the variable to be named.

X =0 ; print (x) ; print (x) # Python

X 0 print print # fig

67

another thing worth mentioning about Python is that
it comes in two major versions: 2 and 3, which are
both still in use. A lot of professionals still
prefer Python 2, as do I; fig was conceived as a
Python 2 project, and I would love to make fig a
project for Python 2 in the long run.

Fig from version 3.0 onward runs in Python 3. More
about this momentarily.

In some ways, Python 2 is more friendly and
flexible. The biggest difference is string
handling, and the print command. In Python 2, print
works like this:

print x
print x,
print x, vy, z

In Python 3, print works like this:

print(x)
print(x, end=' ')
print(x, y, 2z)

Ok, so what's the big deal then? Well it doesn't
stop there, if you want to save or load a file, or
print certain characters, or read from stdin-- all
stuff Python 2 makes trivial that's more of a
hassle in Python 3.

68

Fig would still be a Python 2 project, except the
Python Foundation was supposed to drop support for
it in 2015, and has only extended it to 2020. I
still hope that the many people who prefer 2 will
fork the language, perhaps calling it "boa" or
something.

At that point, I would most likely change fig back
to Python 2 (because transitioning is a feature,
and I think 2 is better for education.) But in the
meantime, fig 3.0 onward is a Python 3 project. If
someone is interested enough in Python 2.9 (or
earlier) to fork or maintain it, they should feel
(they are) free to do so; I would encourage it.

Fig was made with the hopes that more people would
understand and even write programming languages,
and a programming language made from (any version
of) fig would be a very cool thing to find.

I'm focused on Python 3-- reluctantly-- because it
may really be the version of Python we are all
stuck with sooner or later. It's too bad.

Anyway, a fig program that works in 2.9 will
probably work the same in fig 3.x, but eventually
fig may have features (command is one) that aren't
available in 2.9.

As for inline Python, the version of fig (2 vs. 3)
is also the version of Python you must use. So fig

3.1 requires inline Python 3 syntax.

69

One of the largest differences between fig and
Python is indentation. A lot of my fig examples I
indent "Python-style" but in Python, you must
indent each block of code: and you must unindent at
the end of it. So this for loop in fig:

for x (1 10 2)
now x print
next

corresponds to the following loop in Python:

for x in range(1l, 10 + 1, 2):
now = X ; print(now)

There's no "next" in Python; the change in

indentation is how it knows!
Nested loops in fig and Python:

fory (151)
for x (1 10 2)
now X prints
now y print
next
next

prints

for y in range(l, 5 + 1, 1):
for x in range(1l, 10 + 1, 2):
now = x ; print(now, end='

now = y ; print(now)

")

70

In Python, some functions are built in (like int()
and print() and join() for example) while others
have to be imported:

x 3.14 cos print # fig

from math import cos ; print cos(3.14) # Python

Just like defining a function, you only have to
import cos once per program to use it as many times
as you like. Another way to do the same thing:

import math ; print math.cos(3.14)

The advantage of doing it that way is that it
imports the entire math library at once, so you
don't have to keep importing each of its commands
individually.

from sys import stdin
for p in stdin: ps += [p[:-1]]
return ps[:]

This is where fig's arrstdin comes from.
Fig's function is named for the Basic command, but:
def replace(phrase, chfrom, chto):

phrase = phrase.split(chfrom)

return chto.join(phrase)
71

in Python, function is called def.

Note also that join x y becomes y.join(x) and split
x y becomes x.split(y) ...in python you can just do
this, which is easier:

phrase = phrase.replace(x, y)

Block commands aside, most functions in fig start
with def figcommandname in fig's Python source. So
in the fig translator itself:

def figint(p): return int(p)

is the code in Python that performs int in fig.
Sometimes the translation is that simple, and
sometimes it isn't. From inline Python in fig:

x 12.5

python
figcolortext(0, 1) ; fighighlight(0, 7)
fig's int function:
print(figint(x) * 10)

fig

So not only can you use inline Python, you can use
fig functions (some of them) inside inline Python.
When all of it is inline Python, you can copy the
fig functions and use them in a pure Python script.

72

Chapter 9: Debugging

Fig doesn't try to stop every Python error you
might encounter. The goal of fig is to produce
working Python code, and working Python code will
return errors under certain circumstances.

If you want to, you can learn more about Python and
this will make you better at debugging fig
programs. However, if you get to know fig well
enough, you can get pretty good at debugging code
even without understanding Python errors.

First of all, you can stop quite a few errors just
by putting your program between try and except
commands, then putting pass between except and
resume, like this:

try

your program code goes here
except

pass
resume

THAT DOESN'T MEAN YOU REALLY WANT TO DO THIS!

Error messages can be extremely good clues towards
what needs to be fixed. (Other times, not so much.)
They may not "look good” but they don't put them in
because they can't help it; they put them in so

73

that the coder-- and the user-- knows something
(often easy to fix) is wrong.

Suppressing errors also suppresses fixes, but it
rarely prevents the actual problems.

Then again, one of the better ways to see if a file
exists is to open it and catch the error if it
fails. (It's probably true.)

