Probabilistic password generators

(and fancy curves)

Simon Marechal (bartavelle at openwall.com)
http://www.openwall.com
@Openwall

Warning!

- I am no mathematician
- Conclusions might be erroneous
- Bugs !
- All conclusions are relative to public leaks, specifically the 2012 Yahoo Contributor Network leak
- 453491 distinct passwords
- 342514 unique passwords
- Unique passwords used, to reduce biases (and introduce new ones, hopefully less problematic)
- The training set is the rockyou list

Probabilistic what?

A technique for generating candidate passwords from a statistical model

Notations

$P(x)$ probabilistic distribution of all characters at position x
$p(x, y)$ probability that the character at position x is y
$c(x)$ character at position x
$P^{\prime}(x)\lfloor-K \cdot \log (P(x))\rfloor$
$p^{\prime}(x, y)\lfloor-K \cdot \log (p(x, y))\rfloor$
Ψ (pass) probability that a password is chosen

A word on log-probabilities

It is common to store log-probabilities instead of raw probabilities. The reason for rounding them will be apparent later. Please note that:

- A likely event will have a P value close to 1 , and a P^{\prime} close to 0
- $P_{1} \cdot P_{2} \cdot P_{3}$ will turn onto $P_{1}^{\prime}+P_{2}^{\prime}+P_{3}^{\prime}$
- P^{\prime} is nicer to look at than P

Well known cracking methods

Examples

$P(x)$ is a function of	Cracking paradigm
Nothing (constant)	Naive exhaustive search, standard rainbow tables, frequency
optimized search	
$c(x-1)$	JtR Markov mode
$c(x-2), c(x-1), x$, I	JtR incremental mode, for each length /
$c(x-1), x$	Hashcat per position Markov mode ?

Some distributions have special properties. This talk will focus on distributions that are only functions of the previous characters (ie. can be modeled as Markov chains). They can be written as:

$$
P(x)=f(c(x-1), c(x-2), \ldots, c(0), x)
$$

What for ?

- Find a model that fits well with real world password selection
- Compute the parameters that fit a training set
- Generate all candidate passwords that satisfy some condition and use them for cracking
- Every per-character log-probability of occurrence is less than a given threshold
- The sum of the log-probabilities of each character in a candidate password is less than a given threshold (we will only consider this case)

Model

- $\Psi($ pass $)=p(0, p) * p(1, a) * p(2, s) * p(3, s)$
- $\Psi^{\prime}($ pass $)=p^{\prime}(0, p)+p^{\prime}(1, a)+p^{\prime}(2, s)+p^{\prime}(3, s)$
- For a maximum probability ψ, generate and crack all $\left\{p \mid \Psi^{\prime}(p)<\psi^{\prime}\right\}$

We can think of ψ^{\prime} as a budget to spend on individual p^{\prime}

Useful properties

These probability distributions have the following nice properties:

- It is possible to count the number of words p satisfying $\Psi^{\prime}(p)<\psi^{\prime}$ (called nbparts)
- Actually it is possible to enumerate many related values
- Once done, it is easy to generate the $n^{\text {th }}$ password (this is important for rainbow tables and distributed computing)
- It is possible to quickly compute $\Psi^{\prime}(p)$ for arbitrary passwords provided that we give $v, \forall(x, y) \in\{p(x, y)=0\}, p^{\prime}(x, y)=v$
- We can compute nbparts for every value of p, thus estimate how long it would take to crack this password using this model
- Yes, that means you can fill your reports with curves

Figure: Passwords found per maximum ψ^{\prime}

- Partial results, ran Markov 290 (explains the second drop)
- Multiple humps, typical of frankencurves
- Huge drop after the peak at 250. Are there Markov generated passwords ?

Computing nbparts - sample $1 / 3$

State definition

Let's use $P(x)=f(c(x-1))$, ie. JtR Markov mode

- The reduced state is the previous character
- The full state is the tuple (previous character, remaining budget, remaining length)
- Initial full state could be $(\emptyset, 100,10)$

Training set

- abc
- aaa
- bac
- ccab

Computing nbparts - algorithm

Take advantage of the state machine structure:

- Build the state transition graph (reduced state)
- Map all full states into reduced states
- Map all reduced states into full states that could be derived from it
- Start with the initial full state
- From a full set, compute the reduced set, and recursively run this step for all valid derived full states
- When the function finishes, store the (full state, password count) pair for caching
- Exploit node collisions (thanks to the rounding)
- Memory and time usage orders of magnitude lower than password count

