
Probabilistic password generators

(and fancy curves)

Simon Marechal (bartavelle at openwall.com)
http://www.openwall.com

@Openwall

December 2012

http://www.openwall.com

Warning!

I I am no mathematician
I Conclusions might be erroneous

I Bugs !

I All conclusions are relative to public leaks, specifically the 2012 Yahoo Contributor
Network leak

I 453491 distinct passwords
I 342514 unique passwords
I Unique passwords used, to reduce biases (and introduce new ones, hopefully less

problematic)

I The training set is the rockyou list

S. Marechal (Openwall) Probabilistic password generators December 2012 2 / 34

Probabilistic what ?

A technique for generating candidate passwords from a statistical model

Notations

P(x) probabilistic distribution of all characters at position x

p(x , y) probability that the character at position x is y

c(x) character at position x

P ′(x) b−K .log(P(x))c
p′(x , y) b−K .log(p(x , y))c

Ψ(pass) probability that a password is chosen

S. Marechal (Openwall) Probabilistic password generators December 2012 3 / 34

A word on log-probabilities

It is common to store log-probabilities instead of raw probabilities. The reason for
rounding them will be apparent later. Please note that:

I A likely event will have a P value close to 1, and a P ′ close to 0

I P1.P2.P3 will turn onto P ′
1 + P ′

2 + P ′
3

I P ′ is nicer to look at than P

S. Marechal (Openwall) Probabilistic password generators December 2012 4 / 34

Well known cracking methods

Examples

P(x) is a function of Cracking paradigm

Nothing (constant) Naive exhaustive search, standard rainbow tables, frequency
optimized search

c(x − 1) JtR Markov mode
c(x − 2), c(x − 1), x , l JtR incremental mode, for each length l

c(x − 1),x Hashcat per position Markov mode ?

Some distributions have special properties. This talk will focus on distributions that are
only functions of the previous characters (ie. can be modeled as Markov chains). They
can be written as :

P(x) = f (c(x − 1), c(x − 2), ..., c(0), x)

S. Marechal (Openwall) Probabilistic password generators December 2012 5 / 34

What for ?

I Find a model that fits well with real world password selection

I Compute the parameters that fit a training set
I Generate all candidate passwords that satisfy some condition and use them for

cracking
I Every per-character log-probability of occurrence is less than a given threshold
I The sum of the log-probabilities of each character in a candidate password is less than

a given threshold (we will only consider this case)

Model
I Ψ(pass) = p(0, p) ∗ p(1, a) ∗ p(2, s) ∗ p(3, s)

I Ψ′(pass) = p′(0, p) + p′(1, a) + p′(2, s) + p′(3, s)

I For a maximum probability ψ, generate and crack all {p | Ψ′(p) < ψ′}

We can think of ψ′ as a budget to spend on individual p′

S. Marechal (Openwall) Probabilistic password generators December 2012 6 / 34

Useful properties

These probability distributions have the following nice properties:
I It is possible to count the number of words p satisfying Ψ′(p) < ψ′ (called nbparts)

I Actually it is possible to enumerate many related values

I Once done, it is easy to generate the nth password (this is important for rainbow
tables and distributed computing)

I It is possible to quickly compute Ψ′(p) for arbitrary passwords provided that we
give v , ∀(x , y) ∈ {p(x , y) = 0}, p′(x , y) = v

I We can compute nbparts for every value of p, thus estimate how long it would take to
crack this password using this model

I Yes, that means you can fill your reports with curves

S. Marechal (Openwall) Probabilistic password generators December 2012 7 / 34

InfoSecSouthWest2012

Figure: Passwords found per maximum ψ′

I Partial results, ran Markov 290 (explains the second drop)
I Multiple humps, typical of frankencurves
I Huge drop after the peak at 250. Are there Markov generated passwords ?