Things to consider when the program isn't working:

* Are you working with strings or numerics? (or
arrays?) You can change one to another, but some
commands and your own user-defined functions may
require specifically strings or specifically
numerics (pset even requires you convert with int.)

* If you're using inline Python, are the variables
you're calling already used outside the Python
code? (fig won't read variables from inline Python
unless they were used in the fig code first.)

* Are all the variables spelled the same way? You
can use a misspelled variable, like lyte, but you
obviously can't expect lyte and lite to have the
same value unless you copy one to the other. You
can however use Lyte and lyTE as the same thing.

* Inside and outside the loop: make certain that
loops are closed with next or wend or fig (or
whatever, so long as each loop is closed in the
right place.)

74

* Make certain that each "shared” line starts with
a main variable. Fig will usually tell you when you
forget about this:

error: shared-line function "print" cannot be used
to start a line

error in line 1:

print

75

Chapter 10: Example Programs

You can make your own programs from the things you
learned in this manual, or you can make changes to
the examples in this chapter. Feel free to do
whatever you want with the code in this chapter, it
is yours (this entire manual is licensed CCO) for
any kind of use/re-use that you would like.

Programs will be separated with comments like this:
HHHRHRH R AR AR BB AR HH R AR AR AR AR HHRHBH R AR AR H R AR

for y 0 15 1

for x 0 15 1
now colortext x y
now highlight y
now X hex right 1 prints colortext 7
now highlight 0
next

now "" print

next

i i e i

) () fish) ()

these) () fish "do nothing at all") ()

)() really. # fig can understand this code; but the
fish #are ignored.

i g i i

76

i

while

x "type in file to open - "
ifequal x "quit"

break

fig

prints lineinput

p arropen x
forin lines p
words split lines " "

forin z words
x z sleep .15 print
nextin

nextin
wend
B e et e e e e e e e

forin items stdin # pipe stdin into loop
now items ucase rtrim print # print each uppercase
nextin

i i i i

p "hello" len
python
p=1/3.0+(p* (3 +7*9) *5.7)
fig
z p print # 77

i i i

z "rhino-05"
p "rhino-09"

ifless z p
x "yes, z is less than p" print

fig

RHHBH AR AR AR AR AR AR AR AR R H R HHRH R R R R AR AR

while
p : "enter 0 to continue, 1 to quit:" : print
p : lineinput : val
iftrue p
break # stop looping
fig
wend
while

text "type words to uppercase,
text "or 'quit' to end" print
text lineinput ucase print lcase
ifequal text "quit"

break

fig
wend

prints

i i e i

78

i
: 200

: 640 : divby 2
: 480 : divby 2

< X 0 S

for p -3.14 3.14 .628
for pr -3.14 3.14 .628

dx : p : cos : times r

dy : p : sin : times r

dxr : pr : cos : times r

dyr : pr : sin : times r

z :c:plusl : swap z c

xX @ X : plus 5 : plus dx : int
yy :y : plus 5 : plus dy : int
x2 : x : plus 5 : plus dxr : int
y2 :y : plus 5 : plus dyr : int
cc : ¢ : mod 5 : plus 10

z : line xx yy X2 y2 cc

z : sleep .005

next
next

z : lineinput

T i i
79

i i i

p = "hello"
X == "hey"
a = "yes" : arr
ifequal "hello" == p
a : print
fig
ifequal "hey" = x
a : print
fig
ifequal p ==
pass
else
n == "no" : print
fig

HHAHHA AR R R R AR R R R R

this is a working fig program
function printhello

p cls # clear screen

p "hello world" print

fig
python

inline python feature

for p in range(5):

printhello()
fig

i i e i
80

i

function htext x y pal

p "000011100000001110000" arr
plus "001100011000110001100"
plus "010000000101000000010"
plus "100000000010000000001"
plus "010000000000000000010"
plus "001100000000000001100"
plus "000010000000000010000"
plus "000001100000001100000"
plus "000000010000010000000"
plus "000000001101100000000"
p plus "000000000010000000000"
plen p len
for r 1 plen 1

hrow arrget p r #### get line

now "" highlight 0 print

vert y plus r locate vert, X

hlen hrow len

for ¢ 1 hlen 1

ch arrget hrow c val

T T T T T T T T T

xc X plus ¢ locate vert, xc
iftrue ch
now highlight pal " " prints
fig
next
next
fig
try
while

palchoice randint 1 3 sleep .25
pal "457" mid palchoice 1 val
x randint 5 55

81

y randint 2 12
wend

htext x y pal

except
pass
resume
now "" colotext 7 highlight 0 print

i g g i

c =20

textmode

for radius (1, 200, .157)
X = 320

y = 240

for b (-3.14, 3.14, .314)

d = c plus .157 : swap d, c
xc = b plus c : cos

yc = b plus ¢ : sin

col = xc times radius plus x
row = yc times radius plus y

colr = b times 3 : abs : mod 2 : int : times 11
plus 4

col2 = col divby 8 : int : plus 34

row2 = row divby 16 minus 2 : int : plus 1

xX = col2 minus 1

X2 = col2 minus 0

z line(xx, row2, x2, row2), colr
next

next

p : colortext 7 : locate 1, 1

HAHHAHRHHARRHH AR R HAHHRHH AR AR R H AR R H RS HHHH 82