Computing nbparts - sample $2 / 3$

Inner state transition

n	$c(x-1)$	$c(x)$	$p^{\prime}=\lfloor-10 \cdot \ln (p(x, c(x) \mid c(x-1))\rfloor$
0		a	6
0		b	13
0		c	13
>0	a	a	9
>0	b	a	6
>0	a	b	9
>0	c	a	6
>0	a	c	16
>0	b	c	6
>0	c	c	6

Computing nbparts - state machine

Password generation can be modeled as a state machine:

Figure: The resulting state machine

Computing nbparts - sample $3 / 3$

1. We start with an empty reduced state, $\psi^{\prime}=100$, length budget of 10 , and nbparts $=\emptyset$. The full state is $(\emptyset, 100,10)$
2. The list of acceptable next reduced states is $(a, 6),(b, 13),(c, 13)$
3. Start with $(a, 6)$. The next full state is $(a, 94,9)$. It is not in nbparts, so the algorithm keeps going
4. Continue until the length or budget is depleted
5. Store the password count related to this node in nbparts

With this training set, 621 nodes will be generated, and the result will be 58314 passwords

Computing nbparts

Exploiting password structure

Known optimization (cf. " mask mode", Weir thesis)

- Password is made of subsequent characters of the same class (upper, lower, digits, special)
- Can be modeled as a Markov thingy. For example, pass123 can be modeled as:
- A chain of types [Lower, Digit] - the "no length" model
- A chain of types with length [Lower 4, Digit 3] - the "part type and length" model
- Each part can be modeled as previously
- $\Psi_{p}^{\prime}($ pass 123$)=B \cdot \Psi^{\prime}([L 4, D 3])+\Psi^{\prime}($ pass $)+\Psi^{\prime}(123)$
- B is a constant that must be tuned

Computing nbparts $_{p}$

Much harder! Will be written nbparts ${ }_{p}$ (for patterns)

- Generate the nbparts graph for patterns, but:
- At each node, have intermediate states, one for each point of remaining budget
- Compute the sub-part nbparts for each of these states
- And multiply by the $n_{b p a r t s}^{p}$ of the next nodes

Details for nbpartsp

Same procedure as before, but for patterns. Let's say we pick U4, and have a "budget" of 20

- Generate 18 intermediate states, from 1 to 19
- For each state i, "spend" i on a 4 uppercase letters subpart, and 20 - i for the remaining parts
- let $n_{i}=n b p a r t s\left(\Psi^{\prime}=i\right.$, length $\left.=4\right)$
- let S be the state of valid next full states
- $n_{i}=\sum_{s \in S} n b p a r t s_{p}\left(\Psi^{\prime}=n-i, s\right)$
- nbparts $_{p, i}=\left(n_{i}+1\right)$ next $_{i}$
- nbparts $_{p}=\sum_{i=1 . .19}$ nbparts $_{p, i}$

How to compute nbparts $\left(P^{\prime}=i\right.$, length $\left.=4\right)$? All we can do is nbparts $\left(P^{\prime} \leq i\right.$, length $\left.\leq 4\right)$!

- Pretty obvious when written like this. Took me two days to realize ...
- nbparts $\left(P^{\prime}=i\right.$, length $\left.\leq 4\right)=\operatorname{nbparts}\left(P^{\prime} \leq i\right.$, length $\left.\leq 4\right)-\operatorname{nbparts}\left(P^{\prime} \leq\right.$ $i-1$, length ≤ 4)
- Same reasoning for fixing the length. Beware of edge cases

In other words:)

Main loop - is there a bug ?

```
alcpatternsnbparts' malus !gtype !stats stt@(LvlState !curlvl !curstate) !curparts !ns !snbparts = let
    Icorrectstates = filter (\( l) -> l <= (curlvl `div` malus)) $! curstates ns gtype curstate
    gennext (mp, c) su =
        let (s lnomalus) = downgrade gtype su
            l = lnomalus * malus
            remaining = curlvl - l
            (Pattern nextstateType nextstateLen) = getNextState su
            nbpartsmap = snbparts Map.! nextstateType
            gM 0 = = 0
            gM 0 = 1
            gm ln v =
                let lo | ln >= 32 = HM.lookup (LvlState 31 v NoState) nbpartsmap
                    otherwise = HM.lookup (LvlState ln v NoState) nbpartsmap
            in case lo of
                    Just !x -> x
                    Nothing -> error $ "Would not find " ++ show (l, v
            getnbparts 0 = 0
            getnbparts lv = ( gm nextstateLen lv - gm (nextstateLen-1) lv
                    gm nextstateLen (lv-1) - gm (nextstateLen-1) (lv-1)
            levelsToTry = [. (lv, getnbparts lv) | lv <- [1..remaining
            trylevel (tnmp tnc) (tlvl, tnbparts) = let
                nnmp, nnc) = calcpatternsnbparts' malus gtype stats (LvlState 0 (remaining - tlvl) s) tnmp ns snbparts
                !res = tnc+(nnc+1)*tnbparts
            in (nnmp, res
            (nmp, nc) = foldl' trylevel (mp, 0) levelsToTry
            in (nmp, c+nc
```