S. Marechal (Openwall) Probabilistic password generators December 2012 8 / 34

Computing nbparts – sample 1/3

State definition

Let’s use P(x) = f (c(x − 1)), ie. JtR Markov mode

I The reduced state is the previous character

I The full state is the tuple (previous character, remaining budget, remaining length)

I Initial full state could be (∅, 100, 10)

Training set

I abc

I aaa

I bac

I ccab

S. Marechal (Openwall) Probabilistic password generators December 2012 9 / 34

Computing nbparts – algorithm

Take advantage of the state machine structure:

I Build the state transition graph (reduced state)

I Map all full states into reduced states

I Map all reduced states into full states that could be derived from it

I Start with the initial full state
I From a full set, compute the reduced set, and recursively run this step for all valid

derived full states
I When the function finishes, store the (full state, password count) pair for caching
I Exploit node collisions (thanks to the rounding)
I Memory and time usage orders of magnitude lower than password count

S. Marechal (Openwall) Probabilistic password generators December 2012 10 / 34

Computing nbparts – sample 2/3

Inner state transition

n c(x − 1) c(x) p′ = b−10.ln(p(x , c(x)|c(x − 1))c
0 a 6
0 b 13
0 c 13
> 0 a a 9
> 0 b a 6
> 0 a b 9
> 0 c a 6
> 0 a c 16
> 0 b c 6
> 0 c c 6

S. Marechal (Openwall) Probabilistic password generators December 2012 11 / 34

Computing nbparts – state machine

Password generation can be modeled as a state machine:

6

6

9

13

13

6

6

6

9

16
a

zero

b

c

Figure: The resulting state machine

S. Marechal (Openwall) Probabilistic password generators December 2012 12 / 34

Computing nbparts – sample 3/3

1. We start with an empty reduced state, ψ′ = 100, length budget of 10, and
nbparts = ∅. The full state is (∅, 100, 10)

2. The list of acceptable next reduced states is (a, 6), (b, 13), (c, 13)

3. Start with (a, 6). The next full state is (a, 94, 9). It is not in nbparts, so the
algorithm keeps going

4. Continue until the length or budget is depleted

5. Store the password count related to this node in nbparts

With this training set, 621 nodes will be generated, and the result will be 58314
passwords

S. Marechal (Openwall) Probabilistic password generators December 2012 13 / 34

Computing nbparts

Initial
20

4

c
7

3

Initial
20

4

c
7

3

c
1

2

Initial
20

4

c
7

3

a
1

2

c
1

2

Initial
20

4

c
7

3

a
1

2

c
1

2

Initial
20

4

b
7

3

c
7

3

a
1

2

c
1

2

Initial
20

4

b
7

3

c
7

3

a
1

2

c
1

2

Initial
20

4

b
7

3

c
7

3

a
14

3
b

7

3

a
1

2

c
1

2

Initial
20

4

c
7

3

a
14

3
b

7

3

a
1

2

c
1

2

Initial
20

4

b
5

2

c
7

3

a
14

3
b

7

3

a
1

2

c
1

2

Initial
20

4

a
5

2
b

5

2

S. Marechal (Openwall) Probabilistic password generators December 2012 14 / 34

Exploiting password structure

Known optimization (cf. ”mask mode”, Weir thesis)

I Password is made of subsequent characters of the same class (upper, lower, digits,
special)

I Can be modeled as a Markov thingy. For example, pass123 can be modeled as:
I A chain of types [Lower, Digit] – the ”no length” model
I A chain of types with length [Lower 4, Digit 3] – the ”part type and length” model

I Each part can be modeled as previously
I Ψ′

p(pass123) = B.Ψ′([L4,D3]) + Ψ′(pass) + Ψ′(123)
I B is a constant that must be tuned

S. Marechal (Openwall) Probabilistic password generators December 2012 15 / 34

Computing nbpartsp

Much harder! Will be written nbpartsp (for patterns)
I Generate the nbparts graph for patterns, but:

I At each node, have intermediate states, one for each point of remaining budget
I Compute the sub-part nbparts for each of these states
I And multiply by the nbpartsp of the next nodes

S. Marechal (Openwall) Probabilistic password generators December 2012 16 / 34

Details for nbpartsp

Same procedure as before, but for patterns. Let’s say we pick U4, and have a ”budget”
of 20

I Generate 18 intermediate states, from 1 to 19
I For each state i , ”spend” i on a 4 uppercase letters subpart, and 20− i for the

remaining parts
I let ni = nbparts(Ψ′ = i , length = 4)
I let S be the state of valid next full states
I ni =

∑
s∈S nbpartsp(Ψ′ = n − i , s)

I nbpartsp,i = (ni + 1)nexti

I nbpartsp =
∑

i=1..19 nbpartsp,i

S. Marechal (Openwall) Probabilistic password generators December 2012 17 / 34

Not so fast !