 (!nm, !count) = foldl' gennext (curparts, 0) correctstates
 in case HM. lookup stt curparts of
 Just x -> (curparts, X)
 Nothing -> (HM.insert stt count nm, count

Frequency optimized exhaustive search

- Search all passwords made with a charset of n elements
- Start with the shortest passwords and most frequent characters
- What is the best value for n ?
- For my sample, 36: ae1iorns2lt0m3dc9hu847by56kgpwjfvzxq

Figure: Passwords found per candidates tested, for various charset length

Results - Markov mode

Markov like modes: Model Structure/Subpart/B value

- Markov mode:
- M1: Markov using the previous item (an item is a character or a part template)
- M2 : Markov using the two previous items
- Model type:
- No model
- Model part type and length
- Model part type only
- B value:
- As explained previously, the "score" of a password is the sum of the scores of all subparts, plus B times the score of the structure
- $\Psi_{p}^{\prime}($ pass 123$)=B \cdot \Psi^{\prime}([L 4, D 3])+\Psi^{\prime}($ pass $)+\Psi^{\prime}(123)$

Results - Markov mode, example

So, part/type/length M2/M2/B2 means:

- Each structure item is a (character type, length) pair
- Structure modeled with Markov using the two previous items
- Each part is modeled with Markov using the two previous characters
- Total cost is the sum of the costs of all parts plus twice the cost of the structure

Results - wordlists and mangling rules

- Used two widely used wordlists: wikipedia-sraveau and rockyou
- Used a good and large list of mangling rules (see mangling rules presentation)
- Real world results are better, as word rejection hasn't been taken into account in the figures

Results - candidates tested / time spent

The following figures draw the ratio of passwords found per candidates tested, for various candidate generation methods
The x-axis ticks are labelled with : candidates tested / fast hash / slow hash

- The fast hash time is computed for 5400M c/s (oclHashcat, stock HD7970, 100k MD5 hashes)
- The slow hash time is computed for $1340 \mathrm{c} / \mathrm{s}$ (John the Ripper, $2 \times \mathrm{X} 5650,100$ BCrypt \$2a\$08 hashes)

Count	MD5	BCrypt \$2a\$08
1 e 3	0 s	74 s
1 e 6	0 s	20 h 43 m
1 e 9	0 s	2 y 133 d
1 e 12	185 s	2364 y 285 d
1 e 15	51 h 26 m	-
1 e 18	5 y 317 d	-

Results - part type only

Comparing all values of B

M2/M0

M1/M1

M2/M1

Results - part type only, best B

Figure: Passwords cracked per candidates tested

Results - part type and length

Comparing all values of B

M2/M0

M1/M1

M2/M1

M2/M2

Results - part type and length, best B

Figure: Passwords cracked per candidates tested

Results - JtR incremental mode

Figure: Passwords cracked per candidates tested.

Results - big picture

What about hard passwords?

A statistical generator is often used after a "wordlist" or "single" run. In order to account for this, the easiest passwords have been removed with the following steps:

- A selection of 754 rules from good sets (see the mangling rules presentation), against rockyou and wikipedia-sraveau
- A quick JtR Markov run (level 250, default shipped statistics)

The password count went from 342514 to 94990 (72% reduction)

Results - hard passwords

Figure: Passwords cracked per candidates tested, no trivial password

- The new model seems better when testing lots of passwords
- Especially against "hard" passwords
- Cracks a neglectable amount of passwords with little tests
- Needs more benchmarks (fractional Bs)
- Guessing game:
- What about implementation speed ?
- Against Hashcat Bruteforce++?
- Soon:
- JtR implementation
- Perhaps a rainbow table implementation
- More benches

Questions?

http://www.openwall.com