How to compute nbparts(P ′ = i , length = 4) ? All we can do is
nbparts(P ′ ≤ i , length ≤ 4) !

I Pretty obvious when written like this. Took me two days to realize ...

I nbparts(P ′ = i , length ≤ 4) = nbparts(P ′ ≤ i , length ≤ 4)− nbparts(P ′ ≤
i − 1, length ≤ 4)

I Same reasoning for fixing the length. Beware of edge cases

S. Marechal (Openwall) Probabilistic password generators December 2012 18 / 34

In other words :)

Main loop – is there a bug ?

S. Marechal (Openwall) Probabilistic password generators December 2012 19 / 34

Frequency optimized exhaustive search

I Search all passwords made with a charset of n elements
I Start with the shortest passwords and most frequent characters
I What is the best value for n ?
I For my sample, 36: ae1iorns2lt0m3dc9hu847by56kgpwjfvzxq

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1M / 0s / 1h18 1G / 0s / 54d 1e12 / 185s / 148y 1e15 / 51h / - 1e18 / 5.9y / - 1e21 / - / -

36
45
55
65
75
85
95

Figure: Passwords found per candidates tested, for various charset length

S. Marechal (Openwall) Probabilistic password generators December 2012 20 / 34

Results – Markov mode

Markov like modes : Model Structure/Subpart/B value

I Markov mode:
I M1 : Markov using the previous item (an item is a character or a part template)
I M2 : Markov using the two previous items

I Model type:
I No model
I Model part type and length
I Model part type only

I B value:
I As explained previously, the ”score” of a password is the sum of the scores of all

subparts, plus B times the score of the structure
I Ψ′

p(pass123) = B.Ψ′([L4,D3]) + Ψ′(pass) + Ψ′(123)

S. Marechal (Openwall) Probabilistic password generators December 2012 21 / 34

Results – Markov mode, example

So, part/type/length M2/M2/B2 means:

I Each structure item is a (character type, length) pair

I Structure modeled with Markov using the two previous items

I Each part is modeled with Markov using the two previous characters

I Total cost is the sum of the costs of all parts plus twice the cost of the structure

S. Marechal (Openwall) Probabilistic password generators December 2012 22 / 34

Results – wordlists and mangling rules

I Used two widely used wordlists: wikipedia-sraveau and rockyou

I Used a good and large list of mangling rules (see mangling rules presentation)

I Real world results are better, as word rejection hasn’t been taken into account in
the figures

S. Marechal (Openwall) Probabilistic password generators December 2012 23 / 34

Results – candidates tested / time spent

The following figures draw the ratio of passwords found per candidates tested, for
various candidate generation methods
The x-axis ticks are labelled with : candidates tested / fast hash / slow hash

I The fast hash time is computed for 5400M c/s (oclHashcat, stock HD7970, 100k
MD5 hashes)

I The slow hash time is computed for 1340 c/s (John the Ripper, 2 x X5650, 100
BCrypt $2a$08 hashes)

Count MD5 BCrypt $2a$08

1e3 0s 74s
1e6 0s 20h 43m
1e9 0s 2y 133d

1e12 185s 2364y 285d
1e15 51h 26m -
1e18 5y 317d -

S. Marechal (Openwall) Probabilistic password generators December 2012 24 / 34

Results – part type only

Comparing all values of B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

No length M1/M0/B1
No length M1/M0/B2
No length M1/M0/B3
No length M1/M0/B4
No length M1/M0/B5
No length M1/M0/B6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

No length M1/M1/B1
No length M1/M1/B2
No length M1/M1/B3
No length M1/M1/B4
No length M1/M1/B5
No length M1/M1/B6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

No length M1/M2/B1
No length M1/M2/B2
No length M1/M2/B3
No length M1/M2/B4
No length M1/M2/B5
No length M1/M2/B6

M1/M0 M1/M1 M1/M2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

No length M2/M0/B1
No length M2/M0/B2
No length M2/M0/B3
No length M2/M0/B4
No length M2/M0/B5
No length M2/M0/B6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

No length M2/M1/B1
No length M2/M1/B2
No length M2/M1/B3
No length M2/M1/B4
No length M2/M1/B5
No length M2/M1/B6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

No length M2/M2/B1
No length M2/M2/B2
No length M2/M2/B3
No length M2/M2/B4
No length M2/M2/B5
No length M2/M2/B6

M2/M0 M2/M1 M2/M2

S. Marechal (Openwall) Probabilistic password generators December 2012 25 / 34

Results – part type only, best B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

No length M1/M0/B1
No length M1/M1/B2
No length M1/M2/B2
No length M2/M0/B1
No length M2/M1/B1
No length M2/M2/B2

Figure: Passwords cracked per candidates tested.

S. Marechal (Openwall) Probabilistic password generators December 2012 26 / 34

Results – part type and length

Comparing all values of B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

W. length M1/M0/B1
W. length M1/M0/B2
W. length M1/M0/B3
W. length M1/M0/B4
W. length M1/M0/B5
W. length M1/M0/B6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

W. length M1/M1/B1
W. length M1/M1/B2
W. length M1/M1/B3
W. length M1/M1/B4
W. length M1/M1/B5
W. length M1/M1/B6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

W. length M1/M2/B1
W. length M1/M2/B2
W. length M1/M2/B3
W. length M1/M2/B4
W. length M1/M2/B5
W. length M1/M2/B6

M1/M0 M1/M1 M1/M2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

W. length M2/M0/B1
W. length M2/M0/B2
W. length M2/M0/B3
W. length M2/M0/B4
W. length M2/M0/B5
W. length M2/M0/B6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

W. length M2/M1/B1
W. length M2/M1/B2
W. length M2/M1/B3
W. length M2/M1/B4
W. length M2/M1/B5
W. length M2/M1/B6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

W. length M2/M2/B1
W. length M2/M2/B2
W. length M2/M2/B3
W. length M2/M2/B4
W. length M2/M2/B5
W. length M2/M2/B6

M2/M0 M2/M1 M2/M2

S. Marechal (Openwall) Probabilistic password generators December 2012 27 / 34

Results – part type and length, best B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

W. length M1/M0/B1
W. length M1/M1/B1
W. length M1/M2/B1
W. length M2/M0/B1
W. length M2/M1/B1
W. length M2/M2/B1

Figure: Passwords cracked per candidates tested.

S. Marechal (Openwall) Probabilistic password generators December 2012 28 / 34

Results – JtR incremental mode

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y

All contest
Alphanum contest

Alphanum standard
All standard

Alpha contest

Figure: Passwords cracked per candidates tested.

S. Marechal (Openwall) Probabilistic password generators December 2012 29 / 34

Results – big picture

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1M / 0s / 21h 1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

Wordlist rockyou
Raw M2

W. length M2/M2/B1
No length M1/M2/B2

Wordlist wikipedia
JtR incremental contest

Freq. opt. search [36]
Statsprocessor v0.05 TH 20

Figure: Passwords cracked per candidates tested.
S. Marechal (Openwall) Probabilistic password generators December 2012 30 / 34

What about hard passwords?

A statistical generator is often used after a ”wordlist” or ”single” run. In order to
account for this, the easiest passwords have been removed with the following steps:

I A selection of 754 rules from good sets (see the mangling rules presentation),
against rockyou and wikipedia-sraveau

I A quick JtR Markov run (level 250, default shipped statistics)

The password count went from 342514 to 94990 (72% reduction)

S. Marechal (Openwall) Probabilistic password generators December 2012 31 / 34

Results – hard passwords

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1G / 0s / 2.4y 1e12 / 185s / 2365y 1e15 / 51h / - 1e18 / 5.9y / -

Raw M2
Normal M1/M2/B1
Simple M1/M2/B1
Simple M1/M2/B1

Freq. opt. search [36]

Figure: Passwords cracked per candidates tested, no trivial password

S. Marechal (Openwall) Probabilistic password generators December 2012 32 / 34

Conclusion

I The new model seems better when testing lots of passwords
I Especially against ”hard” passwords
I Cracks a neglectable amount of passwords with little tests
I Needs more benchmarks (fractional Bs)

I Guessing game:
I What about implementation speed ?
I Against Hashcat Bruteforce++ ?

I Soon:
I JtR implementation
I Perhaps a rainbow table implementation
I More benches

S. Marechal (Openwall) Probabilistic password generators December 2012 33 / 34

Questions?

http://www.openwall.com

S. Marechal (Openwall) Probabilistic password generators December 2012 34 / 34

http://www.openwall.com

